CN108677073A - A kind of high-strength wrought magnesium alloys and preparation method thereof - Google Patents
A kind of high-strength wrought magnesium alloys and preparation method thereof Download PDFInfo
- Publication number
- CN108677073A CN108677073A CN201811020528.XA CN201811020528A CN108677073A CN 108677073 A CN108677073 A CN 108677073A CN 201811020528 A CN201811020528 A CN 201811020528A CN 108677073 A CN108677073 A CN 108677073A
- Authority
- CN
- China
- Prior art keywords
- magnesium
- magnesium alloy
- alloy
- melt
- extrusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/08—Making wire, bars, tubes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开了一种高强度变形镁合金及其制备方法,所述镁合金由Mg、Mn和低含量Sr组成,各组分的质量百分含量为Mn:0.01~3%,Sr 0.5~1.5%,余量为镁和不可避免的杂质。在Mg‑Sr‑Mn三元体系中,Sr仅与Mg发生反应形成Mg17Sr2,而不与Mn发生反应,该合金的相组成为:α‑Mg、单质Mn相以及Mg17Sr2相,制备过程中采用简单的熔炼‑挤压工艺,得到的镁合金材料具有良好的强度和韧性,制备工艺简单,成分简单,成本低,具有良好的产业化前景。The invention discloses a high-strength deformed magnesium alloy and a preparation method thereof. The magnesium alloy is composed of Mg, Mn and low-content Sr, and the mass percentages of each component are Mn: 0.01-3%, Sr 0.5-1.5 %, the balance is magnesium and unavoidable impurities. In the Mg‑Sr‑Mn ternary system, Sr only reacts with Mg to form Mg 17 Sr 2 , but does not react with Mn. The phase composition of the alloy is: α‑Mg, elemental Mn phase and Mg 17 Sr 2 phase , the preparation process adopts a simple smelting-extrusion process, the obtained magnesium alloy material has good strength and toughness, the preparation process is simple, the composition is simple, the cost is low, and it has good industrialization prospects.
Description
技术领域technical field
本发明涉及镁合金金属材料领域,特别的涉及一种高强度变形镁合金及其制备方法。The invention relates to the field of magnesium alloy metal materials, in particular to a high-strength deformed magnesium alloy and a preparation method thereof.
背景技术Background technique
镁及镁合金是目前最轻的金属结构材料,具有密度低、比强度和比刚度高、阻尼减震性好、导热性好、电磁屏蔽效果好、机加工性能优良、零件尺寸稳易回收等优点,在航空、航天、汽车、计算机、电子、通讯和家电等行业有多年的历史。近年来,对汽车的轻量化和环保要求的不断提高已经能源日趋紧张激发了人们对镁的兴趣。因此大量的新型变形镁合金成为研究热点。也正由于这样低成本,综合性能良好的镁合金被给予了高度重视,并对此开展了大量的研究。对常见的Mg-Mn系镁合金中添加少量的不同元素在不降低强度的情况下,提高延伸率。虽然含稀土的镁合金的强度和塑性都很好,但是因其价格很高,资源有限,因此我们选择一种价格较低的碱金属元素锶。Magnesium and magnesium alloys are currently the lightest metal structural materials, with low density, high specific strength and specific stiffness, good damping and shock absorption, good thermal conductivity, good electromagnetic shielding effect, excellent machining performance, stable parts size and easy recycling, etc. Advantages, it has many years of history in industries such as aviation, aerospace, automobiles, computers, electronics, communications and home appliances. In recent years, the continuous improvement of lightweight and environmental protection requirements for automobiles and the increasingly tight energy have stimulated people's interest in magnesium. Therefore, a large number of new wrought magnesium alloys have become research hotspots. It is precisely because of such low cost and good comprehensive performance that magnesium alloys have been given great attention, and a lot of research has been carried out on this. Adding a small amount of different elements to the common Mg-Mn series magnesium alloy can increase the elongation without reducing the strength. Although the strength and plasticity of rare earth-containing magnesium alloys are very good, because of its high price and limited resources, we choose a low-priced alkali metal element strontium.
杨明波等人公开了一种Mg-Sr-Mn系耐热镁合金及其制备方法(公开号为CN107739938 A),该专利的合金体系中虽然涉及Mg-Sr-Mn,但需添加了Sc、Nd、Sm、Zn、Ca、Zr等元素,成分复杂,成本高,存在着α-Mg、Mg17Sr2、α-Mn、Mg12Nd、Mg41Sm5和Mn2Sc相,并且第二相以大量的Mg17Sr2和α-Mn为主,Mn2Sc相为辅,这是因为Mg17Sr2具有良好的耐高温性能,但其力学性能不佳,抗拉强度仅为135~186MPa,屈服强度仅为119~162MPa,不能满足3C产品外壳、休闲用品及医用承重结构和航空航天零部件等对于力学性能要求较高的需求。Yang Mingbo and others disclosed a Mg-Sr-Mn series heat-resistant magnesium alloy and its preparation method (the publication number is CN107739938 A). Although the alloy system of this patent involves Mg-Sr-Mn, it needs to add Sc, Nd , Sm, Zn, Ca, Zr and other elements, the composition is complex, the cost is high, there are α-Mg, Mg17Sr2, α-Mn, Mg 12 Nd, Mg 41 Sm 5 and Mn 2 Sc phases, and the second phase is in a large amount Mg 17 Sr 2 and α-Mn are the main components, and Mn 2 Sc is the supplementary phase. This is because Mg 17 Sr 2 has good high temperature resistance, but its mechanical properties are not good. The tensile strength is only 135~186MPa, and the yield strength It is only 119~162MPa, which cannot meet the demand for high mechanical properties such as 3C product shells, leisure products, medical load-bearing structures, and aerospace components.
发明内容Contents of the invention
针对上述现有技术的不足,本发明的目的在于提供一种高强度变形镁合金及其制备方法,解决现有变形镁合金成本高和强度不佳的问题。In view of the deficiencies of the prior art above, the purpose of the present invention is to provide a high-strength wrought magnesium alloy and a preparation method thereof, so as to solve the problems of high cost and poor strength of the existing wrought magnesium alloy.
为了解决上述技术问题,本发明采用了如下的技术方案:一种高强度变形镁合金,包括以下质量百分含量的组分:Mn 0.01~3%,Sr 0.5~1.5%,余量为镁和不可避免的杂质。In order to solve the above-mentioned technical problems, the present invention adopts the following technical scheme: a high-strength wrought magnesium alloy, comprising the following components in mass percentage: Mn 0.01-3%, Sr 0.5-1.5%, and the balance is magnesium and unavoidable impurities.
本发明制备的Mg-Mn-Sr镁合金的三元合金相图中,Sr仅与Mg发生反应形成Mg17Sr2,而不与Mn发生反应,故Mg-Mn-Sr合金的相组成为:α-Mg、单质Mn相以及Mg17Sr2相,其中单质Mn可在变形镁合金塑性加工过程中起到再结晶异质形核点的作用,促进再结晶,细化晶粒;Mg17Sr2相不但细化铸态晶粒,且可作为再结晶异质形核点的作用,进一步细化变形态合金的组织。因此,Mg-Mn-Sr变形合金具有晶粒细小,强度优异等特性。In the ternary alloy phase diagram of the Mg-Mn-Sr magnesium alloy prepared by the present invention, Sr only reacts with Mg to form Mg 17 Sr 2 , and does not react with Mn, so the phase composition of the Mg-Mn-Sr alloy is: α-Mg, elemental Mn phase and Mg 17 Sr 2 phase, among which elemental Mn can play the role of recrystallization heterogeneous nucleation point in the process of plastic processing of deformed magnesium alloys, promote recrystallization and refine grains; Mg 17 Sr Phase 2 not only refines the as-cast grains, but also acts as a heterogeneous nucleation site for recrystallization, further refining the microstructure of the deformed alloy. Therefore, the Mg-Mn-Sr deformed alloy has the characteristics of fine grains and excellent strength.
更重要的是基于Mg-Sr-Mn三元合金中Mg-Sr相及单质Mn两种第二相的不同配比进行合金成分的设计和调控。主要通过精确的控制低含量的Sr来实现的,这是因为虽然Sr可以明显细化晶粒大小,但是当Sr含量达到0.7wt.%时,晶粒大小明显就不会再减小基本保持不变。另外,当Sr含量增加,第二相Mg17Sr2相明显会增多,而大量的Mg17Sr2相虽然能提高镁合金的耐热性能,但其在拉伸过程中会明显裂纹源就会增多,最终导致力学性能下降。More importantly, the design and regulation of the alloy composition is based on the different ratios of the Mg-Sr phase and the elemental Mn two second phases in the Mg-Sr-Mn ternary alloy. It is mainly achieved by precisely controlling the low content of Sr. This is because although Sr can obviously refine the grain size, when the Sr content reaches 0.7wt.%, the grain size will not decrease obviously and basically remain unchanged. Change. In addition, when the Sr content increases, the second phase, Mg 17 Sr 2 , will obviously increase. Although a large amount of Mg 17 Sr 2 phase can improve the heat resistance of magnesium alloys, the crack source will be obvious during the stretching process. increase, leading to a decrease in mechanical properties.
一种高强度变形镁合金的制备方法,包括以下步骤:A method for preparing a high-strength wrought magnesium alloy, comprising the following steps:
1)原料准备:以纯镁锭、镁锶中间合金、镁锰中间合金为原料,进行机械打磨(除去表面氧化层),上述高强度变形镁合金的质量百分含量的组分进行计算配料;1) Raw material preparation: use pure magnesium ingots, magnesium-strontium master alloys, and magnesium-manganese master alloys as raw materials, perform mechanical grinding (remove the surface oxide layer), and calculate the ingredients according to the mass percentage of the above-mentioned high-strength deformed magnesium alloys;
2)熔炼:将纯镁、镁锶中间合金和镁锰中间合金在300℃预热30min,然后将纯镁锭在720~740℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锰中间合金和镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌3~6min,当温度上升至700~740℃时,保温10~20min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Smelting: Preheat pure magnesium, magnesium-strontium master alloy and magnesium-manganese master alloy at 300°C for 30 minutes, then place the pure magnesium ingot at 720~740°C under the protection of a mixed gas of SF 6 and CO 2 to make it Completely melt to obtain a magnesium melt. After the temperature of the magnesium melt is raised to 720°C and stabilized, the preheated magnesium-manganese master alloy and magnesium-strontium master alloy are added to the completely melted magnesium melt, and fully stirred for 3~ 6min, when the temperature rises to 700~740℃, keep warm for 10~20min, then remove the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至300℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 300°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在200~350℃预热1.5~3.0h后,然后所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在250~400℃下对所述镁合金型材进行热挤压得到镁合金棒材。4) Extrusion processing: remove the surface scale of the magnesium alloy ingot obtained in step 3), and then preheat it at 200~350°C for 1.5~3.0h, and then coat the surface of the magnesium alloy ingot with magnesium An alloy lubricant, using an extrusion die to hot-extrude the magnesium alloy profile at 250-400°C to obtain a magnesium alloy rod.
本发明中Mg-Sr-Mn三元合金的Sr元素全部与Mg形成化合物,不在Mg中固溶,且Mg-Sr相在挤压时可以促进颗粒刺激形核,提供大量的形核点,而Mn元素在Mg基体中的固溶度极低且不与Sr发生反应,因而晶格间的变形抗力很低,具有较好的成形能力,有利于实现较低的温度和较快的变形速度下制备变型材,所以在挤压前无需进行固溶处理可直接进行挤压,操作简单。In the present invention, all the Sr elements of the Mg-Sr-Mn ternary alloy form compounds with Mg, and are not in solid solution in Mg, and the Mg-Sr phase can promote particle-stimulated nucleation during extrusion, providing a large number of nucleation points, while The solid solubility of Mn element in the Mg matrix is extremely low and does not react with Sr, so the deformation resistance between the lattices is very low, and it has good forming ability, which is beneficial to achieve lower temperature and faster deformation speed. Prepare deformed profiles, so it can be directly extruded without solution treatment before extrusion, and the operation is simple.
进一步,所述热挤压中挤压比为10:1~80:1,挤压速度为0.5~3 m/min。Further, the extrusion ratio in the hot extrusion is 10:1-80:1, and the extrusion speed is 0.5-3 m/min.
相比现有技术,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明提出的Mg-Mn-Sr变形镁合金是在Mg-Mn合金的基础加入精确控制锶元素的含量,来改善镁合金的综合性能。研究发现镁锰锶三元合金相图中锶不与锰发生反应,而只与镁发生反应形成Mg17Sr2第二相,以及在镁基体上析出α-Mn相。通过加入低含量的锶元素,一方面增大来了合金溶液的过冷度,另一方面在镁中的固溶度极低导致晶粒细化,而生成的少量的Mg17Sr2第二相在挤压过程中作为异质形核的基底,这样既减小了晶粒的尺寸,又避免造成在拉伸过程中会明显裂纹源就会增多,从而明显提高了镁合金的强度和塑性。另外,Mn元素可在合金变形过程中提供足够的再结晶形核点,可有效细化再结晶晶粒,进一步提高变形镁合金力学性能。1. The Mg-Mn-Sr wrought magnesium alloy proposed by the present invention is based on the Mg-Mn alloy by adding precisely controlled content of strontium element to improve the comprehensive performance of the magnesium alloy. It is found that strontium does not react with manganese in the phase diagram of the magnesium-manganese-strontium ternary alloy, but only reacts with magnesium to form the second phase of Mg 17 Sr 2 , and precipitates the α-Mn phase on the magnesium matrix. By adding a low content of strontium, on the one hand, the supercooling degree of the alloy solution is increased, on the other hand, the extremely low solid solubility in magnesium leads to grain refinement, and a small amount of Mg 17 Sr 2 is generated second The phase serves as the substrate for heterogeneous nucleation during the extrusion process, which not only reduces the size of the grains, but also avoids the increase in the number of obvious crack sources during the stretching process, thereby significantly improving the strength and plasticity of the magnesium alloy. . In addition, the Mn element can provide sufficient recrystallization nucleation points during the alloy deformation process, which can effectively refine the recrystallization grains and further improve the mechanical properties of the deformed magnesium alloy.
2、本发明所使用的原材料仅为镁、锰和锶,成分简单,价格低廉,采用简单的熔炼-挤压工艺,无需固溶处理,可直接使用,制备工艺简单,制备效率高,节约能源。制备的Mg-Sr-Mn镁合金材料的延伸率可达到19.69%,抗拉强度可达到255~350MPa,屈服强度可达到228~339MPa,具有良好的强度和韧性,适用于3C产品外壳、休闲用品承重结构及航空航天零部件等,并且该材料生物相容性好、降解速度和力学性能可调,可作为医用材料使用,具有良好的产业化前景。2. The raw materials used in the present invention are only magnesium, manganese and strontium, the composition is simple, the price is low, the simple smelting-extrusion process is adopted, no solid solution treatment is required, it can be used directly, the preparation process is simple, the preparation efficiency is high, and energy saving . The elongation of the prepared Mg-Sr-Mn magnesium alloy material can reach 19.69%, the tensile strength can reach 255~350MPa, and the yield strength can reach 228~339MPa. It has good strength and toughness, and is suitable for 3C product shells and leisure products. Load-bearing structures and aerospace parts, etc., and the material has good biocompatibility, adjustable degradation speed and mechanical properties, can be used as medical materials, and has good industrialization prospects.
附图说明Description of drawings
图1为实施例1~3制备的变性镁合金的力学性能曲线;Fig. 1 is the mechanical property curve of the denatured magnesium alloy prepared by embodiment 1 ~ 3;
图2为实施例4~6制备的变性镁合金的力学性能曲线;Fig. 2 is the mechanical property curve of the denatured magnesium alloy prepared by embodiment 4~6;
图3为实施例7~9制备的变性镁合金的力学性能曲线。Fig. 3 is the mechanical property curve of the denatured magnesium alloy prepared in Examples 7-9.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步的详细说明。需要说明的是,以下各实施例中所述工业纯镁的纯度在99%以上;镁锰中间合金和镁锶中间合金是以Mg-5Mn和Mg-30Sr的形式添加。The present invention will be described in further detail below in conjunction with embodiment. It should be noted that the purity of industrially pure magnesium described in the following examples is above 99%; the magnesium-manganese master alloy and the magnesium-strontium master alloy are added in the form of Mg-5Mn and Mg-30Sr.
实施例1Example 1
1)原料准备:以纯镁锭、Mg-5Mn和Mg-30Sr为原料,按重量百分比称取以下成分:Mn为:2.0%;Sr为:0.5%;余量为Mg;1) Raw material preparation: use pure magnesium ingot, Mg-5Mn and Mg-30Sr as raw materials, and weigh the following components by weight percentage: Mn: 2.0%; Sr: 0.5%; the balance is Mg;
2)熔炼:将纯镁、Mg-5Mn和Mg-30Sr在300℃预热30min,然后将纯镁锭在720℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锰中间合金和镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌3min,当温度上升至700℃时,保温10min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Melting: Preheat pure magnesium, Mg-5Mn and Mg-30Sr at 300°C for 30 minutes, then completely melt the pure magnesium ingot at 720°C under the protection of a mixed gas of SF 6 and CO 2 to obtain magnesium Melt, after the temperature of the magnesium melt is raised to 720°C and stabilized, the preheated magnesium-manganese master alloy and magnesium-strontium master alloy are added to the completely melted magnesium melt, fully stirred for 3 minutes, and when the temperature rises to At 700°C, after holding for 10 minutes, remove the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至320℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 320°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在310℃预热2h后,然后将所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在300℃下对所述镁合金铸锭进行热挤压,挤压比为25:1,挤压速度为0.91.2m/min,得到镁合金棒材。4) Extrusion processing: remove the oxide skin on the surface of the magnesium alloy ingot obtained in step 3), and then preheat it at 310° C. for 2 hours, and then coat the surface of the magnesium alloy ingot with a magnesium alloy lubricant, The magnesium alloy ingot was hot-extruded at 300° C. using an extrusion die with an extrusion ratio of 25:1 and an extrusion speed of 0.91.2 m/min to obtain a magnesium alloy rod.
实施例2Example 2
1)原料准备:以纯镁锭、Mg-5Mn和Mg-30Sr为原料,按重量百分比称取以下成分:Mn为:2.0%;Sr为:1.0 %;余量为Mg;1) Raw material preparation: use pure magnesium ingot, Mg-5Mn and Mg-30Sr as raw materials, and weigh the following components by weight percentage: Mn: 2.0%; Sr: 1.0%; the balance is Mg;
2)熔炼:将纯镁、Mg-5Mn和Mg-30Sr在300℃预热30min,然后将纯镁锭在740℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锰中间合金和镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌3~6min,当温度上升至700~740℃时,保温10~20min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Melting: Preheat pure magnesium, Mg-5Mn and Mg-30Sr at 300°C for 30 minutes, then completely melt the pure magnesium ingot at 740°C under the protection of a mixed gas of SF 6 and CO 2 to obtain magnesium Melt, after raising the temperature of the magnesium melt to 720°C and stabilizing it, add the preheated magnesium-manganese master alloy and magnesium-strontium master alloy into the completely melted magnesium melt, and fully stir for 3-6 minutes. When the temperature rises to 700~740℃, keep warm for 10~20min, then remove the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至320℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 320°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在310℃预热2h后,然后将所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在300℃下对所述镁合金铸锭进行热挤压,挤压比为25:1,挤压速度为0.91.2m/min,得到镁合金棒材。4) Extrusion processing: remove the oxide skin on the surface of the magnesium alloy ingot obtained in step 3), and then preheat it at 310° C. for 2 hours, and then coat the surface of the magnesium alloy ingot with a magnesium alloy lubricant, The magnesium alloy ingot was hot-extruded at 300° C. using an extrusion die with an extrusion ratio of 25:1 and an extrusion speed of 0.91.2 m/min to obtain a magnesium alloy rod.
实施例3Example 3
1)原料准备:以纯镁锭、Mg-5Mn和Mg-30Sr为原料,按重量百分比称取以下成分:Mn为:2.0%;Sr为:1.5%;余量为Mg;1) Raw material preparation: take pure magnesium ingot, Mg-5Mn and Mg-30Sr as raw materials, and weigh the following components by weight percentage: Mn: 2.0%; Sr: 1.5%; the balance is Mg;
2)熔炼:将纯镁、Mg-5Mn和Mg-30Sr在300℃预热30min,然后将纯镁锭在720~740℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锰中间合金和镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌6min,当温度上升至720℃时,保温20min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Melting: Preheat pure magnesium, Mg-5Mn and Mg-30Sr at 300°C for 30 minutes, and then completely melt the pure magnesium ingot at 720~740°C under the protection of a mixed gas of SF 6 and CO 2 Obtain the magnesium melt, after the temperature of the magnesium melt is raised to 720°C and stabilized, the preheated magnesium-manganese master alloy and magnesium-strontium master alloy are added to the completely melted magnesium melt, fully stirred for 6 minutes, when the temperature When the temperature rises to 720°C, keep it warm for 20 minutes, and then remove the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至320℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 320°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在310℃预热2h后,然后将所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在300℃下对所述镁合金铸锭进行热挤压,挤压比为25:1,挤压速度为0.91.2m/min,得到镁合金棒材。4) Extrusion processing: remove the oxide skin on the surface of the magnesium alloy ingot obtained in step 3), and then preheat it at 310° C. for 2 hours, and then coat the surface of the magnesium alloy ingot with a magnesium alloy lubricant, The magnesium alloy ingot was hot extruded at 300° C. using an extrusion die with an extrusion ratio of 25:1 and an extrusion speed of 0.91.2 m/min to obtain a magnesium alloy rod.
实施例4Example 4
1)原料准备:以纯镁锭、Mg-5Mn和Mg-30Sr为原料,按重量百分比称取以下成分:Mn为:1.0%;Sr为:0.5%;余量为Mg;1) Raw material preparation: use pure magnesium ingot, Mg-5Mn and Mg-30Sr as raw materials, and weigh the following components by weight percentage: Mn: 1.0%; Sr: 0.5%; the balance is Mg;
2)熔炼:将纯镁、Mg-5Mn和Mg-30Sr在300℃预热30min,然后将纯镁锭在720~740℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锰中间合金和镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌6min,当温度上升至720℃时,保温10min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Melting: Preheat pure magnesium, Mg-5Mn and Mg-30Sr at 300°C for 30 minutes, and then completely melt the pure magnesium ingot at 720~740°C under the protection of a mixed gas of SF 6 and CO 2 Obtain the magnesium melt, after the temperature of the magnesium melt is raised to 720°C and stabilized, the preheated magnesium-manganese master alloy and magnesium-strontium master alloy are added to the completely melted magnesium melt, fully stirred for 6 minutes, when the temperature When the temperature rises to 720°C, keep warm for 10 minutes, then remove the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至320℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 320°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在310℃预热2h后,然后将所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在300℃下对所述镁合金铸锭进行热挤压,挤压比为25:1,挤压速度为0.91.2m/min,得到镁合金棒材。4) Extrusion processing: remove the oxide skin on the surface of the magnesium alloy ingot obtained in step 3), and then preheat it at 310° C. for 2 hours, and then coat the surface of the magnesium alloy ingot with a magnesium alloy lubricant, The magnesium alloy ingot was hot-extruded at 300° C. using an extrusion die with an extrusion ratio of 25:1 and an extrusion speed of 0.91.2 m/min to obtain a magnesium alloy rod.
实施例5Example 5
1)原料准备:以纯镁锭、Mg-5Mn和Mg-30Sr为原料,按重量百分比称取以下成分:Mn为:1.0%;Sr为:1.0%;余量为Mg;1) Raw material preparation: use pure magnesium ingot, Mg-5Mn and Mg-30Sr as raw materials, and weigh the following components by weight percentage: Mn: 1.0%; Sr: 1.0%; the balance is Mg;
2)熔炼:将纯镁、Mg-5Mn和Mg-30Sr在300℃预热30min,然后将纯镁锭在720~740℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锰中间合金和镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌3~6min,当温度上升至740℃时,保温10min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Melting: Preheat pure magnesium, Mg-5Mn and Mg-30Sr at 300°C for 30 minutes, and then completely melt the pure magnesium ingot at 720~740°C under the protection of a mixed gas of SF 6 and CO 2 The magnesium melt is obtained, and after the temperature of the magnesium melt is raised to 720° C. to be stable, the preheated magnesium-manganese master alloy and magnesium-strontium master alloy are added to the completely melted magnesium melt, fully stirred for 3 to 6 minutes, When the temperature rises to 740°C, keep warm for 10 minutes, and then remove the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至320℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 320°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在310℃预热2h后,然后将所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在300℃下对所述镁合金铸锭进行热挤压,挤压比为25:1,挤压速度为0.91.2m/min,得到镁合金棒材。4) Extrusion processing: remove the oxide skin on the surface of the magnesium alloy ingot obtained in step 3), and then preheat it at 310° C. for 2 hours, and then coat the surface of the magnesium alloy ingot with a magnesium alloy lubricant, The magnesium alloy ingot was hot-extruded at 300° C. using an extrusion die with an extrusion ratio of 25:1 and an extrusion speed of 0.91.2 m/min to obtain a magnesium alloy rod.
实施例6Example 6
1)原料准备:以纯镁锭、Mg-5Mn和Mg-30Sr为原料,按重量百分比称取以下成分:Mn为:1.0%;Sr为:1.5%;余量为Mg;1) Raw material preparation: use pure magnesium ingot, Mg-5Mn and Mg-30Sr as raw materials, and weigh the following components by weight percentage: Mn: 1.0%; Sr: 1.5%; the balance is Mg;
2)熔炼:将纯镁、Mg-5Mn和Mg-30Sr在300℃预热30min,然后将纯镁锭在720~740℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锰中间合金和镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌5min,当温度上升至720℃时,保温20min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Melting: Preheat pure magnesium, Mg-5Mn and Mg-30Sr at 300°C for 30 minutes, and then completely melt the pure magnesium ingot at 720~740°C under the protection of a mixed gas of SF 6 and CO 2 Obtain the magnesium melt, after the temperature of the magnesium melt is raised to 720°C and stabilized, the preheated magnesium-manganese master alloy and magnesium-strontium master alloy are added to the completely melted magnesium melt, fully stirred for 5 minutes, when the temperature When the temperature rises to 720°C, keep it warm for 20 minutes, and then remove the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至320℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 320°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在310℃预热2h后,然后将所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在300℃下对所述镁合金铸锭进行热挤压,挤压比为25:1,挤压速度为0.91.2m/min,得到镁合金棒材。4) Extrusion processing: remove the oxide skin on the surface of the magnesium alloy ingot obtained in step 3), and then preheat it at 310° C. for 2 hours, and then coat the surface of the magnesium alloy ingot with a magnesium alloy lubricant, The magnesium alloy ingot was hot-extruded at 300° C. using an extrusion die with an extrusion ratio of 25:1 and an extrusion speed of 0.91.2 m/min to obtain a magnesium alloy rod.
实施例7Example 7
1)原料准备:以纯镁锭和Mg-30Sr为原料,按重量百分比称取以下成分:Mn为:0.01%;Sr为:0.5%;余量为Mg;1) Raw material preparation: take pure magnesium ingot and Mg-30Sr as raw materials, and weigh the following components by weight percentage: Mn: 0.01%; Sr: 0.5%; the balance is Mg;
2)熔炼:将纯镁和Mg-30Sr在300℃预热30min,然后将纯镁锭在720~740℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌5min,当温度上升至720℃时,保温20min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Melting: Preheat pure magnesium and Mg-30Sr at 300°C for 30 minutes, then completely melt the pure magnesium ingot at 720~740°C under the protection of a mixed gas of SF 6 and CO 2 to obtain a magnesium melt After raising the temperature of the magnesium melt to 720°C and stabilizing it, add the preheated magnesium-strontium master alloy into the completely melted magnesium melt and stir it for 5 minutes. When the temperature rises to 720°C, keep it warm for 20 minutes. , get rid of the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至320℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 320°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在310℃预热2h后,然后将所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在300℃下对所述镁合金铸锭进行热挤压,挤压比为25:1,挤压速度为0.91.2m/min,得到镁合金棒材。4) Extrusion processing: remove the oxide skin on the surface of the magnesium alloy ingot obtained in step 3), and then preheat it at 310° C. for 2 hours, and then coat the surface of the magnesium alloy ingot with a magnesium alloy lubricant, The magnesium alloy ingot was hot-extruded at 300° C. using an extrusion die with an extrusion ratio of 25:1 and an extrusion speed of 0.91.2 m/min to obtain a magnesium alloy rod.
实施例8Example 8
1)原料准备:以纯镁锭和Mg-30Sr为原料,按重量百分比称取以下成分:Mn为:0.01%;Sr为:1.0%;余量为Mg;1) Raw material preparation: use pure magnesium ingot and Mg-30Sr as raw materials, and weigh the following components by weight percentage: Mn: 0.01%; Sr: 1.0%; the balance is Mg;
2)熔炼:将纯镁和Mg-30Sr在300℃预热30min,然后将纯镁锭在720~740℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌5min,当温度上升至720℃时,保温20min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Melting: Preheat pure magnesium and Mg-30Sr at 300°C for 30 minutes, then completely melt the pure magnesium ingot at 720~740°C under the protection of a mixed gas of SF 6 and CO 2 to obtain a magnesium melt After raising the temperature of the magnesium melt to 720°C and stabilizing it, add the preheated magnesium-strontium master alloy into the completely melted magnesium melt and stir it for 5 minutes. When the temperature rises to 720°C, keep it warm for 20 minutes. , get rid of the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至320℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 320°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在310℃预热2h后,然后将所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在300℃下对所述镁合金铸锭进行热挤压,挤压比为25:1,挤压速度为0.91.2m/min,得到镁合金棒材。4) Extrusion processing: remove the oxide skin on the surface of the magnesium alloy ingot obtained in step 3), and then preheat it at 310° C. for 2 hours, and then coat the surface of the magnesium alloy ingot with a magnesium alloy lubricant, The magnesium alloy ingot was hot-extruded at 300° C. using an extrusion die with an extrusion ratio of 25:1 and an extrusion speed of 0.91.2 m/min to obtain a magnesium alloy rod.
实施例9Example 9
1)原料准备:以纯镁锭和Mg-30Sr为原料,按重量百分比称取以下成分:Mn为:0.01%;Sr为:1.5%;余量为Mg;1) Raw material preparation: take pure magnesium ingot and Mg-30Sr as raw materials, and weigh the following ingredients by weight percentage: Mn: 0.01%; Sr: 1.5%; the balance is Mg;
2)熔炼:将纯镁和Mg-30Sr在300℃预热30min,然后将纯镁锭在720~740℃下并有SF6和CO2的混合气体的保护下使其完全熔化得到镁熔体,将所述镁熔体温度升温到720℃稳定后,将预热的镁锶中间合金加入到已经完全熔化了的镁熔体中,充分搅拌5min,当温度上升至720℃时,保温20min后,打掉表面的浮渣,得到纯净的镁合金熔体;2) Melting: Preheat pure magnesium and Mg-30Sr at 300°C for 30 minutes, then completely melt the pure magnesium ingot at 720~740°C under the protection of a mixed gas of SF 6 and CO 2 to obtain a magnesium melt After raising the temperature of the magnesium melt to 720°C and stabilizing it, add the preheated magnesium-strontium master alloy into the completely melted magnesium melt and stir it for 5 minutes. When the temperature rises to 720°C, keep it warm for 20 minutes. , get rid of the scum on the surface to obtain a pure magnesium alloy melt;
3)浇注:将步骤2)得到的镁合金熔体浇注到预热至320℃的模具中,冷却后得到镁合金铸锭;3) Casting: pour the magnesium alloy melt obtained in step 2) into a mold preheated to 320°C, and obtain a magnesium alloy ingot after cooling;
4)挤压加工:去除步骤3)得到的镁合金铸锭的表面氧化皮,再将其在310℃预热2h后,然后将所述镁合金铸锭的表面涂覆上镁合金润滑剂,使用挤压模具在300℃下对所述镁合金铸锭进行热挤压,挤压比为25:1,挤压速度为0.91.2m/min,得到镁合金棒材。4) Extrusion processing: remove the oxide skin on the surface of the magnesium alloy ingot obtained in step 3), and then preheat it at 310° C. for 2 hours, and then coat the surface of the magnesium alloy ingot with a magnesium alloy lubricant, The magnesium alloy ingot was hot-extruded at 300° C. using an extrusion die with an extrusion ratio of 25:1 and an extrusion speed of 0.91.2 m/min to obtain a magnesium alloy rod.
二、性能验证2. Performance verification
采用GB/T 228.1:2010标准设计拉伸试样,拉伸速率为1.5 mm/s,对实施例1~9制备的镁合金进行测试,结果如图1~2和表1所示。GB/T 228.1:2010 standard was used to design tensile specimens, and the tensile rate was 1.5 mm/s. The magnesium alloys prepared in Examples 1-9 were tested. The results are shown in Figures 1-2 and Table 1.
表1Table 1
结果显示,本发明制备的Mg-Al-Mn镁合金材料的抗拉强度可达到255~350MPa,屈服强度可达到228~339MPa,可见,与同类产品相比,本发明镁合金材料综合力学性能都有了较大的提升。适用于3C产品外壳、休闲用品承重结构及航空航天零部件等,并且该材料生物相容性好、降解速度和力学性能可调,也可作为医用材料使用,具有良好的产业化前景。The results show that the tensile strength of the Mg-Al-Mn magnesium alloy material prepared by the present invention can reach 255 ~ 350MPa, and the yield strength can reach 228 ~ 339MPa. It can be seen that compared with similar products, the comprehensive mechanical properties of the magnesium alloy material of the present invention are better than those of similar products. There has been a big improvement. It is suitable for 3C product shells, load-bearing structures for leisure products, and aerospace parts, etc., and the material has good biocompatibility, adjustable degradation speed and mechanical properties, and can also be used as a medical material, with good industrialization prospects.
以上所述仅为本发明的较佳实施例而已,并不以本发明为限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the scope of the present invention. within the scope of protection.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811020528.XA CN108677073A (en) | 2018-09-03 | 2018-09-03 | A kind of high-strength wrought magnesium alloys and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811020528.XA CN108677073A (en) | 2018-09-03 | 2018-09-03 | A kind of high-strength wrought magnesium alloys and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108677073A true CN108677073A (en) | 2018-10-19 |
Family
ID=63815645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811020528.XA Pending CN108677073A (en) | 2018-09-03 | 2018-09-03 | A kind of high-strength wrought magnesium alloys and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108677073A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110624969A (en) * | 2019-11-08 | 2019-12-31 | 兰州理工大学 | Extrusion deformation device and preparation method for preparing high-strength magnesium alloy |
CN112210735A (en) * | 2020-10-22 | 2021-01-12 | 重庆科技学院 | A kind of preparation method of magnesium alloy sheet with gradient structure |
CN114318094A (en) * | 2021-12-20 | 2022-04-12 | 重庆大学 | A kind of Mn particle reinforced Mg-Zn composite material and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101067177A (en) * | 2007-06-07 | 2007-11-07 | 南京云海特种金属股份有限公司 | High performance deformed magnesium alloy |
WO2010055897A1 (en) * | 2008-11-14 | 2010-05-20 | 株式会社豊田自動織機 | Magnesium alloy and magnesium alloy casting |
CN101815801A (en) * | 2007-08-31 | 2010-08-25 | 卡斯特Crc有限公司 | wrought magnesium alloy |
CN102580143A (en) * | 2012-02-17 | 2012-07-18 | 浙江海圣医疗器械有限公司 | Medical degradable and absorbable Mg-Sr system magnesium alloy implant and preparation method thereof |
CN107739938A (en) * | 2017-10-24 | 2018-02-27 | 重庆理工大学 | A kind of Mg Sr Mn systems heat resistance magnesium alloy and preparation method thereof |
-
2018
- 2018-09-03 CN CN201811020528.XA patent/CN108677073A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101067177A (en) * | 2007-06-07 | 2007-11-07 | 南京云海特种金属股份有限公司 | High performance deformed magnesium alloy |
CN101815801A (en) * | 2007-08-31 | 2010-08-25 | 卡斯特Crc有限公司 | wrought magnesium alloy |
WO2010055897A1 (en) * | 2008-11-14 | 2010-05-20 | 株式会社豊田自動織機 | Magnesium alloy and magnesium alloy casting |
CN102580143A (en) * | 2012-02-17 | 2012-07-18 | 浙江海圣医疗器械有限公司 | Medical degradable and absorbable Mg-Sr system magnesium alloy implant and preparation method thereof |
CN107739938A (en) * | 2017-10-24 | 2018-02-27 | 重庆理工大学 | A kind of Mg Sr Mn systems heat resistance magnesium alloy and preparation method thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110624969A (en) * | 2019-11-08 | 2019-12-31 | 兰州理工大学 | Extrusion deformation device and preparation method for preparing high-strength magnesium alloy |
CN112210735A (en) * | 2020-10-22 | 2021-01-12 | 重庆科技学院 | A kind of preparation method of magnesium alloy sheet with gradient structure |
CN112210735B (en) * | 2020-10-22 | 2021-12-28 | 重庆科技学院 | A kind of preparation method of magnesium alloy sheet with gradient structure |
CN114318094A (en) * | 2021-12-20 | 2022-04-12 | 重庆大学 | A kind of Mn particle reinforced Mg-Zn composite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105132772B (en) | Low-cost non-rare-earth type high-strength magnesium alloy and preparing method thereof | |
CN110066948B (en) | High-strength high-plasticity Mg-Ca-Al-Zn-Mn-Ce wrought magnesium alloy and preparation method thereof | |
CN102732763B (en) | High-strength Mg-Gd-Y-Zn-Mn alloy | |
CN110066931B (en) | Aluminum alloy suitable for cold forming and preparation method thereof | |
CN105543603B (en) | Low-rare-earth high-strength deforming magnesium alloy and preparation method thereof | |
CN103938045B (en) | A kind of calcic wrought magnesium alloys and bar preparation method thereof | |
CN101509091A (en) | High-strength high-ductility Al-Zn-Mg-Cu-Sr alloy and production method | |
CN106676357B (en) | A kind of high plastic magnesium alloy and preparation method thereof | |
CN114182147B (en) | High-strength high-thermal-conductivity magnesium alloy and preparation method thereof | |
CN103146973B (en) | High-temperature-resistant rare earth magnesium alloy | |
CN106676351B (en) | A kind of erbium strengthens magnesium lithium alloy and preparation method thereof | |
CN107523724A (en) | Magnesium lithium alloy and its processing technology with high thermal conductivity alpha+beta containing two-phase | |
CN102978498A (en) | Rare-earth magnesium alloy and preparation method thereof | |
CN105603341B (en) | Method for manufacturing high plasticity/formability deformed magnesium alloy sheet | |
CN104388786A (en) | High-strength high-plasticity Mg-Zn-Al-Sn magnesium alloy | |
CN106521274A (en) | High-strength Mg-Li-Al-Y-Ca alloy and preparation method thereof | |
CN108677073A (en) | A kind of high-strength wrought magnesium alloys and preparation method thereof | |
CN107829004A (en) | A kind of zinc-magnesium alloy ingot and preparation method thereof | |
CN103290290A (en) | Low-cost wrought magnesium alloy and preparation method thereof | |
CN114855043A (en) | Superfine crystal high-strength plastic magnesium alloy and preparation method thereof | |
CN107236885A (en) | A kind of non-rare earth high-strength wrought magnesium alloy and preparation method thereof | |
CN108866408A (en) | A kind of low cost high-ductility wrought magnesium alloy | |
CN107675053B (en) | A kind of preparation method of high-strength magnesium-lithium alloy and cryogenic strengthening treatment thereof | |
CN108048721A (en) | A kind of heat-resistant antifriction magnesium alloy and preparation method thereof | |
CN108570583B (en) | Rare earth-free low-alloy magnesium alloy with ultrahigh strength and toughness and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181019 |
|
RJ01 | Rejection of invention patent application after publication |