[go: up one dir, main page]

CN108663088A - Intelligent photovoltaic power station distribution cloud monitors system - Google Patents

Intelligent photovoltaic power station distribution cloud monitors system Download PDF

Info

Publication number
CN108663088A
CN108663088A CN201810478061.7A CN201810478061A CN108663088A CN 108663088 A CN108663088 A CN 108663088A CN 201810478061 A CN201810478061 A CN 201810478061A CN 108663088 A CN108663088 A CN 108663088A
Authority
CN
China
Prior art keywords
data
circuit
module
photovoltaic power
monitoring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810478061.7A
Other languages
Chinese (zh)
Inventor
吴迪
周长伟
沈成
黄旭江
刘啸
陶智
郑分刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201810478061.7A priority Critical patent/CN108663088A/en
Publication of CN108663088A publication Critical patent/CN108663088A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种智能光伏电站分布式云监测系统,包括数据采集及监测模块、数据传输模块、云平台模块,数据采集及监测模块采集光伏电站中相邻两个光伏组件之间的运行数据并将所述运行数据打包形成数据包通过所述数据传输模块发送至所述云平台模块,云平台模块接收所述数据包并对所述数据包进行解析,并对解析后的数据进行显示及存储;其中,所述数据传输模块包括无线串口服务器。本发明的数据采集及监测模块可监测电站中相邻两个光伏组件的运行信息,并利用无线串口服务器将数据包稳定上传至云端进行分析;维护人员可通过云平台模块监控系统,实现智能值守、大数据分析和故障预诊断等功能,有效增加现场设备利用率,运维更加准确方便。

The invention relates to a distributed cloud monitoring system for an intelligent photovoltaic power station, which includes a data collection and monitoring module, a data transmission module, and a cloud platform module. The data collection and monitoring module collects operating data between two adjacent photovoltaic modules in a photovoltaic power station and Packing the operating data to form a data packet and sending it to the cloud platform module through the data transmission module, the cloud platform module receives the data packet and parses the data packet, and displays and stores the parsed data ; Wherein, the data transmission module includes a wireless serial port server. The data acquisition and monitoring module of the present invention can monitor the operation information of two adjacent photovoltaic modules in the power station, and use the wireless serial port server to upload the data packets to the cloud for analysis; maintenance personnel can realize intelligent on-duty through the cloud platform module monitoring system , Big data analysis and fault pre-diagnosis and other functions can effectively increase the utilization rate of on-site equipment and make operation and maintenance more accurate and convenient.

Description

智能光伏电站分布式云监测系统Distributed Cloud Monitoring System for Smart Photovoltaic Power Stations

技术领域technical field

本发明涉及一种智能光伏电站分布式云监测系统。The invention relates to a distributed cloud monitoring system for an intelligent photovoltaic power station.

背景技术Background technique

由于传统能源的日益枯竭和当今社会对电能质量的提高,太阳能光伏发电技术的应用越来越广泛。但目前太阳能光伏电站主要应用于远离公共电网的无电、少电地区和一些特殊场所,并且同一地区光伏电站的站点分布不均匀,因此如何将这些分散式的能源系统进行集中调度管理,达到有效使用的目的,对光伏电站进行远程监控就显得越来越重要。Due to the depletion of traditional energy and the improvement of power quality in today's society, solar photovoltaic power generation technology is more and more widely used. However, at present, solar photovoltaic power stations are mainly used in areas with no electricity or little electricity and some special places far away from the public grid, and the distribution of photovoltaic power stations in the same area is uneven. Therefore, how to centralize dispatch and manage these decentralized energy systems to achieve effective For the purpose of use, remote monitoring of photovoltaic power plants is becoming more and more important.

早期对光伏电站系统进行监测一般建立在近距离条件下,即近距离监控。通过液晶显示各种电站的运行参数和环境参数,维护人员守在现场,查看监视设备所显示的数值,并作出相应的处理。但是,随着光伏电站规模的扩大以及电站所在地区的自然环境比较恶劣,该方案维护人员劳动强度大,管理水平不高,而且需要花费大量人力、物力和财力,而且随着电站规模的扩大,已经越来越不能适应现代化经济的发展。之后随着IT技术和通信技术的快速发展,光伏电站广泛采用远程监控技术。现有的中小型光伏电站监控系统普遍利用传感器结合蓝牙、以太网、射频通信等方式组成局域网对光伏电站的运行参数进行监控。但是对于监控数量多、范围广的光伏电站,这些技术就会存在一些问题。蓝牙,通讯速率低,其最多传输距离达100m,存在一定安全性问题,对于大型的光伏电站显然覆盖不全面;而以太网需要通过包括同轴缆、双绞线和光纤在内的有线介质,对于大范围的光伏电站布线,需要消耗大量的人力和物力,显然增加了光伏电站的运行成本。GSM无线通信则是跟踪系统控制器与监控计算机连接,监控计算机通过通信模块、通信基站与手机通信。跟踪电站管理员通过手机向GSM方式的通信模块发送指令短信,监控计算机内的监控软件将短信读入,对短信内容分析,然后通过485总线向跟踪系统控制器发送对应指令,跟踪系统控制器收到指令,并执行指令,并向监控软件做出反馈,监控软件收到反馈后,将反馈信息通过通信模块发送到管理员手机。但其稳定性差,功耗高,组网能力低,不适合用来传输精确并且重要的运行参数。Early monitoring of photovoltaic power plant systems is generally established under short-range conditions, that is, close-range monitoring. The operating parameters and environmental parameters of various power stations are displayed on the liquid crystal, and the maintenance personnel are on site to check the values displayed by the monitoring equipment and make corresponding processing. However, with the expansion of the scale of the photovoltaic power station and the harsh natural environment in the area where the power station is located, the labor intensity of the maintenance personnel of this scheme is high, the management level is not high, and it needs a lot of manpower, material and financial resources, and with the expansion of the power station scale, It has become more and more unable to adapt to the development of modern economy. Later, with the rapid development of IT technology and communication technology, remote monitoring technology is widely used in photovoltaic power plants. Existing monitoring systems for small and medium-sized photovoltaic power plants generally use sensors combined with Bluetooth, Ethernet, radio frequency communication, etc. to form a local area network to monitor the operating parameters of photovoltaic power plants. However, for photovoltaic power plants with a large number of monitoring and a wide range, these technologies will have some problems. Bluetooth has a low communication rate, and its maximum transmission distance is 100m, which has certain security problems. It is obviously not comprehensive for large-scale photovoltaic power plants; while Ethernet needs to pass through wired media including coaxial cables, twisted-pair wires and optical fibers. For large-scale photovoltaic power station wiring, it needs to consume a lot of manpower and material resources, which obviously increases the operating cost of the photovoltaic power station. GSM wireless communication is the connection between the tracking system controller and the monitoring computer, and the monitoring computer communicates with the mobile phone through the communication module and the communication base station. The administrator of the tracking power station sends an instruction message to the GSM communication module through the mobile phone, and the monitoring software in the monitoring computer reads the message, analyzes the content of the message, and then sends the corresponding instruction to the tracking system controller through the 485 bus, and the tracking system controller receives it. Receive the instruction, execute the instruction, and give feedback to the monitoring software. After receiving the feedback, the monitoring software sends the feedback information to the administrator's mobile phone through the communication module. However, its stability is poor, its power consumption is high, and its networking capability is low, so it is not suitable for transmitting accurate and important operating parameters.

发明内容Contents of the invention

本发明的目的在于提供一种可监测电站中相邻两个光伏组件的运行信息,并利用GPRS-DTU将数据包稳定上传到云端进行分析的智能光伏电站分布式云监测系统。The purpose of the present invention is to provide a distributed cloud monitoring system for intelligent photovoltaic power plants that can monitor the operation information of two adjacent photovoltaic modules in the power plant, and use GPRS-DTU to stably upload data packets to the cloud for analysis.

为达到上述目的,本发明提供如下技术方案:一种智能光伏电站分布式云监测系统,所述智能光伏电站分布式云监测系统包括数据采集及监测模块、数据传输模块、云平台模块,所述数据采集及监测模块采集光伏电站中相邻两个光伏组件之间的运行数据并将所述运行数据打包形成数据包通过所述数据传输模块发送至所述云平台模块,所述云平台模块接收所述数据包并对所述数据包进行解析,并对解析后的数据进行显示及存储;其中,所述数据传输模块包括无线串口服务器。In order to achieve the above object, the present invention provides the following technical solutions: a distributed cloud monitoring system for smart photovoltaic power plants, the distributed cloud monitoring system for smart photovoltaic power plants includes a data collection and monitoring module, a data transmission module, and a cloud platform module. The data acquisition and monitoring module collects the operating data between two adjacent photovoltaic modules in the photovoltaic power station and packs the operating data to form a data packet and sends it to the cloud platform module through the data transmission module, and the cloud platform module receives The data packet is analyzed, and the analyzed data is displayed and stored; wherein, the data transmission module includes a wireless serial port server.

进一步地,所述无线串口服务器为GPRS-DTU。Further, the wireless serial port server is GPRS-DTU.

进一步地,所述数据传输模块还包括通信基站及与所述通信基站、无线串口服务器连接的RS485总线。Further, the data transmission module also includes a communication base station and an RS485 bus connected to the communication base station and the wireless serial port server.

进一步地,所述数据采集及监测模块包括电源电路、光强及温度测量电路、差放和模数转换电路、微处理器,其中:Further, the data acquisition and monitoring module includes a power supply circuit, a light intensity and temperature measurement circuit, a differential amplifier and an analog-to-digital conversion circuit, and a microprocessor, wherein:

电源电路:为所述光强及温度测量电路、A/D转换电路提供电源;Power supply circuit: provide power supply for the light intensity and temperature measurement circuit and A/D conversion circuit;

光强及温度测量电路:监测太阳的辐照及温度数据,同时采集光伏组件运行时的电压及电流数据并传输至所述差放和模数转换电路;Light intensity and temperature measurement circuit: monitor the solar radiation and temperature data, and simultaneously collect the voltage and current data of the photovoltaic module during operation and transmit them to the differential amplifier and analog-to-digital conversion circuit;

差放和模数转换电路:对所述光伏组件的电压及电流数据进行放大及监测并传输至所述微处理器;Differential amplifier and analog-to-digital conversion circuit: amplify and monitor the voltage and current data of the photovoltaic module and transmit it to the microprocessor;

微处理器:接收电压及电流数据并传输至所述云平台模块。Microprocessor: receiving voltage and current data and transmitting to the cloud platform module.

进一步地,所述电源电路包括将第一级降压电路、第二级降压电路及第三级降压电路;所述第一级降压电路将电压处理以输出第一电压值至所述第二级降压电路及所述第三级降压电路,所述第二级降压电路输出第二电压值至所述单片机,所述第三级降压电路输出第三电压值至所述差放和模数转换电路。Further, the power supply circuit includes a first-stage step-down circuit, a second-stage step-down circuit, and a third-stage step-down circuit; the first-stage step-down circuit processes voltage to output a first voltage value to the The second-stage step-down circuit and the third-stage step-down circuit, the second-stage step-down circuit outputs a second voltage value to the single-chip microcomputer, and the third-stage step-down circuit outputs a third voltage value to the Differential amplifier and analog-to-digital conversion circuit.

进一步地,所述第一级降压电路采用LM2596芯片,所述第二级降压电路及所述第三级降压电路采用SPX3819芯片。Further, the first-stage step-down circuit adopts the LM2596 chip, and the second-stage step-down circuit and the third-stage step-down circuit use the SPX3819 chip.

进一步地,所述第一电压值为5.5V,所述第二电压值为3.3V,所述第三电压值为5V。Further, the first voltage value is 5.5V, the second voltage value is 3.3V, and the third voltage value is 5V.

进一步地,所述光强及温度测量电路包括用于测量光照强度的BH1750FVI芯片、用于测量温度的温度传感器DS18B20。Further, the light intensity and temperature measurement circuit includes a BH1750FVI chip for measuring light intensity and a temperature sensor DS18B20 for measuring temperature.

进一步地,所述差放及模数转换电路包括使用AD620芯片将小信号电压放大的差放放大电路、使用MCP3421芯片进行输出信号的A/D转换的模数转换电路。Further, the differential amplifier and analog-to-digital conversion circuit includes a differential amplifier circuit that uses the AD620 chip to amplify the small signal voltage, and an analog-to-digital conversion circuit that uses the MCP3421 chip to perform A/D conversion of the output signal.

进一步地,所述微处理器为ATmega128A单片机。Further, the microprocessor is an ATmega128A single-chip microcomputer.

本发明的有益效果在于:本发明的数据采集及监测模块可监测电站中相邻两个光伏组件的运行信息,并利用无线串口服务器将数据包稳定上传至云端进行分析;维护人员可通过云平台模块监控系统,实现智能值守、大数据分析和故障预诊断等功能,有效增加现场设备利用率,运维更加准确方便。The beneficial effect of the present invention is that: the data acquisition and monitoring module of the present invention can monitor the operation information of two adjacent photovoltaic modules in the power station, and use the wireless serial port server to upload the data packets to the cloud for analysis; maintenance personnel can use the cloud platform to The module monitoring system realizes functions such as intelligent on-duty monitoring, big data analysis and fault pre-diagnosis, effectively increasing the utilization rate of on-site equipment, and making operation and maintenance more accurate and convenient.

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。The above description is only an overview of the technical solutions of the present invention. In order to understand the technical means of the present invention more clearly and implement them according to the contents of the description, the preferred embodiments of the present invention and accompanying drawings are described in detail below.

附图说明Description of drawings

图1为本发明的智能光伏电站分布式云监测系统的结构示意图。Fig. 1 is a schematic structural diagram of a distributed cloud monitoring system for a smart photovoltaic power plant according to the present invention.

图2为图1中的数据采集及监测模块的原理示意图。FIG. 2 is a schematic diagram of the principle of the data acquisition and monitoring module in FIG. 1 .

图3为图2中的第一级降压电路的原理图。FIG. 3 is a schematic diagram of the first-stage step-down circuit in FIG. 2 .

图4为图2中第二级及第三级降压电路的原理图。FIG. 4 is a schematic diagram of the second-stage and third-stage step-down circuits in FIG. 2 .

图5为光照测量电路原理图。Figure 5 is a schematic diagram of the light measurement circuit.

图6为温度测量电路原理图。Figure 6 is a schematic diagram of the temperature measurement circuit.

图7为差放电路原理图。Figure 7 is a schematic diagram of the differential amplifier circuit.

图8为A/D模数转换电路原理图。Figure 8 is a schematic diagram of the A/D analog-to-digital conversion circuit.

图9为数据采集测量终端的监测软件流程图。Fig. 9 is a flow chart of the monitoring software of the data acquisition and measurement terminal.

图10为测量数据流拓扑图。Figure 10 is a topological diagram of measurement data flow.

具体实施方式Detailed ways

下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.

请参见图1,本发明的一较佳实施例中的智能光伏电站分布式云监测系统包括数据采集及监测模块1、数据传输模块2、云平台模块3,所述数据采集及监测模块1采集光伏电站中相邻两个光伏组件之间的运行数据并将所述运行数据打包形成数据包通过所述数据传输模块2发送至所述云平台模块3,所述云平台模块3接收所述数据包并对所述数据包进行解析,并对解析后的数据进行显示及存储;其中,所述数据传输模块2包括无线串口服务器。在本实施例中,所述无线串口服务器为GPRS-DTU。Please refer to Fig. 1, the intelligent photovoltaic power plant distributed cloud monitoring system in a preferred embodiment of the present invention comprises data acquisition and monitoring module 1, data transmission module 2, cloud platform module 3, and described data acquisition and monitoring module 1 collects The operating data between two adjacent photovoltaic modules in the photovoltaic power station is packaged to form a data packet and sent to the cloud platform module 3 through the data transmission module 2, and the cloud platform module 3 receives the data package and analyze the data package, and display and store the analyzed data; wherein, the data transmission module 2 includes a wireless serial port server. In this embodiment, the wireless serial port server is GPRS-DTU.

请参见图2,所述数据采集及监测模块1包括电源电路11、光强及温度测量电路12、差放和模数转换电路13、微处理器14,其中:Referring to Fig. 2, the data acquisition and monitoring module 1 includes a power supply circuit 11, a light intensity and temperature measurement circuit 12, a differential amplifier and an analog-to-digital conversion circuit 13, and a microprocessor 14, wherein:

电源电路11:为所述光强及温度测量电路12、差放和模数转换电路13、微处理器14供电。。采用分级降压的方式,即所述电源电路11包括将第一级降压电路、第二级降压电路及第三级降压电路;所述第一级降压电路将电压处理以输出第一电压值至所述第二级降压电路及所述第三级降压电路,所述第二级降压电路输出第二电压值至所述单片机,所述第三级降压电路输出第三电压值至所述差放和模数转换电路13。在本实施例中,所述第一级降压电路采用LM2596芯片,所述第二级降压电路及所述第三级降压电路采用SPX3819芯片。所述第一电压值为5.5V,所述第二电压值为3.3V,所述第三电压值为5V。请参见图3,图3为LM2596芯片降压电路原理图。由光伏组件给芯片LM2596供电,从1引脚输入,R1和R2是反馈电阻,用来调节输出电压,D2肖特基保护电路,电路前后两端电容是滤波电容,保证输入、输出电压稳定。2引脚为输出,其输出电压表达式为:VOUT=VREF×(1+R2/R1);式中:VREF为内部参考基准源,VREF=1.23V。Power supply circuit 11 : supplying power to the light intensity and temperature measurement circuit 12 , differential amplifier and analog-to-digital conversion circuit 13 , and microprocessor 14 . . The method of step-down step-down is adopted, that is, the power supply circuit 11 includes a first-stage step-down circuit, a second-stage step-down circuit and a third-stage step-down circuit; the first-stage step-down circuit processes the voltage to output the first stage A voltage value is sent to the second-stage step-down circuit and the third-stage step-down circuit, the second-stage step-down circuit outputs a second voltage value to the single-chip microcomputer, and the third-stage step-down circuit outputs the first Three voltage values are sent to the differential amplifier and analog-to-digital conversion circuit 13. In this embodiment, the first-stage step-down circuit uses an LM2596 chip, and the second-stage step-down circuit and the third-stage step-down circuit use an SPX3819 chip. The first voltage value is 5.5V, the second voltage value is 3.3V, and the third voltage value is 5V. Please refer to Figure 3, Figure 3 is a schematic diagram of the LM2596 chip step-down circuit. The chip LM2596 is powered by the photovoltaic module, input from pin 1, R1 and R2 are feedback resistors, used to adjust the output voltage, D2 Schottky protection circuit, the capacitors at both ends of the circuit are filter capacitors, to ensure the stability of the input and output voltage. 2 pins are output, the output voltage expression is: V OUT =V REF ×(1+R 2 /R 1 ); where: V REF is the internal reference source, V REF =1.23V.

请参见图4,SPX3819芯片5V降压电路原理图如图所示。5V型SPX3819芯片作为第三级降压电路,把5.5V电压作为输入,并降至5V电压供给芯片AD620及模数转换芯片以实现稳定电压输入。图中SPX3819芯片1脚是电源引脚,由LM2596降压电路提供5.5V的电压供给,2脚接地,3脚是使能端,4脚是低压差线性稳压器,用于降低线性噪声,输出端前的电容主要用来滤波。因此,所述智能光伏电站分布式云监测系统由光伏组件供电,再经数据采集及监测模块1中的电源电路11分级降压,能够分别供给微处理器14和其他芯片以实现稳定电压输入。Please refer to Figure 4, the schematic diagram of the SPX3819 chip 5V step-down circuit is shown in the figure. The 5V type SPX3819 chip is used as the third step-down circuit, which takes 5.5V voltage as input, and lowers the voltage to 5V to supply chip AD620 and analog-to-digital conversion chip to realize stable voltage input. In the figure, pin 1 of the SPX3819 chip is a power supply pin, which is supplied by a 5.5V voltage supply from the LM2596 step-down circuit, pin 2 is grounded, pin 3 is an enable terminal, and pin 4 is a low-dropout linear voltage regulator, which is used to reduce linear noise. The capacitor before the output is mainly used for filtering. Therefore, the distributed cloud monitoring system of the smart photovoltaic power station is powered by photovoltaic modules, and then the power circuit 11 in the data acquisition and monitoring module 1 steps down the voltage, which can be respectively supplied to the microprocessor 14 and other chips to achieve stable voltage input.

光强及温度测量电路12:监测太阳的辐照及温度数据,同时采集光伏组件运行时的电压及电流数据并传输至所述差放和模数转换电路13。太阳的辐照及周围的环境温度等因素影响着光伏电站的运行,其中太阳的辐照是导致光伏电池产生伏特效应的直接影响因素;而温度又是影响太阳能转换效率、光伏电池板工作效率及使用寿命等问题的重要参数,因此对于太阳的辐照及温度的监测是必不可少的。在本实施例中,所述光强及温度测量电路12包括用于测量光照强度的BH1750FVI芯片、用于测量温度的温度传感器DS18B20。Light intensity and temperature measurement circuit 12: monitor the solar radiation and temperature data, and simultaneously collect the voltage and current data of the photovoltaic module during operation and transmit them to the differential amplifier and analog-to-digital conversion circuit 13 . Factors such as solar radiation and ambient temperature affect the operation of photovoltaic power plants, among which solar radiation is the direct factor that causes the photovoltaic cell to produce the volt effect; and temperature affects the solar energy conversion efficiency, the working efficiency of the photovoltaic panel and the It is an important parameter for issues such as service life, so the monitoring of solar radiation and temperature is essential. In this embodiment, the light intensity and temperature measurement circuit 12 includes a BH1750FVI chip for measuring light intensity and a temperature sensor DS18B20 for measuring temperature.

系统采用BH1750FVI芯片测量光照的强度,直接数字输出,不区分环境光源,接近于视觉灵敏度的分光特性,能够对广泛的亮度进行1勒克斯的高精度测量。请参见图5,图中VCC为电源引脚,3-5V供电,SCL为IIC总线时钟引脚,SDA为IIC总线数据引脚,A/DDR为BH1750FVI芯片IIC设备地址引脚。The system uses the BH1750FVI chip to measure the intensity of the light, direct digital output, does not distinguish between ambient light sources, and has spectral characteristics close to visual sensitivity, and can perform high-precision measurement of 1 lux for a wide range of brightness. Please refer to Figure 5. In the figure, VCC is the power supply pin, 3-5V power supply, SCL is the IIC bus clock pin, SDA is the IIC bus data pin, and A/DDR is the IIC device address pin of the BH1750FVI chip.

温度测量使用传感器DS18B20测量温度,系统中所检测的温度值分为电站的环境温度和电池板的温度。请参见图6,图中Vcc是电源引脚,5V供电,GND是电源地,DQ是1-wire总线接口,实现微处理器14与DS18B20的双向通信。其中DS18B20_1测量电站周围的环境温度,DS18B20_2测量太阳能电池板的温度。Temperature measurement uses the sensor DS18B20 to measure the temperature. The temperature detected in the system is divided into the ambient temperature of the power station and the temperature of the battery board. Please refer to FIG. 6 , in which Vcc is a power supply pin, 5V power supply, GND is a power supply ground, and DQ is a 1-wire bus interface to realize bidirectional communication between the microprocessor 14 and DS18B20. Among them, DS18B20_1 measures the ambient temperature around the power station, and DS18B20_2 measures the temperature of the solar panel.

通过对太阳光照强度、电站周围的环境温度和太阳能电池板的温度的测量,能够实时了解影响光伏电站的因素,确保光伏电站正常稳定地工作。By measuring the intensity of sunlight, the ambient temperature around the power station and the temperature of the solar panels, it is possible to understand the factors affecting the photovoltaic power station in real time and ensure the normal and stable operation of the photovoltaic power station.

差放和模数转换电路13:对所述光伏组件的电压及电流数据进行放大及监测并传输至所述微处理器14;所述差放和模数转换电路13包括差放放大电路及A/D模数转换电路。在本实施例中,所述差放及模数转换电路包括使用AD620芯片将小信号电压放大的差放放大电路、使用MCP3421芯片进行输出信号的A/D转换的模数转换电路。Differential amplifier and analog-to-digital conversion circuit 13: the voltage and current data of the photovoltaic module are amplified and monitored and transmitted to the microprocessor 14; the differential amplifier and analog-to-digital conversion circuit 13 includes a differential amplifier amplifier circuit and an A /D analog-to-digital conversion circuit. In this embodiment, the differential amplifier and analog-to-digital conversion circuit includes a differential amplifier amplifier circuit that uses the AD620 chip to amplify the small signal voltage, and an analog-to-digital conversion circuit that uses the MCP3421 chip to perform A/D conversion of the output signal.

差放电路使用AD620芯片,输出电压经过分压电路送到一路AD620差放电路,以1:1跟随放大。输出电流通过一个0.01Ω电阻,其两端的电压通过另一路AD620差放电路以10倍放大送给A/D模数转换电路进行模数转换。请参见图7,输入的电压和地分别连接AD_IN1和AD_IN2,可实现高精度的差分放大。通过调节inaG1电阻,实现增益放大。The differential amplifier circuit uses the AD620 chip, and the output voltage is sent to an AD620 differential amplifier circuit through a voltage divider circuit, followed by amplification at 1:1. The output current passes through a 0.01Ω resistor, and the voltage at both ends is sent to the A/D analog-to-digital conversion circuit for analog-to-digital conversion through another AD620 differential amplifier circuit with 10 times amplification. Please refer to Figure 7, the input voltage and ground are respectively connected to AD_IN1 and AD_IN2, which can realize high-precision differential amplification. Gain amplification is achieved by adjusting the inaG1 resistor.

A/D模数转换电路使用MCP3421芯片进行输出信号的A/D转换。由差放放大电路所得到的电压信号经过A/D转换电路进行数模转换,便于准确测量两路电压。请参见图8,差放放大电路的输出电压经过MCP3421芯片的1脚,可实现A/D转换并由SCL和SDA端口输出给微处理器14,测量出微小电压。在本实施例中,所述A/D模数转换电路采用的通讯协议为IIC协议。The A/D analog-to-digital conversion circuit uses the MCP3421 chip to perform A/D conversion of the output signal. The voltage signal obtained by the differential amplifying circuit is converted into digital and analog by the A/D conversion circuit, which is convenient for accurate measurement of two voltages. Please refer to FIG. 8 , the output voltage of the differential amplifier circuit passes through pin 1 of the MCP3421 chip, which can realize A/D conversion and output to the microprocessor 14 through the SCL and SDA ports, and measure the tiny voltage. In this embodiment, the communication protocol adopted by the A/D analog-to-digital conversion circuit is the IIC protocol.

通过差放及模数转换电路,准确测量出光伏组件的电压、电流,实现对光伏组件运行参数的测量,以保证光伏电站输出稳定、工作正常。Through the differential amplifier and analog-to-digital conversion circuit, the voltage and current of the photovoltaic module can be accurately measured to realize the measurement of the operating parameters of the photovoltaic module, so as to ensure the stable output and normal operation of the photovoltaic power station.

微处理器14:接收电压及电流数据并传输至所述云平台模块3。在本实施例中,所述微处理器14为ATmega128A单片机。Microprocessor 14: receiving voltage and current data and transmitting to the cloud platform module 3. In this embodiment, the microprocessor 14 is an ATmega128A single-chip microcomputer.

上述为数据采集及监测模块1的硬件设计及数据采集过程,数据监测如图9所示。分布式光伏电站监测终端工作时需要进行系统初始化、数据采集、模数转换、D/A输出等控制操作。微处理器14ATmega128A对D/A芯片、A/D转换寄存器、定时器0中断寄存器等寄存器进行初始化操作。一方面采集的两路电压通过A/D转化寄存器中的A/D转换函数后转化成微处理器14ATmega128A可直接处理的数字信号。另一方面,光强和温度传感器与AVR进行IIC通信,读出当前的环境的光强和温度。最后两路电压及温度光强经过适当的转换进入D/A函数,输出相应的电压,再由数据传输模块2,将数据透明传输到云平台模块3。The above is the hardware design and data collection process of the data collection and monitoring module 1, and the data monitoring is shown in FIG. 9 . When the distributed photovoltaic power station monitoring terminal is working, it needs to perform control operations such as system initialization, data acquisition, analog-to-digital conversion, and D/A output. Microprocessor 14ATmega128A initializes registers such as D/A chip, A/D conversion register, timer 0 interrupt register. On the one hand, the two voltages collected are converted into digital signals that can be directly processed by the microprocessor 14ATmega128A through the A/D conversion function in the A/D conversion register. On the other hand, the light intensity and temperature sensor communicates with the AVR through IIC to read out the current light intensity and temperature of the environment. The last two voltages, temperature and light intensity are properly converted into the D/A function, and the corresponding voltage is output, and then the data transmission module 2 transparently transmits the data to the cloud platform module 3 .

所述数据传输模块2还包括通信基站及与所述通信基站、GPRS-DTU连接的RS485总线。在由所述数据采集及监测模块1采集了光伏电站的运行参数和环境参数之后,然后通过RS485总线由GPRS-DTU透明传输至云平台模块3。GPRS-DTU能够实现串口设备与网络服务器通过GPRS网络相互传输数据。The data transmission module 2 also includes a communication base station and an RS485 bus connected to the communication base station and GPRS-DTU. After the operating parameters and environmental parameters of the photovoltaic power plant are collected by the data collection and monitoring module 1, they are then transparently transmitted to the cloud platform module 3 by the GPRS-DTU through the RS485 bus. GPRS-DTU can realize the mutual transmission of data between the serial device and the network server through the GPRS network.

首先配置云平台模块3的地址和端口,地址为cloudata.usr.cn或者是某一个服务器的地址,端口为15000,采用TCP数据协议,然后将透传云的设备编号和通讯密码写进设备中,配置好数据传输模块2的参数后,采集的数据便按照相应的协议传输到云服务器。测量数据流拓扑图如图10所示。将A/D模块Modbus RTU和GPRS-DTU的RS485串口相连,RTU采集的数据经GPRS-DTU串口打包后,经过Socket A组织数据,以符合复杂的TCP/IP协议族,然后经TCP/IP运输层到达对应地址的GPRS网络层。First configure the address and port of the cloud platform module 3, the address is cloudata.usr.cn or the address of a certain server, the port is 15000, using the TCP data protocol, and then write the device number and communication password of the transparent transmission cloud into the device After configuring the parameters of the data transmission module 2, the collected data is transmitted to the cloud server according to the corresponding protocol. The measurement data flow topology diagram is shown in Figure 10. Connect the A/D module Modbus RTU with the RS485 serial port of GPRS-DTU. After the data collected by RTU is packaged through the GPRS-DTU serial port, the data is organized through Socket A to conform to the complex TCP/IP protocol family, and then transported via TCP/IP The layer reaches the GPRS network layer of the corresponding address.

所述云平台模块3添加的默认设备主要是对应的DTU、串口服务器,添加完成后,系统自动分配ID,并通过软件写入设备内完成接入。然后选择通讯协议Modbus,云端服务器将根据设定的协议格式解析,并根据数据点的设定存入数据库、处理报警、推送给前端。添加完设备后,使用USB转RS485转接头,将转接头上的A,B分别接到GPRS-DTU的A,B接口,将另一端插到电脑的USB上,完成对于GPRS传输模块的设置。The default equipment added by the cloud platform module 3 is mainly corresponding DTU and serial port server. After the addition is completed, the system automatically distributes the ID, and writes in the equipment by software to complete the access. Then select the communication protocol Modbus, and the cloud server will analyze it according to the set protocol format, and store it in the database according to the setting of the data point, process the alarm, and push it to the front end. After adding the device, use the USB to RS485 adapter, connect A and B on the adapter to the A and B interfaces of GPRS-DTU respectively, and plug the other end into the USB of the computer to complete the setting of the GPRS transmission module.

当LINKA灯亮时,即说明数据传输模块2连接到云平台模块3,能正常通信,向云平台模块3传输数据。下面将添加数据点,以读取Modbus从机寄存器的数据,并在监控中心中显示。关联设备是指在第一步所添加的设备,从设备id表示Modbus从机地址,选择寄存器区时,应根据数据所在Modbus RTU从机中的寄存器而选择,是保持寄存器还是输入寄存器,偏移量是所读数据在Modbus从机中寄存器的实际地址减一。此外,通过设置触发器,如果测量的数据不在触发器所设置的范围,将通过微信或邮件向用户发送异常数据点的信息,使维修人员能够及时准确地对光伏设备进行维修。When the LINKA light is on, it means that the data transmission module 2 is connected to the cloud platform module 3, can communicate normally, and transmits data to the cloud platform module 3. Data points will be added below to read the data of the Modbus slave registers and display them in the monitoring center. The associated device refers to the device added in the first step. The slave device id represents the Modbus slave address. When selecting the register area, it should be selected according to the register in the Modbus RTU slave where the data is located. Whether it is a holding register or an input register, the offset The quantity is the actual address of the register of the read data in the Modbus slave machine minus one. In addition, by setting a trigger, if the measured data is not within the range set by the trigger, information about abnormal data points will be sent to the user via WeChat or email, so that maintenance personnel can repair photovoltaic equipment in a timely and accurate manner.

通过云平台模块3的设计后,云平台模块3解析传输的数据在监控中心显示并进行存储,用户可以历史查询,并能故障信息通知显示。After the cloud platform module 3 is designed, the data analyzed and transmitted by the cloud platform module 3 is displayed and stored in the monitoring center, and the user can query history and display fault information.

对智能光伏电站分布式云监测系统测试时,并对各个光伏组件的运行参数进行实时采集。其中,0x01节点为光伏组件1,0x02地址节点为光伏组件2。测试结果如表1和表2所示。When testing the distributed cloud monitoring system of smart photovoltaic power plants, the operating parameters of each photovoltaic module are collected in real time. Among them, the 0x01 node is the photovoltaic module 1, and the 0x02 address node is the photovoltaic module 2. The test results are shown in Table 1 and Table 2.

表1Table 1

表2Table 2

测量结果表明,系统可以实现分辨率为0.1V的电压测量以及电流、环境温度、太阳能电池板温度和光强的测量。在不同时刻的相同节点处,光伏组件在正午时工作异常,可能由于尘土、落叶等遮挡物在太阳电池组件上就形成了阴影,使太阳电池组件中某些电池单片的电流、电压发生了变化,同时系统监测到在同一时刻不同节点处某一光伏组件发生故障。该智能光伏电站分布式云监测系统能实现对于测量的数据分析、比较,对光伏电站的故障信息通过微信或邮件进行报警。The measurement results show that the system can realize the voltage measurement with a resolution of 0.1V and the measurement of current, ambient temperature, solar panel temperature and light intensity. At the same node at different times, the photovoltaic module works abnormally at noon. It may be due to shadows formed on the solar cell module by dust, fallen leaves and other obstructions, which causes the current and voltage of some single cells in the solar cell module to change. At the same time, the system detects that a photovoltaic module fails at different nodes at the same time. The distributed cloud monitoring system of the intelligent photovoltaic power station can realize the analysis and comparison of the measured data, and alarm the fault information of the photovoltaic power station through WeChat or email.

综上所述:本发明的数据采集及监测模块1可监测电站中相邻两个光伏组件的运行信息,并利用无线串口服务器将数据包稳定上传至云端进行分析;维护人员可通过云平台模块3监控系统,实现智能值守、大数据分析和故障预诊断等功能,有效增加现场设备利用率,运维更加准确方便。To sum up: the data acquisition and monitoring module 1 of the present invention can monitor the operation information of two adjacent photovoltaic modules in the power station, and use the wireless serial port server to upload the data packets to the cloud for analysis; maintenance personnel can use the cloud platform module 3 The monitoring system realizes functions such as intelligent on-duty monitoring, big data analysis, and fault pre-diagnosis, effectively increasing the utilization rate of on-site equipment, and making operation and maintenance more accurate and convenient.

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The various technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the various technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.

Claims (10)

1.一种智能光伏电站分布式云监测系统,其特征在于,所述智能光伏电站分布式云监测系统包括数据采集及监测模块、数据传输模块、云平台模块,所述数据采集及监测模块采集光伏电站中相邻两个光伏组件之间的运行数据并将所述运行数据打包形成数据包通过所述数据传输模块发送至所述云平台模块,所述云平台模块接收所述数据包并对所述数据包进行解析,并对解析后的数据进行显示及存储;其中,所述数据传输模块包括无线串口服务器。1. A distributed cloud monitoring system for an intelligent photovoltaic power plant, characterized in that the distributed cloud monitoring system for an intelligent photovoltaic power plant comprises a data acquisition and monitoring module, a data transmission module, and a cloud platform module, and the data acquisition and monitoring module collects The operating data between two adjacent photovoltaic modules in the photovoltaic power station is packaged to form a data packet and sent to the cloud platform module through the data transmission module, and the cloud platform module receives the data packet and The data packet is analyzed, and the analyzed data is displayed and stored; wherein, the data transmission module includes a wireless serial port server. 2.如权利要求1所述的智能光伏电站分布式云监测系统,其特征在于,所述无线串口服务器为GPRS-DTU。2. The distributed cloud monitoring system for smart photovoltaic power plants according to claim 1, wherein the wireless serial port server is a GPRS-DTU. 3.如权利要求1所述的智能光伏电站分布式云监测系统,其特征在于,所述数据传输模块还包括通信基站及与所述通信基站、无线串口服务器连接的RS485总线。3. The distributed cloud monitoring system for smart photovoltaic power plants according to claim 1, wherein the data transmission module further includes a communication base station and an RS485 bus connected to the communication base station and the wireless serial port server. 4.如权利要求1所述的智能光伏电站分布式云监测系统,其特征在于,所述数据采集及监测模块包括电源电路、光强及温度测量电路、差放和模数转换电路、微处理器,其中:4. The distributed cloud monitoring system for smart photovoltaic power plants according to claim 1, wherein the data acquisition and monitoring module includes a power supply circuit, a light intensity and temperature measurement circuit, a differential amplifier and an analog-to-digital conversion circuit, a microprocessing device, of which: 电源电路:为所述光强及温度测量电路、A/D转换电路提供电源;Power supply circuit: provide power supply for the light intensity and temperature measurement circuit and A/D conversion circuit; 光强及温度测量电路:监测太阳的辐照及温度数据,同时采集光伏组件运行时的电压及电流数据并传输至所述差放和模数转换电路;Light intensity and temperature measurement circuit: monitor the solar radiation and temperature data, and simultaneously collect the voltage and current data of the photovoltaic module during operation and transmit them to the differential amplifier and analog-to-digital conversion circuit; 差放和模数转换电路:对所述光伏组件的电压及电流数据进行放大及监测并传输至所述微处理器;Differential amplifier and analog-to-digital conversion circuit: amplify and monitor the voltage and current data of the photovoltaic module and transmit it to the microprocessor; 微处理器:接收电压及电流数据并传输至所述云平台模块。Microprocessor: receiving voltage and current data and transmitting to the cloud platform module. 5.如权利要求4所述的智能光伏电站分布式云监测系统,其特征在于,所述电源电路包括将第一级降压电路、第二级降压电路及第三级降压电路;所述第一级降压电路将电压处理以输出第一电压值至所述第二级降压电路及所述第三级降压电路,所述第二级降压电路输出第二电压值至所述单片机,所述第三级降压电路输出第三电压值至所述差放和模数转换电路。5. The distributed cloud monitoring system for intelligent photovoltaic power plants as claimed in claim 4, wherein the power supply circuit includes a first-stage step-down circuit, a second-stage step-down circuit and a third-stage step-down circuit; The first-stage step-down circuit processes the voltage to output a first voltage value to the second-stage step-down circuit and the third-stage step-down circuit, and the second-stage step-down circuit outputs a second voltage value to the In the single chip microcomputer, the third step-down circuit outputs a third voltage value to the differential amplifier and analog-to-digital conversion circuit. 6.如权利要求5所述的智能光伏电站分布式云监测系统,其特征在于,所述第一级降压电路采用LM2596芯片,所述第二级降压电路及所述第三级降压电路采用SPX3819芯片。6. The distributed cloud monitoring system for smart photovoltaic power plants as claimed in claim 5, wherein the first-stage step-down circuit uses an LM2596 chip, and the second-stage step-down circuit and the third-stage step-down circuit The circuit adopts SPX3819 chip. 7.如权利要求5所述的智能光伏电站分布式云监测系统,其特征在于,所述第一电压值为5.5V,所述第二电压值为3.3V,所述第三电压值为5V。7. The distributed cloud monitoring system for smart photovoltaic power plants according to claim 5, wherein the first voltage value is 5.5V, the second voltage value is 3.3V, and the third voltage value is 5V . 8.如权利要求4所述的智能光伏电站分布式云监测系统,其特征在于,所述光强及温度测量电路包括用于测量光照强度的BH1750FVI芯片、用于测量温度的温度传感器DS18B20。8. The distributed cloud monitoring system for smart photovoltaic power plants according to claim 4, wherein the light intensity and temperature measurement circuit includes a BH1750FVI chip for measuring light intensity and a temperature sensor DS18B20 for measuring temperature. 9.如权利要求4所述的智能光伏电站分布式云监测系统,其特征在于,所述差放及模数转换电路包括使用AD620芯片将小信号电压放大的差放放大电路、使用MCP3421芯片进行输出信号的A/D转换的模数转换电路。9. The distributed cloud monitoring system for intelligent photovoltaic power plants as claimed in claim 4, wherein the differential amplifier and analog-to-digital conversion circuit includes a differential amplifier amplifier circuit that uses the AD620 chip to amplify the small signal voltage, and uses an MCP3421 chip to perform An analog-to-digital conversion circuit for A/D conversion of the output signal. 10.如权利要求4所述的智能光伏电站分布式云监测系统,其特征在于,所述微处理器为ATmega128A单片机。10. The distributed cloud monitoring system for smart photovoltaic power plants according to claim 4, wherein the microprocessor is an ATmega128A single-chip microcomputer.
CN201810478061.7A 2018-05-18 2018-05-18 Intelligent photovoltaic power station distribution cloud monitors system Pending CN108663088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810478061.7A CN108663088A (en) 2018-05-18 2018-05-18 Intelligent photovoltaic power station distribution cloud monitors system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810478061.7A CN108663088A (en) 2018-05-18 2018-05-18 Intelligent photovoltaic power station distribution cloud monitors system

Publications (1)

Publication Number Publication Date
CN108663088A true CN108663088A (en) 2018-10-16

Family

ID=63776303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810478061.7A Pending CN108663088A (en) 2018-05-18 2018-05-18 Intelligent photovoltaic power station distribution cloud monitors system

Country Status (1)

Country Link
CN (1) CN108663088A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557862A (en) * 2018-12-28 2019-04-02 苏州易助能源管理有限公司 A kind of photovoltaic plant power monitor device and method based on edge calculations
CN109946354A (en) * 2019-04-03 2019-06-28 苏州市计量测试院 Air formaldehyde distributed cloud monitoring system and method
CN111176242A (en) * 2020-01-20 2020-05-19 浙江中控技术股份有限公司 Monitoring data transmission method and device of distributed control system
CN111487395A (en) * 2020-04-28 2020-08-04 上海伍羿工业科技有限公司 Online oil pollution monitoring system and method
CN112020126A (en) * 2020-08-20 2020-12-01 广东源泉科技有限公司 Data acquisition device and control method thereof
CN113517857A (en) * 2021-04-29 2021-10-19 中国电建集团贵州工程有限公司 Photovoltaic solar power station operation and maintenance monitoring system based on Internet of things control technology
US20230081392A1 (en) * 2021-09-14 2023-03-16 State Grid Jiangsu Electric Power Co., Ltd. Nanjing Power Supply Company Intelligent power distribution device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064329A (en) * 2013-01-08 2013-04-24 上海电力学院 Photovoltaic device data collection system and implementation method based on singlechip
CN204230267U (en) * 2014-11-28 2015-03-25 浙江昱辉阳光能源江苏有限公司 A kind of photovoltaic module with power optimization function
CN104779904A (en) * 2015-04-20 2015-07-15 杭州电子科技大学 Solar photovoltaic monitoring system based on Internet of Things
CN205081757U (en) * 2015-11-11 2016-03-09 孚尧能源科技(上海)有限公司 Photovoltaic power station remote monitoring system
JP2017108586A (en) * 2015-12-11 2017-06-15 株式会社戸上電機製作所 Solar cell module characteristics test apparatus
CN107677200A (en) * 2017-11-16 2018-02-09 苏州大学 High-precision strain measurement system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064329A (en) * 2013-01-08 2013-04-24 上海电力学院 Photovoltaic device data collection system and implementation method based on singlechip
CN204230267U (en) * 2014-11-28 2015-03-25 浙江昱辉阳光能源江苏有限公司 A kind of photovoltaic module with power optimization function
CN104779904A (en) * 2015-04-20 2015-07-15 杭州电子科技大学 Solar photovoltaic monitoring system based on Internet of Things
CN205081757U (en) * 2015-11-11 2016-03-09 孚尧能源科技(上海)有限公司 Photovoltaic power station remote monitoring system
JP2017108586A (en) * 2015-12-11 2017-06-15 株式会社戸上電機製作所 Solar cell module characteristics test apparatus
CN107677200A (en) * 2017-11-16 2018-02-09 苏州大学 High-precision strain measurement system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557862A (en) * 2018-12-28 2019-04-02 苏州易助能源管理有限公司 A kind of photovoltaic plant power monitor device and method based on edge calculations
CN109946354A (en) * 2019-04-03 2019-06-28 苏州市计量测试院 Air formaldehyde distributed cloud monitoring system and method
CN109946354B (en) * 2019-04-03 2024-03-15 苏州市计量测试院 Air formaldehyde distributed cloud monitoring system and method
CN111176242A (en) * 2020-01-20 2020-05-19 浙江中控技术股份有限公司 Monitoring data transmission method and device of distributed control system
CN111176242B (en) * 2020-01-20 2021-07-23 浙江中控技术股份有限公司 Monitoring data transmission method and device of distributed control system
CN111487395A (en) * 2020-04-28 2020-08-04 上海伍羿工业科技有限公司 Online oil pollution monitoring system and method
CN112020126A (en) * 2020-08-20 2020-12-01 广东源泉科技有限公司 Data acquisition device and control method thereof
CN113517857A (en) * 2021-04-29 2021-10-19 中国电建集团贵州工程有限公司 Photovoltaic solar power station operation and maintenance monitoring system based on Internet of things control technology
US20230081392A1 (en) * 2021-09-14 2023-03-16 State Grid Jiangsu Electric Power Co., Ltd. Nanjing Power Supply Company Intelligent power distribution device

Similar Documents

Publication Publication Date Title
CN108663088A (en) Intelligent photovoltaic power station distribution cloud monitors system
CN212181635U (en) Cigar tobacco fermentation humiture monitoring system based on LORA communication technology
CN203038449U (en) Energy consumption data collector
CN204143628U (en) Wireless collector for collecting energy of electric energy meter
CN104932367A (en) Greenhouse multi-point and multi-parameter detector based on Android intelligent device and detection method
CN104656730B (en) Dual path isolation constant-current type numerical-control direct-current power source
CN206807400U (en) A kind of monitoring device of distributed photovoltaic point
CN201813072U (en) Wireless sensor network measure and control device for prefabricated substations
CN203534633U (en) Farmland canopy humiture information automatic acquisition system
CN208422100U (en) An electric energy meter collector with remote fault monitoring function
CN209104280U (en) Distributed Test System for Solid Oxide Fuel Cells
CN206945867U (en) A kind of line loss real time monitoring apparatus
CN202904042U (en) Solar cell matrix environmental data acquisition unit
CN202041298U (en) Wireless Temperature Measuring System for Alcoholization of Tobacco Leaves
CN208333544U (en) Intelligent photovoltaic power station distribution cloud monitors system
CN213637736U (en) Remote online broadband carrier communication detection device and power line carrier operation and maintenance system
CN103528751A (en) Pressure sensor based on wireless HART (Highway Addressable Remote Transducer) communication technology
CN104198971A (en) Concentrator for automated test of assembly line field calibration
CN211786028U (en) Charging station electric leakage monitoring system
CN204269157U (en) A kind of multiparameter hydrographic information detection system based on wireless self-networking
CN107786165A (en) A kind of photovoltaic battery array performance monitoring system based on ZigBee
CN107884653A (en) The power utility check equipment of extensible modules
CN106647493A (en) Internet-of-Things technology-based intelligent monitoring system for mountain forest culturing farm environment
CN207717877U (en) A kind of power utility check equipment of extensible modules
CN204706176U (en) Multi-functional data collector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181016