CN108680247B - 基于振动烈度低频滤波修正的振动信号转换方法 - Google Patents
基于振动烈度低频滤波修正的振动信号转换方法 Download PDFInfo
- Publication number
- CN108680247B CN108680247B CN201810467842.6A CN201810467842A CN108680247B CN 108680247 B CN108680247 B CN 108680247B CN 201810467842 A CN201810467842 A CN 201810467842A CN 108680247 B CN108680247 B CN 108680247B
- Authority
- CN
- China
- Prior art keywords
- frequency
- vibration
- cut
- signal
- integration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 21
- 238000012937 correction Methods 0.000 title claims abstract description 14
- 230000010354 integration Effects 0.000 claims abstract description 31
- 230000001133 acceleration Effects 0.000 claims abstract description 18
- 238000006073 displacement reaction Methods 0.000 claims abstract description 18
- 238000001914 filtration Methods 0.000 claims abstract description 15
- 238000005259 measurement Methods 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 230000003321 amplification Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 7
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 7
- 230000008859 change Effects 0.000 description 7
- 238000005070 sampling Methods 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明提供了基于振动烈度低频滤波修正的振动信号转换方法,具体包括:步骤(1):使带通滤波器下限截止频率fd在有限范围区间内连续取值,分别对振动加速度信号进行频域一次积分,得到振动速度信号;步骤(2):计算不同fd条件下所得振动速度信号的振动烈度,绘制振动烈度关于fd的关系曲线;步骤(3):根据关系曲线,确定出振动烈度发生突变时对应的最小截止频率fmin;步骤(4):根据实际需要设定带通滤波器的上限截止频率,令下限截止频率fd=fmin进行低频滤波修正,再分别对振动加速度信号进行频域一次和二次积分,获得振动速度和振动位移信号。本发明有效地克服了传统频域积分的低频敏感性及累积误差放大效应,可用于不同类型振动信号之间的精确转换。
Description
技术领域
本发明涉及振动信号处理领域,尤其涉及基于振动烈度低频滤波修正的振动信号转换方法。
背景技术
在机械故障诊断和状态监测中,常用到加速度、速度和位移三种振动参量。但是,在机械振动信号实际测试中,由于仪器设备或测试环境的限制,振动速度和振动位移的测量通常较为困难和复杂,而加速度传感器由于具有体积小、重量轻、频率范围宽、安装方便等优点得到了更加广泛的应用。然而,在许多行业中,往往又需要振动速度和振动位移信息。因此,在很多工程实际中就涉及到振动信号类型转换问题,即将振动加速度信号转换为振动速度信号和振动位移信号。
上述信号转换过程可以通过硬件或软件积分来实现。但是硬件积分不仅会增加测试成本,而且对积分器性能要求高,积分结果也不够理想。近年来,随着动态测试技术和数据处理技术的发展,软件积分方法开始逐渐得到推广应用,尤其是傅里叶(Fourier)变换在信号时域-频域转换方面表现出的独特优势为我们提供了有利工具。然而,以Fourier变换为核心的传统频域积分虽然在理论上已经比较成熟,但在实际应用中由于噪声干扰、低频趋势项等因素的影响,往往会产生很大的低频振荡和峰值误差,具有低频敏感性,计算结果的精度还存在进一步提升的空间。然而,低频段也恰是加速度传感器精度很差的频段,所以低频段的干扰是传统频域积分产生误差的一个主要来源。目前,常用的方法是直接将低于某一频率的分量在频谱上置零处理来去除趋势项,这种方法从分析和操作上十分简洁,但应用中如何界定下限截止频率存在困难。因此,亟需发明一种能够确定传统频域积分最佳下限截止频率,克服其低频敏感性及累积误差放大效应,且能够用于振动信号类型精确转换的新方法。
发明内容
针对现有技术中存在不足,本发明提供了一种基于振动烈度低频滤波修正的振动信号转换方法,旨在提供一种能够确定传统频域积分最佳下限截止频率、克服其低频敏感性及累积误差放大效应,且能够用于振动加速度信号与振动速度信号及振动位移信号之间精确转换的新方法。
本发明是通过以下技术手段实现上述技术目的的。
基于振动烈度低频滤波修正的振动信号转换方法,具体包括以下步骤:
步骤(一):使带通滤波器H(k)的下限截止频率fd在一个有限的范围区间[fdmin,fdmax]内取值,在下限截止频率fd的不同取值条件下,分别对振动加速度时域信号进行频域一次积分,得到相应的振动速度时域信号;
步骤(二):计算经步骤(一)得到的在不同下限截止频率fd条件下的振动速度时域信号所对应的振动烈度,绘制振动烈度关于下限截止频率fd的关系曲线;
步骤(三):根据步骤(二)得出的振动烈度关于下限截止频率fd的变化曲线,确定出振动烈度发生突变时对应的最小截止频率fmin,定义fmin为频域积分的最佳下限截止频率;
步骤(四):根据实际需要设定带通滤波器H(k)的上限截止频率fu,令下限截止频率fd=fmin进行低频滤波修正,再分别对振动加速度时域信号进行频域一次和频域二次积分,即可获得振动速度时域信号和振动位移时域信号。
进一步,所述带通滤波器H(k)的表达式为:
式中,fd、fu分别为H(k)的下限和上限截止频率;Δf为频率分辨率;i为虚数单位,k为采样点。
进一步,步骤(一)中,所述下限截止频率fd的有限范围区间[fdmin,fdmax]根据实测条件而定,通常取0.1~10Hz。
进一步,设定带通滤波器H(k)的上限截止频率fu=1000Hz。
本发明的有益效果:
本发明利用振动烈度的突变特性确定出了最佳下限截止频率,有效地克服了传统频域积分的低频敏感性及累积误差放大效应,所得结果具有十分高的精度,能够用于振动加速度信号与振动速度信号及振动位移信号之间的精确转换。
附图说明
图1为本发明所述基于振动烈度低频滤波修正的振动信号转换方法的流程图。
图2是本发明实施例的振动烈度与下限截止频率fd关系曲线;
图3是本发明实施例的fd=10Hz时仿真信号的积分结果,其中a图为积分速度结果,b图为积分位移结果;
图4是本发明实施例的fd=5.4Hz时仿真信号的积分结果,其中a图为积分速度结果,b图为积分位移结果。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
频域积分的基本原理是先把时域信号作傅里叶变换转换到频域,将时域积分运算转变成在频域内的频谱代数运算,然后再对运算结果作傅里叶逆变换,得到积分后的时域信号。
令加速度信号a(t)、速度信号v(t)、位移信号y(t)的离散化表示分别为a(n)、v(n)、y(n),则有:
其中:
则由式(1)、式(2)和式(3)可得出加速度、速度和位移三者在频域内的频谱代数运算关系为:
式中,A(k)为加速度a(t)的傅里叶变换;V(k)为速度v(t)的傅里叶变换;Y(k)为位移y(t)的傅里叶变换;H(k)为带通滤波器的频率特性;fd、fu分别为H(k)的下限和上限截止频率;Δf为频率分辨率;i为虚数单位,k为采样点。
由式(5)和式(6)可见,频域积分直接以频域内频谱的代数运算关系为基础,可以有效地避免信号的微小误差在积分过程中的累积放大作用。但同时也表明,由于分母含有2πkΔf,当2πkΔf<1rad/s时,kΔf越接近于零,频谱幅值越大。尤其位移来自二次积分,频谱幅值与1/(2πkΔf)2有关,当低频频率kΔf接近于零时,会产生很大的低频振荡和峰值误差,具有低频敏感性。
如图1所示,本发明所述的基于振动烈度低频滤波修正的振动信号转换方法,具体包括以下步骤:
步骤(一):根据振动烈度的定义,设定式(4)中带通滤波器H(k)的上限截止频率fu=1000Hz,使下限截止频率fd在一个有限的范围区间[fdmin,fdmax]内连续取值,[fdmin,fdmax]可根据实测条件而定,通常取为0.1~10Hz。在下限截止频率fd不同取值条件下,分别对振动加速度时域信号进行频域一次积分,得到相应的振动速度时域信号;
步骤(二):计算经步骤(一)得到的在不同下限截止频率fd条件下的振动速度时域信号所对应的振动烈度,绘制振动烈度关于下限截止频率fd的关系曲线;
步骤(三):根据步骤(二)得出的振动烈度关于下限截止频率fd的变化曲线,确定出振动烈度发生突变时对应的最小截止频率fmin,定义fmin为频域积分的最佳下限截止频率;
步骤(四):根据实际需要设定带通滤波器H(k)的上限截止频率fu,令下限截止频率fd=fmin进行低频滤波修正,再分别对振动加速度时域信号进行频域一次和频域二次积分,即可获得振动速度时域信号和振动位移时域信号。
为了验证本发明所述的基于振动烈度低频滤波修正的振动信号转换方法的有效性,应用模拟信号来分析本发明方法在信号类型转换方面的效果。仿真信号结构如式(7)所示,仿真信号模拟了一个在复杂耦合故障作用下的旋转机械振动情况,信号转频为30Hz。该旋转机械除了发生以分频和倍频为主要特征的自激振动以外,还伴随有动静碰磨故障,同时还含有直流分量。根据香农(Shannon)采样定理,取信号的采样频率为2048Hz。采样点数取为2048个。
a(t)=0.05cos(2π×6t)+0.3cos(2π×30t)+0.15cos(2π×60t)
+0.08cos(2π×90t)+0.05cos(2π×120t)+0.01 (7)
根据振动烈度的定义设定带通滤波器H(k)的上限截止频率fu=1000Hz,令下限截止频率fd在0.1~10Hz范围内连续变化,并进行频域积分和振动烈度计算,振动烈度随下限截止频率fd变化曲线如图2所示。
从图2可以看出,振动烈度在fd=6Hz附近发生了突变,发生突变时对应的最小截止频率fmin=5.4Hz,定义fmin=5.4Hz为频域积分的最佳下限截止频率。
为了研究低频截止频率对积分结果的影响,分别取国际标准ISO2372中定义的下限截止频率fd=10Hz和本发明通过计算得出的最佳下限截止频率fd=5.4Hz对仿真信号进行频域一次和频域二次积分运算,获得振动速度时域信号和振动位移时域信号,结果如图3和图4所示。积分结果与理论值之间的定量误差比较如表1所示。
表1积分结果与理论值之间的定量误差
从图3、图4和表1可以看出,传统频域积分具有低频敏感性和累积误差放大效应,如果低频截止频率选择不合适,将会导致积分结果出现较大误差;把振动烈度发生突变时对应的最小截止频率作为最佳下限截止频率,可以有效地克服传统频域积分的低频敏感性及累积误差放大效应,所得结果具有十分高的精度,能够用于振动加速度信号与振动速度信号及振动位移信号之间的精确转换。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。
Claims (4)
1.基于振动烈度低频滤波修正的振动信号转换方法,其特征在于,具体包括以下步骤:
步骤(一):使带通滤波器H(k)的下限截止频率fd在一个有限的范围区间[fdmin,fdmax]内取值,在下限截止频率fd的不同取值条件下,分别对振动加速度时域信号进行频域一次积分,得到相应的振动速度时域信号;
步骤(二):计算经步骤(一)得到的在不同下限截止频率fd条件下的振动速度时域信号所对应的振动烈度,绘制振动烈度关于下限截止频率fd的关系曲线;
步骤(三):根据步骤(二)得出的振动烈度关于下限截止频率fd的变化曲线,确定出振动烈度发生突变时对应的最小截止频率fmin,定义fmin为频域积分的最佳下限截止频率;
步骤(四):根据实际需要设定带通滤波器H(k)的上限截止频率fu,令下限截止频率fd=fmin进行低频滤波修正,再分别对振动加速度时域信号进行频域一次和频域二次积分,即可获得振动速度时域信号和振动位移时域信号。
3.根据权利要求1所述的基于振动烈度低频滤波修正的振动信号转换方法,其特征在于,步骤(一)中,所述下限截止频率fd的有限范围区间[fdmin,fdmax]根据实测条件而定,取0.1~10Hz。
4.根据权利要求1所述的基于振动烈度低频滤波修正的振动信号转换方法,其特征在于,设定带通滤波器H(k)的上限截止频率fu=1000Hz。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810467842.6A CN108680247B (zh) | 2018-05-16 | 2018-05-16 | 基于振动烈度低频滤波修正的振动信号转换方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810467842.6A CN108680247B (zh) | 2018-05-16 | 2018-05-16 | 基于振动烈度低频滤波修正的振动信号转换方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108680247A CN108680247A (zh) | 2018-10-19 |
CN108680247B true CN108680247B (zh) | 2020-07-31 |
Family
ID=63806603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810467842.6A Active CN108680247B (zh) | 2018-05-16 | 2018-05-16 | 基于振动烈度低频滤波修正的振动信号转换方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108680247B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111947670B (zh) * | 2020-07-10 | 2022-07-05 | 深圳优地科技有限公司 | 机器人建图方法、装置、智能设备和存储介质 |
CN114134784A (zh) * | 2022-01-11 | 2022-03-04 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | 基于振动轮实际振幅的路基压实质量连续检测系统与方法 |
CN114659618B (zh) * | 2022-03-22 | 2023-06-16 | 中国科学院长春光学精密机械与物理研究所 | 一种基于近似积分法空间微振动测试方法及其装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102456419A (zh) * | 2010-10-22 | 2012-05-16 | 中国核动力研究设计院 | 核反应堆屏蔽泵运行故障监测方法及其监测系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4246919B2 (ja) * | 1998-08-10 | 2009-04-02 | 東急車輛製造株式会社 | 鉄道車両の脱線検知方法及び脱線検知装置 |
CN101221066B (zh) * | 2008-01-25 | 2010-06-02 | 太原理工大学 | 工程非线性振动检测方法 |
CN104865400B (zh) * | 2015-04-14 | 2018-08-28 | 华北电力大学 | 一种风电机组转速的检测识别方法及系统 |
CN107576981B (zh) * | 2017-08-31 | 2019-02-12 | 大连理工大学 | 一种基于监测位移和截止频率的层间位移修正方法 |
-
2018
- 2018-05-16 CN CN201810467842.6A patent/CN108680247B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102456419A (zh) * | 2010-10-22 | 2012-05-16 | 中国核动力研究设计院 | 核反应堆屏蔽泵运行故障监测方法及其监测系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108680247A (zh) | 2018-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111458017B (zh) | 一种基于广义趋势项误差控制的振动速度频域重构方法 | |
CN108680247B (zh) | 基于振动烈度低频滤波修正的振动信号转换方法 | |
KR100994247B1 (ko) | 간섭 신호의 고조파 성분분석을 이용한 가속도계의 위상 감도 평가 방법 및 장치 | |
CN110617964A (zh) | 用于滚动轴承故障诊断的同步压缩变换阶比分析法 | |
CN102004186B (zh) | 一种消除频谱泄漏的高准确度正弦信号测量方法 | |
CN101586997A (zh) | 一种拉索振动基频的计算方法 | |
Rodopoulos et al. | A parametric approach for the estimation of the instantaneous speed of rotating machinery | |
CN113361331B (zh) | 基于加窗插值fft的工频干扰消除方法、系统和介质 | |
CN105929201B (zh) | 一种基于细化谱分析的加速度计动态模型结构参数辨识的方法 | |
CN106092524A (zh) | 一种使用振动信号精确提取转速信号的方法 | |
CN110598269B (zh) | 一种在低采样点时的离散频谱参数校正方法 | |
CN112465068A (zh) | 一种基于多传感器数据融合的旋转设备故障特征提取方法 | |
CN108398260B (zh) | 基于混合概率方法的齿轮箱瞬时角速度的快速评估方法 | |
CN110108467A (zh) | 基于便携式移动设备的主动发声测速方法 | |
CN112667952B (zh) | 一种结构动态位移非积分重构方法 | |
Liu et al. | An adaptive cross-validation thresholding de-noising algorithm for fault diagnosis of rolling element bearings under variable and transients conditions | |
CN112947597A (zh) | 柴油机连接轴系不对中故障自愈调控方法 | |
CN109669072A (zh) | 一种配电网的自适应同步相量量测方法 | |
CN109635399A (zh) | 一种振动加速度信号的加窗积分转换方法 | |
CN105043667B (zh) | 转子不平衡振动信号幅值、相位实时计算方法 | |
CN114838924A (zh) | 一种基于风致振动非平稳响应的结构阻尼比识别方法 | |
CN111624441B (zh) | 一种低频振荡影响下pmu量测误差分析方法 | |
CN102636254B (zh) | 气体管路噪声源特性预测方法 | |
CN103868689B (zh) | 一种基于振动频率分析的齿轮缺陷快速检测系统及方法 | |
CN114674417A (zh) | 一种复杂轴系各转动部分固有动频率监测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |