CN108663727B - A method for estimating the height of the evaporative duct in the world sea area using the evaporation rate - Google Patents
A method for estimating the height of the evaporative duct in the world sea area using the evaporation rate Download PDFInfo
- Publication number
- CN108663727B CN108663727B CN201710204407.XA CN201710204407A CN108663727B CN 108663727 B CN108663727 B CN 108663727B CN 201710204407 A CN201710204407 A CN 201710204407A CN 108663727 B CN108663727 B CN 108663727B
- Authority
- CN
- China
- Prior art keywords
- height
- evaporation
- waveguide
- evaporation rate
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008020 evaporation Effects 0.000 title claims abstract description 120
- 238000001704 evaporation Methods 0.000 title claims abstract description 120
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000004907 flux Effects 0.000 claims description 12
- 238000012950 reanalysis Methods 0.000 claims description 9
- 239000013535 sea water Substances 0.000 claims description 8
- 238000013480 data collection Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 5
- 238000011156 evaluation Methods 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 7
- 238000013179 statistical model Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/10—Devices for predicting weather conditions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Complex Calculations (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于海洋环境监测等技术领域,涉及估算蒸发波导高度的方法,具体涉及一种利用蒸发率在世界海域范围内估算蒸发波导高度的方法。The invention belongs to the technical fields of marine environment monitoring and the like, relates to a method for estimating the height of an evaporation waveguide, and in particular relates to a method for estimating the height of an evaporation waveguide in the world sea area by using an evaporation rate.
背景技术Background technique
蒸发波导是一种由于海水蒸发导致大气湿度随高度呈指数衰减所形成的天然通道,海面上蒸发现象是时刻存在的,因此蒸发波导是近海大气环境中的一种固有现象。据统计,我国周边海域是蒸发波导的高发区域,发生概率约85%。蒸发波导具有特有的大气折射率结构,这种结构会导致微波信号在波导内的传播轨迹相对于标准大气环境产生明显的异常。蒸发波导高度是指在波导剖面上,修正折射率最小值所对应的点与海面之间的高度差,蒸发波导高度是用来刻画蒸发波导对微波信号陷获能力的重要参数,舰载雷达及通信系统工作于蒸发波导高度内或者蒸发波导高度之上性能相差较大,因此需要及时获取舰船周围蒸发波导高度,是保障舰船雷达、通信、导航、电子对抗等无线电系统性能的重要条件。Evaporative duct is a natural channel formed by the exponential decay of atmospheric humidity with height due to seawater evaporation. Evaporation on the sea surface exists all the time, so evaporative duct is an inherent phenomenon in the offshore atmospheric environment. According to statistics, the sea area around my country is a high incidence area of evaporative ducts, with an occurrence probability of about 85%. The evaporative waveguide has a unique atmospheric refractive index structure, which causes the propagation trajectory of the microwave signal in the waveguide to produce obvious anomalies relative to the standard atmospheric environment. The height of the evaporative waveguide refers to the height difference between the point corresponding to the minimum value of the modified refractive index and the sea surface on the waveguide section. The height of the evaporative waveguide is an important parameter used to describe the ability of the evaporative waveguide to trap microwave signals. The communication system works within the height of the evaporative duct or above the height of the evaporative duct, and the performance is quite different. Therefore, it is necessary to obtain the height of the evaporative duct around the ship in time, which is an important condition to ensure the performance of the ship's radar, communication, navigation, electronic countermeasures and other radio systems.
目前蒸发波导高度获取的主要方法主要是先获得蒸发波导大气折射率剖面,再利用修正折射率最小值的位置确定波导高度,而根据大气折射率剖面的获取方式不同可分为直接测量和间接估计,间接估计又可分为模型预测、数值预报和反演预测三大类。直接测量是利用微波折射率仪直接测量大气折射率剖面,折射率剖面的最小值所对应的高度即为蒸发波导高度,但是微波折射率仪价格昂贵,只能获取测量点的单点数据信息,而且受到风向的影响较大,测量误差较大,而且在舰船上安装困难。模型预测是利用气象传感器测量近海面空气温度、相对湿度、大气压、风速、海水表面温度等气象参数,结合蒸发波导的预测模型计算得到大气折射率剖面数据,从而再获得蒸发波导高度。缺点是需要测量五种气象参数,并且测量受船体的影响较大,估计误差较大,而且只能获取测量点的单点数据信息。数值预报方法是利用气象预报数值模型,首先预报一定区域内的空气温度、相对湿度、大气压、风速、海水表面温度等气象参数,再结合蒸发波导预测模型来计算获得大气折射率数据和蒸发波导高度。数值预报方法的优点是可以给出大面积海域、未来几个小时或几十个小时的折射率分布预测值,适合定性分析。缺点是预报的准确性取决于气象预报的准确性,目前还存在比较大的预报误差。反演预测是利用采集到的电磁波信号反演蒸发波导中的大气折射率剖面以及确定蒸发波导高度。At present, the main method to obtain the height of the evaporation waveguide is to first obtain the atmospheric refractive index profile of the evaporation waveguide, and then use the position of the minimum value of the corrected refractive index to determine the waveguide height. According to the different acquisition methods of the atmospheric refractive index profile, it can be divided into direct measurement and indirect estimation , indirect estimation can be divided into three categories: model prediction, numerical prediction and inversion prediction. Direct measurement is to directly measure the atmospheric refractive index profile with a microwave refractometer. The height corresponding to the minimum value of the refractive index profile is the height of the evaporation waveguide. However, the microwave refractometer is expensive and can only obtain single-point data information at the measurement point. Moreover, it is greatly affected by the wind direction, the measurement error is large, and it is difficult to install on the ship. Model prediction is to use meteorological sensors to measure meteorological parameters such as air temperature, relative humidity, atmospheric pressure, wind speed, seawater surface temperature, etc., and to calculate the atmospheric refractive index profile data in combination with the prediction model of the evaporative duct, so as to obtain the height of the evaporative duct. The disadvantage is that five meteorological parameters need to be measured, and the measurement is greatly affected by the hull, the estimation error is large, and only single-point data information of the measurement point can be obtained. The numerical prediction method is to use the meteorological forecast numerical model to first forecast the meteorological parameters such as air temperature, relative humidity, atmospheric pressure, wind speed, seawater surface temperature in a certain area, and then combine the evaporative duct prediction model to calculate the atmospheric refractive index data and evaporative duct height. . The advantage of the numerical prediction method is that it can give the predicted value of the refractive index distribution for a large area of sea area and several hours or dozens of hours in the future, which is suitable for qualitative analysis. The disadvantage is that the accuracy of the forecast depends on the accuracy of the weather forecast, and there is still a relatively large forecast error. The inversion prediction is to use the collected electromagnetic wave signals to invert the atmospheric refractive index profile in the evaporation waveguide and determine the height of the evaporation waveguide.
从以上4种方法可以看出,目前获取蒸发波导高度的方法中实际测量操作困难,间接方法一般涉及大计算量,无法满足实时快速估算。From the above four methods, it can be seen that the actual measurement operation is difficult in the current method of obtaining the height of the evaporation waveguide, and the indirect method generally involves a large amount of calculation, which cannot meet the real-time rapid estimation.
因此,寻求其它实时快速获得蒸发波导高度的方法,为舰船雷达通信系统的正确操作提供辅助决策,成为亟需解决的重要问题。Therefore, it has become an urgent and important problem to seek other methods to quickly obtain the height of the evaporative waveguide in real time to provide auxiliary decision-making for the correct operation of the ship's radar communication system.
发明内容SUMMARY OF THE INVENTION
要解决的技术问题technical problem to be solved
为了避免现有技术的不足之处,本发明提出一种利用蒸发率在世界海域范围内估算蒸发波导高度的方法,解决目前基于直接或者间接得到折射率剖面从而进一步估算近海面蒸发波导高度的问题与不足。In order to avoid the shortcomings of the prior art, the present invention proposes a method for estimating the height of the evaporation waveguide in the world sea area by using the evaporation rate, so as to solve the problem of further estimating the height of the evaporation waveguide on the offshore surface based on directly or indirectly obtaining the refractive index profile. with deficiencies.
技术方案Technical solutions
一种利用蒸发率在世界海域范围内估算蒸发波导高度的方法,其特征在于步骤如下:A method for estimating the height of an evaporation waveguide in the world sea area by using the evaporation rate, characterized in that the steps are as follows:
步骤1:建立蒸发率与蒸发波导高度的三参数统计回归模型EDH=αEVPβeε,其中,EVP和EDH分别表示蒸发率和蒸发波导高度数据,eε为随机因子,ε均值为0以及方差为σ2。α,β和σ为待拟合的未知系数;Step 1: Establish a three-parameter statistical regression model of evaporation rate and evaporation waveguide height EDH=αEVP β e ε , where EVP and EDH represent the evaporation rate and evaporation waveguide height data, respectively, e ε is a random factor, ε means 0 and variance is σ 2 . α, β and σ are the unknown coefficients to be fitted;
步骤2:从“NCEP CFSR再分析数据库”中获取某一时间跨度和平面覆盖范围的近海面2米高度的大气温度、距海面10米高度的风速、海面的大气压强、距海面2米高度的相对湿度、海表温度大气海洋环境数据;利用基于海气通量3.0算法的蒸发波导模型计算蒸发波导高度,得到相应时间跨度和平面覆盖范围内的蒸发波导高度历史数据集;Step 2: Obtain the atmospheric temperature at a height of 2 meters above the sea surface, wind speed at a height of 10 meters above the sea surface, atmospheric pressure at the sea surface, Relative humidity, sea surface temperature, atmospheric and marine environment data; use the evaporative duct model based on the air-sea flux 3.0 algorithm to calculate the height of the evaporative duct, and obtain the historical data set of the evaporative duct height within the corresponding time span and plane coverage;
从“NCEP CFSR再分析数据库”中获取某一时间跨度和平面覆盖范围的潜热通量和海表温度大气海洋环境数据,利用公式EVP=LHF/ρwLe计算蒸发率,其中EVP表示蒸发率,LHF表示潜热通量,ρw是海水密度,取值为1027kg m-3,Le表示蒸发潜热,可利用公式Le=[[2.501-(0.00237×SST)]]×106计算得到,SST表示海表温度,得到相应时间跨度和平面覆盖范围内的蒸发率历史数据集;Obtain the latent heat flux and sea surface temperature atmospheric ocean environment data of a certain time span and plane coverage from the "NCEP CFSR Reanalysis Database", and use the formula EVP=LHF/ρ w Le to calculate the evaporation rate, where EVP represents the evaporation rate , LHF represents the latent heat flux, ρ w is the density of seawater, which is 1027kg m -3 , Le represents the latent heat of evaporation, which can be calculated by using the formula Le = [[ 2.501- (0.00237×SST)]]×10 6 , SST represents the sea surface temperature, and obtains the historical data set of evaporation rate within the corresponding time span and plane coverage;
步骤3:对步骤1中建立的三参数统计回归模型两边取自然对数将其线性化,得到线性化模型ln(EDH)=ln(α)+βln(EVP)+ε,将步骤2中得到的蒸发波导高度和蒸发率数据代入线性化模型,采用最小二乘法拟合得到系数α和β,再将得到的α,β代入线性化模型计算得到残差ε,σ即为残差ε的标准差,待各参数求解后,根据实时的蒸发率数据得到蒸发波导高度的范围。Step 3: Take the natural logarithm on both sides of the three-parameter statistical regression model established in
改变经纬度,重复步骤2~步骤3,建立不同经纬度下,α,β和σ的参数数据库,得到经纬度-三参数模型数据库,即在不同海域位置下,蒸发波导高度与蒸发率量化关系数据库。Change the latitude and longitude, repeat
所述步骤3中进行蒸发率和蒸发波导高度的统计回归模型求解的数据收集时间范围不少于1年。In the
有益效果beneficial effect
本发明提出的一种利用蒸发率在世界海域范围内估算蒸发波导高度的方法,由于蒸发波导本身是由于海水蒸发而产生的,蒸发波导高度受蒸发的影响较大,因此蒸发率与蒸发波导高度在物理本质上有很大的关联性。本发明与现有直接测量或者间接估计大气折射率剖面从而得到蒸发波导高度等方法相比,不必先测量或者估计整个大气折射率剖面再获得蒸发波导高度,而是通过测量单一的蒸发率参数,直接获得蒸发波导高度的估值。利用本发明提出的方法,可以预先建立世界海域范围内蒸发波导高度与蒸发率量化关系数据库,嵌入到已有的蒸发波导环境历史数据库,用于海上舰船编队在不同海域对当前蒸发波导环境的实施评估,并用于通信、雷达、制导、电子对抗等系统的辅助决策。A method for estimating the height of the evaporation waveguide in the world sea area by using the evaporation rate proposed by the present invention. Since the evaporation waveguide itself is generated by the evaporation of seawater, the height of the evaporation waveguide is greatly affected by evaporation, so the evaporation rate and the height of the evaporation waveguide are greatly affected. There is a great correlation in the nature of physics. Compared with the existing methods of directly measuring or indirectly estimating the atmospheric refractive index profile to obtain the height of the evaporation waveguide, the present invention does not need to measure or estimate the entire atmospheric refractive index profile first and then obtain the height of the evaporation waveguide, but by measuring a single evaporation rate parameter, Directly obtain an estimate of the height of the evaporative waveguide. Using the method proposed in the present invention, a quantitative relationship database between the height of the evaporation waveguide and the evaporation rate in the world sea area can be established in advance, embedded in the existing historical database of the evaporation waveguide environment, and used for the current evaporation waveguide environment in different sea areas of the marine fleet. Carry out evaluation and use it to assist decision-making in communication, radar, guidance, electronic countermeasures and other systems.
附图说明Description of drawings
图1:利用蒸发波导模型计算蒸发波导高度流程图。Figure 1: Flow chart for calculating the height of the evaporative waveguide using the evaporative waveguide model.
图2:计算蒸发率流程图。Figure 2: Flow chart for calculating evaporation rate.
图3:建立三参数回归统计模型的流程图。Figure 3: Flow chart for building a three-parameter regression statistical model.
图4:利用三参数模型估计蒸发波导高度的结果与真实值对比图。Figure 4: Comparison of the results of estimating the height of the evaporative waveguide with the true value using the three-parameter model.
具体实施方式Detailed ways
现结合实施例、附图对本发明作进一步描述:The present invention will now be further described in conjunction with the embodiments and accompanying drawings:
本发明提出的技术方案包括以下步骤:The technical scheme proposed by the present invention comprises the following steps:
步骤1:建立蒸发率与蒸发波导高度的三参数统计回归模型EDH=αEVPβeε,其中,EVP和EDH分别表示蒸发率和蒸发波导高度数据,eε为随机因子,ε均值为0以及方差为σ2。α,β和σ为待拟合的未知系数。Step 1: Establish a three-parameter statistical regression model of evaporation rate and evaporation waveguide height EDH=αEVP β e ε , where EVP and EDH represent the evaporation rate and evaporation waveguide height data respectively, e ε is a random factor, ε means 0 and variance is σ 2 . α, β and σ are the unknown coefficients to be fitted.
步骤2:从“NCEP CFSR(National Centers for Environmental PredictionClimate Forecast System Reanalysis)再分析数据库”中获取一定时间跨度和平面覆盖范围的近海面2米高度的大气温度、距海面10米高度的风速、海面的大气压强、距海面2米高度的相对湿度、海表温度大气海洋环境数据,利用基于海气通量3.0算法的蒸发波导模型计算蒸发波导高度,得到相应时间跨度和平面覆盖范围内的蒸发波导高度历史数据集。Step 2: From the "NCEP CFSR (National Centers for Environmental Prediction Climate Forecast System Reanalysis) reanalysis database", obtain the atmospheric temperature at a height of 2 meters above the sea surface, wind speed at a height of 10 meters above the sea surface, Atmospheric pressure, relative humidity at a height of 2 meters above the sea surface, and sea surface temperature atmospheric and marine environment data, the evaporative duct height is calculated using the evaporative duct model based on the air-sea flux 3.0 algorithm, and the evaporative duct height within the corresponding time span and plane coverage is obtained. historical dataset.
步骤3(与步骤2并行):从“NCEP CFSR再分析数据库”中获取一定时间跨度和平面覆盖范围的潜热通量和海表温度大气海洋环境数据,利用公式EVP=LHF/ρwLe计算蒸发率,其中EVP表示蒸发率,LHF表示潜热通量,ρw是海水密度,取值为1027kg m-3,Le表示蒸发潜热,可利用公式Le=[[2.501-(0.00237×SST)]]×106计算得到,SST表示海表温度,得到相应时间跨度和平面覆盖范围内的蒸发率历史数据集。Step 3 (parallel to Step 2): Obtain the latent heat flux and sea surface temperature atmospheric and marine environmental data of a certain time span and plane coverage from the "NCEP CFSR Reanalysis Database", and use the formula EVP=LHF/ ρwL e to calculate Evaporation rate, where EVP is the evaporation rate, LHF is the latent heat flux, ρ w is the seawater density, the value is 1027kg m -3 , L e is the latent heat of evaporation, the formula L e =[[2.501-(0.00237×SST) ]]×10 6 is calculated, SST represents the sea surface temperature, and the historical data set of evaporation rate in the corresponding time span and plane coverage is obtained.
步骤4:将步骤1中建立的三参数统计回归模型两边取自然对数将其线性化,得到线性化模型ln(EDH)=ln(α)+βln(EVP)+ε,将步骤2和3中得到的蒸发波导高度和蒸发率数据代入线性化模型,采用最小二乘法拟合得到系数α和β,再将得到的α,β代入线性化模型计算得到残差ε,σ即为残差ε的标准差,待各参数求解后,可根据实时的蒸发率数据得到蒸发波导高度的范围;Step 4: Take the natural logarithm on both sides of the three-parameter statistical regression model established in
进行蒸发率和蒸发波导高度的统计回归模型求解的数据收集时间范围不少于1年,同时进行数据的经纬度和时间点匹配,数据可以是包括历史蒸发率数据和蒸发波导高度数据,蒸发率数据可以由各种再分析数据库中直接获得或者利用气象参数数据计算得到,蒸发波导高度数据可以由实测数据或者气象参数数据结合蒸发波导预测模型计算得到。The data collection time range for solving the statistical regression model of evaporation rate and evaporation waveguide height is not less than 1 year, and the latitude, longitude and time point of the data are matched at the same time. The data can include historical evaporation rate data, evaporation waveguide height data, and evaporation rate data. It can be directly obtained from various reanalysis databases or calculated by using meteorological parameter data. The height data of evaporation duct can be calculated from measured data or meteorological parameter data combined with the prediction model of evaporation duct.
步骤5:重复利用步骤4中提出的方法,建立不同经纬度下,α,β和σ的参数数据库,得到经纬度-三参数模型数据库,即在不同海域位置下,蒸发波导高度与蒸发率量化关系数据库。Step 5: Repeat the method proposed in
步骤6:在实际使用过程中,可根据实际的经纬度坐标位置,将测得的蒸发率数据代入相应的三参数模型,即可得到当前位置下,蒸发波导高度的估计值。Step 6: In the actual use process, the measured evaporation rate data can be substituted into the corresponding three-parameter model according to the actual latitude and longitude coordinate position, and the estimated value of the evaporation waveguide height at the current position can be obtained.
具体实施例:Specific examples:
图1是利用蒸发波导模型计算蒸发波导高度流程图,所述方法的具体实施方式如下:Fig. 1 is a flow chart of calculating the height of the evaporation waveguide using the evaporation waveguide model, and the specific implementation of the method is as follows:
步骤1:从NCEP CFSR再分析数据库中获取近海面大气海洋环境数据,包括大气温度、风速、大气压强、海表温度、相对湿度等,将数据代入TOGA COARE 3.0海气通量算法中计算得到Monin-Obukhov尺度参数θ*和q*。Step 1: Obtain the atmospheric and marine environment data on the offshore surface from the NCEP CFSR reanalysis database, including atmospheric temperature, wind speed, atmospheric pressure, sea surface temperature, relative humidity, etc., and substitute the data into the TOGA COARE 3.0 air-sea flux algorithm to calculate the Monin -Obukhov scale parameters θ * and q * .
步骤2:利用公式和得到温度、湿度和气压随高度变化的剖面,其中T表示温度,q为湿度,z0θ和z0q分别为温度和湿度粗糙度高度,k为卡曼常数,Γd为干绝热递减率,z为距离海面高度,L为Obukhov长度,R为干空气气体常数,g为重力加速度,Tv为高度z1和z2处的虚温的平均值。Step 2: Utilize the formula and The profiles of temperature, humidity and air pressure with height are obtained, where T is temperature, q is humidity, z 0θ and z 0q are temperature and humidity roughness height, respectively, k is Karman constant, Γ d is dry adiabatic lapse rate, z is the height from the sea surface, L is the Obukhov length, R is the dry air gas constant, g is the acceleration of gravity, and T v is the average value of the virtual temperature at heights z 1 and z 2 .
步骤3:将步骤2中得到的温度、湿度和气压的剖面代入修正折射率计算公式其中T为大气温度,P为气压,e为水汽压,z为距离海面高度,得到修正折射率剖面M(z),剖面上修正折射率M最小值所对的高度即为蒸发波导高度,得到相应时间跨度和空间范围内的蒸发波导高度历史数据集。Step 3: Substitute the temperature, humidity and air pressure profiles obtained in
图2是计算蒸发率并建立蒸发率历史数据集的示意图,所述方法的的具体实施方式如下:从NCEP CFSR再分析数据库中获取一定时间跨度和空间范围的潜热通量和海表温度等大气海洋环境数据,利用公式EVP=LHF/ρwLe计算蒸发率,其中EVP表示蒸发率,LHF表示潜热通量,ρw是海水密度,取值为1027kg m-3,Le表示蒸发潜热,可利用公式Le=[2.501-(0.00237×SST)]×106计算得到,SST表示海表温度,得到相应时间跨度和空间范围内的蒸发率历史数据集。Fig. 2 is a schematic diagram of calculating evaporation rate and establishing a historical data set of evaporation rate. The specific implementation of the method is as follows: From the NCEP CFSR reanalysis database, obtain atmospheric latent heat flux and sea surface temperature in a certain time span and spatial range For marine environmental data, the evaporation rate is calculated using the formula EVP=LHF/ρ w Le, where EVP is the evaporation rate, LHF is the latent heat flux, ρ w is the seawater density, which is 1027kg m -3 , and L e is the latent heat of evaporation, It can be calculated by using the formula L e =[2.501-(0.00237×SST)]×10 6 , SST represents the sea surface temperature, and the historical data set of evaporation rate in the corresponding time span and space range can be obtained.
图3是建立三参数回归统计模型的流程图,所述方法的具体实施方式如下:将示例所选南海区域海域(17°N-19°N,114°E-116°E)1979-2000年22年时间范围内蒸发波导高度数据和蒸发率数据代入统计回归模型EDH=αEVPβeε中并将其线性化,利用最小二乘拟合算法得到α=23.2057,β=0.4074,再将其返代入线性化模型ln(EDH)=ln(α)+βln(EVP)+ε,统计得到残差ε的标准差σ=0.0884,最终得到对应于所选示例海域的三参数统计模型可由α=23.2057,β=0.4074,σ=0.0884唯一确定。Fig. 3 is a flow chart of establishing a three-parameter regression statistical model, and the specific implementation of the method is as follows: the selected South China Sea area sea area (17°N-19°N, 114°E-116°E) 1979-2000 will be exemplified The evaporation waveguide height data and evaporation rate data in the 22-year time range are substituted into the statistical regression model EDH=αEVP β e ε and linearized, and α=23.2057 and β=0.4074 are obtained by the least square fitting algorithm, and then return them to Substitute into the linearization model ln(EDH)=ln(α)+βln(EVP)+ε, the standard deviation of residual ε is obtained by statistics σ=0.0884, and finally the three-parameter statistical model corresponding to the selected example sea area can be obtained from α=23.2057 , β=0.4074, σ=0.0884 is uniquely determined.
图4是利用2001-2010年间的示例海域内蒸发波导高度数据和蒸发率数据对上述方法确定的三参数统计模型进行验证的结果。(1)是蒸发率与实际蒸发波导高度数据的散点图,(2)是蒸发率与预测蒸发波导高度数据的散点图。图中红色实线是利用线性回归方法对散点图中的散点数据拟合而得到的。Figure 4 is the result of verifying the three-parameter statistical model determined by the above method using the evaporation waveguide height data and evaporation rate data in an example sea area from 2001 to 2010. (1) is a scatter plot of evaporation rate and actual evaporation waveguide height data, and (2) is a scatter plot of evaporation rate and predicted evaporation waveguide height data. The solid red line in the figure is obtained by fitting the scatter data in the scatter plot using the linear regression method.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710204407.XA CN108663727B (en) | 2017-03-31 | 2017-03-31 | A method for estimating the height of the evaporative duct in the world sea area using the evaporation rate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710204407.XA CN108663727B (en) | 2017-03-31 | 2017-03-31 | A method for estimating the height of the evaporative duct in the world sea area using the evaporation rate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108663727A CN108663727A (en) | 2018-10-16 |
CN108663727B true CN108663727B (en) | 2020-07-03 |
Family
ID=63785448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710204407.XA Active CN108663727B (en) | 2017-03-31 | 2017-03-31 | A method for estimating the height of the evaporative duct in the world sea area using the evaporation rate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108663727B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111310889B (en) * | 2020-01-16 | 2022-04-12 | 西北工业大学 | An Evaporation Waveguide Profile Estimation Method Based on Deep Neural Networks |
CN113609639B (en) * | 2021-06-25 | 2022-03-25 | 中国人民解放军92493部队试验训练总体研究所 | Evaporation waveguide correction method suitable for stable condition |
CN116452053B (en) * | 2023-04-19 | 2024-04-19 | 广东科技学院 | Ship structure fire fighting capability comprehensive evaluation method based on three-parameter interval gray number |
CN117235903B (en) * | 2023-11-14 | 2024-01-26 | 中海油能源发展股份有限公司采油服务分公司 | LNG ship natural evaporation BOG prediction method and system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102288970A (en) * | 2011-07-13 | 2011-12-21 | 中国人民解放军海军工程大学 | Method, system and detection machine for detecting atmospheric waveguide environment |
CN103399361A (en) * | 2013-06-17 | 2013-11-20 | 中国人民解放军海军航空工程学院 | Compressed sensing method for space-time situation of evaporation duct |
CN106354979A (en) * | 2016-10-08 | 2017-01-25 | 西安电子科技大学 | Method for inverting evaporation waveguide of radar sea clutters based on quantum genetic algorithm |
-
2017
- 2017-03-31 CN CN201710204407.XA patent/CN108663727B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102288970A (en) * | 2011-07-13 | 2011-12-21 | 中国人民解放军海军工程大学 | Method, system and detection machine for detecting atmospheric waveguide environment |
CN103399361A (en) * | 2013-06-17 | 2013-11-20 | 中国人民解放军海军航空工程学院 | Compressed sensing method for space-time situation of evaporation duct |
CN106354979A (en) * | 2016-10-08 | 2017-01-25 | 西安电子科技大学 | Method for inverting evaporation waveguide of radar sea clutters based on quantum genetic algorithm |
Non-Patent Citations (2)
Title |
---|
海上大气波导的预测方法;王向敏;《中国优秀硕士论文全文数据库基础科学辑 》;20070630;全文 * |
海上蒸发波导的预测方法综述;漆随平;《海洋通报》;20120630;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN108663727A (en) | 2018-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021218424A1 (en) | Rbf neural network-based method for sea surface wind speed inversion from marine radar image | |
CN108663727B (en) | A method for estimating the height of the evaporative duct in the world sea area using the evaporation rate | |
CN104635281B (en) | Data of Automatic Weather method of quality control based on severe weather process correction | |
CN102628944B (en) | Stratus cloud and convective cloud automatic recognition method based on Doppler radar data | |
Tambke et al. | Forecasting offshore wind speeds above the North Sea | |
CN115758667B (en) | A joint detection method for inverting marine atmospheric temperature and humidity profiles | |
CN106814373B (en) | Weighted Atmospheric Temperature Used estimation and tropospheric delay integration method | |
CN102230796A (en) | Cloud-base height inversion method based on radio occultation detection data | |
CN105069295A (en) | Assimilation method for satellite and ground rainfall measured values based on Kalman filtering | |
CN114252834A (en) | Satellite-borne microwave radiometer external calibration method and device based on ocean target | |
CN115310370A (en) | A regional vegetation transpiration prediction method coupled with deep learning and physical mechanisms | |
CN104392113B (en) | Method for estimating cold air and strong wind speed on offshore sea surface | |
CN114910982A (en) | Rainfall early warning model construction method based on Beidou technology | |
CN115130176A (en) | An estimation method of bridge temperature gradient representative value based on long-term historical meteorological data | |
CN114417682A (en) | A method for comprehensively correcting Arctic sea ice thickness inversion | |
Figurski et al. | The impact of initial and boundary conditions on severe weather event simulations using a high-resolution WRF model. Case study of the derecho event in Poland on 11 August 2017 | |
Burlando et al. | Short-term wind forecast for the safety management of complex areas during hazardous wind events | |
CN105302980B (en) | A kind of city aerodynamic roughness inversion method based on SAR data | |
CN119413140A (en) | A marine environment information measurement system and method based on multi-source data fusion | |
CN117421601B (en) | Sea surface evaporation waveguide near-future rapid forecasting method | |
Wong et al. | A simple empirical model for estimating the intensity change of tropical cyclones after landfall along the south China coast | |
CN118778149A (en) | A method for forecasting heavy fog around Bohai Sea | |
CN115270068B (en) | Fast Estimation Method of Atmospheric Humidity Delay Based on Buoy Platform | |
CN114814779B (en) | Buoy surge wave height observation data error evaluation method, system, equipment and medium | |
CN117172149A (en) | Evaporation waveguide prediction method based on data feature classification and neural network model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |