[go: up one dir, main page]

CN108649850A - Improve the internal permanent magnet synchronous motor current control method of UDE - Google Patents

Improve the internal permanent magnet synchronous motor current control method of UDE Download PDF

Info

Publication number
CN108649850A
CN108649850A CN201810462344.2A CN201810462344A CN108649850A CN 108649850 A CN108649850 A CN 108649850A CN 201810462344 A CN201810462344 A CN 201810462344A CN 108649850 A CN108649850 A CN 108649850A
Authority
CN
China
Prior art keywords
current
axis
axes
ude
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810462344.2A
Other languages
Chinese (zh)
Other versions
CN108649850B (en
Inventor
谷鑫
李涛
耿强
周湛清
张国政
夏长亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tiangong University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201810462344.2A priority Critical patent/CN108649850B/en
Publication of CN108649850A publication Critical patent/CN108649850A/en
Application granted granted Critical
Publication of CN108649850B publication Critical patent/CN108649850B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种改进UDE的内置式永磁同步电机电流控制方法:在当前控制周期,对电机实际转速,转子位置角,电机三相电流,直流母线电压进行采样,利用三相旋转坐标系到两相静止坐标系变换求解出d、q轴实际电流;根据电机给定转速与电机实际转速的差值,得到q轴参考电流,计算出d轴参考电流id *;利用d、q轴参考电流与实际电流的差值,改进UDE的电流控制器,分别得到d、q轴电压的参考值;将得到的d、q轴的电压参考值变换到两相旋转坐标系下的电压参考值,得到对应逆变器的PWM脉冲,由逆变器输出得到三相电压,用于驱动内置式永磁同步电机;重复循环。本发明抑制参数不确定和系统中的随机扰动的同时,减小暂稳态转矩波动,提高内置式永磁同步电机控制系统的性能。

A built-in permanent magnet synchronous motor current control method that improves UDE: In the current control cycle, the actual speed of the motor, the rotor position angle, the three-phase current of the motor, and the DC bus voltage are sampled, and the three-phase rotating coordinate system is used to reach the two-phase static Coordinate system transformation solves the actual current of the d and q axes; obtains the reference current of the q axis according to the difference between the given speed of the motor and the actual speed of the motor, and calculates the reference current i d * of the d axis; uses the reference current of the d and q axes and the actual The current difference is improved by improving the UDE current controller to obtain the reference values of the d and q axis voltages respectively; transforming the obtained d and q axis voltage reference values into the voltage reference values in the two-phase rotating coordinate system to obtain the corresponding inverse The PWM pulse of the inverter is output by the inverter to obtain a three-phase voltage, which is used to drive the built-in permanent magnet synchronous motor; the cycle is repeated. The invention suppresses uncertain parameters and random disturbances in the system, reduces transient steady state torque fluctuations, and improves the performance of the built-in permanent magnet synchronous motor control system.

Description

改进UDE的内置式永磁同步电机电流控制方法Improved UDE current control method for built-in permanent magnet synchronous motor

技术领域technical field

本发明涉及一种永磁同步电机控制方法。特别是涉及一种改进UDE的内置式永磁同步电机电流控制方法。The invention relates to a control method of a permanent magnet synchronous motor. In particular, it relates to an improved UDE current control method for an internal permanent magnet synchronous motor.

背景技术Background technique

近年来,随着电动汽车的猛速发展,内置式永磁同步电机(Interior permanentmagnet synchronous machine,IPMSM)由于具有高功率密度、高转矩密度和高效率的优点受到广大科研人员和工程人员的关注。它结构简单,有利于控制;可利用其磁阻效应来提高电机的效率和带载能力。然而。电动汽车作为一个复杂工况的系统,整个电机系统在运行过程中易受到温度导致的参数变化、系统随机扰动和负载工况的影响,因此对内置式永磁同步电机的性能提出了更高的要求。In recent years, with the rapid development of electric vehicles, the interior permanent magnet synchronous machine (IPMSM) has attracted the attention of researchers and engineers due to its advantages of high power density, high torque density and high efficiency. . It has a simple structure and is beneficial to control; its reluctance effect can be used to improve the efficiency and load capacity of the motor. However. Electric vehicles are a system with complex working conditions. The entire motor system is susceptible to temperature-induced parameter changes, system random disturbances, and load conditions during operation. Therefore, higher performance requirements for interior permanent magnet synchronous motors Require.

为了提高电机的运行效率,内置式永磁同步电机通常采用最大转矩电流比(Maximum torque per ampere,MTPA)控制得到d轴电流给定,从而充分利用磁阻转矩;传统控制算法中系统的电流环使用比例积分(PI)的矢量控制方法,通过电压解耦得到d、q轴电压给定值。然而,传统控制算法中采用PI控制器的电流环结构虽然控制简单并成功应用于工业控制中,但一组PI参数仅适用于一段工况,无法在整个控制范围内获得期望的控制效果。传统PI结构的电流环控制性能在参数变化、系统随机扰动和复杂的负载工况下难以获得期望的效果,从而引入参数不确定和随机扰动观测的电流控制方法。In order to improve the operating efficiency of the motor, the interior permanent magnet synchronous motor usually adopts the maximum torque per ampere (MTPA) control to obtain the given d-axis current, so as to make full use of the reluctance torque; in the traditional control algorithm, the system The current loop uses the proportional integral (PI) vector control method to obtain d and q axis voltage given values through voltage decoupling. However, although the current loop structure using PI controller in the traditional control algorithm is simple to control and successfully applied in industrial control, a set of PI parameters is only applicable to a section of working conditions, and the desired control effect cannot be obtained in the entire control range. The current loop control performance of the traditional PI structure is difficult to obtain the desired effect under parameter changes, system random disturbances and complex load conditions, so a current control method with parameter uncertainty and random disturbance observation is introduced.

参数不确定和随机扰动观测方法将参数变化和系统随机扰动等视为未知项,采用一个稳定的参考模型来满足闭环系统所期望跟踪给定的性能,将参数不确定和系统扰动通过一个合适的滤波器即可被用于实际的控制器中。但是,参考模型选择和参数的调节方法影响系统的控制性能。The parameter uncertainty and random disturbance observation method regards parameter changes and system random disturbance as unknown items, adopts a stable reference model to meet the expected tracking performance of the closed-loop system, and passes parameter uncertainty and system disturbance through a suitable The filter can then be used in the actual controller. However, the selection of the reference model and the tuning method of the parameters affect the control performance of the system.

发明内容Contents of the invention

本发明所要解决的技术问题是,提供一种改善传统PI控制器的电流环的改进UDE的内置式永磁同步电机电流控制方法。The technical problem to be solved by the present invention is to provide an improved UDE current control method for a built-in permanent magnet synchronous motor that improves the current loop of a traditional PI controller.

本发明所采用的技术方案是:一种改进UDE的内置式永磁同步电机电流控制方法,包括如下步骤:The technical scheme adopted in the present invention is: a kind of built-in permanent magnet synchronous motor electric current control method that improves UDE, comprises the following steps:

1)在当前控制周期,由控制系统对电机实际转速n,转子位置角θ,电机三相电流iA、iB和iC,以及直流母线电压udc进行采样,并利用三相旋转坐标系到两相静止坐标系变换求解出d、q轴实际电流id、iq1) In the current control cycle, the control system samples the actual motor speed n, the rotor position angle θ, the motor three-phase currents i A , i B and i C , and the DC bus voltage u dc , and uses the three-phase rotating coordinate system Transform to the two-phase static coordinate system to solve the d, q axis actual current i d , i q ;

2)根据电机给定转速n*与电机实际转速n的差值,通过比例积分控制器得到q轴参考电流iq *,采用最大转矩电流比控制方法中的公式法计算出d轴参考电流id *2) According to the difference between the given motor speed n * and the motor’s actual speed n, the q-axis reference current i q * is obtained through the proportional integral controller, and the d-axis reference current is calculated using the formula method in the maximum torque current ratio control method i d * ;

3)利用d、q轴参考电流id *、iq *与实际电流id、iq的差值,通过改进UDE的电流控制器,分别得到d、q轴电压的参考值ud、uq3) Utilizing the difference between the reference current id * , i q * of the d , q axis and the actual current id , i q , by improving the current controller of UDE, the reference values u d , u of the d, q axis voltage are respectively obtained q ;

4)将得到的d、q轴的电压参考值ud、uq变换到两相旋转坐标系下的电压参考值uα、uβ,采用电压空间矢量调制方法,得到对应逆变器的PWM脉冲,由逆变器输出得到三相电压,用于驱动内置式永磁同步电机;4) Transform the obtained d and q-axis voltage reference values u d and u q into voltage reference values u α and u β in the two-phase rotating coordinate system, and use the voltage space vector modulation method to obtain the corresponding PWM of the inverter Pulse, the three-phase voltage output by the inverter is used to drive the built-in permanent magnet synchronous motor;

5)返回步骤1)重复循环。5) Return to step 1) to repeat the loop.

步骤3)中所述改进UDE的电流控制器包括如下的线性参考模型:The current controller of the improved UDE described in step 3) includes the following linear reference model:

式中,xm(t)=[idmiqm]T为d、q轴参考模型中电流矢量矩阵,c(t)=[id *iq *]T为d、q轴参考电流给定矢量矩阵,Am、Bm为对应xm(t)、c(t)的系数矩阵;In the formula, x m (t)=[i dm i qm ] T is the current vector matrix in the reference model of d and q axes, c(t)=[i d * i q * ] T is the reference current of d and q axes Fixed vector matrix, A m , B m are coefficient matrices corresponding to x m (t), c(t);

为了保证控制系统的稳定性,将线性参考模型的系数矩阵Am、Bm表示如下:In order to ensure the stability of the control system, the coefficient matrices A m and B m of the linear reference model are expressed as follows:

式中,α、β均为正实数,保证控制系统有两个负的特征值,满足李雅普诺夫稳定理论;In the formula, α and β are both positive real numbers, ensuring that the control system has two negative eigenvalues and satisfying the Lyapunov stability theory;

对于控制系统中出现的参数不确定和系统随机扰动,使用一阶低通滤波器gf(t)补偿系统中的扰动,所述一阶低通滤波器gf(t)的频域形式Gf(s)表示如下:For parameter uncertainties and system random disturbances that appear in the control system, a first-order low-pass filter g f (t) is used to compensate the disturbances in the system, and the frequency-domain form of the first-order low-pass filter g f (t) G f (s) is expressed as follows:

式中,γ=1/T,γ为所选择的一阶低通滤波器的带宽;In the formula, γ=1/T, γ is the bandwidth of the selected first-order low-pass filter;

通过一阶低通滤波器gf(t)能够观测到参数不确定和系统随机扰动量即:Uncertain parameters and system random disturbances can be observed through the first-order low-pass filter g f (t) which is:

式中,“*”为卷积算子,A、B为x(t)、u(t)的系数矩阵,x(t)=[idiq]T为d、q轴实际电流矩阵,u(t)=[uduq]T为d、q轴参考电压矩阵,同时为控制系统输入,f(t)=[fdfq]T为d、q轴参数不确定矩阵,D(t)=[DdDq]T为d、q轴随机扰动矩阵,Ld、Lq为d、q轴电感,ψf为转子磁链,Rs为定子电阻,为d、q轴已知扰动矩阵, In the formula, "*" is the convolution operator, A and B are the coefficient matrices of x(t) and u(t), x(t)=[i d i q ] T is the actual current matrix of the d and q axes, u(t)=[u d u q ] T is the reference voltage matrix of the d and q axes, and is the input of the control system at the same time, f(t)=[f d f q ] T is the parameter uncertainty matrix of the d and q axes, D (t)=[D d D q ] T is the random perturbation matrix of the d and q axes, L d and L q are the inductances of the d and q axes, ψ f is the rotor flux linkage, R s is the stator resistance, is the known perturbation matrix of the d and q axes,

由线性参考模型和一阶低通滤波器得到改进UDE的电流控制器的控制系统输入u(t)为:The control system input u(t) of the current controller of the improved UDE obtained by the linear reference model and the first-order low-pass filter is:

u(t)=B-1[Amxm(t)+Bmc(t)-Ax(t)-d0(t)-f(t)-D(t)]u(t)=B -1 [A m x m (t)+B m c(t)-Ax(t)-d 0 (t)-f(t)-D(t)]

式中,B-1为系数矩阵B的逆矩阵;In the formula, B -1 is the inverse matrix of the coefficient matrix B;

因此控制系统输入u(t)在频域内表示为:Therefore, the control system input u(t) is expressed in the frequency domain as:

式中,U(s)=[UdUq]T为控制系统输入在d、q轴的频域形式,E(s)为电流跟随误差的频域形式,I为单位矩阵,参数KP和KI表示为:In the formula, U(s)=[U d U q ] T is the frequency domain form of the control system input on the d and q axes, E(s) is the frequency domain form of the current following error, I is the identity matrix, and the parameter K P and K I expressed as:

所述控制系统输入u(t)中的参数KI的调节方法为:The adjustment method of the parameter KI in described control system input u (t) is:

将参数KI在原固有参数γd0、γq0上增加可变参数γd1、γq1得到如下式所示:Add variable parameters γ d1 and γ q1 to the original intrinsic parameters γ d0 and γ q0 of parameter K I to get As shown in the following formula:

固有参数γd0、γq0由α、β和γ确定;d轴可变参数γd1是将d轴实际电流与参考电流的差值经过比例控制器得到,q轴可变参数γq1是将q轴参考电流与实际电流的差值经过比例控制器得到,如下式所示:The intrinsic parameters γ d0 and γ q0 are determined by α, β and γ; the d-axis variable parameter γ d1 is obtained by the difference between the d-axis actual current and the reference current through a proportional controller; the q-axis variable parameter γ q1 is the q The difference between the shaft reference current and the actual current is obtained through the proportional controller, as shown in the following formula:

本发明的改进UDE的内置式永磁同步电机电流控制方法,是对内置式永磁同步电机电流控制方法进行改进。提出将参数不确定和随机扰动观测方法应用于内置式永磁同步电机控制系统中,改善传统PI控制器的电流环。通过选择合适的参考模型,同时提出新的参数调节方法,得到期望电压的输出值。本发明的方法是采用改进的参数不确定和随机扰动观测的内置式永磁同步电机电流控制方法,选择的参考模型保证系统的稳定性,一阶低通滤波器对系统随机扰动进行补偿,实现电流的渐近跟随。可以明显抑制参数不确定和系统中的随机扰动的同时,减小了暂稳态的转矩波动,进而极大地提高了内置式永磁同步电机控制系统的性能。The UDE-improved built-in permanent magnet synchronous motor current control method of the present invention is to improve the built-in permanent magnet synchronous motor current control method. It is proposed to apply the parameter uncertainty and random disturbance observation method to the built-in permanent magnet synchronous motor control system to improve the current loop of the traditional PI controller. By choosing an appropriate reference model and proposing a new parameter adjustment method, the output value of the desired voltage is obtained. The method of the present invention adopts an improved built-in permanent magnet synchronous motor current control method with uncertain parameters and random disturbance observation, the selected reference model ensures the stability of the system, and the first-order low-pass filter compensates the random disturbance of the system to realize The asymptotic following of the current. While the parameter uncertainty and the random disturbance in the system can be obviously suppressed, the torque fluctuation in the transient steady state can be reduced, thereby greatly improving the performance of the built-in permanent magnet synchronous motor control system.

附图说明Description of drawings

图1是本发明改进UDE的内置式永磁同步电机电流控制方法的主电路结构图;Fig. 1 is the main circuit structural diagram of the built-in permanent magnet synchronous motor current control method that improves UDE of the present invention;

图2是本发明改进UDE的内置式永磁同步电机电流控制方法的控制结构图;Fig. 2 is the control structure diagram of the built-in permanent magnet synchronous motor current control method that improves UDE of the present invention;

图3a是本发明改进UDE的内置式永磁同步电机电流控制方法在d轴的原理图;Fig. 3 a is the principle diagram of the current control method of the built-in permanent magnet synchronous motor of the improved UDE of the present invention on the d axis;

图3b是本发明改进UDE的内置式永磁同步电机电流控制方法在q轴的原理图;Fig. 3b is a schematic diagram of the current control method of the built-in permanent magnet synchronous motor of the improved UDE of the present invention on the q axis;

图4a是本发明中参数KI的调节方法在d轴的原理图;Fig. 4 a is the schematic diagram of the adjustment method of parameter K 1 in the d axis in the present invention;

图4b是本发明中参数KI的调节方法在q轴的原理图;Fig. 4 b is the schematic diagram of the adjustment method of parameter K 1 in the q axis among the present invention;

图5是本发明改进UDE的内置式永磁同步电机电流控制方法的流程图。Fig. 5 is a flow chart of the current control method of the interior permanent magnet synchronous motor for improving the UDE of the present invention.

具体实施方式Detailed ways

下面结合实施例和附图对本发明的改进UDE的内置式永磁同步电机电流控制方法做出详细说明。The current control method of the improved UDE of the present invention for an internal permanent magnet synchronous motor will be described in detail below in conjunction with the embodiments and the accompanying drawings.

本发明的改进UDE的内置式永磁同步电机电流控制方法的控制系统框图如图1所示,PI表示比例积分控制器,电机实际转速n和位置信息θ由增量式编码器获得,id、iq是通过电流传感器检测到实际值再经三相旋转坐标系到两相静止坐标系变化得到d、q轴的实际电流。根据所提出加入参数调节的改进UDE的电流控制器可得其原理图如图4所示。The control system block diagram of the built-in permanent magnet synchronous motor current control method of the improved UDE of the present invention is shown in Figure 1, PI represents the proportional integral controller, and the actual speed n and position information θ of the motor are obtained by the incremental encoder, i d , i q is the actual current of the d and q axes obtained by the actual value detected by the current sensor and then changed from the three-phase rotating coordinate system to the two-phase static coordinate system. According to the proposed improved UDE current controller with parameter adjustment, its schematic diagram is shown in Figure 4.

内置式永磁同步电机在d-q轴同步旋转坐标系下的数学模型可表示为:The mathematical model of the built-in permanent magnet synchronous motor in the d-q axis synchronous rotating coordinate system can be expressed as:

式中,Ld,Lq为d、q轴电感,ψf为转子磁链,P为电机的极对数,Rs为定子电阻,id,iq为d、q轴的实际电流,ωe为转子电角速度,Te为电磁转矩。In the formula, L d , L q are the inductances of d and q axes, ψ f is the flux linkage of the rotor, P is the number of pole pairs of the motor, R s is the stator resistance, id and i q are the actual currents of the d and q axes, ω e is the electrical angular velocity of the rotor, and T e is the electromagnetic torque.

电机给定转速n*与实际转速n的差值,经过比例积分(PI)控制器得到q轴参考电流iq *,d轴参考电流值采用最大转矩电流比(MTPA)控制,可由下式得出:The difference between the given speed n * and the actual speed n of the motor is obtained by the proportional-integral (PI) controller to obtain the q-axis reference current i q * , and the d-axis reference current value is controlled by the maximum torque current ratio (MTPA), which can be obtained by the following formula inferred:

式中,iq *为q轴参考电流给定值;In the formula, i q * is the given value of the q-axis reference current;

改进UDE的电流控制器使用的数学模型表示为:The mathematical model used by the improved UDE current controller is expressed as:

其中:Ld、Lq为d、q轴电感,ψf为转子磁链,Rs为定子电阻,Dd,Dq分别为d、q轴的系统随机扰动量;fd,fq分别为d、q轴电机的电阻、电感和磁链变化量,表示如下:Among them: L d and L q are d and q axis inductances, ψ f is rotor flux linkage, R s is stator resistance, D d and D q are system random disturbances of d and q axes respectively; f d and f q are respectively are the resistance, inductance and flux linkage changes of the d and q axis motors, expressed as follows:

为了实现电机实际电流与给定参考电流的渐近跟随,改进UDE的电流控制器中使用一个稳定的参考模型,来满足电流的跟随性能。现选择如下的线性参考模型:In order to realize the asymptotic following of the actual motor current and the given reference current, a stable reference model is used in the improved UDE current controller to satisfy the current following performance. Now select the following linear reference model:

式中,xm(t)=[idmiqm]T为d、q轴参考模型中电流矢量矩阵,c(t)=[id *iq *]T为d、q轴参考电流给定矢量矩阵,Am、Bm为对应xm(t)、c(t)的系数矩阵;In the formula, x m (t)=[i dm i qm ] T is the current vector matrix in the reference model of d and q axes, c(t)=[i d * i q * ] T is the reference current of d and q axes Fixed vector matrix, A m , B m are coefficient matrices corresponding to x m (t), c(t);

为了保证系统的稳定性,参考模型的系数矩阵Am、Bm如下所示:In order to ensure the stability of the system, the coefficient matrices A m and B m of the reference model are as follows:

式中,α、β均为正实数,保证系统有两个负的特征值,满足李雅普诺夫稳定理论。In the formula, α and β are both positive real numbers, ensuring that the system has two negative eigenvalues and satisfying the Lyapunov stability theory.

将参数不确定和随机扰动通过一个带宽合适的滤波器,加入系统中;从而能够快速的估计和补偿参数不确定和随机扰动部分,提高系统的鲁棒性。本发明系统中所使用的滤波器为一阶低通滤波器gf(t),补偿系统中的扰动,所述一阶低通滤波器gf(t)的频域形式Gf(s)如下所示:The parameter uncertainty and random disturbance are added to the system through a filter with a suitable bandwidth; thus, the parameter uncertainty and random disturbance can be quickly estimated and compensated, and the robustness of the system is improved. The filter used in the system of the present invention is a first-order low-pass filter g f (t), the disturbance in the compensation system, the frequency domain form G f (s) of the first-order low-pass filter g f (t) As follows:

式中,γ=1/T,γ为所选择的一阶低通滤波器的带宽。Where, γ=1/T, γ is the bandwidth of the selected first-order low-pass filter.

通过上述一阶低通滤波器gf(t)能够观测到参数不确定和系统随机扰动量即:Through the above-mentioned first-order low-pass filter g f (t), the parameter uncertainty and system random disturbance can be observed which is:

式中,“*”为卷积算子,A、B为x(t)、u(t)的系数矩阵,x(t)=[idiq]T为d、q轴实际电流矩阵,u(t)=[uduq]T为d、q轴参考电压矩阵,同时为控制系统输入,f(t)=[fdfq]T,D(t)=[DdDq]T为d、q轴已知扰动矩阵, In the formula, "*" is the convolution operator, A and B are the coefficient matrices of x(t) and u(t), x(t)=[i d i q ] T is the actual current matrix of the d and q axes, u(t)=[u d u q ] T is the reference voltage matrix of the d and q axes, and is the input of the control system at the same time, f(t)=[f d f q ] T , D(t)=[D d D q ] T , is the known perturbation matrix of the d and q axes,

由线性参考模型和一阶低通滤波器得到改进UDE的电流控制器的控制系统输入u(t)为:The control system input u(t) of the current controller of the improved UDE obtained by the linear reference model and the first-order low-pass filter is:

u(t)=B-1[Amxm(t)+Bmc(t)-Ax(t)-d0(t)-f(t)-D(t)] (8)u(t)=B -1 [A m x m (t)+B m c(t)-Ax(t)-d 0 (t)-f(t)-D(t)] (8)

式中,B-1为系数矩阵B的逆矩阵。In the formula, B -1 is the inverse matrix of the coefficient matrix B.

因此控制系统输入u(t)在频域内表示为:Therefore, the control system input u(t) is expressed in the frequency domain as:

式中,U(s)=[UdUq]T为控制系统输入在d、q轴的频域形式,E(s)为电流跟随误差的频域形式,I为单位矩阵,参数KP和KI表示为:In the formula, U(s)=[U d U q ] T is the frequency domain form of the control system input on the d and q axes, E(s) is the frequency domain form of the current following error, I is the identity matrix, and the parameter K P and K I expressed as:

但是改进UDE的电流控制器中参数受到不同扰动的影响而对应不同的值,为了实现参数自适应,所述控制系统输入u(t)中的参数KI的调节方法为:However, the parameters in the current controller of the improved UDE are affected by different disturbances and correspond to different values. In order to realize parameter self-adaptation, the adjustment method of the parameter KI in the input u(t) of the control system is:

将参数KI在原固有参数γd0、γq0上增加可变参数γd1、γq1得到如下式所示:Add variable parameters γ d1 and γ q1 to the original intrinsic parameters γ d0 and γ q0 of parameter K I to get As shown in the following formula:

固有参数γd0、γq0由α、β和γ确定;d轴可变参数γd1是将d轴实际电流与参考电流的差值经过比例控制器得到,q轴可变参数γq1是将q轴参考电流与实际电流的差值经过比例控制器得到,如下式所示:The intrinsic parameters γ d0 and γ q0 are determined by α, β and γ; the d-axis variable parameter γ d1 is obtained by the difference between the d-axis actual current and the reference current through a proportional controller; the q-axis variable parameter γ q1 is the q The difference between the shaft reference current and the actual current is obtained through the proportional controller, as shown in the following formula:

如图5所示,本发明的改进UDE的内置式永磁同步电机电流控制方法,具体包括如下步骤:As shown in Figure 5, the current control method of the built-in permanent magnet synchronous motor of the improved UDE of the present invention specifically includes the following steps:

1)在当前控制周期,由控制系统对电机实际转速n,转子位置角θ,电机三相电流iA、iB和iC,以及直流母线电压udc进行采样,并利用三相旋转坐标系到两相静止坐标系变换求解出d、q轴实际电流id、iq1) In the current control cycle, the control system samples the actual motor speed n, the rotor position angle θ, the motor three-phase currents i A , i B and i C , and the DC bus voltage u dc , and uses the three-phase rotating coordinate system Transform to the two-phase static coordinate system to solve the d, q axis actual current i d , i q ;

2)根据电机给定转速n*与电机实际转速n的差值,通过比例积分(PI)控制器得到q轴参考电流iq *,采用最大转矩电流比(MTPA)控制方法中的公式法计算出d轴参考电流id *2) According to the difference between the given motor speed n * and the motor’s actual speed n, the q-axis reference current i q * is obtained through a proportional-integral (PI) controller, and the formula method in the maximum torque current ratio (MTPA) control method is adopted Calculate the d-axis reference current i d * ;

3)利用d、q轴参考电流id *、iq *与实际电流id、iq的差值,通过改进的UDE电流控制器,分别得到d、q轴电压的参考值ud、uq;其中,3) Utilizing the difference between the d and q axis reference currents id * , i q * and the actual currents id, i q , the reference values u d and u of the d and q axis voltages are respectively obtained through the improved UDE current controller q ; where,

所述改进UDE的电流控制器包括如下的线性参考模型:The current controller of the improved UDE includes the following linear reference model:

式中,xm(t)=[idmiqm]T为d、q轴参考模型中电流矢量矩阵,c(t)=[id *iq *]T为d、q轴参考电流给定矢量矩阵,Am、Bm为对应xm(t)、c(t)的系数矩阵;In the formula, x m (t)=[i dm i qm ] T is the current vector matrix in the reference model of d and q axes, c(t)=[i d * i q * ] T is the reference current of d and q axes Fixed vector matrix, A m , B m are coefficient matrices corresponding to x m (t), c(t);

为了保证控制系统的稳定性,将线性参考模型的系数矩阵Am、Bm表示如下:In order to ensure the stability of the control system, the coefficient matrices A m and B m of the linear reference model are expressed as follows:

式中,α、β均为正实数,保证控制系统有两个负的特征值,满足李雅普诺夫稳定理论;In the formula, α and β are both positive real numbers, ensuring that the control system has two negative eigenvalues and satisfying the Lyapunov stability theory;

对于控制系统中出现的参数不确定和系统随机扰动,使用一阶低通滤波器gf(t)补偿系统中的扰动,所述一阶低通滤波器gf(t)的频域形式Gf(s)表示如下:For parameter uncertainties and system random disturbances that appear in the control system, a first-order low-pass filter g f (t) is used to compensate the disturbances in the system, and the frequency-domain form of the first-order low-pass filter g f (t) G f (s) is expressed as follows:

式中,γ=1/T,γ为所选择的一阶低通滤波器的带宽。Where, γ=1/T, γ is the bandwidth of the selected first-order low-pass filter.

通过一阶低通滤波器gf(t)能够观测到参数不确定和系统随机扰动量即:Uncertain parameters and system random disturbances can be observed through the first-order low-pass filter g f (t) which is:

式中,“*”为卷积算子,A、B为x(t)、u(t)的系数矩阵,x(t)=[idiq]T为d、q轴实际电流矩阵,u(t)=[uduq]T为d、q轴参考电压矩阵,同时为控制系统输入,f(t)=[fdfq]T为d、q轴参数不确定矩阵,D(t)=[DdDq]T为d、q轴随机扰动矩阵,Ld、Lq为d、q轴电感,ψf为转子磁链,Rs为定子电阻,为d、q轴已知扰动矩阵, In the formula, "*" is the convolution operator, A and B are the coefficient matrices of x(t) and u(t), x(t)=[i d i q ] T is the actual current matrix of the d and q axes, u(t)=[u d u q ] T is the reference voltage matrix of the d and q axes, and is the input of the control system at the same time, f(t)=[f d f q ] T is the parameter uncertainty matrix of the d and q axes, D (t)=[D d D q ] T is the random perturbation matrix of the d and q axes, L d and L q are the inductances of the d and q axes, ψ f is the rotor flux linkage, R s is the stator resistance, is the known perturbation matrix of the d and q axes,

由线性参考模型和一阶低通滤波器得到改进UDE的电流控制器的控制系统输入u(t)为:The control system input u(t) of the current controller of the improved UDE obtained by the linear reference model and the first-order low-pass filter is:

u(t)=B-1[Amxm(t)+Bmc(t)-Ax(t)-d0(t)-f(t)-D(t)]u(t)=B -1 [A m x m (t)+B m c(t)-Ax(t)-d 0 (t)-f(t)-D(t)]

式中,B-1为系数矩阵B的逆矩阵;In the formula, B -1 is the inverse matrix of the coefficient matrix B;

因此控制系统输入u(t)在频域内表示为:Therefore, the control system input u(t) is expressed in the frequency domain as:

式中,U(s)=[UdUq]T为控制系统输入在d、q轴的频域形式,E(s)为电流跟随误差的频域形式,I为单位矩阵,参数KP和KI表示为:In the formula, U(s)=[U d U q ] T is the frequency domain form of the control system input on the d and q axes, E(s) is the frequency domain form of the current following error, I is the identity matrix, and the parameter K P and K I expressed as:

所述控制系统输入u(t)中的参数KI的调节方法为:The adjustment method of the parameter KI in described control system input u (t) is:

将参数KI在原固有参数γd0、γq0上增加可变参数γd1、γq1得到如下式所示:Add variable parameters γ d1 and γ q1 to the original intrinsic parameters γ d0 and γ q0 of parameter K I to get As shown in the following formula:

固有参数γd0、γq0由α、β和γ确定;d轴可变参数γd1是将d轴实际电流与参考电流的差值经过比例控制器得到,q轴可变参数γq1是将q轴参考电流与实际电流的差值经过比例控制器得到,如下式所示:The intrinsic parameters γ d0 and γ q0 are determined by α, β and γ; the d-axis variable parameter γ d1 is obtained by the difference between the d-axis actual current and the reference current through a proportional controller; the q-axis variable parameter γ q1 is the q The difference between the shaft reference current and the actual current is obtained through the proportional controller, as shown in the following formula:

4)将得到的d、q轴的电压参考值ud、uq变换到两相旋转坐标系下的电压参考值uα、uβ,采用电压空间矢量调制(SVPWM)方法,得到对应逆变器的PWM脉冲,由逆变器输出得到三相电压,用于驱动内置式永磁同步电机;4) Transform the obtained d and q-axis voltage reference values u d , u q into voltage reference values u α , u β in the two-phase rotating coordinate system, and use the voltage space vector modulation (SVPWM) method to obtain the corresponding inverter The PWM pulse of the inverter is output by the inverter to obtain the three-phase voltage, which is used to drive the built-in permanent magnet synchronous motor;

5)返回步骤1)重复循环。5) Return to step 1) to repeat the loop.

Claims (3)

1.一种改进UDE的内置式永磁同步电机电流控制方法,其特征在于,包括如下步骤:1. A built-in permanent magnet synchronous motor current control method improving UDE, is characterized in that, comprises the steps: 1)在当前控制周期,由控制系统对电机实际转速n,转子位置角θ,电机三相电流iA、iB和iC,以及直流母线电压udc进行采样,并利用三相旋转坐标系到两相静止坐标系变换求解出d、q轴实际电流id、iq1) In the current control cycle, the control system samples the actual motor speed n, the rotor position angle θ, the motor three-phase currents i A , i B and i C , and the DC bus voltage u dc , and uses the three-phase rotating coordinate system Transform to the two-phase static coordinate system to solve the d, q axis actual current i d , i q ; 2)根据电机给定转速n*与电机实际转速n的差值,通过比例积分控制器得到q轴参考电流iq *,采用最大转矩电流比控制方法中的公式法计算出d轴参考电流id *2) According to the difference between the given motor speed n * and the motor’s actual speed n, the q-axis reference current i q * is obtained through the proportional integral controller, and the d-axis reference current is calculated using the formula method in the maximum torque current ratio control method i d * ; 3)利用d、q轴参考电流id *、iq *与实际电流id、iq的差值,通过改进UDE的电流控制器,分别得到d、q轴电压的参考值ud、uq3) Utilizing the difference between the reference current id * , i q * of the d , q axis and the actual current id , i q , by improving the current controller of UDE, the reference values u d , u of the d, q axis voltage are respectively obtained q ; 4)将得到的d、q轴的电压参考值ud、uq变换到两相旋转坐标系下的电压参考值uα、uβ,采用电压空间矢量调制方法,得到对应逆变器的PWM脉冲,由逆变器输出得到三相电压,用于驱动内置式永磁同步电机;4) Transform the obtained d and q-axis voltage reference values u d and u q into voltage reference values u α and u β in the two-phase rotating coordinate system, and use the voltage space vector modulation method to obtain the corresponding PWM of the inverter Pulse, the three-phase voltage output by the inverter is used to drive the built-in permanent magnet synchronous motor; 5)返回步骤1)重复循环。5) Return to step 1) to repeat the loop. 2.根据权利要求1所述的改进UDE的内置式永磁同步电机电流控制方法,其特征在于,步骤3)中所述改进UDE的电流控制器包括如下的线性参考模型:2. the built-in permanent magnet synchronous motor current control method of improving UDE according to claim 1, is characterized in that, the current controller of improving UDE described in step 3) comprises following linear reference model: 式中,xm(t)=[idmiqm]T为d、q轴参考模型中电流矢量矩阵,c(t)=[id *iq *]T为d、q轴参考电流给定矢量矩阵,Am、Bm为对应xm(t)、c(t)的系数矩阵;In the formula, x m (t)=[i dm i qm ] T is the current vector matrix in the reference model of d and q axes, c(t)=[i d * i q * ] T is the reference current of d and q axes Fixed vector matrix, A m , B m are coefficient matrices corresponding to x m (t), c(t); 为了保证控制系统的稳定性,将线性参考模型的系数矩阵Am、Bm表示如下:In order to ensure the stability of the control system, the coefficient matrices A m and B m of the linear reference model are expressed as follows: 式中,α、β均为正实数,保证控制系统有两个负的特征值,满足李雅普诺夫稳定理论;In the formula, α and β are both positive real numbers, ensuring that the control system has two negative eigenvalues and satisfying the Lyapunov stability theory; 对于控制系统中出现的参数不确定和系统随机扰动,使用一阶低通滤波器gf(t)补偿系统中的扰动,所述一阶低通滤波器gf(t)的频域形式Gf(s)表示如下:For parameter uncertainties and system random disturbances that appear in the control system, a first-order low-pass filter g f (t) is used to compensate the disturbances in the system, and the frequency-domain form of the first-order low-pass filter g f (t) G f (s) is expressed as follows: 式中,γ=1/T,γ为所选择的一阶低通滤波器的带宽;In the formula, γ=1/T, γ is the bandwidth of the selected first-order low-pass filter; 通过一阶低通滤波器gf(t)能够观测到参数不确定和系统随机扰动量即:Uncertain parameters and system random disturbances can be observed through the first-order low-pass filter g f (t) which is: 式中,“*”为卷积算子,A、B为x(t)、u(t)的系数矩阵,x(t)=[idiq]T为d、q轴实际电流矩阵,u(t)=[uduq]T为d、q轴参考电压矩阵,同时为控制系统输入,f(t)=[fdfq]T为d、q轴参数不确定矩阵,D(t)=[DdDq]T为d、q轴随机扰动矩阵,Ld、Lq为d、q轴电感,ψf为转子磁链,Rs为定子电阻,为d、q轴已知扰动矩阵, In the formula, "*" is the convolution operator, A and B are the coefficient matrices of x(t) and u(t), x(t)=[i d i q ] T is the actual current matrix of the d and q axes, u(t)=[u d u q ] T is the reference voltage matrix of the d and q axes, and is the input of the control system at the same time, f(t)=[f d f q ] T is the parameter uncertainty matrix of the d and q axes, D (t)=[D d D q ] T is the random perturbation matrix of the d and q axes, L d and L q are the inductances of the d and q axes, ψ f is the rotor flux linkage, R s is the stator resistance, is the known perturbation matrix of the d and q axes, 由线性参考模型和一阶低通滤波器得到改进UDE的电流控制器的控制系统输入u(t)为:The control system input u(t) of the current controller of the improved UDE obtained by the linear reference model and the first-order low-pass filter is: u(t)=B-1[Amxm(t)+Bmc(t)-Ax(t)-d0(t)-f(t)-D(t)]u(t)=B -1 [A m x m (t)+B m c(t)-Ax(t)-d 0 (t)-f(t)-D(t)] 式中,B-1为系数矩阵B的逆矩阵;In the formula, B -1 is the inverse matrix of the coefficient matrix B; 因此控制系统输入u(t)在频域内表示为:Therefore, the control system input u(t) is expressed in the frequency domain as: 式中,U(s)=[UdUq]T为控制系统输入在d、q轴的频域形式,E(s)为电流跟随误差的频域形式,I为单位矩阵,参数KP和KI表示为: In the formula, U(s)=[U d U q ] T is the frequency domain form of the control system input on the d and q axes, E(s) is the frequency domain form of the current following error, I is the identity matrix, and the parameter K P and K I expressed as: 3.根据权利要求2所述的改进UDE的内置式永磁同步电机电流控制方法,其特征在于,所述控制系统输入u(t)中的参数KI的调节方法为:3. the built-in permanent magnet synchronous motor current control method of improving UDE according to claim 2, is characterized in that, the adjustment method of the parameter K in the described control system input u (t) is: 将参数KI在原固有参数γd0、γq0上增加可变参数γd1、γq1得到如下式所示:Add variable parameters γ d1 and γ q1 to the original intrinsic parameters γ d0 and γ q0 of parameter K I to get As shown in the following formula: 固有参数γd0、γq0由α、β和γ确定;d轴可变参数γd1是将d轴实际电流与参考电流的差值经过比例控制器得到,q轴可变参数γq1是将q轴参考电流与实际电流的差值经过比例控制器得到,如下式所示:The intrinsic parameters γ d0 and γ q0 are determined by α, β and γ; the d-axis variable parameter γ d1 is obtained by the difference between the d-axis actual current and the reference current through a proportional controller; the q-axis variable parameter γ q1 is the q The difference between the shaft reference current and the actual current is obtained through the proportional controller, as shown in the following formula:
CN201810462344.2A 2018-05-15 2018-05-15 Current control method of built-in permanent magnet synchronous motor of UDE Active CN108649850B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810462344.2A CN108649850B (en) 2018-05-15 2018-05-15 Current control method of built-in permanent magnet synchronous motor of UDE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810462344.2A CN108649850B (en) 2018-05-15 2018-05-15 Current control method of built-in permanent magnet synchronous motor of UDE

Publications (2)

Publication Number Publication Date
CN108649850A true CN108649850A (en) 2018-10-12
CN108649850B CN108649850B (en) 2021-05-11

Family

ID=63755784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810462344.2A Active CN108649850B (en) 2018-05-15 2018-05-15 Current control method of built-in permanent magnet synchronous motor of UDE

Country Status (1)

Country Link
CN (1) CN108649850B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109901383A (en) * 2019-03-01 2019-06-18 江苏理工学院 A kind of AC servo motor driver control method
CN112003530A (en) * 2020-08-17 2020-11-27 西安热工研究院有限公司 A method for improving the robustness of a speed sensorless permanent magnet synchronous motor control system
CN113517829A (en) * 2021-07-22 2021-10-19 燕山大学 A brushless DC motor maximum torque-current ratio control method and system
WO2024098507A1 (en) * 2022-11-10 2024-05-16 中车永济电机有限公司 Control method, apparatus and system, and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751935A (en) * 2012-07-03 2012-10-24 中国东方电气集团有限公司 Method for suppressing asynchronous motor interference under rotating speed open loop of electric car
CN103312256A (en) * 2013-05-14 2013-09-18 哈尔滨工程大学 Networked servomotor control method based on disturbance observer
KR101322240B1 (en) * 2013-09-10 2013-10-28 서울과학기술대학교 산학협력단 An apparatus and a method for torque control of a permanent magnet synchronous motor
EP2846455A1 (en) * 2013-09-06 2015-03-11 ABB Technology AG Method and apparatus for estimating a stator flux in an electrical induction machine
CN107994819A (en) * 2017-12-01 2018-05-04 北方工业大学 A kind of permanent magnet synchronous motor system model predictions current control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751935A (en) * 2012-07-03 2012-10-24 中国东方电气集团有限公司 Method for suppressing asynchronous motor interference under rotating speed open loop of electric car
CN103312256A (en) * 2013-05-14 2013-09-18 哈尔滨工程大学 Networked servomotor control method based on disturbance observer
EP2846455A1 (en) * 2013-09-06 2015-03-11 ABB Technology AG Method and apparatus for estimating a stator flux in an electrical induction machine
KR101322240B1 (en) * 2013-09-10 2013-10-28 서울과학기술대학교 산학협력단 An apparatus and a method for torque control of a permanent magnet synchronous motor
CN107994819A (en) * 2017-12-01 2018-05-04 北方工业大学 A kind of permanent magnet synchronous motor system model predictions current control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
任建俊: "《基于不确定干扰估计器的控制及永磁同步电机驱动应用研究》", 《中国优秀硕士论文全文数据库(电子期刊)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109901383A (en) * 2019-03-01 2019-06-18 江苏理工学院 A kind of AC servo motor driver control method
CN112003530A (en) * 2020-08-17 2020-11-27 西安热工研究院有限公司 A method for improving the robustness of a speed sensorless permanent magnet synchronous motor control system
CN113517829A (en) * 2021-07-22 2021-10-19 燕山大学 A brushless DC motor maximum torque-current ratio control method and system
CN113517829B (en) * 2021-07-22 2022-05-24 燕山大学 A brushless DC motor maximum torque-current ratio control method and system
WO2024098507A1 (en) * 2022-11-10 2024-05-16 中车永济电机有限公司 Control method, apparatus and system, and storage medium

Also Published As

Publication number Publication date
CN108649850B (en) 2021-05-11

Similar Documents

Publication Publication Date Title
Zhao et al. An adaptive quasi-sliding-mode rotor position observer-based sensorless control for interior permanent magnet synchronous machines
CN109194221B (en) A method for field weakening control of permanent magnet synchronous motor with table look-up
CN105827168B (en) Method for controlling permanent magnet synchronous motor and system based on sliding formwork observation
CN106992729B (en) A kind of stator permanent magnetic type memory electrical machine permanent magnet flux linkage Discrete control method
CN106655938B (en) Control system for permanent-magnet synchronous motor and control method based on High-Order Sliding Mode method
Zhang et al. Fast-super-twisting sliding mode speed loop control of permanent magnet synchronous motor based on SVM-DTC
CN108649850B (en) Current control method of built-in permanent magnet synchronous motor of UDE
CN108964555A (en) Permanent magnet synchronous motor low carrier based on complex vector adjuster compares control method
CN109194218B (en) Control device, control method and system of direct-current bias type hybrid excitation motor
Zhao et al. Compensation algorithms for sliding mode observers in sensorless control of IPMSMs
CN107017807B (en) A torque ripple suppression method for stator permanent magnet type memory motor
CN104300864A (en) Decoupling control method for permanent magnet synchronous motor
CN113422550B (en) Low carrier ratio control method for high-speed motor based on complex vector decoupling and delay compensation
CN107623469A (en) Field Weakening Control Device and Method for a DC Biased Sinusoidal Current Motor
CN110165952A (en) A kind of no electrolytic capacitor permanent magnet synchronous motor vector controlled busbar voltage fluctuation compensation method
CN111082726B (en) Current control method of permanent magnet motor servo system
CN111130409B (en) Ultra-low speed high-precision positioning control method of frameless torque motor
CN110336504B (en) Permanent magnet synchronous motor control method based on virtual signal injection and gradient descent method
Wang et al. Adaptive periodic disturbance observer based on fuzzy logic compensation for speed fluctuation suppression of PMSM under periodic loads
CN112701969B (en) An Online Optimization Method for Maximum Torque-Current Ratio of Synchronous Reluctance Motor
CN114039521A (en) A low carrier ratio control method for permanent magnet synchronous motor
CN107171611A (en) A kind of big control method for torque output of stator permanent magnetic type memory electrical machine
Mukti et al. Field oriented control design of inset rotor PMSM drive
Zhong et al. An improved observer-based current decoupling method for mitigating speed fluctuation of variable flux memory machines
CN116800154A (en) Permanent magnet synchronous motor control method based on novel finite position set phase-locked loop

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant