CN108681248A - A kind of autonomous learning fault diagnosis system that parameter is optimal - Google Patents
A kind of autonomous learning fault diagnosis system that parameter is optimal Download PDFInfo
- Publication number
- CN108681248A CN108681248A CN201810457999.0A CN201810457999A CN108681248A CN 108681248 A CN108681248 A CN 108681248A CN 201810457999 A CN201810457999 A CN 201810457999A CN 108681248 A CN108681248 A CN 108681248A
- Authority
- CN
- China
- Prior art keywords
- fault diagnosis
- data
- module
- indicate
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000000513 principal component analysis Methods 0.000 claims abstract description 11
- 238000007781 pre-processing Methods 0.000 claims abstract description 7
- 238000012706 support-vector machine Methods 0.000 claims abstract description 5
- 230000006870 function Effects 0.000 claims description 17
- 238000005457 optimization Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000001311 chemical methods and process Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 description 6
- 238000004880 explosion Methods 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 206010033864 Paranoia Diseases 0.000 description 2
- 208000027099 Paranoid disease Diseases 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 238000012824 chemical production Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
本发明公开了一种参数最优的自主学习故障诊断系统,用于对田纳西伊斯曼过程进行故障诊断,包括数据预处理模块、主成分分析模块、自主学习模块以及群智能算法模块。本发明对田纳西伊斯曼化工过程的重要参数指标进行故障诊断,克服已有的化工故障诊断技术仪表预报精度不高、易受人为因素影响的不足,利用蚁群算法较强的全局搜索能力和局部搜索能力快速寻找到支持向量机的最优参数,提出了一种小样本条件下诊断效果更好的且易得到参数最优的自主学习故障诊断系统。
The invention discloses a self-learning fault diagnosis system with optimal parameters, which is used for fault diagnosis of the Tennessee Eastman process, including a data preprocessing module, a principal component analysis module, a self-learning module and a group intelligence algorithm module. The present invention performs fault diagnosis on important parameter indexes of the Tennessee Eastman chemical process, overcomes the shortcomings of the existing chemical fault diagnosis technology instrument prediction accuracy is not high, and is easily affected by human factors, and utilizes the strong global search ability of the ant colony algorithm and The local search ability quickly finds the optimal parameters of the support vector machine, and a self-learning fault diagnosis system with better diagnostic effect under small sample conditions and easy to obtain optimal parameters is proposed.
Description
技术领域technical field
本发明涉及故障诊断领域、机器学习领域和群智能优化算法领域,尤其涉及一种结合机器学习和群智能优化算法的田纳西伊斯曼过程化工故障诊断系统。The invention relates to the field of fault diagnosis, machine learning and swarm intelligence optimization algorithm, in particular to a Tennessee Eastman process chemical fault diagnosis system combining machine learning and swarm intelligence optimization algorithm.
背景技术Background technique
随着近几年大数据正在如火如荼地发展起来,大数据本身已成为人工智能的重要支撑部分,除此之外,由于数据的产生速度和总量都在急速增长,从以往生产过程所产生的数据中获取我们需要的隐藏在数据中的信息,已成为科学研究的新领域。利用数据进行复杂工业过程检测已在工业故障检测领域得到了快速发展,该技术能有效降低工业生产过程故障的发生,从而最大限度地避免故障对企业和国家造成的损失。化工型企业一直是安全事故高发的一类生产性企业,一直以来给地方政府和人民造成较大的生命财产损失;例2016年4月3日,山东省德州市一家名为联化科技的化工厂发生严重爆炸事故,爆炸共造成7人受伤,并对周围房屋建筑造成不同程度地破坏,由于是化工厂中有多种化工原料,爆炸使多种化工生产原料发生泄漏,一定程度上污染了当地的自然环境。2016年4月20日,墨西哥的国家石油公司下属的一处石油加工设施爆炸,涉事公司称“泄漏”是引发此次爆炸的主要因素,但没有明确指明是何种材料的泄漏,具体事故原因需要进一步查明,此次事故共造成32人死亡,130人受伤。2017年2月,安徽省恒兴化工公司发生爆炸,此次事故没有造成人员伤亡。事后经有关部门的调查分析,初步查出的事故原因为蒸汽管道阀门操作失误。以上案例只是最近这段时间所发生事故的一部分。由此可见,化工生产过程发生安全事故的概率相比其他产业要大一些;正如此,如何能够最大限度地避免此类安全事故的发生,就显得尤为重要。开展化工过程的故障检测与诊断研究正是为了减少此类故障事故的发生,从而实现安全生产,为国家争取更多的经济效益,因此,基于数据驱动的故障检测方法研究已经成为故障检测与诊断领域的热点问题之一。With the rapid development of big data in recent years, big data itself has become an important supporting part of artificial intelligence. Obtaining the information hidden in the data we need has become a new field of scientific research. The use of data for complex industrial process detection has been rapidly developed in the field of industrial fault detection. This technology can effectively reduce the occurrence of industrial production process faults, thereby minimizing the losses caused by faults to enterprises and the country. Chemical enterprises have always been a type of productive enterprise with a high incidence of safety accidents, which have always caused relatively large losses of life and property to local governments and people; for example, on April 3, 2016, a chemical company named Lianhua Technology in Dezhou City, Shandong Province A serious explosion accident occurred in the factory. The explosion caused 7 injuries and caused varying degrees of damage to the surrounding buildings and buildings. Since there are many kinds of chemical raw materials in the chemical plant, the explosion caused a variety of chemical production raw materials to leak, which polluted to a certain extent. local natural environment. On April 20, 2016, an oil processing facility affiliated to Mexico's National Petroleum Corporation exploded. The company involved said that "leakage" was the main factor that triggered the explosion, but did not clearly specify what kind of material leaked. The specific accident The cause needs to be further ascertained. The accident caused a total of 32 deaths and 130 injuries. In February 2017, an explosion occurred in Hengxing Chemical Company in Anhui Province. No casualties were caused in this accident. After the investigation and analysis by the relevant departments, the cause of the accident was initially found to be the misoperation of the steam pipeline valve. The above cases are only part of the accidents that have occurred in the recent period. It can be seen that the probability of safety accidents in the chemical production process is higher than that of other industries; just like this, how to avoid such safety accidents to the greatest extent is particularly important. Carrying out research on fault detection and diagnosis of chemical processes is precisely to reduce the occurrence of such fault accidents, so as to achieve safe production and strive for more economic benefits for the country. Therefore, research on fault detection methods based on data-driven has become an One of the hot issues in the field.
发明内容Contents of the invention
为了克服目前已有的故障诊断技术的预报精度不高、易受人为因素影响的不足,本发明的目的在于提供一种小样本条件下预报效果更好故障诊断系统。In order to overcome the disadvantages of low prediction accuracy and being easily affected by human factors in the existing fault diagnosis technology, the purpose of the present invention is to provide a fault diagnosis system with better prediction effect under the condition of small sample size.
本发明解决其技术问题所采用的技术方案是:一种参数最优的自主学习故障诊断系统,用于对田纳西伊斯曼过程进行故障诊断,包括数据预处理模块、主成分分析模块、自主学习模块以及群智能算法模块。其中:The technical solution adopted by the present invention to solve the technical problem is: a self-learning fault diagnosis system with optimal parameters, which is used for fault diagnosis of the Tennessee Eastman process, including a data preprocessing module, a principal component analysis module, and an autonomous learning module and swarm intelligence algorithm module. in:
数据预处理模块:田纳西伊斯曼过程的52个变量为数据预处理模块的输入。由于每个变量都有不同的单位,为了防止不同的量纲引起数据量级之间的误差,先对所有数据进行标准化处理,标准化公式如下:Data Preprocessing Module: 52 Variables of the Tennessee Eastman Process It is the input of the data preprocessing module. Since each variable has a different unit, in order to prevent errors between data magnitudes caused by different dimensions, all data are first standardized. The normalization formula is as follows:
其中,mean表示各变量的算术平均值,std表示各变量的标准差,表示输入变量的值,下标i表示第i次检测、j分别表示第j维变量,xij表示标准化后输入变量的值作为输入数据。标准化后的数据为S={xi1,xi2,...xi52}。Among them, mean represents the arithmetic mean of each variable, std represents the standard deviation of each variable, Indicates the value of the input variable, the subscript i indicates the i-th detection, j indicates the j-th dimension variable, and x ij indicates the value of the input variable after normalization as the input data. The standardized data is S={x i1 , x i2 , . . . x i52 }.
主成分分析模块:通过主成分分析来保证在不降低系统精度的情况下降低系统的复杂度。将标准化后的数据S={xi1,xi2,...xi52}进行主成分分析,保留85%的主要成分。Principal component analysis module: through principal component analysis, the complexity of the system can be reduced without reducing the accuracy of the system. The standardized data S={x i1 , x i2 ,...x i52 } is subjected to principal component analysis, and 85% of the principal components are retained.
自主学习模块:用于建立诊断系统,采用支持向量机自主学习模块:Self-learning module: used to establish a diagnostic system, using support vector machine self-learning module:
其中J表示目标函数、w表示模块参数、b表示偏执、x表示输入数据、y表示输出数据,下标i表示第i个数据。Among them, J represents the objective function, w represents the module parameter, b represents paranoia, x represents the input data, y represents the output data, and the subscript i represents the i-th data.
对于上述公式的求解,引入了拉格朗日乘子αi,定义拉格朗日函数L如下,其中上标T表示矩阵的转置,表示核函数映射:For the solution of the above formula, the Lagrangian multiplier α i is introduced, and the Lagrangian function L is defined as follows, where the superscript T represents the transposition of the matrix, Represents the kernel function map:
根据KKT条件,将L(w,αi,b)分别对w,b求偏导,可以得到如下公式:According to the KKT condition, the partial derivative of L(w,α i ,b) with respect to w and b respectively can be obtained as follows:
该模块采用性能优秀、所需参数少的RBF核函数K,函数如下:This module uses the RBF kernel function K with excellent performance and few required parameters. The function is as follows:
其中,K是核函数,表示输入数据的平均值,σ表示核参数。Among them, K is the kernel function, denotes the mean value of the input data, and σ denotes the kernel parameter.
群智能算法模块:采用群智能方法蚁群算法优化自主学习模块中的核参数σ:Swarm intelligence algorithm module: use the swarm intelligence method ant colony algorithm to optimize the kernel parameter σ in the self-learning module:
(1)算法初始化,构造出初始的解集S=(s1,s2,...,sn),确定蚁群的大小m,设置蚁群寻优算法迭代次数的阈值MaxGen并初始化蚁群寻优的迭代次数序号k=0;(1) Algorithm initialization, construct the initial solution set S=(s 1 ,s 2 ,...,s n ), determine the size m of the ant colony, set the threshold MaxGen of the iteration times of the ant colony optimization algorithm and initialize the ant colony The number of iterations of group optimization k=0;
(2)计算出解集S对应的适应度值Fi(i=1,2,...n),适应度值越大代表解越好,再确定解集中每个解被取到作为蚂蚁寻优的初始解的概率Pi(i=1,2,...n),其中表示解的真实值,表示解的预测值,n表示样本个数:(2) Calculate the fitness value F i (i=1,2,...n) corresponding to the solution set S, the larger the fitness value, the better the solution, and then determine that each solution in the solution set is taken as an ant The probability P i (i=1,2,...n) of the optimal initial solution, where represents the true value of the solution, Indicates the predicted value of the solution, and n indicates the number of samples:
初始化执行寻优算法的蚂蚁编号i=0;Initialize the ant number i=0 for executing the optimization algorithm;
(3)蚂蚁i选取S中的一个解作为寻优的初始解,选取规则是根据P来做轮盘选;(3) Ant i selects a solution in S as the initial solution for optimization, and the selection rule is to do roulette selection according to P;
(4)蚂蚁i在选取的初始解的基础上进行寻优,找到更好的解si;(4) Ant i performs optimization on the basis of the selected initial solution to find a better solution s i ;
田纳西伊斯曼过程共有21个故障,将不同故障的数据输入到群智能优化的故障诊断系统中进行训练,建立故障诊断模型。There are 21 faults in the Tennessee Eastman process. The data of different faults are input into the fault diagnosis system optimized by swarm intelligence for training, and the fault diagnosis model is established.
当未知故障的数据输入到此故障诊断系统时,诊断结果显示仪显示诊断结果。When the data of unknown faults are input into the fault diagnosis system, the diagnostic result display instrument will display the diagnostic results.
本发明的有益效果主要表现在:本发明对田纳西伊斯曼化工过程的重要参数指标进行故障诊断,克服已有的化工故障诊断技术仪表预报精度不高、易受人为因素影响的不足,利用蚁群算法较强的全局搜索能力和局部搜索能力快速寻找到支持向量机的最优参数,提出了一种小样本条件下诊断效果更好的且易得到参数最优的自主学习故障诊断系统。The beneficial effects of the present invention are mainly manifested in: the present invention diagnoses the important parameters of the Tennessee Eastman chemical process, overcomes the shortcomings of the existing chemical fault diagnosis technology, the instrument prediction accuracy is not high, and it is easily affected by human factors. The strong global search ability and local search ability of the group algorithm quickly find the optimal parameters of the support vector machine, and a self-learning fault diagnosis system with better diagnostic effect and easy to obtain the optimal parameters under the condition of small samples is proposed.
附图说明Description of drawings
图1是一种参数最优的自主学习故障诊断系统的基本结构示意图;Figure 1 is a schematic diagram of the basic structure of a self-learning fault diagnosis system with optimal parameters;
图2是群智能优化的故障诊断系统模块的结构示意图;Fig. 2 is the structural representation of the fault diagnosis system module of swarm intelligence optimization;
图3是田纳西伊斯曼过程工艺生产流程图。Figure 3 is a production flow diagram of the Tennessee Eastman process.
具体实施方式Detailed ways
下面根据附图具体说明本发明。The present invention will be described in detail below according to the accompanying drawings.
参照图1,一种参数最优的自主学习故障诊断系统,包括田纳西伊斯曼过程1、用于测量易测变量的现场智能仪表2、用于测量操作变量的控制站3、存放数据的数据库4、群智能优化的故障诊断系统5和诊断结果显示仪6。所述现场智能仪表2、控制站3与田纳西伊斯曼过程1连接,所述现场智能仪表2、控制站3与数据库4连接,所述数据库4与群智能优化的故障诊断系统5的输入端连接,所述群智能优化的故障诊断系统5的输出端与诊断结果显示仪6连接。Referring to Fig. 1, a self-learning fault diagnosis system with optimal parameters includes Tennessee Eastman process 1, field smart instrument 2 for measuring easily measurable variables, control station 3 for measuring operating variables, and a database for storing data 4. Fault diagnosis system 5 optimized by swarm intelligence and display device 6 for diagnosis results. The on-site intelligent instrument 2 and the control station 3 are connected to the Tennessee Eastman process 1, the on-site intelligent instrument 2 and the control station 3 are connected to the database 4, and the database 4 is connected to the input terminal of the fault diagnosis system 5 optimized by the group intelligence connected, the output end of the group intelligently optimized fault diagnosis system 5 is connected with the diagnosis result display instrument 6 .
参照图3田纳西伊斯曼过程的变量如表1所示。Referring to Figure 3, the variables of the Tennessee Eastman process are shown in Table 1.
表1:田纳西伊斯曼过程变量Table 1: Tennessee Eastman Process Variables
田纳西伊斯曼过程数据作为群智能优化的故障诊断系统5的输入变量。通过人工取样分析获得,每4小时分析采集一次。The Tennessee Eastman process data are used as input variables for the swarm intelligence optimized fault diagnosis system 5 . Obtained by manual sampling analysis, collected once every 4 hours for analysis.
参照图2,所述群智能优化的故障诊断系统5还包括:With reference to Fig. 2, the fault diagnosis system 5 of described swarm intelligence optimization also includes:
数据预处理模块7:田纳西伊斯曼过程的52个变量为数据预处理模块的输入。由于每个变量都有不同的单位,为了防止不同的量纲引起数据量级之间的误差,先对所有数据进行标准化处理,标准化公式如下:Data Preprocessing Module 7: 52 Variables of the Tennessee Eastman Process It is the input of the data preprocessing module. Since each variable has a different unit, in order to prevent errors between data magnitudes caused by different dimensions, all data are first standardized. The normalization formula is as follows:
其中,mean表示各变量的算术平均值,std表示各变量的标准差,表示输入变量的值,下标i表示第i次检测、j分别表示第j维变量,xij表示标准化后输入变量的值作为输入数据。标准化后的数据为S={xi1,xi2,...xi52}。Among them, mean represents the arithmetic mean of each variable, std represents the standard deviation of each variable, Indicates the value of the input variable, the subscript i indicates the i-th detection, j indicates the j-th dimension variable, and x ij indicates the value of the input variable after normalization as the input data. The standardized data is S={x i1 , x i2 , . . . x i52 }.
主成分分析模块8:通过主成分分析来保证在不降低系统精度的情况下降低系统的复杂度。将标准化后的数据S={xi1,xi2,...xi52}进行主成分分析,保留85%的主要成分。Principal component analysis module 8: use principal component analysis to ensure that the complexity of the system is reduced without reducing the accuracy of the system. The standardized data S={x i1 , x i2 ,...x i52 } is subjected to principal component analysis, and 85% of the principal components are retained.
自主学习模块9:用于建立诊断系统,采用支持向量机自主学习模块:Self-learning module 9: used to establish a diagnostic system, using support vector machine self-learning module:
其中J表示目标函数、w表示模块参数、b表示偏执、x表示输入数据、y表示输出数据,下标i表示第i个数据。Among them, J represents the objective function, w represents the module parameter, b represents paranoia, x represents the input data, y represents the output data, and the subscript i represents the i-th data.
对于上述公式的求解,引入了拉格朗日乘子αi,定义拉格朗日函数L如下,其中上标T表示矩阵的转置,表示核函数映射:For the solution of the above formula, the Lagrangian multiplier α i is introduced, and the Lagrangian function L is defined as follows, where the superscript T represents the transposition of the matrix, Represents the kernel function map:
根据KKT条件,将L(w,αi,b)分别对w,b求偏导,可以得到如下公式:According to the KKT condition, the partial derivative of L(w,α i ,b) with respect to w and b respectively can be obtained as follows:
该模块采用性能优秀、所需参数少的RBF核函数K,函数如下:This module uses the RBF kernel function K with excellent performance and few required parameters. The function is as follows:
其中,K是核函数,表示输入数据的平均值,σ表示核参数。Among them, K is the kernel function, denotes the mean value of the input data, and σ denotes the kernel parameter.
群智能算法模块10:采用群智能方法蚁群算法优化自主学习模块中的核参数σ:Swarm Intelligence Algorithm Module 10: Use the swarm intelligence method ant colony algorithm to optimize the kernel parameter σ in the autonomous learning module:
(1)算法初始化,构造出初始的解集S=(s1,s2,...,sn),确定蚁群的大小m,设置蚁群寻优算法迭代次数的阈值MaxGen并初始化蚁群寻优的迭代次数序号k=0;(1) Algorithm initialization, construct the initial solution set S=(s 1 ,s 2 ,...,s n ), determine the size m of the ant colony, set the threshold MaxGen of the iteration times of the ant colony optimization algorithm and initialize the ant colony The number of iterations of group optimization k=0;
(2)计算出解集S对应的适应度值Fi(i=1,2,...n),适应度值越大代表解越好,再确定解集中每个解被取到作为蚂蚁寻优的初始解的概率Pi(i=1,2,...n),其中表示解的真实值,表示解的预测值,n表示样本个数:(2) Calculate the fitness value F i (i=1,2,...n) corresponding to the solution set S, the larger the fitness value, the better the solution, and then determine that each solution in the solution set is taken as an ant The probability P i (i=1,2,...n) of the optimal initial solution, where represents the true value of the solution, Indicates the predicted value of the solution, and n indicates the number of samples:
初始化执行寻优算法的蚂蚁编号i=0;Initialize the ant number i=0 for executing the optimization algorithm;
(3)蚂蚁i选取S中的一个解作为寻优的初始解,选取规则是根据P来做轮盘选;(3) Ant i selects a solution in S as the initial solution for optimization, and the selection rule is to do roulette selection according to P;
(4)蚂蚁i在选取的初始解的基础上进行寻优,找到更好的解si;(4) Ant i performs optimization on the basis of the selected initial solution to find a better solution s i ;
田纳西伊斯曼过程共有21个故障,将不同故障的数据输入到群智能优化的故障诊断系统5中进行训练,建立故障诊断模型。There are 21 faults in the Tennessee Eastman process, and the data of different faults are input into the swarm intelligence optimized fault diagnosis system 5 for training to establish a fault diagnosis model.
当未知故障的数据输入到此故障诊断系统时,诊断结果显示仪6显示诊断结果。When the data of an unknown fault is input into the fault diagnosis system, the diagnostic result display instrument 6 displays the diagnostic result.
本发明实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。The embodiments of the present invention are used to explain the present invention, rather than to limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modification and change made to the present invention will fall into the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810457999.0A CN108681248A (en) | 2018-05-14 | 2018-05-14 | A kind of autonomous learning fault diagnosis system that parameter is optimal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810457999.0A CN108681248A (en) | 2018-05-14 | 2018-05-14 | A kind of autonomous learning fault diagnosis system that parameter is optimal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108681248A true CN108681248A (en) | 2018-10-19 |
Family
ID=63805000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810457999.0A Pending CN108681248A (en) | 2018-05-14 | 2018-05-14 | A kind of autonomous learning fault diagnosis system that parameter is optimal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108681248A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110609530A (en) * | 2019-09-23 | 2019-12-24 | 厦门华夏国际电力发展有限公司 | Data mining method and system for realizing working condition optimization based on DCS system edge |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1987697A (en) * | 2006-12-22 | 2007-06-27 | 浙江大学 | Fault diagnostic system and method for under industrial producing process small sample condition |
CN101021723A (en) * | 2006-12-22 | 2007-08-22 | 浙江大学 | Melt index detection fault diagnozing system and method in propylene polymerization production |
CN101038485A (en) * | 2006-12-22 | 2007-09-19 | 浙江大学 | System and method for detecting date and diagnosing failure of propylene polymerisation production |
CN103472865A (en) * | 2013-09-22 | 2013-12-25 | 浙江大学 | Intelligent least-square system and method for optimizing incinerator temperature of pesticide waste liquid incinerator |
CN103823430A (en) * | 2013-12-09 | 2014-05-28 | 浙江大学 | Intelligent weighing propylene polymerization production process optimal soft measurement system and method |
CN103823964A (en) * | 2013-12-09 | 2014-05-28 | 浙江大学 | Global optimum soft measurement instrument and method applied to propylene polymerization production |
CN103839103A (en) * | 2013-12-09 | 2014-06-04 | 浙江大学 | BP optimal forecasting system and method in propylene polymerization production process |
CN103838206A (en) * | 2013-12-09 | 2014-06-04 | 浙江大学 | Optimal soft measurement meter and method in optimal BP multi-mode propylene polymerization production process |
CN107703493A (en) * | 2017-11-13 | 2018-02-16 | 浙江大学 | Sea clutter optimal soft survey instrument and method based on adaptive drosophila optimized algorithm Optimized Least Square Support Vector |
-
2018
- 2018-05-14 CN CN201810457999.0A patent/CN108681248A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1987697A (en) * | 2006-12-22 | 2007-06-27 | 浙江大学 | Fault diagnostic system and method for under industrial producing process small sample condition |
CN101021723A (en) * | 2006-12-22 | 2007-08-22 | 浙江大学 | Melt index detection fault diagnozing system and method in propylene polymerization production |
CN101038485A (en) * | 2006-12-22 | 2007-09-19 | 浙江大学 | System and method for detecting date and diagnosing failure of propylene polymerisation production |
CN103472865A (en) * | 2013-09-22 | 2013-12-25 | 浙江大学 | Intelligent least-square system and method for optimizing incinerator temperature of pesticide waste liquid incinerator |
CN103823430A (en) * | 2013-12-09 | 2014-05-28 | 浙江大学 | Intelligent weighing propylene polymerization production process optimal soft measurement system and method |
CN103823964A (en) * | 2013-12-09 | 2014-05-28 | 浙江大学 | Global optimum soft measurement instrument and method applied to propylene polymerization production |
CN103839103A (en) * | 2013-12-09 | 2014-06-04 | 浙江大学 | BP optimal forecasting system and method in propylene polymerization production process |
CN103838206A (en) * | 2013-12-09 | 2014-06-04 | 浙江大学 | Optimal soft measurement meter and method in optimal BP multi-mode propylene polymerization production process |
CN107703493A (en) * | 2017-11-13 | 2018-02-16 | 浙江大学 | Sea clutter optimal soft survey instrument and method based on adaptive drosophila optimized algorithm Optimized Least Square Support Vector |
Non-Patent Citations (2)
Title |
---|
SHIMING HE: ""A novel fault diagnosis method based on optimal relevance vector", 《NEUROCOMPUTING》 * |
SHIMING HE: "An effective fault diagnosis approach based on optimal weighted least squares support vector machine", 《CANADIAN JOURNAL OF CHEMICAL ENGINEERING》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110609530A (en) * | 2019-09-23 | 2019-12-24 | 厦门华夏国际电力发展有限公司 | Data mining method and system for realizing working condition optimization based on DCS system edge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Novel leakage detection and water loss management of urban water supply network using multiscale neural networks | |
CN109710636B (en) | Unsupervised industrial system anomaly detection method based on deep transfer learning | |
CN108803520B (en) | A Dynamic Process Monitoring Method Based on Variable Nonlinear Autocorrelation Elimination | |
CN101446831B (en) | A decentralized approach to process monitoring | |
CN108536128A (en) | A kind of machine learning fault diagnosis system of parameter optimization | |
CN108536107A (en) | Colony intelligence optimizing fault diagnosis system based on hybrid optimized parameter | |
CN108764305A (en) | A kind of improved colony intelligence machine learning fault diagnosis system | |
CN104914723B (en) | Soft sensor modeling method for industrial process based on collaborative training partial least squares model | |
CN103713628B (en) | Fault diagnosis method based on signed directed graph and data constitution | |
CN103389701B (en) | Based on the level of factory procedure fault Detection and diagnosis method of distributed data model | |
CN105955219A (en) | Distributed dynamic process fault detection method based on mutual information | |
CN106368813A (en) | Abnormal alarm data detection method based on multivariate time series | |
CN108536130A (en) | A kind of Fault Diagnosis in Chemical Process system of colony intelligence optimizing | |
CN102880809A (en) | Polypropylene melt index on-line measurement method based on incident vector regression model | |
CN104199441A (en) | Blast furnace multiple working condition fault separation method and system based on sparse contribution plot | |
Li et al. | Fast detection and localization of multiple leaks in water distribution network jointly driven by simulation and machine learning | |
CN104657586A (en) | Abnormal working condition detection-based high-sulfur natural gas purification process modeling optimization method | |
CN105045951A (en) | Soft-measurement method for volatile fatty acid in effluent of anaerobic wastewater treatment system | |
CN109058771A (en) | Pipeline Anomaly Detection Method Based on Sample Generation and Interval Markov Features | |
CN108762242A (en) | A kind of distributed fault detection method based on polylith canonical correlation analysis model | |
CN108681250A (en) | A kind of improvement machine learning fault diagnosis system based on colony intelligence optimization | |
CN113703422B (en) | A Fault Diagnosis Method of Gas Turbine Pneumatic Actuator Based on Feature Analysis and Processing | |
CN114298144A (en) | A method for oil leakage identification of hydropower station equipment based on deep convolutional neural network | |
CN115358297A (en) | Injection molding machine abnormity detection method and system based on improved MKECA method | |
Zhou et al. | Multi-fault diagnosis of district heating system based on PCA_BP neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181019 |