CN108658090B - 粉煤灰酸法提铝残渣制备13x型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法 - Google Patents
粉煤灰酸法提铝残渣制备13x型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法 Download PDFInfo
- Publication number
- CN108658090B CN108658090B CN201710196375.3A CN201710196375A CN108658090B CN 108658090 B CN108658090 B CN 108658090B CN 201710196375 A CN201710196375 A CN 201710196375A CN 108658090 B CN108658090 B CN 108658090B
- Authority
- CN
- China
- Prior art keywords
- fly ash
- filtrate
- molecular sieve
- residue
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 194
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 191
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 178
- 239000010881 fly ash Substances 0.000 title claims abstract description 175
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 154
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 154
- 238000000605 extraction Methods 0.000 title claims abstract description 124
- 229910052680 mordenite Inorganic materials 0.000 title claims abstract description 73
- 239000002253 acid Substances 0.000 title claims abstract description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 77
- 239000000377 silicon dioxide Substances 0.000 title claims description 39
- 239000000706 filtrate Substances 0.000 claims abstract description 152
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 137
- 229910001868 water Inorganic materials 0.000 claims abstract description 117
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 112
- 239000002893 slag Substances 0.000 claims abstract description 110
- 239000010703 silicon Substances 0.000 claims abstract description 101
- QPILZZVXGUNELN-UHFFFAOYSA-N sodium;4-amino-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound [Na+].OS(=O)(=O)C1=CC(O)=C2C(N)=CC(S(O)(=O)=O)=CC2=C1 QPILZZVXGUNELN-UHFFFAOYSA-N 0.000 claims abstract description 70
- 238000005216 hydrothermal crystallization Methods 0.000 claims abstract description 65
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims abstract description 60
- 238000001914 filtration Methods 0.000 claims abstract description 53
- 239000011775 sodium fluoride Substances 0.000 claims abstract description 30
- 235000013024 sodium fluoride Nutrition 0.000 claims abstract description 30
- 238000007654 immersion Methods 0.000 claims abstract description 11
- 239000000047 product Substances 0.000 claims description 118
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 95
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 62
- 239000007787 solid Substances 0.000 claims description 57
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 56
- 238000002386 leaching Methods 0.000 claims description 47
- 238000005406 washing Methods 0.000 claims description 44
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 35
- 238000001035 drying Methods 0.000 claims description 33
- 229910052681 coesite Inorganic materials 0.000 claims description 32
- 229910052906 cristobalite Inorganic materials 0.000 claims description 32
- 229910052682 stishovite Inorganic materials 0.000 claims description 32
- 229910052905 tridymite Inorganic materials 0.000 claims description 32
- 238000002156 mixing Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 23
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 238000003786 synthesis reaction Methods 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 239000013078 crystal Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 238000007865 diluting Methods 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 10
- 230000007062 hydrolysis Effects 0.000 claims description 10
- 238000006460 hydrolysis reaction Methods 0.000 claims description 10
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 238000005194 fractionation Methods 0.000 claims 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims 1
- 238000001354 calcination Methods 0.000 claims 1
- 238000004321 preservation Methods 0.000 abstract description 9
- 230000029087 digestion Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 54
- 239000000203 mixture Substances 0.000 description 50
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 41
- 239000011734 sodium Substances 0.000 description 41
- 238000002441 X-ray diffraction Methods 0.000 description 39
- 229910052593 corundum Inorganic materials 0.000 description 39
- 229910001845 yogo sapphire Inorganic materials 0.000 description 39
- 239000007788 liquid Substances 0.000 description 38
- 229910001483 soda nepheline Inorganic materials 0.000 description 35
- 238000004064 recycling Methods 0.000 description 27
- 239000000126 substance Substances 0.000 description 26
- 239000000413 hydrolysate Substances 0.000 description 25
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 24
- 229910020489 SiO3 Inorganic materials 0.000 description 24
- 230000002194 synthesizing effect Effects 0.000 description 21
- 239000008367 deionised water Substances 0.000 description 18
- 229910021641 deionized water Inorganic materials 0.000 description 18
- 239000000843 powder Substances 0.000 description 18
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 17
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 17
- 229910052911 sodium silicate Inorganic materials 0.000 description 16
- 238000003756 stirring Methods 0.000 description 16
- 239000012452 mother liquor Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000000227 grinding Methods 0.000 description 11
- 238000007885 magnetic separation Methods 0.000 description 11
- 238000000967 suction filtration Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 238000009775 high-speed stirring Methods 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000003763 carbonization Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 6
- 239000004115 Sodium Silicate Substances 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000003245 coal Substances 0.000 description 5
- 229910052863 mullite Inorganic materials 0.000 description 5
- 239000010457 zeolite Substances 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 238000001027 hydrothermal synthesis Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000010117 shenhua Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 230000020477 pH reduction Effects 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 235000019795 sodium metasilicate Nutrition 0.000 description 3
- 239000012265 solid product Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- OPIFSICVWOWJMJ-HAAGFXOZSA-N 5-bromo-4-chloro-3-indolyl alpha-D-mannoside Chemical compound O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-HAAGFXOZSA-N 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 241000668854 Howardia biclavis Species 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 159000000013 aluminium salts Chemical class 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- OSMSIOKMMFKNIL-UHFFFAOYSA-N calcium;silicon Chemical compound [Ca]=[Si] OSMSIOKMMFKNIL-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- -1 firstly Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001389 inorganic alkali salt Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- PHIQPXBZDGYJOG-UHFFFAOYSA-N sodium silicate nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-][Si]([O-])=O PHIQPXBZDGYJOG-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/20—Faujasite type, e.g. type X or Y
- C01B39/22—Type X
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/26—Mordenite type
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/20—Preparation of aluminium oxide or hydroxide from aluminous ores using acids or salts
- C01F7/22—Preparation of aluminium oxide or hydroxide from aluminous ores using acids or salts with halides or halogen acids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明涉及粉煤灰酸法提铝残渣和粉煤灰的利用领域,公开了一种粉煤灰酸法提铝残渣制备13X型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法。该方法包括:(1)将粉煤灰酸法提铝残渣进行碱法焙烧,得到焙烧渣料;所述焙烧渣料依次进行高温水浸和保温过滤,得到第一滤液;(2)将所述第一滤液进行13X型分子筛水热晶化,得到13X型分子筛和分子筛滤液;(3)将所述分子筛滤液与氟化钠进行高硅丝光沸石水热晶化,得到高硅丝光沸石和第二滤液。实现消纳粉煤灰酸法提铝残渣,提高粉煤灰酸法提铝残渣的利用率,以及粉煤灰的利用。
Description
技术领域
本发明涉及粉煤灰酸法提铝渣和粉煤灰的利用领域,具体地,涉及一种粉煤灰酸法提铝残渣制备13X型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法。
背景技术
高铝粉煤灰是我国所特有的一种新型铝资源,其远景资源量约100亿吨氧化铝。而我国现已查明的铝土矿资源储量仅有32亿吨,按目前的开采规模估算,资源保障年限仅约20年,铝资源当前的对外依存度高达55%。因此,高铝粉煤灰的开发利用对于缓解我国铝土矿资源短缺、保障我国铝产业安全和增强铝产业可持续发展能力具有现实意义。
现已开发的粉煤灰提铝工艺大致可分为酸法、碱法和酸碱联合法三个大类,均可生产出合格的氧化铝产品,但都不同程度面临着提铝残渣排放量大、不能有效消纳的问题。以神华集团“联合除杂一步酸溶法”提取氧化铝工艺为例,每生产100吨Al2O3将排放约130吨的提铝残渣。碱法提铝工艺的残渣排放比率则更高。而根据工信部2013年颁布的《铝行业准入条件》相关规定,新建利用高铝粉煤灰生产氧化铝系统的固体废弃物综合利用率须达到96%以上。因而,亟待开发粉煤灰提铝残渣的高值、高效消纳技术。
粉煤灰提铝残渣的一个显著特征是富硅(钙)贫铝。目前粉煤灰提铝残渣的利用主要集中在硅系产品(水玻璃、白炭黑、硅微粉等)制备、基础建材(水泥、瓷砖、蒸压砖等)制造,以及用于生产保温、耐火材料等领域。以上应用方向都不同程度存在产品经济附加值、市场容量以及残渣利用率的矛盾,导致目前粉煤灰提铝残渣整体利用率偏低,进而直接限制了高铝粉煤灰提铝技术的应用和推广。
分子筛是一类具备均匀微孔结构的材料。由于具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,分子筛在催化、吸附分离、离子交换等诸多应用场合获得了重要而广泛的应用。
13X型是一种常用的分子筛,孔径1.0nm,可吸附0.364nm~1.0nm的任何分子,可用于催化剂协载体、水和二氧化碳共吸附、水和硫化氢气体共吸附,主要应用于医药和空气压缩系统的干燥,市场价格在1万元/吨以上。ZSM-5分子筛是一类具有特殊交叉孔道结构的高硅型分子筛,孔道直径约0.5nm,具有良好的热稳定性、水热稳定性和择形催化效能,目前已广泛应用于石油化工等领域。
丝光沸石(Mordenite)是另一种常用硅铝酸盐质分子筛,其具有大量的五元环结构并成对相互并联,主孔道为直筒形的十二元环,孔口截面呈椭圆形,尺寸为0.65nm×0.68nm。常规丝光沸石硅铝比=9~11,化学式为Na[Al8Si40O96]·24H2O。具有更高硅铝比(如17以上)的丝光沸石称为高硅丝光沸石,其用于烷基化、烷烃异构化、加氢裂化、改质、脱蜡及二甲胺的合成反应等石油化工领域时,催化活性、选择性和热稳定性均较常规MOR型分子筛显著提高,应用前景广泛。
工业上合成沸石分子筛通常采用水玻璃、铝酸钠或氢氧化铝等化工原料,成本也相对较高。很多学者开展了以同类型原材料(包括粉煤灰、煤矸石、高岭土等)水热合成分子筛的研究。
CN101734683A公开了一种由高铝粉煤灰脱硅液作为硅源制备13X分子筛的方法:向脱硅液中配入硫酸铝或氯化铝等铝源,在SiO2/Al2O3=3~5,Na2O/SiO2=1.0~1.5,H2O/Na2O=35~60的体系下经老化、晶化合成了高结晶度的13X分子筛。该方法需要额外加入铝源,并不是完全的高效消纳粉煤灰。
《利用粉煤灰合成13X沸石分子筛的实验研究》(章西焕等,中国非金属矿工业导刊,2003年第2期,13X.23-35)采用粉煤灰为原料,经加碱焙烧后配入一定比例的硅酸钠调节硅铝比、加入预制的非晶态13X晶种、再加入一定量氢氧化钠和水进行水热晶化合成出了包含部分非晶质的13X分子筛。该方法利用粉煤灰为原料,并不是完全的高效消纳粉煤灰,
《由粉煤灰提钙铁后的尾渣制备13X型沸石分子筛的研究》(王明华等,材料与冶金学报,第14卷第1期,2015年3月,13X.58-61)利用粉煤灰酸法除去铁钙的酸渣为原料,首先加碱焙烧、水浸溶出,再向料浆中加入导向剂和模板剂(CTAB),100℃水热晶化20h合成了13X分子筛,其中存在明显的非晶质硅铝。该方法利用粉煤灰酸法除去铁钙的酸渣为原料,只能生产13X型分子筛,且会产生废料,不能完全利用粉煤灰酸法除去铁钙的酸渣中的硅和铝。
CN1230518A公开了一种合成高硅丝光沸石的方法,其SiO2/Al2O3分子比为15-30,以水玻璃、无机酸、无机碱和铝盐或铝酸盐为原料,反应混合物中的分子比为Na2O/Al2O3=1-10;SiO2/Al2O3=10-30;H2O/Al2O3=200-1000,晶化温度为120-240℃,完成晶化所需的时间为6-360h,晶化所得混合物经过滤、水洗、干燥制成高硅丝光沸石,其特征在于在晶化过程中以阴离子表面活性为附加试剂,阴离子表面活性剂的加入量为最终丝光沸石产物重量的0.1-10%。
CN101804995A公开了利用矿物原料制备高硅丝光沸石的方法,其特征在于它包括以下步骤:1)按照硅源中的SiO2:铝源中的Al2O3:无机碱:氟化物:模板剂:H2O的摩尔比=(20~50):1:(2~5):(5~10):(1.5~6):(300~600),选取铝源、硅源、无机碱、氟化物、模板剂和水;所述铝源为煤矸石或高岭土;所述硅源为高岭土、煤矸石、九水偏硅酸钠、活化二氧化硅粉、硅溶胶的任意一种或任意二种以上的混合物,任意二种以上混合时为任意配比;2)将硅源、铝源、无机碱、氟化物、模板剂和水混合、打浆,在室温至80℃下搅拌混合成胶,得到初始凝胶混合物;初始凝胶混合物调节pH值为11-13,在反应釜中水热晶化合成反应,水热晶化合成反应的条件是在160~180℃下晶化48~70小时,得到晶化产物;晶化产物经过滤、洗涤至pH为7-8、干燥、500℃焙烧5-10h,脱模后,得到高硅丝光沸石(硅铝比=12~20)。
现有技术的方法将造成粉煤灰酸法提铝残渣中的铝或硅的一方过剩,需要通过外加硅源或铝源予以调配,但此方式不利于粉煤灰酸法提铝残渣的高效消纳。
因此,已有通过利用粉煤灰酸法提铝残渣制备分子筛以实现粉煤灰酸法提铝残渣消纳的技术不能满足要求对粉煤灰酸法提铝残渣中硅铝的充分利用,需要更有效的利用粉煤灰酸法提铝残渣制备分子筛且实现粉煤灰酸法提铝残渣高效消纳的方法。
发明内容
本发明的目的是为了解决如何通过制备分子筛提高粉煤灰酸化提铝残渣的消纳效率,联产高硅型和低硅型分子筛,以及如何利用粉煤灰的问题,提供了一种粉煤灰酸法提铝残渣制备13X型分子筛和高硅丝光沸石的方法以及粉煤灰的利用方法。
本发明的发明人在研究中发现,粉煤灰酸法提铝残渣的物质组成与粉煤灰相比有其特殊性:硅含量较普通粉煤灰更加富集,铝含量显著降低,Fe、Mg等酸溶性元素在酸法提铝过程中被大量去除,其中SiO2与Al2O3摩尔比(可以表示为硅铝比,或SiO2/Al2O3)约为10:1。粉煤灰酸法提铝残渣中硅铝摩尔比与高硅型分子筛、低硅型分子筛均不能完全匹配,如果粉煤灰酸法提铝残渣直接用于合成低硅分子筛(如13X型分子筛,硅铝比约为2~3)时,Si显著过量,需外加铝源;而用于合成高硅型分子筛(如硅铝比>18的高硅丝光沸石)时,Al元素过量,又需外加硅源。显然引入外部铝源或硅源,需要额外消耗其他资源,并不能有效提高粉煤灰酸化提铝残渣的利用率。另一方面,粉煤灰酸化提铝残渣中,莫来石、石英、锐钛矿等低活性组分较原粉煤灰进一步富集,制约粉煤灰酸化提铝残渣的利用率提高。因此如何合理且更好地利用粉煤灰酸化提铝残渣中的硅、铝资源,无需外加硅或铝,需要综合考虑上述因素。就此发明人提出本发明以提高粉煤灰酸化提铝残渣的消纳效率,实现粉煤灰酸化提铝残渣的高效消纳,并且实现联产13X型分子筛和高硅丝光沸石。
为了实现上述目的,本发明提供一种粉煤灰酸法提铝残渣制备13X型分子筛和高硅丝光沸石的方法,包括:
(1)将粉煤灰酸法提铝残渣进行碱法焙烧,得到焙烧渣料;所述焙烧渣料依次进行高温水浸和保温过滤,得到第一滤液;
(2)将所述第一滤液进行13X型分子筛水热晶化,得到13X型分子筛和分子筛滤液;
(3)将所述分子筛滤液和氟化钠进行高硅丝光沸石水热晶化,得到高硅丝光沸石和第二滤液。
本发明还提供了一种粉煤灰的利用方法,该方法包括:将粉煤灰进行酸法提铝得到粉煤灰酸法提铝残渣和氧化铝;将粉煤灰酸法提铝残渣通过本发明的方法制备得到13X型分子筛和高硅丝光沸石。
通过上述技术方案,本发明的方法能够实现对粉煤灰酸法提铝残渣中的硅、铝资源的更好利用,实现对粉煤灰酸法提铝残渣的有效消纳,产生可观的环境效益;同时实现粉煤灰酸法提铝残渣的高值、高效资源化利用。
本发明提供的对粉煤灰酸法提铝残渣的利用方法,不需要分离提取部分硅即可利用其中的硅和铝生产分子筛产品,可以省略提取分离的操作。另外,本发明提供的方法可以无需额外引入外部的铝源,即可利用粉煤灰酸法提铝残渣的充分且高效消纳。
本发明的方法为实现粉煤灰酸法提铝残渣的更好利用,特别限定先采用低硅铝比分子筛的合成,既可以获得13X型分子筛,又可以调整经合成13X型分子筛产生的滤液中的硅、铝比,从而适合再进行合成高硅铝比的高硅丝光沸石,使粉煤灰酸法提铝残渣中的硅、铝资源得到充分利用。本发明巧妙地利用将粉煤灰酸法提铝残渣进行多次分子筛的合成,并限定先合成低硅铝比分子筛,再合成高硅铝比分子筛,实现了高效消纳粉煤灰酸法提铝残渣且又生产高附加值产品的目的。
本发明提供的方法还可以将粉煤灰进行利用生产氧化铝、13X型分子筛和高硅丝光沸石,使粉煤灰得到充分利用,不再有废渣排放。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明提供的方法的流程图;
图2为本发明制备的13X型分子筛的XRD谱图;
图3为本发明制备的高硅丝光沸石的XRD谱图。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明的第一目的,提供一种粉煤灰酸法提铝残渣制备13X型分子筛和高硅丝光沸石的方法,如图1所示,包括:
(1)将粉煤灰酸法提铝残渣进行碱法焙烧,得到焙烧渣料;所述焙烧渣料依次进行高温水浸和保温过滤,得到第一滤液;
(2)将所述第一滤液进行13X型分子筛水热晶化,得到13X型分子筛和分子筛滤液;
(3)将所述分子筛滤液和氟化钠进行高硅丝光沸石水热晶化,得到高硅丝光沸石和第二滤液。
本发明中,粉煤灰酸法提铝残渣主要含有:SiO2、Al2O3和TiO2,SiO2的含量约为70~80重量%,Al2O3的含量约为10~15重量%和TiO2的含量约为3~8重量%。例如神华内蒙古准格尔粉煤灰酸法提铝残渣,其中,SiO2的含量约为78.7重量%,Al2O3的含量约为13.4重量%和TiO2的含量约为5.2重量%。而且,进一步地将粉煤灰酸法提铝残渣进行XRD分析显示,Al2O3基本以莫来石(3Al2O3·SiO2)的形式存在,TiO2载体为锐钛矿和金红石;约有85%的Si以非晶态形式存在,剩余Si赋存于莫来石和石英中。莫来石、石英、锐钛矿等低活性组分较原粉煤灰进一步富集,硅、铝元素的活性差,不利于粉煤灰酸化提铝残渣的利用生产分子筛。
根据本发明,步骤(1)用于将所述粉煤灰酸法提铝残渣进行处理,既使所述粉煤灰酸法提铝残渣中的硅、铝元素可以活化,能够更有效地参与分子筛的合成利用,又可以合理调整使得到的所述第一滤液中硅、铝元素的含量满足合成低硅铝比分子筛的反应原料要求。步骤(1)中,所述碱法焙烧目的在于将莫来石、石英等具有稳定晶体结构的矿物组分在较低的焙烧温度下充分分解,使其中Si、Al元素得到充分活化。通过向粉煤灰酸化提铝残渣中加入碱性物质一起进行焙烧,可以实现Si、Al元素的活化。优选情况下,在步骤(1)中,所述碱法焙烧的过程包括:将100重量份的所述粉煤灰酸法提铝残渣与100~130重量份的含碳酸钠物料进行混合研磨,得到的研磨产物在830℃~890℃下焙烧60min~120min后再粉碎至200目以下,得到所述焙烧渣料。
本发明中,在步骤(1)中,完成所述焙烧后,可以以空气进行快速冷却焙烧的产物,冷却得到所述焙烧渣料。
本发明中,所述含碳酸钠物料可以是直接使用碳酸钠固体粉末,也可以如图1所示是将步骤(3)得到的所述第二滤液的部分回用。所述第二滤液中主要成分为碳酸钠,将部分所述第二滤液经蒸发结晶后得到的碳酸钠固体可以进行利用。所述粉煤灰酸法提铝残渣也可以混有从所述保温过滤得到而回用的第一滤渣。
根据本发明,步骤(1)中,所述高温水浸可以进一步浸取所述焙烧渣料中的硅、铝元素,具体可以以水溶出所述焙烧渣料中的Na2SiO3和NaAlSiO4。优选情况下,在步骤(1)中,所述高温水浸的过程包括:将所述焙烧渣料除去铁后与水混合进行水浸,得到水浸产物;水浸温度为95℃~105℃,水浸时间为15min~20min;相对于100g的所述焙烧渣料,水的用量为150~200ml。其中将所述焙烧渣料除去铁可以通过采用干法磁选的方式实现。所述高温水浸过程可以在常压或自生压力下进行。所述水浸产物为固液混合物,固体为所述焙烧渣料被水浸溶出Na2SiO3和NaAlSiO4后的剩余产物,该产物的矿物相组成为非晶态硅铝酸盐和少量结晶态NaAlSiO4;液体为含有Na2SiO3和NaAlSiO4的溶液。
根据本发明,步骤(1)中进一步通过所述保温过滤将所述水浸产物进行固液分离,并得到所述第一滤液。优选情况下,在步骤(1)中,所述保温过滤的过程包括:将所述水浸产物以部分的所述第二滤液进行稀释、过滤和冲洗,得到的浆液进行过滤得到第一滤渣和所述第一滤液;过滤温度保持在60℃~80℃。
根据本发明,优选情况下,相对于100g的所述焙烧渣料,所述第二滤液的用量为250~350ml;
本发明的一种优选的实施方式中,所述碱法焙烧、高温水浸及保温稀释过滤的三个过程中,涉及的条件参数同时位于上述所限定的范围之内时,可以获得的所述第一滤渣具有最小的产率(即第一滤渣干燥基质量与所用粉煤灰酸法提铝残渣干燥基质量之比)。如此可以在不引入外部硅铝源时,粉煤灰酸法提铝残渣将具有最高的一次消纳效率μ。粉煤灰酸法提铝残渣的一次消纳效率μ可以通过下式计算:
μ=[(M-M1)/(M+Mout)]×100%;
其中,μ为粉煤灰酸法提铝残渣的一次消纳效率;
M为步骤(1)中用于碱法焙烧的粉煤灰酸法提铝残渣的干燥基质量;
M1为步骤(1)中所得第一滤渣的干燥基质量;
Mout为全部反应体系中引入的外部硅铝源的干燥基质量。
本发明中无外部硅铝源的引入,故而Mout=0。
所述一次消纳效率μ与第一滤渣M1质量和外部硅铝源Mout质量均成反比例关系,与粉煤灰酸法提铝残渣最终消纳效率成正比例关系。
本发明中,经过上述的碱法焙烧、高温水浸和保温过滤,可以使粉煤灰酸法提铝残渣中的硅、铝元素转为活性组分,以Na2SiO3和NaAlSiO4的形式提取出,并调整硅与铝的比例,以适应后续分子筛合成的需要。优选地,所述第一滤液中SiO2与Al2O3的摩尔比为(10~25):1。优选所述第一滤液中SiO2与Al2O3的摩尔比为(12~20):1;更优选为(12~15):1。
本发明中,可以控制所述第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=(10~25):1:(13~20):(3.5~11):(340~430)。
现有常规技术在合成低硅类分子筛13X型分子筛时,通常将水热晶化母液中的硅铝比调配限定在(3~5):1左右;而在合成高硅类分子筛高硅丝光沸石时,通常将水热晶化母液中的硅铝比调配限定在20:1以上。在上述母液的硅铝比条件下更易于合成纯净的13X型分子筛或高硅丝光沸石。
但是本发明提供的方法用于提高粉煤灰酸法提铝残渣的消纳效率。针对粉煤灰酸法提铝残渣的物料性质,如按照常规技术生产13X型分子筛或高硅丝光沸石则需要分别加入外部铝源以调低硅铝比至(3~5):1,或加入外部硅源以调高硅铝比至20:1以上。而外部硅、铝源(即Mout)的引入将直接导致粉煤灰酸法提铝残渣一次消纳效率μ的降低进而影响粉煤灰酸法提铝残渣整体的消纳效率,即制备单位质量产品所消纳的粉煤灰酸法提铝残渣质量将降低。
本发明得到的所述第二滤液中,碳酸钠的浓度可以为15~25重量%。将所述第二滤液用于稀释和过滤冲洗所述水浸产物,可以降低过滤体系浓度同时抑制所述水浸产物中偏硅酸钠的水解,可以提高过滤效率、减少过滤损失、降低第一滤渣产率,有助于提高粉煤灰酸法提铝残渣的一次消纳效率。与此同时,实现了碳酸钠在系统中的循环利用。所述过滤可以采用抽滤或压滤方式。
根据本发明,优选情况下,该方法进一步包括:将所述第一滤渣经过干燥后回用步骤(1)加入所述碱法焙烧中的所述粉煤灰酸法提铝残渣中。
根据本发明,步骤(2)利用步骤(1)得到的所述第一滤液合成13X型分子筛。并且合成的条件使合成后得到的所述分子筛滤液中,硅、铝元素的组成适合进一步地合成高硅丝光沸石。优选情况下,在步骤(2)中,所述13X型分子筛水热晶化的过程包括:a)将所述滤液加水进行水解,得到水解产物;水的加入量满足相对于100g的所述焙烧渣料,所述水解产物的总体积为850~1000ml;b)向所述水解产物中通入CO2进行碳分,使所述水解产物的pH为13~15;c)向步骤b)得到的产物中加入或不加入13X型分子筛晶种,然后在90℃~110℃下进行水热晶化15~30h,得到13X型分子筛水热晶化产物;所述13X型分子筛晶种的用量为所述焙烧渣料的0~10重量%;d)将所述13X型分子筛水热晶化产物进行过滤,得到第二滤渣和所述分子筛滤液;所述第二滤渣进行干燥得到所述13X型分子筛。上述合成过程中,所述13X型分子筛晶种为已知物质,可以由实验室依照常规方法合成,合成的方法为已知不再赘述,其SiO2与Al2O3的摩尔比为(2~3):1。可以通过XRD(X射线衍射)方法测定最终得到的固体产物的XRD谱图,如图2所示,并与标准谱图对比,确定得到13X型分子筛。
根据本发明,通过步骤(2)中对13X型分子筛水热晶化条件的限定,可以获得纯净的13X型分子筛和化学组成适合于步骤(3)中高硅丝光沸石水热晶化的分子筛滤液。步骤(2)产生的所述分子筛滤液中,硅、铝的含量较所述第一滤液中的发生显著变化,优选所述分子筛滤液中SiO2与Al2O3的摩尔比为(35~45):1,更优选为(40~45):1。述分子筛滤液中的化学组成(摩尔比)可以为SiO2:Al2O3:Na2O:CO3 2-:H2O=(35~45):1:(65~90):(60~85):(1900~2300)。
根据本发明,优选情况下,在步骤(3)中,所述高硅丝光沸石水热晶化的过程包括:i)向所述分子筛滤液中加入氟化钠固体,得到合成液;ii)向所述合成液中通入CO2进行碳分,使所述合成液的pH为11.0~11.4;iii)将步骤ii)得到的产物在140℃~190℃下进行水热晶化15~48h,得到高硅丝光沸石水热晶化产物;iv)将所述高硅丝光沸石水热晶化产物进行过滤,得到第三滤渣和所述第二滤液;所述第三滤渣进行洗涤、烘干和焙烧得到所述高硅丝光沸石。可以通过XRD(X射线衍射)方法确定最终得到的固体为高硅丝光沸石,如图3所示。
根据本发明,优选情况下,所述氟化钠加入量为所述合成液中SiO2的10~20mol%。所述氟化钠固体为优级纯,纯度≥99重量%,可商购自上海沪试公司的优级纯(≥99%)NaF。
根据本发明,所述第二滤液可以进步进行利用,优选情况下,将所述第二滤液的一部分回用至步骤(1)的所述保温过滤的过程中;将所述第二滤液的另一部分进行蒸发结晶得到碳酸钠后,回用至步骤(1)的所述碱法焙烧的过程中。从而粉煤灰酸法提铝残渣可以全部得到利用,没有废物产生。
本发明的第二目的,提供一种粉煤灰的利用方法,该方法包括:将粉煤灰进行酸法提铝得到粉煤灰酸法提铝残渣和氧化铝;将粉煤灰酸法提铝残渣通过本发明的方法制备得到13X型分子筛和高硅丝光沸石。
其中,粉煤灰可以是从燃煤电厂排出的煤燃烧后的烟气中收捕下来的细灰。可以是主要含有SiO2、Al2O3和TiO2。SiO2的含量约为20~40重量%,Al2O3的含量约为45~60重量%和TiO2的含量约为1.5~4.5重量%。例如神华内蒙古国华电厂排出的粉煤灰,其中,SiO2的含量约为32.43重量%,Al2O3的含量约为50.42重量%和TiO2的含量约为2.14重量%。
本发明中所述酸法提铝可以采用本领域公知的方法,在此不再赘述。
本发明中,可以获得的高硅丝光沸石的硅铝比为26以上,优选为28.8~34.2。
以下将通过实施例对本发明进行详细描述。
以下实施例中,通过XRD(X射线衍射)方法,采用德国Bruker公司D8 ADVANCE型X射线衍射仪,在40Kv-40mA条件下扫描(2θ)4°~75°,扫描结果通过与38-0284号标准卡片(PDF2004版)比对,确定得到的物质为13X型分子筛;
通过XRD(X射线衍射)方法,采用德国Bruker公司D8 ADVANCE型X射线衍射仪,在40Kv-40mA条件下扫描(2θ)4°~75°。扫描结果通过与29-1257号标准卡片(PDF2004版)比对,确定得到的物质为丝光沸石Mordenite。
通过SEM-EDS(带能谱仪的扫描电镜)方法,采用英国Oxford公司X-man 50型EDS并搭配美国FEI公司Navo NanoSEM 450型SEM,在15Kv电压下采集丝光沸石样品化学成分信号,计算得出高硅丝光沸石的硅铝比。
粉煤灰酸法提铝残渣的一次消纳效率μ的计算方法如前所述。
粉煤灰来自神华内蒙古国华电厂,具体组成含量如表1所示,
表1
组成 | Al<sub>2</sub>O<sub>3</sub> | SiO<sub>2</sub> | P<sub>2</sub>O<sub>5</sub> | SO<sub>3</sub> | K<sub>2</sub>O | CaO | TiO<sub>2</sub> | Fe<sub>2</sub>O<sub>3</sub> | MgO | Na<sub>2</sub>O |
含量,重量% | 50.42 | 32.43 | 0.19 | 4.0 | 0.37 | 3.03 | 2.14 | 1.71 | 0.18 | 0.03 |
粉煤灰酸法提铝残渣来自准格尔能源有限责任公司氧化铝厂,具体组成含量如表2所示。
表2
组成 | Al<sub>2</sub>O<sub>3</sub> | SiO<sub>2</sub> | P<sub>2</sub>O<sub>5</sub> | SO<sub>3</sub> | K<sub>2</sub>O | CaO | TiO<sub>2</sub> | Fe<sub>2</sub>O<sub>3</sub> | ZrO<sub>2</sub> | Na<sub>2</sub>O |
含量,重量% | 13.4 | 78.7 | 0.14 | 0.35 | 0.16 | 0.37 | 5.2 | 0.45 | 0.29 | - |
制备例1
本制备例说明粉煤灰制备得到粉煤灰酸法提铝残渣。
取粉煤灰100g,加入5mol/L盐酸溶液,在150℃下搅拌反应30min,过滤、冲洗后得富铝溶液和粉煤灰酸法提铝残渣。
粉煤灰酸法提铝残渣化学成分如表2所示。
制备例2
本制备例说明13X型分子筛晶种的制备。
以硅酸钠为硅源、铝酸钠为铝源,加水配置13X型分子筛水热晶化母液.水热晶化母液的组成(摩尔比)为SiO2:Al2O3:Na2O:H2O=5:1:1.5:50。
将上述母液转入水热反应釜中,在95℃下静置水热反应20h。
反应结束后的产物经过滤、洗涤、干燥,得到纯净的13X型分子筛固体粉末,用作本发明中的13X型分子筛晶种。.
13X型分子筛晶种的平均粒径为1~3μm,硅铝比为3。
实施例1
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末60g,混合研磨后在860℃焙烧90min,焙烧结束后快速空气冷却,并粉碎至约200目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入140ml去离子水(相对于100g的焙烧渣料,水的用量为200ml),在100℃和常压下进行水浸20min,浸取溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中固体为溶出Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液;
(3)在高速搅拌状态下,取全部水浸产物100g(折合含焙烧渣料70g),向其中加入碳酸钠溶液(回用自步骤(6)的第二滤液,浓度15重量%)100ml进行稀释,并保温在60℃下进行抽滤,再加入上述碳酸钠溶液100ml进行冲洗(相当于相对于100g的焙烧渣料,上述第二滤液的总用量为286ml);再加入一定量热水(约80℃)进行冲洗,得到体积为400ml的第一滤液,用于合成13X型分子筛;同时将得到的第一滤渣烘干重5.90g,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中;
第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=12:1:18:9.5:430。
(4)取第一滤液120ml(折合含焙烧渣料21.0g)加入50ml去离子水进行水解(相对于100g的焙烧渣料,水解产物的总体积为714ml);在搅拌状态下向得到的水解产物中通入二氧化碳进行碳分至pH=13.455;然后将碳分后的水解产物在95℃下进行水热晶化15.5h,并将得到的水热晶化产物经过滤得到第二滤渣和分子筛滤液;进一步将第二滤渣冲洗、烘干,得到的产物经XRD析,得到如图2所示谱图,与标准卡片对比,确定为13X型分子筛;
分子筛滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=37.2:1:72.7:68.2:1910;
(5)向得到的分子筛滤液100ml加入1.4g的NaF固体(GR优级纯,≥99.0%,上海沪试),得到合成液(NaF的加入量约为合成液中SiO2的20mol%);
在搅拌状态下向合成液中通入CO2进行碳分至pH=11.05;然后在180℃温度下进行水热晶化50h,并将得到的水热晶化产物经过滤得到第三滤渣和第二滤液;进一步将第三滤渣洗涤、烘干、焙烧,得到的产物经XRD分析,得到如图3所示谱图,与标准卡片对比,确定为高硅丝光沸石;经EDS分析,所得丝光沸石硅铝比=33.6;
(6)将第二滤液(主要成分是Na2CO3,含少量Si、Al)部分回用加入步骤(3)的碳酸钠溶液,用于水浸产物的稀释和过滤冲洗;第二滤液的剩余部分经蒸发结晶后得到Na2CO3固体,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中。
粉煤灰酸法提铝残渣的一次消纳效率μ为88.2%;第一滤渣经循环利用后,可认为粉煤灰酸法提铝残渣的整体消纳效率近似为100%;Na2CO3、CO2、NaF均实现了循环利用。
实施例2
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末65g,混合研磨后在890℃焙烧60min,焙烧结束后快速空气冷却,并粉碎至约180目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入105ml去离子水(相对于100g的焙烧渣料,水的用量为150ml),在95℃和常压下进行水浸18min,浸取溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中,固体为溶出Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液。
(3)在高速搅拌状态下,取全部水浸产物100g(折合含焙烧渣料70g),向其中加入碳酸钠溶液(回用自步骤(6)的第二滤液,浓度20重量%)100ml进行稀释,并保温在80℃下进行抽滤,再加入上述碳酸钠溶液100ml进行冲洗(相当于相对于100g的焙烧渣料,上述第二滤液的总用量为286ml)再加入一定量热水(约90℃)进行冲洗,得到体积为400ml的第一滤液,用于合成13X型分子筛;同时将得到的第一滤渣烘干重6.42g,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中;
第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=13.4:1:18:9.5:420。
(4)将第一滤液120ml(折合含焙烧渣料21.0g)加入50ml去离子水水进行水解(相对于100g的焙烧渣料,水解产物的总体积为857ml);在搅拌状态下向得到的水解产物中通入CO2进行碳分至pH=13.59;然后将碳分后的水解产物加入0.2g的13X型分子筛晶种(制备例2),再在110℃下进行水热晶化20h,并将得到的水热晶化产物经过滤得到第二滤渣和分子筛滤液;进一步将第二滤渣冲洗、烘干,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为13X型分子筛;
分子筛滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=38.1:1:77.5:66:1960;
(5)向得到的分子筛滤液100ml加入1.05g的氟化钠固体,得到合成液(氟化钠固体的加入量为合成液中SiO2的15mol%);
在搅拌状态下向合成液中通入CO2进行碳分至pH=12.0;然后在150℃温度下进行水热晶化72h,并将得到的水热晶化产物经过滤得到第三滤渣和第二滤液;进一步将第三滤渣洗涤、烘干、焙烧,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为高硅丝光沸石,经EDS分析,所得丝光沸石硅铝比=33.4;
(6)将第二滤液(主要成分是Na2CO3,含少量Si、Al)部分回用加入步骤(3)的碳酸钠溶液,用于水浸产物的稀释和过滤冲洗;第二滤液的剩余部分经蒸发结晶后得到Na2CO3固体,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中。
粉煤灰酸法提铝残渣的一次消纳效率μ为87.16%;第一滤渣经循环利用后,可认为粉煤灰酸法提铝残渣的整体消纳效率近似为100%;Na2CO3、CO2、NaF均实现了循环利用。
实施例3
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末50g,混合研磨后在830℃焙烧120min,焙烧结束后快速空气冷却,并粉碎至约150目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入130ml去离子水(相对于100g的焙烧渣料,水的用量为186ml)在105℃和常压下进行水浸15min,浸取溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中固体为溶出Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液;
(3)在高速搅拌状态下,向100g的水浸产物(折合含焙烧渣料70g),向其中加入碳酸钠溶液(回用自步骤(6)的第二滤液,浓度25重量%)100ml进行稀释,并保温在70℃下进行抽滤;再加入近饱和碳酸钠溶液100ml进行冲洗(相当于相对于100g的焙烧渣料,上述第二滤液的总用量为286ml),再加入一定量热水(约70℃)进行冲洗,得到体积为400ml的第一滤液,用于合成13X型分子筛;同时将得到的第一滤渣烘干重6.26g,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中;
第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=14.6:1:21.4:11.3:361。
(4)将第一滤液120ml(折合含焙烧渣料18.0g)加入50ml去离子水进行水解(相对于100g的焙烧渣料,水解产物的总体积为960ml);在搅拌状态下向得到的水解产物中通入CO2进行碳分至pH=12.96;然后将碳分后的水解产物加入0.45g的13X型分子筛晶种(制备例2),再在95℃下进行水热晶化18h,并将得到的水热晶化产物经过滤得到第二滤渣和分子筛滤液;进一步将第二滤渣冲洗、烘干,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为13X型分子筛;
分子筛滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=43.3:1:66:83:2035;
(5)向得到的分子筛滤液100ml加入0.7g的氟化钠固体,得到合成液(氟化钠固体的加入量为合成液中SiO2的10mol%);
在搅拌状态下向合成液中通入CO2进行碳分至pH=13.838;然后在190℃温度下进行水热晶化15h,并将得到的水热晶化产物经过滤得到第三滤渣和第二滤液;进一步将第三滤渣洗涤、烘干、焙烧,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为高硅丝光沸石;经EDS分析,所得丝光沸石硅铝比=34.2;
(6)将第二滤液(主要成分是Na2CO3,含少量Si、Al)部分回用加入步骤(3)的碳酸钠溶液,用于水浸产物的稀释和过滤冲洗;第二滤液的剩余部分经蒸发结晶后得到Na2CO3固体,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中。
粉煤灰酸法提铝残渣的一次消纳效率μ为87.48%;第一滤渣经循环利用后,可认为粉煤灰酸法提铝残渣的整体消纳效率近似为100%;Na2CO3、CO2、NaF均实现了循环利用。
实施例4
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末65g,混合研磨后在890℃焙烧60min,焙烧结束后快速空气冷却,并粉碎至约180目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入105ml去离子水在95℃和常压下进行水浸18min,浸取溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中固体为溶出Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液;
(3)在高速搅拌状态下,取全部水浸产物100g(折合含焙烧渣料70g),向其中加入碳酸钠溶液(回用自步骤(6)的第二滤液,浓度20重量%)100ml进行稀释,并保温在80℃下进行抽滤,再加入上述碳酸钠溶液100ml进行冲洗;相对于100g的焙烧渣料,第二滤液的总用量为286ml);再加入一定量热水(约90℃)进行冲洗,得到体积为400ml的第一滤液,用于合成13X型分子筛;同时将得到的第一滤渣烘干重6.60g,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中;
第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=13.6:1:17.8:9.75:426。
(4)取第一滤液120ml(含焙烧渣料21.0g)加入80ml去离子水进行水解(相对于100g的焙烧渣料,水解产物的总体积为952ml);在搅拌状态下向得到的水解产物中通入CO2进行碳分至pH=13.59;然后将碳分后的水解产物加入0.2g的13X型分子筛晶种(制备例2),再在110℃下进行水热晶化20h,并将得到的水热晶化产物经过滤得到第二滤渣和分子筛滤液;进一步将第二滤渣冲洗、烘干,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为13X型分子筛;
分子筛滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=40.4:1:89.7:72:2235;
(5)向得到的分子筛滤液100ml加入1.05g NaF固体,得到合成液(NaF的加入量约为合成液中SiO2的15mol%);
在搅拌状态下向合成液中通入CO2进行碳分至pH=11.05;然后在180℃下进行水热晶化36h,并将得到的水热晶化产物经过滤得到第三滤渣和第二滤液;进一步将第三滤渣洗涤、烘干、焙烧,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为高硅丝光沸石,确定为丝光沸石,经EDS分析,所得丝光沸石硅铝比=32.5;
(6)将第二滤液(主要成分是Na2CO3,含少量Si、Al)部分回用加入步骤(3)的碳酸钠溶液,用于水浸产物的稀释和过滤冲洗;第二滤液的剩余部分经蒸发结晶后得到Na2CO3固体,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中。
粉煤灰酸法提铝残渣的一次消纳效率μ为86.80%;第一滤渣经循环利用后,可认为粉煤灰酸法提铝残渣的整体消纳效率近似为100%;Na2CO3、CO2、NaF均实现了循环利用。
实施例5
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末60g,混合研磨后在860℃焙烧90min,焙烧结束后快速空气冷却,并粉碎至约200目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入140ml去离子水在100℃和常压下进行水浸20min,浸取溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中固体为溶出Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液;
(3)在高速搅拌状态下,取全部水浸产物100g(折合含焙烧渣料70g),向其中加入碳酸钠溶液(回用自步骤(6)的第二滤液,浓度25重量%)100ml进行稀释,并保温在60℃下进行抽滤,再加入上述碳酸钠溶液100ml进行冲洗(相当于相对于100g的焙烧渣料,上述第二滤液的总用量为286ml);再加入一定量热水(约80℃)进行冲洗,得到体积为400ml的第一滤液,用于合成13X型分子筛;同时将得到的第一滤渣烘干重6.11g,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中;
第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=12.5:1:17.5:9.2:428。
(4)将第一滤液120ml(折合含焙烧渣料21.0g)加入60ml去离子水进行水解(相对于100g的焙烧渣料,水解产物的总体积为857ml);在搅拌状态下向得到的水解产物中通入二氧化碳进行碳分至pH=13.455;然后将碳分后的水解产物在95℃下进行水热晶化15.5h,并将得到的水热晶化产物经过滤得到第二滤渣和分子筛滤液;进一步将第二滤渣冲洗、烘干,得到的产物经XRD析,得到谱图与标准卡片对比,确定为13X型分子筛;
分子筛滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=35:1:86:71:2140。
(5)向得到的分子筛滤液100ml加入1.05g的氟化钠固体,得到合成液(氟化钠固体的加入量为合成液中SiO2的15mol%);
在搅拌状态下向合成液中通入CO2进行碳分至pH=11.03;然后在180℃温度下进行水热晶化40h,并将得到的水热晶化产物经过滤得到第三滤渣和第二滤液;进一步将第三滤渣洗涤、烘干、焙烧,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为高硅丝光沸石,经EDS分析,所得丝光沸石硅铝比=28.8;
(6)将第二滤液(主要成分是Na2CO3,含少量Si、Al)部分回用加入步骤(3)的碳酸钠溶液,用于水浸产物的稀释和过滤冲洗;第二滤液的剩余部分经蒸发结晶后得到Na2CO3固体,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中。
粉煤灰酸法提铝残渣的一次消纳效率μ为87.78%;第一滤渣经循环利用后,可认为粉煤灰酸法提铝残渣的整体消纳效率近似为100%;Na2CO3、CO2、NaF均实现了循环利用。
实施例6
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末65g,混合研磨后在890℃焙烧60min,焙烧结束后快速空气冷却,并粉碎至约200目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入105ml去离子水在95℃和常压下进行水浸20min,溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中固体为溶出Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液;
(3)在高速搅拌状态下,取全部水浸产物93g(折合含焙烧渣料70g),向其中加入碳酸钠溶液(回用自步骤(6)的第二滤液,浓度20重量%)100ml进行稀释,并保温在80℃下进行抽滤,再加入上述碳酸钠溶液100ml进行冲洗(相当于相对于100g的焙烧渣料,上述第二滤液的总用量为286ml);再加入一定量热水(约90℃)进行冲洗,得到体积为400ml的第一滤液,用于合成13X型分子筛;同时将得到的第一滤渣烘干重7.22g,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中;
第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=13.6:1:18.6:10.5:441。
(4)取第一滤液120ml(折合含焙烧渣料21.0g)加入60ml去离子水进行水解(相对于100g的焙烧渣料,水解产物的总体积为857ml);在搅拌状态下向得到的水解产物中通入CO2进行碳分至pH=13.59;然后将碳分后的水解产物加入0.2g的13X型分子筛晶种(制备例2),再在110℃下进行水热晶化20h,并将得到的水热晶化产物经过滤得到第二滤渣和分子筛滤液;进一步将第二滤渣冲洗、烘干,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为13X型分子筛;
分子筛滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=37.7:1:86.5:63:1970;
(5)向得到的分子筛滤液100ml加入1.4g的NaF固体,得到合成液(NaF的加入量约为合成液中SiO2的20mol%);
在搅拌状态下向合成液中通入CO2进行碳分至pH=11.84;然后在140℃温度下进行水热晶化72h,并将得到的水热晶化产物经过滤得到第三滤渣和第二滤液;进一步将第三滤渣洗涤、烘干、焙烧,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为高硅丝光沸石,经EDS分析,所得丝光沸石硅铝比=30.8;
(6)将第二滤液(主要成分是Na2CO3,含少量Si、Al)部分回用加入步骤(3)的碳酸钠溶液,用于水浸产物的稀释和过滤冲洗;第二滤液的剩余部分经蒸发结晶后得到Na2CO3固体,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中。
粉煤灰酸法提铝残渣的一次消纳效率μ为85.56%;第一滤渣经循环利用后,可认为粉煤灰酸法提铝残渣的整体消纳效率近似为100%;Na2CO3、CO2、NaF均实现了循环利用。
对比例1
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末60g,混合研磨后在860℃焙烧90min,焙烧结束后快速空气冷却,并粉碎至约200目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入700ml去离子水(相对于100g的焙烧渣料,水的用量为1000ml),在100℃和常压下进行水浸40min,浸取溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中固体为溶出部分Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液;
(3)在高速搅拌状态下,取全部水浸产物650g(折合含焙烧渣料70g),保温在60℃下进行抽滤,再加入15重量%的碳酸钠溶液100ml进行冲洗(相当于相对于100g的焙烧渣料,上述碳酸钠溶液的总用量为286ml);再加入一定量热水(约80℃)进行冲洗,得到的第一滤渣烘干重21.62g,经计算,粉煤灰酸法提铝残渣一次消纳效率μ仅为56.76%。
对比例1的高温水浸过程中加入水的用量过多,超过了本发明限定的相对于100g的所述焙烧渣料,水的用量为150~200ml的液固比范围,造成水浸产物的碱度降低,硅、铝的溶出率严重偏低,第一滤渣产率偏高,未能实现粉煤灰酸法提铝残渣高效消纳的目标。
对比例2
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末60g,混合研磨后在860℃焙烧90min,焙烧结束后快速空气冷却,并粉碎至约200目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入140ml去离子水(相对于100g的焙烧渣料,水的用量为200ml),在100℃和常压下进行水浸20min,浸取溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中固体为溶出Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液;
(3)在高速搅拌状态下,取全部水浸产物100g(折合含焙烧渣料70g),向其中加入沸水100ml进行稀释,并保温在60℃下进行抽滤,再加入沸水100ml进行冲洗(相当于相对于100g的焙烧渣料,沸水的加入总量为286ml);再加入一定量热水(约80℃)进行冲洗,得到体积为400ml的第一滤液,用于合成13X型分子筛;同时将得到的第一滤渣烘干重16.53g,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中;
第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=8.2:1:12.5:7.8:450。
(4)利用所述第一滤液直接合成13X型分子筛,在95℃下水热晶化15.5h,并将得到的水热晶化产物过滤得到固体产物。
所得固体产物经XRD检测其组成为无定形硅铝酸盐和多种类型分子筛的混合物,即无法获得纯净的13X型分子筛。
对比例2中使用沸水对水浸产物进行稀释和过滤冲洗,而未采用碳酸钠溶液,导致水浸产物液相中Si元素在稀释和过滤过程中发生高度水解生成固相的水合二氧化硅,从而产生严重的过滤损失,造成第一滤渣产率大幅升高,粉煤灰酸法提铝残渣一次消纳效率μ降低至66.94%。同时,利用第一滤液依照常规水热晶化条件直接进行水热晶化,未能获得纯净的13X型分子筛。
另外,步骤(1)-(3)也无法获得适合于合成高硅丝光沸石的合成母液,得不到纯净的高硅丝光沸石。合成13X型分子筛之后的尾液或称分子筛滤液主要成分为碳酸钠,仅含有微量的Si、Al,也不能用作硅源或铝源进一步合成任何其他类型分子筛。
对比例3
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末60g,混合研磨后在860℃焙烧90min,焙烧结束后快速空气冷却,并粉碎至约200目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入140ml去离子水(相对于100g的焙烧渣料,水的用量为200ml),在100℃和常压下进行水浸20min,浸取溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中固体为溶出Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液;
(3)在高速搅拌状态下,取全部水浸产物100g(折合含焙烧渣料70g),向其中加入碳酸钠溶液(回用自步骤(5)的第二滤液,浓度15重量%)100ml进行稀释,并保温在60℃下进行抽滤,再加入上述碳酸钠溶液100ml进行冲洗(相当于相对于100g的焙烧渣料,上述第二滤液的总用量为286ml);再加入一定量热水(约80℃)进行冲洗,得到体积为400ml的第一滤液,用于合成13X型分子筛;同时将得到的第一滤渣烘干重6.52g,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中;
第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=14.5:1:21.2:11.5:366。
(4)取第一滤液全部400ml(折合含焙烧渣料70.0g)加入200ml去离子水进行水解(相对于100g的焙烧渣料,水解产物的总体积为857ml);又加入偏铝酸钠(NaAlO2)固体31.44g,配制成13X型分子筛合成母液,其化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=12:4:115.5:46:487。
在搅拌状态下向得到的水解产物中通入CO2进行碳分至pH=13.455;然后将碳分后的水解产物在95℃下进行水热晶化15.5h,并将得到的水热晶化产物经过滤得到第二滤渣和第二滤液;进一步将第二滤渣冲洗、烘干,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为13X型分子筛;
(5)第二滤液(主要成分是Na2CO3,含少量Si、Al)部分回用加入步骤(3)的碳酸钠溶液,用于水浸产物的稀释和过滤冲洗;第二滤液的剩余部分经蒸发结晶后得到Na2CO3固体,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中。
对比例3中按照常规配制了13X型分子筛合成母液,但需要外加铝源偏铝酸钠(Mout=31.44g)调整硅铝比,结果粉煤灰酸法提铝残渣一次的消纳效率μ仅为53.39%;而且得到的第二滤液也无法继续制备高硅丝光沸石,仅有产品13X型分子筛。
对比例4
(1)将粉煤灰酸法提铝残渣50g加入Na2CO3固体粉末65g,混合研磨后在890℃焙烧60min,焙烧结束后快速空气冷却,并粉碎至约200目以下,得到焙烧渣料;
(2)将焙烧渣料进行干法磁选除铁后,取70g加入140ml去离子水(相对于100g的焙烧渣料,水的用量为200ml),在100℃和常压下进行水浸20min,浸取溶出焙烧渣料中的Na2SiO3和NaAlSiO4,得到固液混合的水浸产物;其中固体为溶出Na2SiO3和NaAlSiO4后的剩余产物;液体为含有Na2SiO3和NaAlSiO4的溶液;
(3)在高速搅拌状态下,取全部水浸产物100g(折合含焙烧渣料70g),向其中加入碳酸钠溶液(回用自步骤(6)的第二滤液,浓度15重量%)100ml进行稀释,并保温在60℃下进行抽滤,再加入上述碳酸钠溶液100ml进行冲洗(相当于相对于100g的焙烧渣料,上述第二滤液的总用量为286ml);再加入一定量热水(约80℃)进行冲洗,得到体积为400ml的第一滤液;同时将得到的第一滤渣烘干重6.79g,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中;
第一滤液的化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=14.2:1:17:8.6:462。
(4)取第一滤液全部400ml(折合含焙烧渣料70.0g)加入1500ml去离子水进行水解(相对于100g的焙烧渣料,水解产物的总体积为2143ml);又加入偏硅酸钠(Na2SiO3)固体179.44g,完全溶解后作为高硅丝光沸石的水热晶化母液,其化学组成(摩尔比)为SiO2:Al2O3:Na2O:CO3 2-:H2O=43.6:1:46.4:8.6:2129。
(5)取所得到的水热晶化母液100ml加入1.4g的氟化钠固体,得到合成液(氟化铵固体的加入量为合成液中SiO2的20mol%);
在搅拌状态下向合成液中通入CO2进行碳分至pH=12.0;然后在180℃温度下进行水热晶化48h,并将得到的水热合成产物经过滤得到第三滤渣和第二滤液;进一步将第三滤渣洗涤、烘干、焙烧,得到的产物经XRD分析,得到谱图与标准卡片对比,确定为高硅丝光沸石,经EDS分析,所得丝光沸石硅铝比=33.6;
(6)将第二滤液(主要成分是Na2CO3,含少量Si、Al)部分回用加入步骤(3)的碳酸钠溶液,用于水浸产物的稀释和过滤冲洗;第二滤液的剩余部分经蒸发结晶后得到Na2CO3固体,回用至步骤(1)粉煤灰酸法提铝残渣的碱法焙烧中。
对比例4中调整第一滤液的组成用于合成高硅丝光沸石,需要外加硅源偏硅酸钠(Mout=179.44g),结果只能生产高硅丝光沸石,而且导致粉煤灰酸法提铝残渣的一次消纳效率μ仅为18.83%。而且得到的第二滤液也无法作为硅源或铝源进一步制备13X型或其他任何类型分子筛;即所得产品仅有高硅丝光沸石一种。
从上述实施例可以看出,本发明提供的方法可以在不需要额外添加硅源或铝源的条件下,实现粉煤灰酸法提铝残渣的充分利用。在高效消纳粉煤灰酸法提铝残渣的同时,可以同时生产获得高附加值的13X型分子筛和高硅丝光沸石。
此外,本发明提供的方法还可以实现粉煤灰的充分利用,无需额外添加硅源或铝源实现粉煤灰转化生产氧化铝、13X型分子筛和高硅丝光沸石。
Claims (8)
1.一种粉煤灰酸法提铝残渣制备13X型分子筛和高硅丝光沸石的方法,包括:
(1)将粉煤灰酸法提铝残渣进行碱法焙烧,得到焙烧渣料;所述焙烧渣料依次进行高温水浸和保温过滤,得到第一滤液;
(2)将所述第一滤液进行13X型分子筛水热晶化,得到13X型分子筛和分子筛滤液;
(3)将所述分子筛滤液和氟化钠进行高硅丝光沸石水热晶化,得到高硅丝光沸石和第二滤液;
其中,步骤(1)中,所述高温水浸的过程包括:将所述焙烧渣料除去铁后与水混合进行水浸,得到水浸产物;相对于100g的所述焙烧渣料,水的用量为150~200ml;所述保温过滤的过程包括:将所述水浸产物以部分的第二滤液进行稀释、过滤和冲洗,得到第一滤渣和所述第一滤液;所述保温过滤的过程包括:过滤温度保持在60℃~80℃;相对于100g的所述焙烧渣料,第二滤液的用量为250~350ml;所述第一滤液中SiO2与Al2O3的摩尔比为(10~25):1
其中,步骤(2)中,所述13X型分子筛水热晶化的过程包括:
a)将所述第一滤液加水进行水解,得到水解产物;水的加入量满足相对于100g的所述焙烧渣料,所述水解产物的总体积为850~1000ml;
b)向所述水解产物中通入CO2进行碳分,使所述水解产物的pH为13~15;
c)向步骤b)得到的产物中加入或不加入13X型分子筛晶种,然后在90℃~110℃下进行水热晶化15~30h,得到13X型分子筛水热晶化产物;所述13X型分子筛晶种的用量为所述焙烧渣料的0~10wt%;
d)将所述13X型分子筛水热晶化产物进行过滤,得到第二滤渣和所述分子筛滤液;所述第二滤渣进行干燥得到所述13X型分子筛;所述分子筛滤液中SiO2与Al2O3的摩尔比为(35~45):1。
2.根据权利要求1所述的方法,其中,在步骤(1)中,所述碱法焙烧的过程包括:将100重量份的所述粉煤灰酸法提铝残渣与100~130重量份的含碳酸钠物料进行混合研磨,得到的研磨产物在830℃~890℃下焙烧60min~120min后再粉碎至200目以下,得到所述焙烧渣料。
3.根据权利要求2所述的方法,其中,在步骤(1)中,所述高温水浸的过程包括:水浸温度为95℃~105℃,水浸时间为15min~20min 。
4.根据权利要求1所述的方法,其中,该方法进一步包括:将所述第一滤渣经过干燥后回用步骤(1)加入所述粉煤灰酸法提铝残渣中。
5.根据权利要求1所述的方法,其中,在步骤(3)中,所述高硅丝光沸石水热晶化的过程包括:
i)向所述分子筛滤液中加入氟化钠固体,得到合成液;
ii)向所述合成液中通入CO2进行碳分,使所述合成液的pH为11~14;
iii)将步骤ii)得到的产物在140℃~190℃下进行水热晶化15~72h,得到高硅丝光沸石水热晶化产物;
iv)将所述高硅丝光沸石水热晶化产物进行过滤,得到第三滤渣和所述第二滤液;所述第三滤渣进行洗涤、烘干和焙烧得到所述高硅丝光沸石。
6.根据权利要求5所述的方法,其中,所述氟化钠固体的加入量为所述合成液中SiO2的10~20mol%。
7.根据权利要求1所述的方法,其中,该方法进一步包括:
将所述第二滤液的一部分回用至步骤(1)的所述保温过滤的过程中;将所述第二滤液的另一部分进行蒸发结晶得到碳酸钠后,回用至步骤(1)的所述碱法焙烧的过程中。
8.粉煤灰的利用方法,该方法包括:将粉煤灰进行酸法提铝得到粉煤灰酸法提铝残渣和氧化铝;将粉煤灰酸法提铝残渣通过权利要求1-7中任意一项所述的方法制备得到13X型分子筛和高硅丝光沸石。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710196375.3A CN108658090B (zh) | 2017-03-29 | 2017-03-29 | 粉煤灰酸法提铝残渣制备13x型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710196375.3A CN108658090B (zh) | 2017-03-29 | 2017-03-29 | 粉煤灰酸法提铝残渣制备13x型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108658090A CN108658090A (zh) | 2018-10-16 |
CN108658090B true CN108658090B (zh) | 2021-06-15 |
Family
ID=63786631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710196375.3A Active CN108658090B (zh) | 2017-03-29 | 2017-03-29 | 粉煤灰酸法提铝残渣制备13x型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108658090B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116510684A (zh) * | 2023-04-10 | 2023-08-01 | 中国石油大学(华东) | 一种用于气体中硫化物脱除吸附剂的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101734683A (zh) * | 2009-12-29 | 2010-06-16 | 大唐国际化工技术研究院有限公司 | 一种13x型分子筛及其制备方法 |
CN101804995A (zh) * | 2010-04-13 | 2010-08-18 | 中国地质大学(武汉) | 利用矿物原料制备高硅丝光沸石的方法 |
CN104743571A (zh) * | 2013-12-27 | 2015-07-01 | 杨治平 | 一种由粉煤灰制备13x型分子筛的方法 |
CN105217588A (zh) * | 2015-09-16 | 2016-01-06 | 黄钰雪 | 黄磷联产钾盐、氧化铝、分子筛、矿渣水泥和建筑型材的循环清洁生产方法 |
CN106517237A (zh) * | 2016-12-01 | 2017-03-22 | 神华集团有限责任公司 | 粉煤灰酸法提铝残渣制备NaY型分子筛和ZSM‑5型分子筛的方法及粉煤灰的利用方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7820591B2 (en) * | 2005-01-04 | 2010-10-26 | Korea Electric Power Corporation | Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture |
-
2017
- 2017-03-29 CN CN201710196375.3A patent/CN108658090B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101734683A (zh) * | 2009-12-29 | 2010-06-16 | 大唐国际化工技术研究院有限公司 | 一种13x型分子筛及其制备方法 |
CN101804995A (zh) * | 2010-04-13 | 2010-08-18 | 中国地质大学(武汉) | 利用矿物原料制备高硅丝光沸石的方法 |
CN104743571A (zh) * | 2013-12-27 | 2015-07-01 | 杨治平 | 一种由粉煤灰制备13x型分子筛的方法 |
CN105217588A (zh) * | 2015-09-16 | 2016-01-06 | 黄钰雪 | 黄磷联产钾盐、氧化铝、分子筛、矿渣水泥和建筑型材的循环清洁生产方法 |
CN106517237A (zh) * | 2016-12-01 | 2017-03-22 | 神华集团有限责任公司 | 粉煤灰酸法提铝残渣制备NaY型分子筛和ZSM‑5型分子筛的方法及粉煤灰的利用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108658090A (zh) | 2018-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020100373A4 (en) | Method for preparing ssz-13 molecular sieve by using fly ash | |
US9139445B2 (en) | Method for co-producing alumina and activated calcium silicate from high-alumina fly ash | |
CN106745048B (zh) | 粉煤灰酸法提铝残渣制备p型分子筛和zsm-5型分子筛的方法以及粉煤灰的利用方法 | |
CN103303952B (zh) | 一种利用高铝粉煤灰低温液相碱溶法制备铝酸钠联产硅基材料的方法 | |
CN106517237B (zh) | 粉煤灰酸法提铝残渣制备NaY型分子筛和ZSM-5型分子筛的方法及粉煤灰的利用方法 | |
CN102424392A (zh) | 一种综合利用微硅粉制备白炭黑联产纳米碳酸钙的方法 | |
CN107934986B (zh) | 生物质灰资源化利用方法 | |
CN103449467B (zh) | 一种由高铝粉煤灰制备13x分子筛的方法和13x分子筛 | |
CN106587099B (zh) | 一种粉煤灰酸法提铝残渣制备方钠石和zsm-5型分子筛的方法以及粉煤灰的利用方法 | |
WO2013143335A1 (zh) | 碱法提取粉煤灰中氧化铝的方法 | |
CN108658092B (zh) | 粉煤灰酸法提铝残渣制备p型分子筛和高硅丝光沸石的方法以及粉煤灰的利用方法 | |
CN108928834B (zh) | Mcm-41介孔分子筛及其制备方法和应用 | |
CN106587098B (zh) | 粉煤灰酸法提铝残渣制备13x型分子筛和zsm-5型分子筛的方法及粉煤灰的利用方法 | |
CN103738972A (zh) | 一种粉煤灰提铝残渣制备硅微粉的方法 | |
CN108190928A (zh) | 一种高铝粉煤灰合成介孔纳米γ-氧化铝的方法 | |
CN102583475B (zh) | 采用低铝硅比含铝资源干法或半干法生产氧化铝的方法 | |
CN108658090B (zh) | 粉煤灰酸法提铝残渣制备13x型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法 | |
CN108946754A (zh) | Sba-15介孔分子筛及制法和应用以及粉煤灰产氧化铝和sba-15介孔分子筛之法 | |
CN101780969A (zh) | 一种氧化铝碳分母液的处理的方法 | |
CN108658086B (zh) | 粉煤灰酸法提铝残渣制备方钠石和高硅丝光沸石的方法以及粉煤灰的利用方法 | |
CN106745042B (zh) | 粉煤灰酸法提铝残渣制备4a型分子筛和zsm-5型分子筛的方法以及粉煤灰的利用方法 | |
CN108516565A (zh) | 一种利用铝钙粉反应渣制备p型沸石分子筛的方法 | |
CN108658089B (zh) | 粉煤灰酸法提铝残渣制备4a型分子筛和高硅丝光沸石的方法以及粉煤灰的利用方法 | |
CN108658091B (zh) | 粉煤灰酸法提铝残渣制备NaY型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法 | |
CN118579815B (zh) | 一种利用高铝粉煤灰制备铝硅氧化物的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 100011 Beijing Dongcheng District, West Binhe Road, No. 22 Patentee after: CHINA ENERGY INVESTMENT Corp.,Ltd. Patentee after: Beijing low carbon clean energy research institute Address before: 100011 Shenhua building, 22 West Binhe Road, Dongcheng District, Beijing Patentee before: SHENHUA GROUP Corp.,Ltd. Patentee before: Beijing low carbon clean energy research institute |
|
CP03 | Change of name, title or address |