[go: up one dir, main page]

CN108649595A - Battery energy storage system, control system thereof and application thereof - Google Patents

Battery energy storage system, control system thereof and application thereof Download PDF

Info

Publication number
CN108649595A
CN108649595A CN201810422475.8A CN201810422475A CN108649595A CN 108649595 A CN108649595 A CN 108649595A CN 201810422475 A CN201810422475 A CN 201810422475A CN 108649595 A CN108649595 A CN 108649595A
Authority
CN
China
Prior art keywords
battery
battery pack
controller
charge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810422475.8A
Other languages
Chinese (zh)
Other versions
CN108649595B (en
Inventor
维杰·李·比斯顿
罗伯特.纳尔逊.泰瑞尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powin Energy Corp
Original Assignee
Powin Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/845,598 external-priority patent/US10536007B2/en
Application filed by Powin Energy Corp filed Critical Powin Energy Corp
Publication of CN108649595A publication Critical patent/CN108649595A/en
Application granted granted Critical
Publication of CN108649595B publication Critical patent/CN108649595B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The invention provides a modular, stacked battery energy storage unit and control system and applications thereof. The electrical energy storage unit may also be referred to as a battery energy storage system ("BESS"). In one embodiment, the electrical energy storage unit includes a battery system controller and a battery pack with an operating system. The battery pack comprises a single battery, a battery pack controller for controlling the single battery and a battery pack control system, wherein the battery pack control system comprises a series of modules including other modules, a battery endurance tracking module, a module for ensuring the effectiveness of the single battery in a quality guarantee period and an inverter balancing module. The inverter balancing module controls the power supply amount in the battery unit. In one embodiment, the battery cell is a lithium ion battery cell.

Description

电池储能系统和其控制系统以及其应用Battery energy storage system and its control system and its application

技术领域technical field

本发明大体而言涉及一种电能储存装置。更特定而言,本发明涉及一种模块化,堆叠式的电池能源储存单元和控制系统以及其应用。The present invention generally relates to an electrical energy storage device. More particularly, the present invention relates to a modular, stackable battery energy storage unit and control system and applications thereof.

背景技术Background technique

电能对于现代国家经济至关重要。然而,增加的电能需求和增加可再生能量资产用来发电的趋势给老化的电力基础设施带来压力,这使得老化电力基础设施更易于出现故障,特别是在峰值需求期间。在某些区域中,需求增加使得峰值需求时段危险地接近、超过电力工业能产生和传输的最大供电水平。在本文中描述了允许以更具有经济合算和可靠方式产生和使用电力的新能量存储系统、方法和设备。Electrical energy is vital to modern national economies. However, increasing electricity demand and the trend to increase the use of renewable energy assets to generate electricity are putting pressure on aging electricity infrastructure, which makes aging electricity infrastructure more prone to failure, especially during peak demand periods. In some regions, increased demand has brought peak demand periods dangerously close to, and exceeding, the maximum levels of power that the power industry can generate and deliver. Described herein are new energy storage systems, methods, and devices that allow electricity to be generated and used in a more cost-effective and reliable manner.

发明内容Contents of the invention

本发明提供一种模块化,堆叠式式的电能储存单元和控制系统以及其应用。电能储存单元也可以被称作电池能量储存系统(“BESS”)。在一实施例中,电能储存单元包括电池系统控制器和具有电池组控制系统的电池组。每个电池组具有电池单体,调控电池单体的电池组控制器和电池组控制系统,所述电池组控制系统包括一系列模块,其中包括其他模块,追踪电池续航时间模块,确保电池单体在质保期内有效用的模块和均衡模块。所述均衡模块控制电池单体内的电源量。在一实施例中,所述电池单体为锂离子电池单体。The invention provides a modularized and stacked electric energy storage unit, a control system and an application thereof. An electrical energy storage unit may also be referred to as a battery energy storage system ("BESS"). In one embodiment, an electrical energy storage unit includes a battery system controller and a battery pack having a battery pack control system. Each battery pack has battery cells, a battery pack controller that regulates the battery cells, and a battery pack control system that includes a series of modules, including other modules that track battery life time and ensure that the battery cells Valid modules and equalization modules within the warranty period. The balancing module controls the amount of power in the battery cells. In one embodiment, the battery cell is a Li-ion battery cell.

在一实施例中,电池组可为模块化,堆叠式式的电池单元。多个所述电池单体与堆叠式电池控制器或者串行电池控制器连接在一起组成堆叠式电池。一个或以上所述堆叠式电池可组成一个电能储存单元或系统。In one embodiment, the battery pack can be a modular, stacked battery unit. A plurality of battery cells are connected together with a stacked battery controller or a serial battery controller to form a stacked battery. One or more stacked batteries described above can form an electrical energy storage unit or system.

在一实施例中,电池单体均衡器包括为电池单体放电的电阻器。在另一实施例中,电池单体平衡均衡器包括电容器,电感器,或者两者具含,用以在电池单体之间传输电能。In one embodiment, the battery cell equalizer includes resistors that discharge the battery cells. In another embodiment, the battery cell balancing equalizer includes capacitors, inductors, or both, for transferring power between the battery cells.

在一实施例中,安培小时监视器计算由电池组控制器发出的安培小时值来确定每一个电池单体中的荷电状态。In one embodiment, the amp-hour monitor calculates the amp-hour value sent by the battery pack controller to determine the state of charge in each battery cell.

在一实施例中,一种继电器控制器操作继电器,继电器控制电池单体的充电和放电以及其它功能,诸如,冷却风扇的接通和切断、控制电源等。In one embodiment, a relay controller operates relays that control charging and discharging of battery cells and other functions, such as turning on and off cooling fans, controlling power supplies, and the like.

在一实施例中,电池组操作系统包括产生电池数据的模块,所述电池数据为数据中心所接收并分析用以确定保险销售额的价格数据。In one embodiment, the battery pack operating system includes a module for generating battery data received by the data center and analyzed as price data for determining insurance sales.

在一实施例中,电池数据可通过互联网从网络连接的电池组接收,所述电池数据储存在数据中心,用于生成保险费率数据。In one embodiment, battery data may be received from a network-connected battery pack via the Internet, the battery data stored in a data center, and used to generate insurance rate data.

本发明的特点在于能量储存单元和控制系统是高度可缩放的,其范围从小千瓦时级电能储存单元到兆瓦时级电能储存单元。本发明的特点还在于除了根据单体电压之外,其还能根据除了通过单体电压之外,通过单体荷电状态计算来控制和平衡均衡电池单体。A feature of the present invention is that the energy storage unit and control system are highly scalable, ranging from small kilowatt-hour electrical energy storage units to megawatt-hour electrical energy storage units. The present invention is also characterized in that it can control and balance the battery cells by calculating the state of charge of the cells in addition to the cell voltages.

参考附图,在下文中更详细地描述另外的实施例、特点和优点以及本发明的各种实施例的结构和操作。Additional embodiments, features and advantages, as well as the structure and operation of various embodiments of the invention, are described in more detail below with reference to the accompanying drawings.

附图说明Description of drawings

附图并入于本文中并且构成本说明书的部分,附图展示了本发明并且与描述一起进一步用来解释本发明的原理并且使得相关领域技术人员能做出和使用本文所公开的实施例。The accompanying drawings, which are incorporated herein and constitute a part of this specification, illustrate the invention and together with the description serve to further explain the principles of the invention and to enable those skilled in the relevant art to make and use the embodiments disclosed herein.

图1A是展示一实施例中包括一个或以上电池组组合而成的电能储存单元结构图;FIG. 1A is a structural diagram showing an electric energy storage unit composed of one or more battery packs in one embodiment;

图1B是展示一实施例中具有收集并生成电池率数据用以销售电池保险的操作系统的电池组的图;Figure IB is a diagram illustrating a battery pack with an operating system that collects and generates battery rating data for sale of battery insurance, in one embodiment;

图1C是展示一实施例中的电池组操作系统的图;Figure 1C is a diagram illustrating the battery pack operating system in one embodiment;

图1D是展示一实施例中的电能储存单元的图;Figure 1D is a diagram showing an electrical energy storage unit in one embodiment;

图2A是展示图1D中的电能储存单元在与风车连接使用的图;Fig. 2A is a diagram showing that the electric energy storage unit in Fig. 1D is used in connection with a windmill;

图2B是展示图1D中的电能储存单元与太阳能电池板连接使用的图;Fig. 2B is a diagram showing the use of the electric energy storage unit in Fig. 1D connected to a solar panel;

图2C是展示图1D中的电能储存单元与电路连接使用的图;FIG. 2C is a diagram showing the use of the electric energy storage unit in FIG. 1D connected to a circuit;

图3是展示一实施例中的电池组的图;FIG. 3 is a diagram showing a battery pack in an embodiment;

图4是进一步展示一实施例的电池组的图;4 is a diagram further illustrating a battery pack of an embodiment;

图5是展示一实施例的电池组控制器的图;Figure 5 is a diagram illustrating a battery pack controller of an embodiment;

图6A是展示一实施例的电池单体均衡器的图;FIG. 6A is a diagram illustrating a battery cell equalizer of an embodiment;

图6B是展示一实施例的电池单体均衡器的图;FIG. 6B is a diagram illustrating a battery cell equalizer of an embodiment;

图6C是展示一实施例的电池单体均衡器的图;FIG. 6C is a diagram illustrating a battery cell equalizer of an embodiment;

图7是展示一实施例中的电能储存单元的图;Figure 7 is a diagram showing an electrical energy storage unit in an embodiment;

图8A,8B和8C是展示一实施例的电池系统控制器的图;8A, 8B and 8C are diagrams illustrating a battery system controller of an embodiment;

图9是展示一实施例的电能储存单元的图;Fig. 9 is a diagram showing an electric energy storage unit of an embodiment;

图10A是展示一实施例的电能储存单元的图;Figure 10A is a diagram showing an electrical energy storage unit of an embodiment;

图10B是展示一实施例的电能储存系统的图;Figure 10B is a diagram illustrating an electrical energy storage system of an embodiment;

图10C是展示一实施例的电能储存系统的图;Figure 10C is a diagram illustrating an electrical energy storage system of an embodiment;

图11是展示一实施例的电能储存系统的图;Figure 11 is a diagram illustrating an electrical energy storage system of an embodiment;

图12是展示一实施例的电能储存系统的图;Figure 12 is a diagram showing an electrical energy storage system of an embodiment;

图13是展示一实施例的电能储存系统的图;Figure 13 is a diagram illustrating an electrical energy storage system of an embodiment;

图14是展示一实施例的电能储存系统的图;Figure 14 is a diagram illustrating an electrical energy storage system of an embodiment;

图15是展示一实施例的电能储存系统的图;Figure 15 is a diagram illustrating an electrical energy storage system of an embodiment;

图16是展示一实施例的电能储存系统的图;Figure 16 is a diagram illustrating an electrical energy storage system of an embodiment;

图17是展示一实施例的电能储存系统的图;Figure 17 is a diagram showing an electrical energy storage system of an embodiment;

图18是示展示一实施例的电能储存系统的图;Figure 18 is a diagram illustrating an electrical energy storage system according to an embodiment;

图19A,19B,19C,19D和19E是展示一实施例的电能储存单元的典型用户接口的图;19A, 19B, 19C, 19D and 19E are diagrams illustrating exemplary user interfaces of an electrical energy storage unit of an embodiment;

图20是展示一实施例的电能储存单元的图;Figure 20 is a diagram showing an electrical energy storage unit of an embodiment;

图21是展示一电能储存单元的实施例使用的典型电池组数据的图;Figure 21 is a graph showing typical battery pack data used by an embodiment of an electrical energy storage unit;

图22A和22B是展示一电能储存单元的实施例使用的典型电池组数据的图;22A and 22B are graphs showing typical battery pack data used by an embodiment of an electrical energy storage unit;

图23A和23B是展示一电能储存单元的实施例使用的典型电池组数据的图;23A and 23B are graphs showing typical battery pack data used by an embodiment of an electrical energy storage unit;

图24A和24B是展示一实施例的电能储存单元的操作的图;24A and 24B are diagrams illustrating the operation of an electrical energy storage unit of an embodiment;

图25是展示一实施例的电能储存单元的操作的图;Figure 25 is a diagram illustrating the operation of an electrical energy storage unit of an embodiment;

图26A,26B,26C和26D是展示一实施例的经典电池组的图;26A, 26B, 26C and 26D are diagrams showing a classical battery pack of an embodiment;

图27A是展示一实施例的由电池组控制器和多个电池模块控制器组成的通讯网络案例图;Fig. 27A is a case diagram showing a communication network composed of a battery pack controller and a plurality of battery module controllers according to an embodiment;

图27B是示展示电池模块控制器接收指令的流程的一个样例的图;Fig. 27B is a diagram showing an example of the flow of the battery module controller receiving instructions;

图28是展示一实施例的电池组控制器的一个样例的图;Figure 28 is a diagram showing an example of a battery pack controller of an embodiment;

图29是展示一实施例的电池模块控制器的一个样例的图;Figure 29 is a diagram showing an example of a battery module controller of an embodiment;

图30是展示一实施例的串控制器的一个样例的图;Figure 30 is a diagram showing an example of a string controller of an embodiment;

图31A和31B是展示一实施例的串控制器的一个样例的图;31A and 31B are diagrams showing an example of a string controller of an embodiment;

图32是一个均衡电池组的示例方案的流程图;Figure 32 is a flowchart of an example scheme for balancing a battery pack;

图33是展示了根据一实施例在电流测量值与用来计算质保值的电流系数之间的相互关系的图;33 is a graph illustrating the correlation between current measurements and current coefficients used to calculate warranty values, according to one embodiment;

图34是展示了根据一实施例在温度测量值与用来计算质保值的温度系数之间的相互关系的图;Figure 34 is a graph illustrating the correlation between temperature measurements and temperature coefficients used to calculate warranty values, according to one embodiment;

图35是展示了根据一实施例在电压测量值与用来计算质保值的电压系数之间的相互关系的图;35 is a graph illustrating the correlation between voltage measurements and voltage coefficients used to calculate warranty values, according to one embodiment;

图36A是展示了一实施例如何确定电池续航时间值或保质期的图;Figure 36A is a diagram illustrating how an embodiment determines a battery life value or shelf life;

图36B是示出(展示)了根据一实施例用于使电池组的质保有效的质保阈值的图;Figure 36B is a graph illustrating (demonstrating) warranty thresholds for validating a warranty on a battery pack according to an embodiment;

图37是展示了一实施例的电池组的示例用途的图;Figure 37 is a diagram illustrating an example use of a battery pack of an embodiment;

图38是展示了根据一实施例的示例质保跟踪器的图;Figure 38 is a diagram illustrating an example warranty tracker, according to an embodiment;

图39是展示了一实施例用来计算和存储累积质保值的示例方法图;Figure 39 is a diagram illustrating an example method for calculating and storing cumulative warranty values, according to an embodiment;

图40是展示了一实施例使用质保跟踪器的示例方法的图;Figure 40 is a diagram illustrating an example method of using the Warranty Tracker, one embodiment;

图41是展示了一实施例展示了电池组和相关联的质保信息的图;Figure 41 is a diagram illustrating an embodiment of a battery pack and associated warranty information;

图42是展示了一实施例基于自放电率和充电时间的电池组的示例分布的图;FIG. 42 is a graph showing an example distribution of battery packs based on self-discharge rate and charge time of an embodiment;

图43是展示了一实施例在温度与电池组的充电时间之间相互关系的图;Figure 43 is a graph illustrating the relationship between temperature and charging time of a battery pack, for one embodiment;

图44是展示了一实施例用来检测具有操作问题或缺陷的电池组的示例系统的图;Figure 44 is a diagram illustrating an example system used by an embodiment to detect battery packs with operational problems or defects;

图45是展示了一实施例从电池组阵列获取集合数据用于分析的图;Figure 45 is a diagram illustrating acquisition of aggregated data from a battery array for analysis by one embodiment;

图46是展示了一实施例用来检测具有操作问题或缺陷的电池组的示例方法的流程图;46 is a flowchart illustrating an example method of an embodiment for detecting a battery pack with operational problems or defects;

图47描绘了一示例BESS的截面图和一个或多个BESS单元的部署示例图;47 depicts a cross-sectional view of an example BESS and an example diagram of a deployment of one or more BESS units;

图48A是展示了联接到示例能量管理系统的示例BESS的图;Figure 48A is a diagram illustrating an example BESS coupled to an example energy management system;

图48B是描绘了示例BESS的截面图的图;Figure 48B is a diagram depicting a cross-sectional view of an example BESS;

图49A、图49B和49C是展示示例BESS的外壳的图;49A, 49B and 49C are diagrams showing the housing of an example BESS;

图50A、图50B和图50C是展示示例BESS的图,其中移除了BESS的外壳;Figures 50A, 50B, and 50C are diagrams showing an example BESS with the housing of the BESS removed;

图51是展示示例BESS中的空气流动的图。Figure 51 is a diagram showing air flow in an example BESS.

图52A和52B是展示了示例BESS与双向变流器连接的图;52A and 52B are diagrams illustrating the connection of an example BESS to a bidirectional converter;

图53A和53B是展示了一个示例BESS的图;53A and 53B are diagrams illustrating an example BESS;

图54A,54B和54C是展示了示例BESS装在一个改良船运集装箱的图;Figures 54A, 54B and 54C are diagrams illustrating example BESS packaged in a modified shipping container;

图55A,55B,55C和55D是展示了一个模块化,堆叠式式BESS的示例的图;55A, 55B, 55C and 55D are diagrams illustrating an example of a modular, stackable BESS;

图56A,56B,56C,56D和56E是示出展示了一个模块化,堆叠式式电池组的图;56A, 56B, 56C, 56D and 56E are diagrams illustrating a modular, stackable battery pack;

图57A,57B,57C,57D,57E和57F是展示了一个模块化,堆叠式式电池组或电池单元的图;Figures 57A, 57B, 57C, 57D, 57E and 57F are diagrams illustrating a modular, stackable battery pack or cell;

图58A,58B和58C是展示了一个模块化,堆叠式式电池组或电池单元的图;58A, 58B and 58C are diagrams illustrating a modular, stackable battery pack or battery unit;

图59A,59B和59C是示出展示了一个模块化,堆叠式式电池组或电池单元的电池装配示例的图;59A, 59B and 59C are diagrams illustrating examples of battery assemblies illustrating a modular, stacked battery pack or battery unit;

图60A和60B是展示了一个示例堆叠式电池控制器或串行电池控制器的图;60A and 60B are diagrams illustrating an example stacked battery controller or serial battery controller;

图61A,61B,61C和61D是展示了一个示例电池组控制器的图;61A, 61B, 61C and 61D are diagrams illustrating an example battery pack controller;

参考附图描述了实施例。元件首先出现的图通常由最左边或相对应的附图标记来表示。The embodiments have been described with reference to the drawings. The drawing in which an element first appears is generally indicated by the leftmost or corresponding reference numeral.

具体实施方式Detailed ways

术语“实施例”或“示例实施例”并不需要所有实施例包括所讨论的特征、优点或操作模式。在不偏离本发明的范围或精神的情况下,可以设计出替代的实施例,并且熟知的元件可能并未详细描述或者可以省略以便不混淆相关细节。此外,本文所用的术语仅仅是出于描述特定示例性实施例的目的且并不意图是限制性的。除非上下文清楚地指示为其它情况,如本文所用的单数形式“一”和“该”预期也包括复数形式。还应了解术语“包括”、“具有”和“包含”当在本发明中使用时,规定所陈述的特征、整体、步骤、操作、元件和部件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元件、构件或其群组的存在。The terms "embodiments" or "example embodiments" do not require that all embodiments include the discussed feature, advantage or mode of operation. Alternative embodiments may be devised, and well-known elements may not have been described in detail or may be omitted so as not to obscure the relevant details without departing from the scope or spirit of the invention. Furthermore, the terminology used herein is for the purpose of describing particular exemplary embodiments only and is not intended to be limiting. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It should also be understood that the terms "comprising", "having" and "comprising" when used in the present invention specify the presence of stated features, integers, steps, operations, elements and parts but do not exclude one or more other Existence of features, integers, steps, operations, elements, components or groups thereof.

在一实施例中,电能储存单元(其也可以被称作电池能量储存系统(“BESS”)包括电池系统控制器和电池组。每个电池组具有:电池单体,监视单体的电池组控制器,调整单体中储存的能量的电池组单体逆变器器和电池组充电器。电池组控制器操作电池组单体均衡器和电池组充电器以控制单体的荷电状态。在一实施例中,单体是锂离子电池单体。In one embodiment, an electrical energy storage unit (which may also be referred to as a battery energy storage system (“BESS”) includes a battery system controller and battery packs. Each battery pack has: a battery cell, a battery pack that monitors the cells A controller, a battery pack cell inverter and a battery pack charger that adjust the energy stored in the cells.The battery pack controller operates the battery pack cell equalizer and the battery pack charger to control the state of charge of the cells. In one embodiment, the cells are Li-ion battery cells.

如本文所描述,本发明的特点在于能量储存单元和控制系统是高度可缩放的,其范围从千瓦时级电能储存单元到兆瓦时级电能储存单元。As described herein, a feature of the present invention is that the energy storage unit and control system are highly scalable, ranging from kilowatt-hour electrical energy storage units to megawatt-hour electrical energy storage units.

图1A是是展示一实施例中包括一个或多个电池组104的电能储存单元10的结构组图。所示电能储存单元包括能量储存单元100,能量储存单元110和能量储存单元120.能量储存单元 100包括一个独立的电池组104c。能量储存单元120包括两个电池组104d和104e。一般而言,能量储存单元可包括电池组104的任何数字。FIG. 1A is a block diagram illustrating an electrical energy storage unit 10 including one or more battery packs 104 in one embodiment. The electrical energy storage unit shown includes an energy storage unit 100, an energy storage unit 110 and an energy storage unit 120. The energy storage unit 100 includes a self-contained battery pack 104c. Energy storage unit 120 includes two battery packs 104d and 104e. In general, energy storage units may include any number of batteries 104 .

如图1A所示,连接的电池组104与数据中心140连接并能通过网络130发送数据。来自电池组104的数据可以被自动发送到数据中心140或者为响应通过数据中心140发送到能量储存单元100,110和120的信号被发送到数据中心140。As shown in FIG. 1A , connected battery pack 104 is connected to data center 140 and is capable of sending data over network 130 . Data from battery pack 104 may be sent to data center 140 automatically or in response to a signal sent by data center 140 to energy storage units 100 , 110 , and 120 .

图1B是展示一实施例中具有操作系统150的电池组104,所述操作系统150通过收集电池数据160来生成用于销售的电池保险170的电池率数据。在一实施例中,电池组操作系统150 是一系列具有以下描述的很多功能的模块。数据中心140是任何可以储存电池数据的数据中心。在一实施例中,该电池数据包括预测电池续航时间的数据,表述电池使用的数据和与电池质保期相关的数据。此数据包括,例如:电压数据,电池温度数据,电池充电和放电状态数据和电量数据。在一实施例中,此数据与特定的电池模块,特定的电池制造商和特定的电池组和能量储存系统制造商相对应。FIG. 1B is a diagram illustrating a battery pack 104 with an operating system 150 that collects battery data 160 to generate battery rating data for sale of battery insurance 170 in one embodiment. In one embodiment, battery pack operating system 150 is a series of modules with many of the functions described below. Data center 140 is any data center that can store battery data. In one embodiment, the battery data includes data predicting battery life, data describing battery usage, and data related to battery warranty period. This data includes, for example: voltage data, battery temperature data, battery charge and discharge state data, and capacity data. In one embodiment, this data corresponds to a specific battery module, a specific battery manufacturer and a specific battery pack and energy storage system manufacturer.

在一实施例中,电池数据160(数据中心140中储存的样例数据)被分析并用于形成保险目的的数据。例如,该电池数据可以被分析出来用于确定特定制造商生产的电池或特定制造商生产的电池组的预期续航时间。此预期续航时间数据可被用于确定保险销售成本用以粘贴在电池组104上。拥有更长续航时间的电池和电池组比较之拥有更短续航时间的电池和电池组有更低的保险覆盖范围率的潜力。在实施例中,该比率数据同样地用以确定续航时间保险率数据。In one embodiment, battery data 160 (sample data stored in data center 140) is analyzed and used to form data for insurance purposes. For example, the battery data can be analyzed to determine the expected runtime of a battery from a particular manufacturer or a battery pack from a particular manufacturer. This expected range data can be used to determine the cost of insurance sales to be affixed to the battery pack 104 . Cells and battery packs with longer life spans have the potential for lower insurance coverage rates than cells and battery packs with shorter life spans. In an embodiment, the ratio data is also used to determine the life insurance ratio data.

电池数据160可被收集,分析并用于生成保险率数据,例如以下详细所述。Battery data 160 may be collected, analyzed, and used to generate insurance rate data, such as described in detail below.

图1C是进一步展示一实施例电池组操作系统150的图。如所示,一具体的电池组操作系统150中包括电池续航时间监控器162,电池质寿命监控器164,电池使用监控器168,电池警报器,警告信息和错误(AWE)控制器151,电池维护控制器152,电池逆变器控制器153,电池校准控制器154,电池配置控制器155,电池通讯控制器156和电池软件更新控制器157.FIG. 1C is a diagram further illustrating the battery pack operating system 150 of an embodiment. As shown, a specific battery pack operating system 150 includes a battery life monitor 162, a battery life monitor 164, a battery usage monitor 168, a battery alarm, warning messages and errors (AWE) controller 151, a battery Maintenance controller 152, battery inverter controller 153, battery calibration controller 154, battery configuration controller 155, battery communication controller 156 and battery software update controller 157.

电池续航控制器162跟踪电池的续航使用状况。在一实施例中,参考图36A,此过程是通过以下详述如何计算电池续航时间值的。该值为三个因子相乘然后继续累计的结果。所述三个因子为实时状态因子,电压因子和温度因子,以下通过参考图33,34和35对其进行进一步描述。当电池在高充电率或高放电率的使用中,其续航值增加的速率比在低充电率或低放电率的使用中更高。当电池不在充电或放电时,电池续航值不会增加。同样地,电池续航值增加的速率也与电压因子和温度因子有关。The battery life controller 162 tracks the battery life usage. In one embodiment, referring to FIG. 36A , this process is through how the battery life value is calculated as detailed below. This value is the result of multiplying the three factors and continuing to accumulate. The three factors are real state factor, voltage factor and temperature factor, which are further described below with reference to FIGS. 33 , 34 and 35 . When a battery is used at a high charge or discharge rate, its range increases at a higher rate than when it is used at a low charge or discharge rate. When the battery is not charging or discharging, the battery life value will not increase. Likewise, the rate at which battery life increases is also related to a voltage factor and a temperature factor.

电池寿命控制器164确保电池与寿命要求规格相符合,例如要符合电池制造商提供的寿命要求规格。电池寿命控制器164在一个电池寿命状态反常时对其进行测定并向控制中心发送寿命状态反常信息。在一实施例中,电池的用户也被告知此寿命反常状态。对此,如下参照图36B 进行详述。The battery life controller 164 ensures that the battery meets life specification specifications, such as life specification provided by the battery manufacturer. The battery life controller 164 measures when a battery life state is abnormal and sends life state abnormality information to the control center. In one embodiment, the user of the battery is also notified of this abnormal state of life. This will be described in detail below with reference to FIG. 36B.

电池使用监控器168记录数据用以分析测定电池在续航时间结束前是如何被使用的。在一实施例中,该数据包括电压数据,温度数据,实时状态数据和电量数据。在一实施例中,该数据展示在使用数据表中。对此,如下参照图37进行详述。The battery usage monitor 168 records data for analysis to determine how the battery is being used before the end of its run time. In one embodiment, the data includes voltage data, temperature data, real-time status data and power data. In one embodiment, this data is presented in a usage data table. This will be described in detail below with reference to FIG. 37 .

电池警报器,警告信息和错误(AWE)控制器151保护电池,识别运行问题。在一实施例中,警报器,警告信息和错误信息应有比如:过压状况,温度过高状况,温度上升速度过高状况,高电荷电流,高放电电流,通讯失效,电路板问题或故障,电池单体或电池模块的衰弱和损坏。A battery alarm, warnings and errors (AWE) controller 151 protects the battery and identifies operational problems. In one embodiment, the siren, warning message and error message should be such as: over voltage condition, over temperature condition, temperature rise rate too high condition, high charge current, high discharge current, communication failure, circuit board problem or failure , Weakness and damage of battery cells or battery modules.

电池维护控制器152报告电池组的问题以通过维护来校正。The battery maintenance controller 152 reports problems with the battery pack to be corrected by maintenance.

电池均衡控制器153通过可靠有效的方式来均衡电池,对此,以下进行详述。The battery balancing controller 153 balances the batteries in a reliable and effective manner, which will be described in detail below.

电池校准控制器154校准电池组的数值如充电状态,安倍小时容量值,瓦特小时容量值,电压值校准因子和温度值校准因子。The battery calibration controller 154 calibrates the values of the battery pack such as state of charge, Ampere-hour capacity value, Watt-hour capacity value, voltage value calibration factor and temperature value calibration factor.

电池配置控制器155包括其他电池组的即插即用特性。其包括类似当电池组在首次安装通电,获取通讯ID地址并连接到一个特定的电池组网络来形成一个能量储存单元时与其他能量单元的部件确立通讯。The battery configuration controller 155 includes plug and play features for other battery packs. This includes establishing communication with other energy unit components such as when the battery pack is powered on for the first time, obtaining a communication ID address and connecting to a specific battery pack network to form an energy storage unit.

电池通讯控制器156监控电池组和其他系统部件之间的通讯以确保电池组的安全可靠的操作。其也会在通讯失效时尝试进行建立通讯。The battery communication controller 156 monitors communications between the battery pack and other system components to ensure safe and reliable operation of the battery pack. It will also try to establish communication when communication fails.

电池软件更新控制器157使得并促进电池组软件以及固化在电池上的软件得以通过远程进行更新。当更新特性被激活的时候,更新可以自动完成。The battery software update controller 157 enables and facilitates the battery pack software and the software solidified on the battery to be remotely updated. Updates can be done automatically when the update feature is activated.

图1D是展示了本发明中一实施例的电能储存单元100的图。如图1所述,电能储存单元100包括电池单元104a和104b,控制单元106a和106b,逆变器108a和108b。在一实施例中,电能储存单元100围合在一个比船运集装箱小的容器102内。在类似的实施例中,电能储存单元 100可移动并能通过货车进行运输。FIG. 1D is a diagram illustrating an electrical energy storage unit 100 according to an embodiment of the present invention. As shown in FIG. 1 , the electric energy storage unit 100 includes battery units 104a and 104b, control units 106a and 106b, and inverters 108a and 108b. In one embodiment, the electrical energy storage unit 100 is enclosed within a container 102 that is smaller than a shipping container. In a similar embodiment, the electrical energy storage unit 100 is mobile and can be transported by truck.

如图2A-2C,电能储存单元100适合储存大量的电能。As shown in FIGS. 2A-2C , the electrical energy storage unit 100 is suitable for storing large amounts of electrical energy.

图2A是展示了图1D的电能储存单元100作为一个部分在可再生风能系统200中的使用的图。风能系统200包括风力涡轮机202a和202b。风力涡轮机202a中的能量储存在电能储存单元100a中。风力涡轮机202b中的能量储存在电能储存单元100b中。如本领域技术人员会知晓的一样,电能储存单元100a和100b能储存通过风力涡轮机202a和202b产生并发送的电能。FIG. 2A is a diagram illustrating the use of the electrical energy storage unit 100 of FIG. ID as part of a renewable wind energy system 200 . Wind energy system 200 includes wind turbines 202a and 202b. Energy in wind turbine 202a is stored in electrical energy storage unit 100a. Energy in the wind turbine 202b is stored in the electrical energy storage unit 100b. As will be appreciated by those skilled in the art, electrical energy storage units 100a and 100b are capable of storing electrical energy generated and delivered by wind turbines 202a and 202b.

图2B是展示了图1D的电能储存电压100作为一个部分在可再生太阳能系统220中的使用的图。太阳能系统220包括太阳能阵列222和电能储存单元100.太阳能阵列222的能源储存在电能储存单元100中。电能储存单元100能够储存从太阳能阵列222中产生并发出来的电能。FIG. 2B is a diagram illustrating the use of the electrical energy storage voltage 100 of FIG. 1D as a component in a renewable solar system 220 . The solar system 220 includes a solar array 222 and an electrical energy storage unit 100 . The energy of the solar array 222 is stored in the electrical energy storage unit 100 . The electric energy storage unit 100 can store electric energy generated and sent out from the solar array 222 .

图2C是展示了1D的电能储存电压100作为一个部分在可再生电网能源系统230中的使用的图。电网能源系统230包括电能设备232和电能储存单元100.电网能源系统230中能源初中在电能储存单元100中。储存在电能储存单元100中的电能可被发送。FIG. 2C is a diagram illustrating the use of ID electrical energy storage voltage 100 as a component in a renewable grid energy system 230 . The grid energy system 230 includes electric energy equipment 232 and an electric energy storage unit 100 . The energy source in the grid energy system 230 is located in the electric energy storage unit 100 . The electric energy stored in the electric energy storage unit 100 may be transmitted.

图3是进一步展示了电池储存单元100的电池单元104a和104b的图。如图3所示,根据一实施例,电池单元104a和104b为多个电池组301组成。在图3中,展示了三个电池组302a-c。电池组302a和302c是电池单元104a的一个组成部分。电池组302b是电池单元104b的一个组成部分。FIG. 3 is a diagram further illustrating battery cells 104 a and 104 b of battery storage unit 100 . As shown in FIG. 3 , according to an embodiment, the battery units 104a and 104b are composed of a plurality of battery packs 301 . In FIG. 3, three battery packs 302a-c are shown. Battery packs 302a and 302c are an integral part of battery unit 104a. The battery pack 302b is an integral part of the battery unit 104b.

图4是示进一步展示了本发明一实施例中的电池组302的图。电池组302包括外壳402,盖子404,电力连接器406和两个信号连接器408a和408b。外壳402和盖子404由优选强塑料或金属制成。电力连接器406包括电池组正极和负极端口的连接器,直流供应电力的连接器和交流供应电力的连接器。在本发明的一实施例中,只有直流供应电力和交流供应电力可被使用。信号连接器408a和408b为RJ-45连接器,但也可使用其他类型的连接器。信号连接器可用于如电池组302和电池储存单元100的其他组成部件之间的通讯。FIG. 4 is a diagram further illustrating a battery pack 302 in an embodiment of the present invention. The battery pack 302 includes a housing 402, a cover 404, a power connector 406 and two signal connectors 408a and 408b. Housing 402 and cover 404 are made of preferably strong plastic or metal. The power connectors 406 include connectors for the positive and negative terminals of the battery pack, a connector for DC power supply and a connector for AC power supply. In one embodiment of the present invention, only DC and AC power supplies can be used. Signal connectors 408a and 408b are RJ-45 connectors, although other types of connectors could be used. Signal connectors may be used for communication between the battery pack 302 and other components of the battery storage unit 100, for example.

如图4所示,在一实施例中,外壳402围合着支撑两个电池模块412a和412b的电池升降板410。每一个电池模块412a和412b包括多个在一系列配置中连接在一起的可推拉电池。在一实施例中,电池模块412a和412b包括但不仅限于如:设置有10-50AH单体的1P16S配置, 2P16S配置,3P16S配置或者4P16S配置。其他配置也可组成本发明范围的一个部分。在一实施例中,电池单体通过一个包括监控电池电压,温度和逆变器电池单体的印刷电路板连接在一起。As shown in FIG. 4 , in one embodiment, a casing 402 encloses a battery lifting plate 410 supporting two battery modules 412 a and 412 b. Each battery module 412a and 412b includes a plurality of pushable and pullable batteries connected together in a series of configurations. In one embodiment, the battery modules 412a and 412b include, but are not limited to: 1P16S configuration, 2P16S configuration, 3P16S configuration or 4P16S configuration with 10-50AH cells. Other configurations may also form part of the scope of the present invention. In one embodiment, the cells are connected together by a printed circuit board including monitoring battery voltage, temperature and inverter cells.

其他围合在外壳402的部件包括电池组控制器414,交流电能供应器416,直流电能供应器418,电池单体均衡器420及保险丝和保险盒422。在本发明的一实施例中,只采用了交流电能供应器416和直流电能供应器418。Other components enclosed in the housing 402 include a battery pack controller 414 , an AC power supply 416 , a DC power supply 418 , a battery cell equalizer 420 , and a fuse and fuse box 422 . In one embodiment of the present invention, only the AC power supply 416 and the DC power supply 418 are used.

图5是进一步展示了本发明一实施例中的电池组控制器414的图。在一实施例中,电池组控制器414包括电池/直流输入电路502,充电转换电路504,DIP-开关506,JTAG连接器508 和RS-232连接器510,风扇连接器512,CAN(CAN总线)连接器514,微处理单元(MCU)516,储存器518,均衡板连接器520,电池盒(外壳)温度监控电路522,电池单体温度测量电路524,电池单体电压测量电路528,直流-直流电能供应器530,监视计时器532和复位按钮534.电池单体温度测量电路524和电池单体电压测量电路528分别与MCU516通过多路复用器(MUX)526a和526b 进行连接。FIG. 5 is a diagram further illustrating the battery pack controller 414 in one embodiment of the present invention. In one embodiment, battery pack controller 414 includes battery/DC input circuit 502, charge conversion circuit 504, DIP-switch 506, JTAG connector 508 and RS-232 connector 510, fan connector 512, CAN (CAN bus ) connector 514, micro processing unit (MCU) 516, memory 518, balance board connector 520, battery box (shell) temperature monitoring circuit 522, battery cell temperature measurement circuit 524, battery cell voltage measurement circuit 528, DC - DC power supply 530, watchdog timer 532 and reset button 534. Battery cell temperature measurement circuit 524 and battery cell voltage measurement circuit 528 are connected to MCU 516 through multiplexers (MUX) 526a and 526b respectively.

在一实施例中,电池组控制器414的电能从储存在电池单体中的能量中获取,电池组控制器414通过电池/直流输入电路502与电池单体连接。在另一实施例中,电池组控制器414 从与电池/直流输入电路连接的直流电能供应器中获取电能。然后直流-直流电能供应器530将输入的直流电能转换成一或多个适合不同电池组控制器的电力组件的电能标准。In one embodiment, the power of the battery pack controller 414 is obtained from the energy stored in the battery cells, and the battery pack controller 414 is connected to the battery cells through the battery/DC input circuit 502 . In another embodiment, the battery pack controller 414 draws power from a DC power supply connected to the battery/DC input circuit. Then the DC-DC power supply 530 converts the input DC power into one or more power standards suitable for the power components of different battery pack controllers.

充电转换电路504与MCU516连接。充电转换电路504和MCU516用以控制交流电能供应器416和直流电能供应器418的运行。如本文所述,交流电能供应器416和/或直流电能供应器 418用于为电池组302的电池单体供应能量。The charging conversion circuit 504 is connected to the MCU 516 . The charging conversion circuit 504 and the MCU 516 are used to control the operation of the AC power supply 416 and the DC power supply 418 . As described herein, the AC power supply 416 and/or the DC power supply 418 are used to supply power to the battery cells of the battery pack 302.

电池组控制器414包括多个用以通讯的接口和连接器。所述接口和连接器如图5所示与MCU516连接。在一实施例中,该接口和连接器包括:DIP-开关506,其用于设置一个软件的一部分信息用以识别电池组控制器414;JTAG连接器508,其用于为电池控制器414测试并排除故障;RS-232连接器510,其用于与MCU615通讯连接;逆变器板连接器520,其用于传输与电池控制器414和电池单体逆变器器420之间的信号。The battery pack controller 414 includes a plurality of interfaces and connectors for communication. The interface and connector are connected with MCU516 as shown in FIG. 5 . In one embodiment, the interfaces and connectors include: DIP-switch 506, which is used to set a part of the software to identify the battery pack controller 414; JTAG connector 508, which is used to test the battery controller 414 And troubleshooting; RS-232 connector 510, which is used for communication connection with MCU 615; inverter board connector 520, which is used for transmitting signals between battery controller 414 and battery cell inverter 420.

风扇连接器512与MCU516连接。风扇连接器512用于与MCU516和电池盒电路监控电路522连接使得帮助电池组302散热的一个或多个选配的风扇运作。在一实施例中,电池盒电路监控电路522包括多个温度传感器,其用于监控电池单体逆变器器420和电池组302内部的其他热源的温度,例如:交流电能供应器416和直流电能供应器418的温度。The fan connector 512 is connected to the MCU 516 . The fan connector 512 is used to connect with the MCU 516 and the battery box circuit monitoring circuit 522 to enable operation of one or more optional fans that help the battery pack 302 dissipate heat. In one embodiment, the battery box circuit monitoring circuit 522 includes a plurality of temperature sensors for monitoring the temperature of the battery cell inverter 420 and other heat sources inside the battery pack 302, such as the AC power supply 416 and the DC power supply. The temperature of energy supply 418 .

微处理单元(MCU)516与储存器518连接。MCU516用以执行管控电池组302的应用程序。如本文所述,在一实施例中应用程序执行以下功能:监控电池组302的电池单体的电压和温度,逆变器电池组的电池单体,监控和控制(如有需要)电池组302的温度,处理电池组302与其他电能储存系统100的其他组件的通讯,产生警报信息或发出警报,同时具有其他合适的动作,用以防止电池组302的电池单体的充电过量和放电过量。A micro processing unit (MCU) 516 is connected to a storage 518 . The MCU 516 is used to execute application programs for managing and controlling the battery pack 302 . As described herein, in one embodiment the application performs the following functions: monitors the voltage and temperature of the battery cells of the battery pack 302, inverters the battery cells of the battery pack, monitors and controls (if desired) the battery pack 302 temperature, handle the communication between the battery pack 302 and other components of the electric energy storage system 100, generate alarm information or send out an alarm, and have other appropriate actions to prevent the battery cells of the battery pack 302 from overcharging and overdischarging.

电池单体温度测量电路524用以监控电池组302的电池单体温度。在一实施例中,独立的温度监控通道通过多路复用器(MUX)526a与MCU516连接。读取的温度数据用以确保电池单体在其设定的特定温度范围内运行,同时调整在MCU516中执行的应用系统程序中的相关温度值,例如:电池组302中还有多少电能可供放电使用。The battery cell temperature measurement circuit 524 is used to monitor the battery cell temperature of the battery pack 302 . In one embodiment, the independent temperature monitoring channel is connected to the MCU 516 through a multiplexer (MUX) 526a. The read temperature data is used to ensure that the battery cell operates within its set specific temperature range, and at the same time adjust the relevant temperature value in the application system program executed in the MCU516, for example: how much electric energy is still available in the battery pack 302 Discharge use.

电池单体电压测量电路528用以监控电池组的电池单体电压。在一实施例中,独立的电压监控通道通过多路复用器(MUX)526b与MCU516连接。读取的电压数据例如可以用来确保电池单体在其设定的电压范围内运行并计算直流功率电平The battery cell voltage measurement circuit 528 is used to monitor the battery cell voltage of the battery pack. In one embodiment, the independent voltage monitoring channel is connected to the MCU 516 through a multiplexer (MUX) 526b. The voltage data read can be used, for example, to ensure that a battery cell is operating within its set voltage range and to calculate DC power levels

监视计时器532用以监控确保电池组控制器414的正常运作。在电池组控制器414操作期间发生不可恢复的错误或者计划外无限软件循环的情况下,监视计时器53可以使电池组控制器414复位使得其自动重新开始操作。The watchdog timer 532 is used to monitor and ensure the normal operation of the battery pack controller 414 . In the event of an unrecoverable error or an unplanned infinite software loop during battery controller 414 operation, watchdog timer 53 may reset battery controller 414 so that it automatically resumes operation.

复位按钮534用来手动复位电池组控制器414的操作。如图5所述,复位按钮534联接到MCU 516。Reset button 534 is used to manually reset the operation of battery pack controller 414 . Reset button 534 is coupled to MCU 516 as described in FIG. 5 .

图6A是展示根据本发明的一实施例的电池组单体逆变器器420a的图。电池组单体逆变器器420a包括通过开关606a-d联接到电池单体连接器602a的第一组电阻器604a-d和通过开关606e-h联接到电池单体连接器602a的第二组电阻器604e-h。电池单体连接器602a和602b用来将电池组单体逆变器器420a连接到电池组302的电池单体。电池组电子控制单元(ECU)连接器 608将开关604a-h连接到电池组控制器414。FIG. 6A is a diagram showing a battery cell inverter 420a according to an embodiment of the present invention. The battery cell inverter 420a includes a first set of resistors 604a-d coupled to the battery cell connector 602a through switches 606a-d and a second set of resistors coupled to the battery cell connector 602a through switches 606e-h. Resistors 604e-h. The battery cell connectors 602 a and 602 b are used to connect the battery cell inverter 420 a to the battery cells of the battery pack 302 . A battery pack electronic control unit (ECU) connector 608 connects the switches 604a-h to the battery pack controller 414.

在操作时,电池组单体逆变器器420a的开关606a-h选择性地断开和闭合以改变储存在电池组302的电池单体中的能量。开关606a-h的选择性断开和闭合允许在电池组的特定电池单体中储存的能量通过电阻器604a-h放电,或者在对电池组302的电池单体充电期间能量绕过选定电池单体。电阻器604a-h的大小适于允许选定能量从电池组302的电池单体在选定时间量放电并且在充电期间允许选定能量绕过电池单体。在一实施例中,当充电能量超过选定绕过能量时,由电池组控制器414禁止闭合开关604a-h。In operation, the switches 606 a - h of the battery pack cell inverter 420 a are selectively opened and closed to vary the energy stored in the battery cells of the battery pack 302 . Selective opening and closing of switches 606a-h allows energy stored in specific cells of the battery pack to discharge through resistors 604a-h, or to bypass selected cells during charging of cells of the battery pack 302 monomer. Resistors 604a-h are sized to allow selected energy to discharge from the cells of battery pack 302 for a selected amount of time and to bypass the cells during charging. In one embodiment, the closing switches 604a-h are inhibited by the battery pack controller 414 when the charge energy exceeds the selected bypass energy.

图6B是示出(展示)电池组单体逆变器器420b的图。电池组单体逆变器器420b包括通过开关622a和622b联接到两个复用器(MUX)620a的第一电容器624a和通过开关622c和622 联接到两个复用器(MUX)620c和620d的第二电容器624b。复用器620a和620b连接到电池单体连接器602a。复用器620c和620d连接到电池单体连接器602b。电池组电子控制单元(ECU)连接器 608将开关622a-d连接到电池组控制器414。FIG. 6B is a diagram illustrating (showcasing) a battery cell inverter 420b. The battery pack cell inverter 420b includes a first capacitor 624a coupled to two multiplexers (MUX) 620a through switches 622a and 622b and to two multiplexers (MUX) 620c and 620d through switches 622c and 622 The second capacitor 624b. Multiplexers 620a and 620b are connected to battery cell connector 602a. Multiplexers 620c and 620d are connected to battery cell connector 602b. A battery pack electronic control unit (ECU) connector 608 connects the switches 622a-d to the battery pack controller 414.

在操作时,复用器620a-b和开关622a-b首先被配置成将电容器624a连接到电池组302的第一电池单体。在连接后,电容器624a由第一电池单体充电,并且这种对电容器624a的充电减小了在第一电池单体中储存的能量。在充电后,复用器620a-b和开关622a-b然后被配置成将电容器624a连接到电池组302的第二电池单体。此时,在电容器624a中储存的能量被放电到第二电池单体内,从而增加了储存在第二电池单体中的能量。通过继续这个过程,电容器624a 在电池组302的各个单体之间来回传递能量,因此逆变器电池单体。以类似方式,复用器620c-d、开关622c-d和电容器624b也用来在电池组302的各个单体之间来回传递能量并且逆变器电池单体。In operation, multiplexers 620a - b and switches 622a - b are first configured to connect capacitor 624a to the first battery cell of battery pack 302 . After connection, capacitor 624a is charged by the first battery cell, and this charging of capacitor 624a reduces the energy stored in the first battery cell. After charging, multiplexers 620a - b and switches 622a - b are then configured to connect capacitor 624a to the second battery cell of battery pack 302 . At this time, the energy stored in the capacitor 624a is discharged into the second battery cell, thereby increasing the energy stored in the second battery cell. By continuing this process, the capacitor 624a transfers energy to and from the individual cells of the battery pack 302, thus inverter cells. In a similar manner, multiplexers 620c-d, switches 622c-d, and capacitors 624b are also used to transfer energy to and from the individual cells of the battery pack 302 and to invert the cells.

图6C是展示电池组单体逆变器器420c的图。电池组单体电池逆变器器420c包括通过开关622a和622b联接到两个复用器(MUX)620a的第一感应器630a和通过开关622c和622联接到两个复用器(MUX)620c和620d的第二感应器630b。复用器620a和620b连接到电池单体连接器 602a。复用器620c和620d连接到电池单体连接器602b。电池单体连接器602a和602b用来将电池组单体逆变器器420a连接到电池组302的电池单体。感应器630a也由开关632a连接到电池组 302的电池单体并且感应器630b也由开关632b连接到电池组302的电池单体。电池组电子控制单元(ECU)连接器608将开关622a-d和开关632a-b连接到电池组控制器414。FIG. 6C is a diagram showing a battery cell inverter 420c. The battery cell inverter 420c includes a first inductor 630a coupled to two multiplexers (MUX) 620a through switches 622a and 622b and a first inductor 630a coupled to two multiplexers (MUX) 620c through switches 622c and 622 and 620d of the second inductor 630b. Multiplexers 620a and 620b are connected to battery cell connector 602a. Multiplexers 620c and 620d are connected to battery cell connector 602b. The battery cell connectors 602 a and 602 b are used to connect the battery cell inverter 420 a to the battery cells of the battery pack 302 . Inductor 630a is also connected to a battery cell of battery pack 302 by switch 632a and inductor 630b is also connected to a battery cell of battery pack 302 by switch 632b. A battery pack electronic control unit (ECU) connector 608 connects the switches 622a - d and switches 632a - b to the battery pack controller 414 .

在操作时,开关632a首先闭合以允许来自电池组302的电池的能量给感应器630a充电。这种充电从电池组302的电池单体移除能量并且将能量储存在感应器630a中。在充电后,复用器620a-b和开关622a-b被配置成将感应器630a连接到电池组302的选定电池单体。在连接后,感应器630a将其储存的能量放电到选定电池单体内,从而增加了在选定电池单体中储存的能量。通过继续这个过程,感应器630a因此用来从通过开关632a连接到感应器632a的电池组302的电池单体取得能量并且将这个能量仅转移到电池组302的选定电池单体。因此这个过程可以用来逆变器电池组302的电池单体。以类似方式,复用器620c-d、开关622c-d和632b和感应器630b 也用来转移能量和逆变器电池组302的电池单体。In operation, switch 632a is first closed to allow energy from the batteries of battery pack 302 to charge inductor 630a. This charging removes energy from the cells of the battery pack 302 and stores energy in the inductor 630a. Multiplexers 620a - b and switches 622a - b are configured to connect inductor 630a to selected cells of battery pack 302 after charging. When connected, the inductor 630a discharges its stored energy into the selected battery cell, thereby increasing the energy stored in the selected battery cell. By continuing this process, the inductor 630a is thus used to take energy from the cells of the battery pack 302 connected to the inductor 632a by the switch 632a and transfer this energy to only selected cells of the battery pack 302 . This process can therefore be used to invert the battery cells of the battery pack 302 . In a similar manner, multiplexers 620c-d, switches 622c-d and 632b, and inductor 630b are also used to divert energy from the cells of the inverter battery pack 302.

如相关技术领域的技术人员应理解的,通过本文的描述,在图6A至图6C中描述的电路中每一个在其操作方面是有利的,并且在本发明的实施例中,这些电路的元件组合用来使能量绕开和/或转移能量并且由此均衡电池组302的电池单体。As will be understood by those skilled in the relevant art, from the description herein, each of the circuits described in FIGS. 6A-6C is advantageous in its operation, and in embodiments of the invention, the elements of these circuits Combining serves to bypass and/or divert energy and thereby balance the battery cells of the battery pack 302 .

图7是进一步展示根据本发明的一实施例的电能储存单元100的图。如图7所示,控制单元106包括多个电池系统控制器702a-c。恰如将在下文中更详细地描述的一样,每个电池系统控制器702监视并且控制构成电池单元104的电池组302的子集(参看图3)。在一实施例中,电池系统控制器702使用CAN(CANBus)通信而联系在一起,CAN(CANBus)通信允许电池系统控制器702一起作为电池系统控制器的总网络的部分操作。这个电池系统控制器的网络可以管理并且操作任何大小的电池系统,诸如多个兆瓦时级的集中式储存电池系统。在一实施例中,联网电池系统控制器702之一可以指定为主电池系统控制器并且通过发送命令用来控制电池充电和放电操作,命令操作连接到电池系统的一个或多个逆变器和/或充电器。FIG. 7 is a diagram further illustrating an electric energy storage unit 100 according to an embodiment of the present invention. As shown in FIG. 7, the control unit 106 includes a plurality of battery system controllers 702a-c. As will be described in more detail below, each battery system controller 702 monitors and controls a subset of the battery packs 302 that make up the battery cells 104 (see FIG. 3 ). In one embodiment, the battery system controllers 702 are linked together using CAN (CANBus) communication that allows the battery system controllers 702 to operate together as part of an overall network of battery system controllers. This network of battery system controllers can manage and operate battery systems of any size, such as multiple megawatt-hour centralized storage battery systems. In one embodiment, one of the networked battery system controllers 702 may be designated as the master battery system controller and is used to control battery charging and discharging operations by sending commands that operate one or more inverters and / or charger.

如图7所示,在一实施例中,电能储存单元100包括双向逆变器108。双向逆变器108能使用例如经由计算机在网络(例如,因特网、以太网等)发出的命令来给电池单元104充电和给电池单元104放电,在下文中参考图10B和图10C中有更详细地描述。在本发明的实施例中,可以控制逆变器108的有效功率和无功功率。而且,在实施例中,当电网电力不可用时和/或能量存储单元100与电网断开连接时,逆变器108可以作为备用电源操作。As shown in FIG. 7 , in an embodiment, the electric energy storage unit 100 includes a bidirectional inverter 108 . The bidirectional inverter 108 can charge and discharge the battery cells 104 using, for example, commands issued via a computer over a network (e.g., the Internet, Ethernet, etc.), as described in more detail below with reference to FIGS. 10B and 10C . describe. In an embodiment of the present invention, the active power and reactive power of the inverter 108 can be controlled. Also, in an embodiment, the inverter 108 may operate as a backup power source when grid power is unavailable and/or when the energy storage unit 100 is disconnected from the grid.

图8A是进一步展示根据本发明的一实施例的电池系统控制器702的图。如图8A所示,在一实施例中,电池系统控制器702包括嵌入式计算机处理单元(嵌入式CPU)802、安培小时/ 功率监视器806、低电压继电器控制器816、高压继电器控制器826、熔断器830、分流器832、接触器834和电源836。FIG. 8A is a diagram further illustrating the battery system controller 702 according to an embodiment of the present invention. As shown in FIG. 8A, in one embodiment, the battery system controller 702 includes an embedded computer processing unit (embedded CPU) 802, an ampere hour/power monitor 806, a low voltage relay controller 816, a high voltage relay controller 826 , fuse 830, shunt 832, contactor 834 and power supply 836.

如图8A所示,在一实施例中,嵌入式CPU 802经由CAN(CANBus)通信端口804a与安培小时/功率监视器806、低电压继电器控制器816和电池组302通信。在实施例中,如本文所描述,嵌入式CPU 802还使用例如CAN(CANBus)通信与一个或多个逆变器和/或一个或多个充电器通信。As shown in FIG. 8A , in one embodiment, embedded CPU 802 communicates with amp-hour/power monitor 806 , low voltage relay controller 816 and battery pack 302 via CAN (CANBus) communication port 804 a. In an embodiment, embedded CPU 802 also communicates with one or more inverters and/or one or more chargers using, for example, CAN (CANBus) communications, as described herein.

然而,也可以使用其它通信手段,诸如RS 232通信或RS 485通信。在操作中,嵌入式CPU 802执行许多功能。这些功能包括:监视并且控制电池组302、安培小时/功率监视器806、低电压继电器控制器816和高电压继电器控制器826的选定功能;监视并且控制电池组302何时储存能量、储存多少量和以什么速率储存能量和由电池组302何时放出能量、放出多少能量和以什么速率发出能量;防止电池组302的电池单体过度充电或过度放电;配置并且控制系统通信;例如从授权的使用者或者另一联网电池系统控制器702接收并且实施命令;以及向授权的使用者或者另一联网电池系统控制器702提供状况和配置信息。这些功能以及由嵌入式CPU 802执行的其它功能在下文中更详细地描述。However, other communication means may also be used, such as RS 232 communication or RS 485 communication. In operation, embedded CPU 802 performs a number of functions. These functions include: monitoring and controlling selected functions of battery pack 302, amp hour/power monitor 806, low voltage relay controller 816, and high voltage relay controller 826; monitoring and controlling when and how much battery pack 302 stores energy How much and at what rate to store energy and when, how much, and at what rate to discharge energy from the battery pack 302; prevent overcharging or overdischarging of the battery cells of the battery pack 302; configure and control system communications; The user or another networked battery system controller 702 receives and implements the command; and provides status and configuration information to the authorized user or another networked battery system controller 702. These functions, as well as other functions performed by embedded CPU 802, are described in more detail below.

如在下文中更详细描述,由嵌入式CPU 802监视并维持的状况和控制信息的类型的示例包括参考图19A至图19E、图21、图22A至图22B和图23A至图23B标识的那些。在实施例中,嵌入式CPU 802监视并且维持常规电系统信息诸如逆变器输出功率、逆变器输出电流、逆变器交流电压、逆变器交流频率、充电器输出功率、充电器输出电流、充电器直流电压等。通过本文的描述,由嵌入式CPU 802的实施例监视和维持的额外状况和控制信息对于相关领域技术人员也是显而易见的。As described in more detail below, examples of the types of status and control information monitored and maintained by embedded CPU 802 include those identified with reference to FIGS. 19A-19E , 21 , 22A-22B , and 23A-23B . In an embodiment, the embedded CPU 802 monitors and maintains conventional electrical system information such as inverter output power, inverter output current, inverter AC voltage, inverter AC frequency, charger output power, charger output current , charger DC voltage, etc. Additional status and control information that is monitored and maintained by embodiments of embedded CPU 802 will also be apparent to those skilled in the relevant arts from the description herein.

如图8A所示,安培小时/功率监视器806包括CAN(CANBus)通信端口804b、微控制单元(MCU)808、存储器810、电流监视电路812和电压监视电路814。电流监视电路812联接到分流器832并且用来确定电流值和监视电池组302的充电和放电。电压监视电路814联接到分流器832 和接触器834并且用来确定电压值和监视电池组302的充电和放电。由电流监视电路812和电压监视电路814获得的电流和电压值储存在存储器810中并且例如使用CAN(CANBus)通信端口804b 例如通信到嵌入式CPU 802。As shown in FIG. 8A , the amp-hour/power monitor 806 includes a CAN (CANBus) communication port 804b , a micro control unit (MCU) 808 , a memory 810 , a current monitoring circuit 812 and a voltage monitoring circuit 814 . Current monitoring circuit 812 is coupled to shunt 832 and is used to determine the current value and monitor charging and discharging of battery pack 302 . Voltage monitoring circuit 814 is coupled to shunt 832 and contactor 834 and is used to determine voltage values and monitor charging and discharging of battery pack 302 . Current and voltage values obtained by current monitoring circuit 812 and voltage monitoring circuit 814 are stored in memory 810 and communicated to embedded CPU 802, for example, using CAN (CANBus) communication port 804b.

在一实施例中,由安培小时/功率监视器806确定的电流和电压值储存在存储器810 中并且由在存储器810中储存并且在MCU 808上执行的程序用来导出功率、安培小时和瓦时值。关于安培小时/功率监视器806的这些值和状况信息使用CAN(CANBus)通信端口804b通信到嵌入式CPU 802。In one embodiment, the current and voltage values determined by the amp-hour/power monitor 806 are stored in the memory 810 and used by a program stored in the memory 810 and executing on the MCU 808 to derive power, amp-hours, and watt-hours value. These values and status information about the amp hours/power monitor 806 are communicated to the embedded CPU 802 using the CAN (CANBus) communication port 804b.

如图8A所示,低电压继电器控制器816包括CAN(CANBus)通信端口804c、微控制单元 (MCU)818、存储器820、多个继电器822(即,继电器R0,R1...RN)和场效电晶体(MOSFETS)824。在实施例中,低电压继电器控制器816也包括温度感测电路(未图示)以监视例如电池系统控制器702的封壳外壳部件、封壳外壳电能储存单元100的温度等。As shown in FIG. 8A, a low voltage relay controller 816 includes a CAN (CANBus) communication port 804c, a micro control unit (MCU) 818, a memory 820, a plurality of relays 822 (i.e., relays R0, R1...RN) and a field Transistors (MOSFETS) 824. In an embodiment, the low voltage relay controller 816 also includes temperature sensing circuitry (not shown) to monitor, for example, the temperature of the enclosure components of the battery system controller 702 , the enclosure electrical energy storage unit 100 , and the like.

在操作时,低电压继电器控制器816从嵌入式CPU 802经由CAN(CANBus)通信端口804c 接收命令并且相应地操作继电器822和场效电晶体824。此外,低电压继电器控制器816经由 CAN(CANBus)通信端口804c向嵌入式CPU 802发送关于继电器和场效电晶体状态的状况信息。继电器822用来执行诸如下列功能:接通和切断冷却风扇、控制电源诸如电源836的输出等。场效电晶体824用来控制高电压继电器控制器826的继电器828以及控制状况灯等。在实施例中,低电压控制器816执行存储于MCU 818上的存储器820中的程序,在嵌入式PU停止操作和/或如所希望的通信的情况下,MCU 818接管CPU 802的操作控制。这个程序然后能关于在等待嵌入式CPU 802恢复时使系统继续操作是否安全或者是否起始系统关机和重启做出判断。In operation, low voltage relay controller 816 receives commands from embedded CPU 802 via CAN (CANBus) communication port 804c and operates relays 822 and field effect transistors 824 accordingly. Additionally, the low voltage relay controller 816 sends status information to the embedded CPU 802 via the CAN (CANBus) communication port 804c regarding the status of the relays and mosfets. Relay 822 is used to perform functions such as turning cooling fans on and off, controlling the output of a power source such as power supply 836, and the like. The field effect transistor 824 is used to control the relay 828 of the high voltage relay controller 826 and control the status lights and the like. In an embodiment, low voltage controller 816 executes a program stored in memory 820 on MCU 818, which takes over operational control of CPU 802 in the event the embedded PU ceases to operate and/or communicate as desired. This program can then make a determination as to whether it is safe for the system to continue operating while waiting for the embedded CPU 802 to resume, or whether to initiate a system shutdown and reboot.

如图8A所示,高电压继电器控制器826包括多个继电器828。这些继电器之一用来操作接触器834,接触器834用来在连接电池组302的载流线中做出连接或断开连接。在实施例中,使用其它继电器828,例如控制一个或多个逆变器和/或一个或多个充电器的操作。继电器828能根据电压和电流考虑直接操作装置或者通过适当控制额外接触器(未图示)而操作。As shown in FIG. 8A , high voltage relay controller 826 includes a plurality of relays 828 . One of these relays is used to operate a contactor 834 which is used to make or break connections in the current carrying lines connecting the battery pack 302 . In an embodiment, other relays 828 are used, eg, to control the operation of one or more inverters and/or one or more chargers. The relay 828 can operate the device directly or by appropriate control of an additional contactor (not shown) according to voltage and current considerations.

在实施例中,熔断器830包括于电池系统控制器702中。熔断器830的目的在于中断可能会损坏电池单体或连接线的高电流。In an embodiment, fuse 830 is included in battery system controller 702 . The purpose of the fuse 830 is to interrupt high currents that could damage the battery cells or connecting wires.

分流器832结合安培小时/功率监视器806用来监视电池组302的充电和放电。在操作中,在分流器832两端形成与通过分流器832流动的电流成比例的电压。这个电压由安培小时/ 功率监视器806的电流监视电路812感测并且用来生成电流值。The shunt 832 is used in conjunction with the amp-hour/power monitor 806 to monitor the charging and discharging of the battery pack 302 . In operation, a voltage is developed across shunt 832 proportional to the current flowing through shunt 832 . This voltage is sensed by the current monitoring circuit 812 of the amp-hour/power monitor 806 and used to generate a current value.

电源836提供直流功率来操作电池系统控制器702的各个部件。在实施例中,到电源 836的功率输入为交流线电压、直流电池电压或二者。Power supply 836 provides DC power to operate the various components of battery system controller 702 . In an embodiment, the power input to the power supply 836 is AC line voltage, DC battery voltage, or both.

图8B和图8C是进一步展示根据本发明的实施例的示例性电池系统控制器702的图。图8B是示例电池系统控制器702的顶部、前侧视图,其中移除了顶部覆盖物以便于展示容纳的部件的布局。图8C是示例性电池系统控制器702的顶部、左侧视图,也移除了顶部覆盖物以展示部件的布局。8B and 8C are diagrams further illustrating an exemplary battery system controller 702 in accordance with embodiments of the present invention. 8B is a top, front side view of an example battery system controller 702 with the top cover removed to facilitate illustrating the layout of the housed components. Figure 8C is a top, left side view of the exemplary battery system controller 702, also with the top cover removed to show the layout of the components.

如图8B、图8C或者这两个图所示,电池系统控制器702包括封壳840,封壳840容纳嵌入式CPU 802、安培小时/功率监视器806、低电压继电器控制器816、高电压继电器控制器826、熔断器保持器和熔断器830、分流器832、接触器834和电源836。在封壳840内还包括断路器842、电源开关844、第一组信号连接器846(在封壳840的前侧上)、第二组信号连接器854(在封壳 840的后侧上)、一组电源连接器856a-d(在封壳840的后侧上)和两个高电压继电器858a和858b。在图8B和图8C中,故意省略了布线以便更清楚地展示部件的布局,然而,通过本文的描述,这些部件布线的方式将是相关领域技术人员可以理解的。As shown in Figure 8B, Figure 8C, or both, battery system controller 702 includes enclosure 840 that houses embedded CPU 802, amp-hour/power monitor 806, low voltage relay controller 816, high voltage Relay controller 826 , fuse holder and fuse 830 , shunt 832 , contactor 834 and power source 836 . Also included within the enclosure 840 are a circuit breaker 842, a power switch 844, a first set of signal connectors 846 (on the front side of the enclosure 840), a second set of signal connectors 854 (on the back side of the enclosure 840) , a set of power connectors 856a-d (on the rear side of enclosure 840) and two high voltage relays 858a and 858b. In FIG. 8B and FIG. 8C , the wiring is intentionally omitted to show the layout of the components more clearly, however, the manner of wiring of these components will be understandable to those skilled in the relevant art through the description herein.

嵌入式CPU 802、安培小时/功率监视器806、低电压继电器控制器816、高电压继电器控制器826、熔断器保持器和熔断器830、分流器832、接触器834和电源836的目的和操作已经参考图8A在上文中描述。如相关领域技术人员已知的,断路器842的目的是安全性。断路器 842与分流器832串联并且用来中断可能会损坏电池单体或连接线的高电流。其也可以用以在维护期间或者在不使用电能储存单元100期间手动断开将电池组302连接在一起的载流线。同样,电源开关844用来接通和切断到电池系统控制器702的交流功率输入。Purpose and Operation of Embedded CPU 802, Amp Hour/Power Monitor 806, Low Voltage Relay Controller 816, High Voltage Relay Controller 826, Fuse Holder and Fuses 830, Shunt 832, Contactor 834, and Power Supply 836 This has been described above with reference to FIG. 8A . The purpose of circuit breaker 842 is safety, as is known to those skilled in the relevant art. A circuit breaker 842 is in series with the shunt 832 and is used to interrupt high currents that could damage the battery cells or connecting wires. It can also be used to manually disconnect the current carrying wires connecting the battery pack 302 together during maintenance or when the electrical energy storage unit 100 is not in use. Likewise, a power switch 844 is used to turn on and off the AC power input to the battery system controller 702 .

第一组信号连接器846(在封壳840的前侧上)的目的是能连接到嵌入式CPU 802而无需将电池系统控制器702从控制单元106取出和/或无需移除封壳840的顶部覆盖物。在一实施例中,第一组信号连接器846包括USB连接器848、RJ-45连接器850和9-引脚连接器852。使用这些连接器,能例如将键盘和显示器(未图示)连接到嵌入式CPU 802。The purpose of the first set of signal connectors 846 (on the front side of the enclosure 840) is to enable connection to the embedded CPU 802 without removing the battery system controller 702 from the control unit 106 and/or without removing the enclosure 840. Top covering. In one embodiment, the first set of signal connectors 846 includes a USB connector 848 , an RJ-45 connector 850 and a 9-pin connector 852 . Using these connectors, for example, a keyboard and a display (not shown) can be connected to the embedded CPU 802 .

第二组信号连接器854(在封壳840的后侧上)的目的是能连接到电能储存单元100的其它部件诸如电池组302和逆变器和/或充电器并且与之通信。在一实施例中,第二组信号连接器 854包括RJ-45连接器850和9-引脚连接器852。RJ-45连接器850用于例如CAN(CANBus)通信和以太网/因特网通信。9-引脚连接器852用于例如RS-232或RS-485通信。The purpose of the second set of signal connectors 854 (on the rear side of the enclosure 840) is to enable connection to and communicate with other components of the electrical energy storage unit 100 such as the battery pack 302 and the inverter and/or charger. In one embodiment, the second set of signal connectors 854 includes an RJ-45 connector 850 and a 9-pin connector 852. The RJ-45 connector 850 is used for CAN (CANBus) communication and Ethernet/Internet communication, for example. A 9-pin connector 852 is used for RS-232 or RS-485 communications, for example.

电源连接器856a-d(在封壳840的后侧上)用来连接电导体。在一实施例中,每个电源连接器856具有两个较大载流连接引脚和四个较小载流连接引脚。电源连接器856之一用来将分流器832的一端和接触器834的一端连接到用来将电池组302连接在一起(例如,使用两个较大载流连接引脚)的电线和用来将输入功率连接到电池组302的电源416或418之一或二者以控制封壳840内侧的一个或多个继电器(例如,使用四个较小载流连接引脚中的两个或四个)。第二电源连接器856用于例如将电网交流电连接到外壳840内的控制继电器。在实施例中,其余两个电源连接器856用来例如将封壳840内侧的继电器诸如继电器856a和856b连接到逆变器和/或充电器的供电载流导体。Power connectors 856a-d (on the rear side of enclosure 840) are used to connect electrical conductors. In one embodiment, each power connector 856 has two larger current carrying connection pins and four smaller current carrying connection pins. One of the power connectors 856 is used to connect one end of the shunt 832 and one end of the contactor 834 to the wires used to connect the battery pack 302 together (e.g., using two larger current-carrying connection pins) and to Connect input power to one or both of the power sources 416 or 418 of the battery pack 302 to control one or more relays inside the enclosure 840 (e.g., using two or four of the four smaller current-carrying connection pins ). The second power connector 856 is used, for example, to connect mains AC power to the control relays within the housing 840 . In an embodiment, the remaining two power connectors 856 are used to connect, for example, relays inside enclosure 840, such as relays 856a and 856b, to the power supply current carrying conductors of the inverter and/or charger.

在一实施例中,高电压继电器858a和858b的目的在于使连接到电池组302的充电器和/或逆变器的供电载流导体连接或中断。通过中断连接到电池组302的充电器和/或逆变器的供电载流导体,这些继电器能用来防止充电器和/或逆变器操作并且因此保护电池组302防止过度充电或过度放电。In one embodiment, the purpose of the high voltage relays 858a and 858b is to connect or disconnect the supply current carrying conductors connected to the charger and/or inverter of the battery pack 302 . By interrupting the supply current carrying conductors of the charger and/or inverter connected to the battery pack 302, these relays can be used to prevent the charger and/or inverter from operating and thus protect the battery pack 302 from overcharging or over-discharging.

图9是展示根据本发明的一实施例的电能储存单元900的图。如本文所描述的电能储存单元900能作为独立电能储存单元操作或者其可以与其它电能储存单元900组合在一起以构成较大电能储存单元例如电能储存单元100的一部分。FIG. 9 is a diagram showing an electrical energy storage unit 900 according to an embodiment of the present invention. An electrical energy storage unit 900 as described herein can operate as a stand-alone electrical energy storage unit or it can be combined with other electrical energy storage units 900 to form part of a larger electrical energy storage unit such as electrical energy storage unit 100 .

如图9所示,电能储存单元900包括联接到一个或多个电池组302a-n的电池系统控制器702。在实施例中,如在下文中更详细描述,电池系统控制器702还可以联接到在图9中由逆变器/充电器902所表示的一个或多个充电器和一个或多个逆变器。As shown in FIG. 9, electrical energy storage unit 900 includes battery system controller 702 coupled to one or more battery packs 302a-n. In an embodiment, as described in more detail below, battery system controller 702 may also be coupled to one or more chargers and one or more inverters, represented by inverter/charger 902 in FIG. 9 .

电能储存单元900的电池系统控制器702包括嵌入式CPU 802、安培小时/功率监视器 806、低电压继电器控制器816、高电压继电器控制器826、熔断器830、分流器832、接触器834 和电源836。电池组302a-n中每一个包括电池模块412、电池组控制器414、交流电源416和电池组单体逆变器器420。Battery system controller 702 of electrical energy storage unit 900 includes embedded CPU 802, amp-hour/power monitor 806, low voltage relay controller 816, high voltage relay controller 826, fuse 830, shunt 832, contactor 834 and Power 836. Each of the battery packs 302 a - n includes a battery module 412 , a battery pack controller 414 , an AC power source 416 and a battery pack cell inverter 420 .

例如,在操作时,在电池充电过程中,电能储存单元900如下执行:嵌入式CPU 802持续地监视由电能储存单元900的各种部件传输的状况信息,如果根据这种监视,嵌入式CPU 802 确定该单元正常操作,然后,当由授权的用户或者由在嵌入式CPU 802(参看下文的图10B)上执行的程序命令时,嵌入式CPU 802向低电压继电器控制器816发送命令来闭合与接触器834相关联的MOSFET开关。闭合这个MOSFET开关启动了在高电压继电器控制器826上的继电器,而这使接触器834闭合。接触器834闭合将充电器(即,逆变器/充电器902)联接到电池组302a-n。For example, in operation, during battery charging, electrical energy storage unit 900 performs as follows: Embedded CPU 802 continuously monitors status information transmitted by various components of electrical energy storage unit 900, and if based on such monitoring, embedded CPU 802 The unit is determined to be operating normally, and then, when commanded by an authorized user or by a program executing on embedded CPU 802 (see FIG. 10B below), embedded CPU 802 sends commands to low voltage relay controller 816 to close and Contactor 834 is associated with the MOSFET switch. Closing this MOSFET switch activates the relay on the high voltage relay controller 826 which closes the contactor 834 . Closure of the contactor 834 couples the charger (ie, the inverter/charger 902) to the battery packs 302a-n.

一旦充电器联接到电池组302a-n,嵌入式CPU 802向充电器发送命令以开始对电池组充电。在实施例中,这个命令可以例如是充电器输出电流命令或者充电器输出功率类命令。在执行自检后,充电器将开始充电。这种充电将造成电流通过分流器832流动,分流器832由安培小时/功率监视器806来测量。安培小时/功率监视器806也测量电池组302a-n的总电压。除了测量电流和电压之外,安培小时/功率监视器804计算直流功率值、安培小时值和瓦时值。安培小时值和瓦时值用来更新由安培小时/功率监视器806维持的安培小时计数器和瓦时计数器。电流值、电压值、安培小时计数器值和瓦时计数器值由安培小时/功率监视器806持续地传输到嵌入式CPU 802和电池组302a-n。Once the charger is coupled to the battery pack 302a-n, the embedded CPU 802 sends a command to the charger to begin charging the battery pack. In an embodiment, this command may be, for example, a charger output current command or a charger output power type command. After performing a self-test, the charger will begin charging. This charging will cause current to flow through shunt 832 , which is measured by amp-hour/power monitor 806 . The amp-hour/power monitor 806 also measures the total voltage of the battery packs 302a-n. In addition to measuring current and voltage, the amp-hour/power monitor 804 calculates DC power values, amp-hour values, and watt-hour values. The amp-hour and watt-hour values are used to update the amp-hour counter and watt-hour counter maintained by the amp-hour/power monitor 806 . Current values, voltage values, amp-hour counter values, and watt-hour counter values are continuously transmitted by amp-hour/power monitor 806 to embedded CPU 802 and battery packs 302a-n.

在充电过程中,电池组302a-n持续地监视来自安培小时/功率监视器806的传输并且使用安培小时计数器值和瓦时计数器值来更新由电池组302a-n维持的值。这些值包括电池组和单体荷电状态(SOC)值、电池组和单体安培小时(AH)可放电值和电池组和单体瓦时(WH)可放电值,恰如在下文中参考图21更详细地描述的一样。而且,在充电进展期间,嵌入式CPU 802持续地监视来自安培小时/功率监视器806的传输以及来自电池组302a-n的传输并且使用安培小时计数器传输的值和电池组302a-n传输的值来更新由嵌入式CPU 802维持的值。由嵌入式CPU 802 维持的值包括电池组和单体SOC值、电池组和单体AH可放电值、电池组和单体WH可放电值、电池和单体电压和电池和单体温度,如在下文中参考图22A和图22B更详细地描述。只要每个装置按照预期工作,充电进展将继续直到满足停止标准。在实施例中,停止标准包括例如最大SOC值、最大电压值或停止时间值。During charging, the battery packs 302a-n continuously monitor the transmission from the amp-hour/power monitor 806 and use the amp-hour counter value and the watt-hour counter value to update the values maintained by the battery pack 302a-n. These values include pack and cell state-of-charge (SOC) values, pack and cell ampere-hour (AH) dischargeable values, and pack and cell watt-hour (WH) dischargeable values, as described below with reference to Figure 21 as described in more detail. Also, during charging progress, the embedded CPU 802 continuously monitors the transmission from the amp-hour/power monitor 806 and the transmission from the battery packs 302a-n and uses the value transmitted by the amp-hour counter and the value transmitted by the battery packs 302a-n to update the value maintained by the embedded CPU 802. The values maintained by the embedded CPU 802 include battery pack and single cell SOC value, battery pack and single cell AH dischargeable value, battery pack and single cell WH dischargeable value, battery pack and single cell voltage, and battery and single cell temperature, such as This is described in more detail below with reference to FIGS. 22A and 22B . As long as each unit is functioning as expected, charging progress will continue until the stopping criteria are met. In an embodiment, the stop criteria include, for example, a maximum SOC value, a maximum voltage value, or a stop time value.

在充电进展期间,当满足停止标准时,嵌入式CPU 802向充电器发送命令停止充电。一旦停止充电,嵌入式CPU 802向低电压继电器控制器816发送命令来断开与接触器834相关联的MOSFET开关。断开这个MOSFET开关改变了在与接触器834相关联的高电压继电器控制器826 上的继电器状态,而这断开接触器834。断开接触器834使充电器(即,逆变器/充电器902)与电池组302a-n去耦。During charging progress, the embedded CPU 802 sends a command to the charger to stop charging when the stopping criteria are met. Once charging has ceased, embedded CPU 802 sends a command to low voltage relay controller 816 to open the MOSFET switch associated with contactor 834 . Opening this MOSFET switch changes the state of the relay on the high voltage relay controller 826 associated with the contactor 834 , which opens the contactor 834 . Opening contactor 834 decouples the charger (ie, inverter/charger 902) from battery packs 302a-n.

如在下文中更详细地描述,电池组302a-n负责维持其相应电池模块412的正常SOC和电压均衡。在一实施例中,由电池组使用其电池组控制器414和/或其交流电源416实现了正常 SOC和电压均衡,以使得其电池模块412符合由嵌入式CPU 802传输的目标值,诸如目标SOC值和目标电压值。在充电进展的一部分期间或者在充电进展之后或者既在充电进展的一部分期间也在充电进展之后发生这种逆变器。As described in more detail below, battery packs 302a - n are responsible for maintaining proper SOC and voltage balancing of their respective battery modules 412 . In one embodiment, normal SOC and voltage balancing is achieved by the battery pack using its battery pack controller 414 and/or its AC power source 416 such that its battery modules 412 meet target values communicated by the embedded CPU 802, such as target SOC value and target voltage value. Such an inverter takes place during part of the charging progress or after the charging progress or both during and after the charging progress.

如相关领域的技术人员通过本文的描述而理解的,电能储存单元900的放电过程以类似于充电过程的方式发生,除了电池组302a-n放电而不是充电。As will be understood by those skilled in the relevant art from the description herein, the discharging process of electrical energy storage unit 900 occurs in a similar manner to the charging process, except that batteries 302a-n are discharged rather than charged.

图10A是进一步展示根据本发明的一实施例的电能储存单元100的图。如图10A所示,通过将若干电能储存单元900a-n组合和联网来形成电能储存单元100。电能储存单元900a包括电池系统控制器702a和电池组302a1-n1。电能储存单元900b包括电池系统控制器702n和电池组 302an-nn。电池系统控制器702a-n的嵌入式CPU 802a-n联接在一起并且使用CAN(CANBus)通信而彼此通信。在嵌入式CPU 802a-n之间通信的信息包括在下文中参考图22A和图22B所标识的信息。FIG. 10A is a diagram further illustrating an electric energy storage unit 100 according to an embodiment of the present invention. As shown in Figure 10A, an electrical energy storage unit 100 is formed by combining and networking several electrical energy storage units 900a-n. Electrical energy storage unit 900a includes battery system controller 702a and battery packs 302a 1 -n 1 . The electrical energy storage unit 900b includes a battery system controller 702n and battery packs 302a n -n n . The embedded CPUs 802a-n of the battery system controllers 702a-n are coupled together and communicate with each other using CAN (CANBus) communications. Information communicated between embedded CPUs 802a-n includes information identified below with reference to Figures 22A and 22B.

在操作中,电能储存单元100类似于上文关于电能储存系统900所描述的那样操作。每个电池系统控制器702监视并且控制其自己的部件诸如电池组302。此外,电池系统控制器702 之一作为主电池系统控制器操作并且协调其它电池系统控制器702的活动。这种协调包括(例如) 充当电能储存单元100的总监视器并且确定并通信可用来实现适当电池组均衡的目标值例如目标 SOC值和目标电压值。关于如何实现这点的更多细节会在下文中参考图25进行描述。In operation, electrical energy storage unit 100 operates similarly to that described above with respect to electrical energy storage system 900 . Each battery system controller 702 monitors and controls its own components such as the battery pack 302 . Additionally, one of the battery system controllers 702 operates as a master battery system controller and coordinates the activities of the other battery system controllers 702 . Such coordination includes, for example, acting as an overall monitor for the electrical energy storage unit 100 and determining and communicating target values such as target SOC values and target voltage values that can be used to achieve proper battery pack balancing. More details on how this is achieved are described below with reference to FIG. 25 .

图10B是根据本发明的一实施例的电能储存系统1050的图。如图10B所示,在一实施例中,系统1050包括与服务器1056通信的电能储存单元100。服务器1056与数据库/储存装置1058a-n通信。服务器1056受到防火墙1054保护并且被展示经由因特网1052与电能储存单元100 通信。在其它实施例中,使用其它通信手段,诸如蜂窝通信或高级量测体系通信网络。电能储存系统1050的用户诸如电力公用设施和/或可再生能源资产操作者使用(多个)用户接口1060与电能储存系统1050互动。在一实施例中,用户接口是图形、基于web的用户接口,例如,其能由直接连接到服务器1056或者因特网1052的计算机访问。在实施例中,由(多个)用户接口1060 显示和/或控制的信息包括例如在下文中参考图19A至图19E、图21、图22A至图22B和图23A 至图23B所标识的信息。通过本文给出的描述,也可以包括和/或控制对于相关领域技术人员显而易见的的额外信息。Figure 10B is a diagram of an electrical energy storage system 1050 according to an embodiment of the invention. As shown in FIG. 10B , in one embodiment, a system 1050 includes an electrical energy storage unit 100 in communication with a server 1056 . Server 1056 is in communication with database/storage devices 1058a-n. Server 1056 is protected by firewall 1054 and is shown communicating with electrical energy storage unit 100 via Internet 1052 . In other embodiments, other means of communication are used, such as cellular communication or an Advanced Measurement Architecture communication network. A user of electrical energy storage system 1050 , such as an electric utility and/or a renewable energy asset operator, interacts with electrical energy storage system 1050 using user interface(s) 1060 . In one embodiment, the user interface is a graphical, web-based user interface that can be accessed by a computer connected directly to the server 1056 or the Internet 1052, for example. In an embodiment, the information displayed and/or controlled by the user interface(s) 1060 includes, for example, information identified below with reference to FIGS. 19A-19E , 21 , 22A-22B , and 23A-23B . Additional information that would be apparent to a person skilled in the relevant art(s) may also be included and/or controlled from the description given herein.

在实施例中,(多个)用户接口1060可以用来更新和/或改变由电能储存单元100所使用的程序和控制参数。通过改变程序和/或控制参数,用户能以任何所希望的方式来控制电能储存单元100。这包括例如控制电能储存单元100何时储存能量、储存多少能量和以什么速率储存能量,以及由电能储存单元100何时放出能量、放出多少能量和以什么速率放出能量。在一实施例中,用户接口能操作一个或多个电能储存单元100使得它们例如就像旋转备用那样做出响应并且可能防止掉电或停电。In an embodiment, user interface(s) 1060 may be used to update and/or change programming and control parameters used by electrical energy storage unit 100 . By changing the program and/or control parameters, the user can control the electrical energy storage unit 100 in any desired manner. This includes, for example, controlling when, how much, and at what rate the electrical energy storage unit 100 stores energy, and when, how much, and at what rate energy is discharged from the electrical energy storage unit 100 . In an embodiment, the user interface can operate one or more electrical energy storage units 100 such that they respond, for example, like a spinning reserve and possibly protect against brownouts or blackouts.

在一实施例中,电能储存系统1050用来学习更多的电池单体行为。服务器1056例如可以用来收集和处理关于构成电能储存单元100的电池单体的行为和关于电能储存单元100本身的大量信息。在一实施例中,所收集的关于电池单体和电能储存单元100的信息可以由制造商用来进行诸如改进未来的电池和用来发展更有效的未来系统等行为,也可以分析信息以确定诸如如何以特定方式操作电池单体来影响电池单体和电能储存单元100的使用寿命之类的问题。通过本文所给出的描述,电能储存系统1050的其他的特点和益处将对于相关领域技术人员是显而易见的。In one embodiment, the electrical energy storage system 1050 is used to learn more battery cell behaviors. The server 1056 may be used, for example, to collect and process a large amount of information about the behavior of the battery cells constituting the electric energy storage unit 100 and about the electric energy storage unit 100 itself. In one embodiment, the information collected about battery cells and electrical energy storage units 100 can be used by manufacturers for actions such as improving future batteries and to develop more efficient future systems, and the information can also be analyzed to determine things such as Questions such as how to operate the battery cells in a particular manner affect the service life of the battery cells and the electrical energy storage unit 100 . Other features and benefits of electrical energy storage system 1050 will be apparent to those skilled in the relevant arts from the description given herein.

图10C是根据本发明的一替代实施例的电能储存系统1050的图。电能储存系统1050 的用户可以使用计算机1070(用户接口可以设置于计算机1070上)来经由并非因特网的网络连接1080访问电能储存单元100。在图10C中的网络1080可以是本领域中设想到的任何网络,包括以太网或甚至将计算机1070直接连接到电能储存单元100的甚至单根电缆。Figure 10C is a diagram of an electrical energy storage system 1050 according to an alternative embodiment of the invention. A user of electrical energy storage system 1050 may use computer 1070 (on which a user interface may be located) to access electrical energy storage unit 100 via network connection 1080 that is not the Internet. Network 1080 in FIG. 10C may be any network contemplated in the art, including Ethernet or even a single cable connecting computer 1070 directly to electrical energy storage unit 100 .

图11至图20是进一步展示根据本发明的电能储存单元和采用电能储存单元的各种电能储存系统的图。11 to 20 are diagrams further illustrating the electric energy storage unit and various electric energy storage systems using the electric energy storage unit according to the present invention.

图11是展示根据本发明的一实施例的电能储存系统1100的图。电能储存系统1100包括电能储存单元900、发电机1104、蜂窝电话站设备1112和蜂窝电话塔架和设备1114。如在图11中所示,电能储存单元900包括具有十个电池组302a-j的电池1102、电池系统控制器702、充电器1106和逆变器1108。在本发明的实施例中,电池110可以包含多于十个或少于十个电池组302。FIG. 11 is a diagram showing an electrical energy storage system 1100 according to an embodiment of the present invention. Electrical energy storage system 1100 includes electrical energy storage unit 900 , generator 1104 , cellular telephone station equipment 1112 , and cellular telephone tower and equipment 1114 . As shown in FIG. 11 , electrical energy storage unit 900 includes a battery 1102 having ten battery packs 302a - j , a battery system controller 702 , a charger 1106 and an inverter 1108 . In embodiments of the present invention, battery 110 may contain more or less than ten battery packs 302 .

在操作中,发电机1104运行并且用来经由充电器1106给电池1102充电。当将电池1102充电到所希望的状态时,发电机1104关机。然后电池1102准备向蜂窝电话站设备1112和/ 或蜂窝电话塔架上的设备供电。电池系统控制器702监视并且控制电能储存单元900,如本文所描述。In operation, generator 1104 runs and is used to charge battery 1102 via charger 1106 . When charging the battery 1102 to a desired state, the generator 1104 is shut down. The battery 1102 is then ready to power the cell phone station equipment 1112 and/or equipment on the cell phone tower. Battery system controller 702 monitors and controls electrical energy storage unit 900 as described herein.

在本发明的实施例中,逆变器1108能在充电器1106操作的同时操作使得在对电池1102充电期间逆变器1108能向设备供电而无需中断。电能储存系统1100可以使用备用电源(例如,当电网电力不可用时)或者其可以持续地用于不存在电网电力的情形(例如,在脱离电网的环境下)。In an embodiment of the present invention, inverter 1108 can operate while charger 1106 is operating such that inverter 1108 can power the device without interruption during charging of battery 1102 . The electrical energy storage system 1100 can use backup power (eg, when grid power is unavailable) or it can be used continuously in situations where grid power is not present (eg, in off-grid environments).

图12是展示根据本发明的一实施例的电能储存系统1200的图。电能储存系统1200类似于电能储存系统1100,除了电能储存单元900现向负载1202供电。只要电池1102和发电机 1104具有相应大小,负载1202可以是任何电负载。FIG. 12 is a diagram showing an electrical energy storage system 1200 according to an embodiment of the present invention. Electrical energy storage system 1200 is similar to electrical energy storage system 1100 except that electrical energy storage unit 900 now supplies power to load 1202 . Load 1202 may be any electrical load as long as battery 1102 and generator 1104 are sized accordingly.

电能储存系统1200适用于例如脱离电网的环境,诸如偏远的医院、偏远的学校、偏远的政府机构等。因为并不需要发电机1104持续地运行以向负载1202供电,能实现明显的燃料节省,以及发电机1104的操作寿命改进。使用电能储存系统1200也能实现其它节省,如运转发电机1104所需的燃料的运输成本减少。The electrical energy storage system 1200 is applicable, for example, to off-grid environments such as remote hospitals, remote schools, remote government agencies, and the like. Because generator 1104 is not required to run continuously to provide power to load 1202, significant fuel savings can be realized, as well as improved operational life of generator 1104. Other savings can also be realized using electrical energy storage system 1200 , such as reduced transportation costs for the fuel required to run generator 1104 .

图13是展示根据本发明的一实施例的电能储存系统1300的图。电能储存系统1300类似于电能储存系统1200,除了发电机1104由太阳能电池板1302替换。在电能储存系统1300 中,太阳能电池板1302用来发电,电力用来给电池1102充电和给负载1202供电。FIG. 13 is a diagram showing an electrical energy storage system 1300 according to an embodiment of the present invention. Electrical energy storage system 1300 is similar to electrical energy storage system 1200 except generator 1104 is replaced by solar panels 1302 . In the electrical energy storage system 1300 , the solar panel 1302 is used to generate electricity, and the electricity is used to charge the battery 1102 and power the load 1202 .

电能储存系统1300适用于例如脱离电网的环境,类似于电能储存系统1200。电能储存系统1300优于电能储存系统1200的一个优点在于不需要燃料。没有发电机和没有燃料需要使得电能储存系统1300比电能储存系统1200更易于操作和维护。The electrical energy storage system 1300 is suitable, for example, for off-grid environments, similar to the electrical energy storage system 1200 . One advantage of electrical energy storage system 1300 over electrical energy storage system 1200 is that no fuel is required. The absence of a generator and lack of fuel requirements make the electrical energy storage system 1300 easier to operate and maintain than the electrical energy storage system 1200 .

图14是展示根据本发明的一实施例的电能储存系统1400的图。电能储存系统1400类似于电能储存系统1300,除了太阳能电池板1302由电网连接件1402替换。在电能储存系统1400 中,电网连接件1402用来提供电力,电力用来给电池1102充电和给负载1202供电。FIG. 14 is a diagram showing an electrical energy storage system 1400 according to an embodiment of the present invention. Electrical energy storage system 1400 is similar to electrical energy storage system 1300 except that solar panels 1302 are replaced by grid connections 1402 . In electrical energy storage system 1400 , grid connection 1402 is used to provide electrical power, which is used to charge battery 1102 and power load 1202 .

电能储存系统1400例如适用于电网电力可用的环境。电能储存系统1400优于电能储存系统1300的一个优点在于初始购买价格小于电能储存系统1400的购买价格。这是因为其不需要太阳能电池板1302。The electrical energy storage system 1400 is suitable, for example, for environments where grid power is available. One advantage of electrical energy storage system 1400 over electrical energy storage system 1300 is that the initial purchase price is less than the purchase price of electrical energy storage system 1400 . This is because it does not require a solar panel 1302 .

图15是展示根据本发明的一实施例的电能储存系统1500的图。电能储存系统1500包括经由电网连接件1402而连接到电网的电能储存单元900。FIG. 15 is a diagram showing an electrical energy storage system 1500 according to an embodiment of the present invention. The electrical energy storage system 1500 includes an electrical energy storage unit 900 connected to a grid via a grid connection 1402 .

电能储存系统1500储存来自电网的能量并且将能量供应给电网,诸如可以帮助公用设施转移峰值负荷并且执行负荷均衡。照此,电能储存单元900可以使用双向逆变器1502,而不是使用单独逆变器和单独充电器。使用双向逆变器是有利的,因为其通常比购买单独逆变器和单独充电器更廉价。The electrical energy storage system 1500 stores energy from the grid and supplies energy to the grid, such as may help utilities shift peak loads and perform load balancing. As such, the electrical energy storage unit 900 may use the bi-directional inverter 1502 instead of using a separate inverter and a separate charger. Using a bi-directional inverter is advantageous because it is usually less expensive than purchasing a separate inverter and a separate charger.

在本发明的实施例中,电能储存系统1500的电能储存单元900使用用户接口和计算机系统远程操作,类似于在上文中参考图10B所描述的那样。这种系统使得在电池1102中储存的能量能以类似于共用设施操作者如何互动以从燃气涡轮分派能量的方式来分派。In an embodiment of the invention, the electrical energy storage unit 900 of the electrical energy storage system 1500 is operated remotely using a user interface and computer system, similar to that described above with reference to FIG. 10B . Such a system enables the energy stored in the battery 1102 to be dispatched in a manner similar to how utility operators interact to dispatch energy from a gas turbine.

图16是展示根据本发明的一实施例的电能储存系统1600的图。电能储存系统1600包括电能储存单元900(容纳于户外封壳1602中),电能储存单元900联接到太阳能电池板1606 (安装于房屋1640的屋顶上)和电网连接件1608。FIG. 16 is a diagram showing an electrical energy storage system 1600 according to an embodiment of the present invention. Electrical energy storage system 1600 includes electrical energy storage unit 900 (housed in outdoor enclosure 1602 ) coupled to solar panels 1606 (mounted on the roof of house 1640 ) and grid connection 1608 .

在操作中,太阳能电池板1606和/或电网连接件1608能用来给电能储存单元900的电池充电。电能储存单元900的电池然后放电以给房屋1604内的负载供电和/或经由电网连接件 1608向电网提供电力。In operation, solar panel 1606 and/or grid connection 1608 can be used to charge the batteries of electrical energy storage unit 900 . The batteries of electrical energy storage unit 900 are then discharged to power loads within premises 1604 and/or to the grid via grid connection 1608.

图17是展示根据本发明的一实施例容纳于户外封壳1602中的电能储存单元900的图。如图17所示,电能储存单元900包括电池1102、电池系统控制器702、充电器1106和逆变器1108,以及断路器箱和断路器1704。电能储存单元900以本文所描述的方式操作。FIG. 17 is a diagram showing an electrical energy storage unit 900 housed in an outdoor enclosure 1602 according to an embodiment of the present invention. As shown in FIG. 17 , electrical energy storage unit 900 includes battery 1102 , battery system controller 702 , charger 1106 and inverter 1108 , and circuit breaker box and circuit breaker 1704 . Electrical energy storage unit 900 operates in the manner described herein.

在一实施例中,户外封壳1602是NEMA 3R额定封壳。封壳1602具有安装到封壳1602前侧上的两个门和安装到封壳1602后侧上的两个门以便于接近在封壳内的设备。封壳的顶面板和侧面板也可以被移除以用于进一步接近内部的设备。在一实施例中,使用受电池系统控制器702 控制的风扇来冷却封壳1602。在实施例中,由安装于这些门之一上的空调单元(未图示)来实现冷却。In one embodiment, outdoor enclosure 1602 is a NEMA 3R rated enclosure. Enclosure 1602 has two doors mounted to the front side of enclosure 1602 and two doors mounted to the rear side of enclosure 1602 to facilitate access to equipment within the enclosure. The top and side panels of the enclosure can also be removed for further access to the equipment inside. In one embodiment, enclosure 1602 is cooled using a fan controlled by battery system controller 702 . In an embodiment, cooling is achieved by an air conditioning unit (not shown) mounted on one of the doors.

通过本文的描述,如相关领域技术人员应理解的,本发明并不限于将户外封壳1602 用来容纳电能储存单元900。也可以使用其它封壳。Through the description herein, as those skilled in the relevant art should understand, the present invention is not limited to using the outdoor enclosure 1602 to house the electrical energy storage unit 900 . Other enclosures may also be used.

如图18所示,在本发明的一实施例中,计算机1802用来与电能储存单元900互动并且控制电能储存单元900。计算机1802可以是任何计算机,诸如运行Windows或Linux操作系统的个人计算机。在计算机1802与电能储存系统900之间的连接可以是有线连接或无线连接。用来与电能储存单元900互动的这种系统适合于例如居住在房屋1604中希望使用这种系统的用户。对于其它用户,诸如公用设施操作(运作)者,可以使用与参考图10B所描述的系统类似的系统,从而提供进一步的控制,以获取电能储存单元900中更多的有效信息。(这句无法理解应该重新翻译←已重新翻译)As shown in FIG. 18 , in an embodiment of the present invention, a computer 1802 is used to interact with and control the electrical energy storage unit 900 . Computer 1802 may be any computer, such as a personal computer running Windows or Linux operating systems. The connection between computer 1802 and electrical energy storage system 900 may be a wired connection or a wireless connection. Such a system for interacting with electrical energy storage unit 900 is suitable, for example, for a user residing in house 1604 wishing to use such a system. For other users, such as utility operators (operators), a system similar to the system described with reference to FIG. (This incomprehensible sentence should be retranslated ← retranslated)

在本发明的实施例中,电能储存单元900可以受到多于一方诸如由房屋1602的居住者和由公用设施操作者监视和/或控制。在这些情况下,可以建立授权用户的不同优先级从而避免任何可能冲突的命令。In embodiments of the invention, electrical energy storage unit 900 may be monitored and/or controlled by more than one party, such as by occupants of house 1602 and by a utility operator. In these cases, different priorities of authorized users can be established to avoid any possible conflicting commands.

图19A至图19E是-展示-根据本发明的实施例的示例性用户接口1900的图,其适合于例如实施于计算机1802上。示意性接口预期是说明性的并且不限制本发明。Figures 19A to 19E are diagrams - illustrating - an exemplary user interface 1900, suitable for implementation, eg, on a computer 1802, according to an embodiment of the present invention. The schematic interfaces are intended to be illustrative and not limiting of the invention.

在如图19A所示的一实施例中,用户接口1900包括状况指示器1902、储存能量指示器1904、电能储存单元功率值1906、房屋负荷值1908、太阳能功率值1910和电网功率值1912。状况指示器1902用来指示电能储存单元900的操作状况。储存的能量指示器1904用来展示多少能量可以用来从电能储存单元900放电。四个值1906、1908、1910和1912展示了电能储存系统 1600的部件的能量流动的速率和方向。In one embodiment shown in FIG. 19A , user interface 1900 includes status indicator 1902 , stored energy indicator 1904 , electrical energy storage unit power value 1906 , house load value 1908 , solar power value 1910 , and grid power value 1912 . The status indicator 1902 is used to indicate the operating status of the electric energy storage unit 900 . The stored energy indicator 1904 is used to show how much energy is available to discharge from the electrical energy storage unit 900 . Four values 1906, 1908, 1910, and 1912 demonstrate the rate and direction of energy flow to components of electrical energy storage system 1600.

在图19A中,值1906表示能量以2.8kw的速率流入到电能储存单元900。值1908表示能量以1.2kw的速率流入到房屋1604内以给负载供电。值1910表示能量由太阳能电池板1606 以2.8kw的速率生成。值1912表示能量从电网连接件1608以1.2kw的速率汲取。从这些值,能确定系统工作,且太阳能电池板发电时,电能储存单元的电池被充电,并且能量从公用设施以 1.2kw的速率购买。In FIG. 19A, the value 1906 indicates that energy is flowing into the electrical energy storage unit 900 at a rate of 2.8 kw. The value 1908 indicates that energy is flowing into the house 1604 at a rate of 1.2kw to power the load. The value 1910 indicates that power is being generated by the solar panels 1606 at a rate of 2.8kw. The value 1912 represents power being drawn from the grid connection 1608 at a rate of 1.2kw. From these values, it can be determined that the system is working and that while the solar panels generate electricity, the batteries of the electrical energy storage unit are charged and energy is purchased from the utility at a rate of 1.2kw.

图19B描绘了在太阳能电池板不产生能量的时间点例如在夜晚的电能功率系统1600 的状态。值1906表示能量以2.0kw的速率流入到电能储存单元900。值1908表示能量以1.1kw 的速率流入到房屋1604内以给负载供电。值1910表示太阳能电池板1606不生成能量。值1912 表示能量从电网连接件1608以3.1kw的速率汲取。从这些值,能确定系统工作,而太阳能电池板不发电时,电能储存单元的电池被充电,并且能量从公用设施以3.1kw的速率购买。Figure 19B depicts the state of the electrical power system 1600 at a point in time when the solar panels are not producing energy, for example at night. A value of 1906 indicates that energy is flowing into the electrical energy storage unit 900 at a rate of 2.0 kw. The value 1908 indicates that energy is flowing into the house 1604 at a rate of 1.1 kw to power the load. A value of 1910 indicates that the solar panel 1606 is not generating power. The value 1912 represents power being drawn from the grid connection 1608 at a rate of 3.1 kw. From these values, it can be determined that the system is operating, while the solar panels are not producing electricity, the battery of the electrical energy storage unit is charged, and energy is purchased from the utility at a rate of 3.1 kw.

图19C描绘了在电能储存单元900的电池完全充电并且太阳能电池板发电的时间点电能功率系统1600的状态。值1906表示电能储存单元900消耗电力而不是发电。值1908表示能量以1.5kw的速率流入到房屋1604内给负载供电。值1910表示能量由太阳能电池板1606以2.5kw 的速率生成。值1912表示能量向电网连接件1608以1.0kw的速率提供。Figure 19C depicts the state of the electrical power system 1600 at the point in time when the batteries of the electrical energy storage unit 900 are fully charged and the solar panels are generating power. A value of 1906 indicates that the electrical energy storage unit 900 is consuming electricity rather than generating it. The value 1908 indicates that energy is flowing into the house 1604 at a rate of 1.5kw to power the load. The value 1910 indicates that power is being generated by the solar panels 1606 at a rate of 2.5kw. Value 1912 indicates that power is provided to grid connection 1608 at a rate of 1.0 kw.

图19D描绘了在太阳能电池板不产生能量的时间点例如在夜晚并且当电能储存单元 900生成的电力比用于给房屋1604中的负载供电更多时电能功率系统1600的状态。值1906表示能量以3.0kw的速率流出电能储存单元900。值1908表示能量以2.2kw的速率流入到房屋1604 内以给负载供电。值1910表示太阳能电池板1606不生成能量。值1912表示能量向电网连接件 1608以0.8kw的速率提供。19D depicts the state of the electrical power system 1600 at a point in time when the solar panels are not producing energy, such as at night, and when the electrical energy storage unit 900 is generating more electricity than is used to power the loads in the house 1604. A value of 1906 indicates that energy is flowing out of the electrical energy storage unit 900 at a rate of 3.0 kw. The value 1908 indicates that energy is flowing into the house 1604 at a rate of 2.2kw to power the load. A value of 1910 indicates that the solar panel 1606 is not generating power. Value 1912 indicates that power is provided to grid connection 1608 at a rate of 0.8kw.

图19E描绘了在太阳能电池板不产生能量的时间点例如在夜晚并且当电力储存单元 900受到控制以便生成房屋1604中的负载的电力需要时的电能功率系统1600的状态。值1906表示能量以2.2kw的速率流出电能储存单元900。值1908表示能量以2.2kw的速率流入到房屋1604 内以给负载供电。值1910表示太阳能电池板1606不生成能量。值1912表示并无能量从电网连接件1608汲取或者向电网连接件1608供应。19E depicts the state of the electrical power system 1600 at a point in time when the solar panels are not producing energy, such as at night, and when the electrical storage unit 900 is controlled to generate the electrical needs of the loads in the house 1604. A value of 1906 indicates that energy is flowing out of the electrical energy storage unit 900 at a rate of 2.2kw. The value 1908 indicates that energy is flowing into the house 1604 at a rate of 2.2kw to power the load. A value of 1910 indicates that the solar panel 1606 is not generating power. A value 1912 indicates that no energy is being drawn from or supplied to the grid connection 1608 .

如相关领域的技术人员在审阅了图19A至图19E和本文公开的描述之后应理解的,电能储存系统1600具有用于电力消费者和公用设施的许多优点。这些优点包括(但不限于)公用设施能均衡其负荷,能在电力中断的情况下向客户提供备用电源,支持插电式电动车和部署和可再生能源(例如太阳能电池板),能提供更好的电网调节和能改进配电线效率。As will be understood by those skilled in the relevant art after reviewing FIGS. 19A-19E and the description disclosed herein, the electrical energy storage system 1600 has many advantages for electricity consumers and utilities. These advantages include (but are not limited to) the utility's ability to balance its load, the ability to provide backup power to customers in the event of a power outage, support for plug-in electric vehicles and Good grid regulation and can improve distribution line efficiency.

图20至图25是展示本发明的软件各种特点的图。在实施例中,使用可编程的存储器和不可编程的存储器来实施软件特点。20 to 25 are diagrams showing various features of the software of the present invention. In an embodiment, software features are implemented using programmable memory and non-programmable memory.

图20是展示在示例性电能储存单元900的部件之中如何来分配本文所描述的本发明的软件各种特点的图。如图20所示,在一实施例中,电能储存单元900的电池系统控制器702具有三个部件,这三个部件包括软件。使用微控制单元(MCU)来执行软件。这些部件是嵌入式CPU 802、安培小时/功率监视器806和低电压继电器控制器816。FIG. 20 is a diagram showing how various features of the inventive software described herein are distributed among the components of an exemplary electrical energy storage unit 900 . As shown in FIG. 20 , in one embodiment, the battery system controller 702 of the electrical energy storage unit 900 has three components, which include software. The software is executed using a Micro Control Unit (MCU). These components are embedded CPU 802 , amp hour/power monitor 806 and low voltage relay controller 816 .

嵌入式CPU 802包括存储器2004,存储器2004存储操作系统(OS)2006和应用程序(APP)2008。这种软件使用MCU 2002执行。在一实施例中,这个软件一起用来使用用户接口从用户接收输入命令,并且其经由用户接口向用户提供关于电能储存单元900的状况信息。嵌入式CPU 802根据所接收的输入命令来操作电能储存单元900,只要命令不将电能储存单元900置于不合需要或不安全状态。输入命令用来控制例如何时对电能储存单元900的电池1102进行充电和放电。输入命令也用来控制例如电池1102充电和放电的速率以及在每次充电-放电循环期间电池1102 循环多深。软件通过向充电器1106的充电器电子控制单元(ECU)2014发送命令来控制电池1102 充电。软件通过向逆变器1108的逆变器电子控制单元(ECU)2024发送命令来控制电池1102的放电。Embedded CPU 802 includes memory 2004 which stores operating system (OS) 2006 and application programs (APP) 2008 . This software is executed using MCU 2002 . In one embodiment, this software is used together to receive input commands from a user using a user interface, and it provides status information about the electrical energy storage unit 900 to the user via the user interface. Embedded CPU 802 operates electrical energy storage unit 900 according to received input commands, as long as the commands do not place electrical energy storage unit 900 in an undesirable or unsafe state. The input commands are used to control, for example, when to charge and discharge the battery 1102 of the electrical energy storage unit 900 . Input commands are also used to control, for example, the rate at which the battery 1102 is charged and discharged and how deeply the battery 1102 is cycled during each charge-discharge cycle. Software controls battery 1102 charging by sending commands to charger electronic control unit (ECU) 2014 of charger 1106 . The software controls the discharge of the battery 1102 by sending commands to the inverter electronic control unit (ECU) 2024 of the inverter 1108 .

除了控制充电器1106和逆变器1108的操作之外,嵌入式CPU 802与电池组302a-302n 和安培小时/功率监视器806一起用来管理电池1102。在嵌入式CPU 802上驻留并且执行的软件、电池组302a-n的电池系统控制器414a-n和安培小时/功率监视器806确保了电池1102在所有时间安全操作并且若需要采取适当措施来确保诸如电池1102既不被过度充电也不被过度放电。In addition to controlling the operation of charger 1106 and inverter 1108 , embedded CPU 802 is used with battery packs 302a - 302n and amp-hour/power monitor 806 to manage battery 1102 . Software resident and executing on the embedded CPU 802, the battery system controllers 414a-n of the battery packs 302a-n, and the amp-hour/power monitor 806 ensures that the battery 1102 is operating safely at all times and takes appropriate steps if necessary to Make sure that, for example, the battery 1102 is neither overcharged nor overdischarged.

如图20所示,安培小时/功率监视器806包括存储器810,存储器810存储应用程序2010。这种应用程序使用MCU 808来执行。在实施例中,应用程序2010负责保持在电池充电进展期间跟踪多少电荷进入到电池1102中和跟踪电池放电进展期间多少电荷从电池1102取出。这个信息被通信到嵌入式CPU 802和电池组302的电池系统控制器414。As shown in FIG. 20 , the amp-hour/power monitor 806 includes memory 810 which stores the application program 2010 . Such applications are executed using the MCU 808 . In an embodiment, the application 2010 is responsible for keeping track of how much charge is entering the battery 1102 during the progress of battery charging and how much charge is being withdrawn from the battery 1102 during the progress of battery discharge. This information is communicated to the embedded CPU 802 and the battery system controller 414 of the battery pack 302 .

低电压继电器控制器816包括存储器820,存储器820存储应用程序2012。应用程序2012使用MCU 818来执行。在实施例中,应用程序2012响应于来自嵌入式CPU 802的命令而断开和闭合继电器和MOSFET。此外,其还将关于继电器和MOSFET开关的状态的状况信息发送到嵌入式CPU 802。在实施例中,低电压继电器控制器816还包括温度传感器,使用应用程序2012来监视温度传感器并且在某些实施例中,应用程序2012包括充分功能使得当嵌入式CPU 802如预期那样不操作时低电压继电器控制器816能接管嵌入式CPU 802并且关于使电能储存单元900关机和重启做出判断。Low voltage relay controller 816 includes memory 820 which stores application program 2012 . Application programs 2012 are executed using MCU 818 . In an embodiment, the application program 2012 opens and closes relays and MOSFETs in response to commands from the embedded CPU 802 . Additionally, it sends status information to the embedded CPU 802 regarding the status of the relays and MOSFET switches. In an embodiment, the low voltage relay controller 816 also includes a temperature sensor that is monitored using the application 2012 and, in some embodiments, the application 2012 includes sufficient functionality so that when the embedded CPU 802 is not operating as intended The low voltage relay controller 816 can take over from the embedded CPU 802 and make decisions about shutting down and restarting the electrical energy storage unit 900 .

充电器1106的充电器ECU 2014包括存储器2018,存储器2018存储应用程序2020。使用MCU 2016来执行应用程序2020。在实施例中,应用程序2020负责从嵌入式CPU 802接收命令和相应地操作充电器1106。应用程序2020也向嵌入式CPU 802发送关于充电器1106的状况信息。Charger ECU 2014 of charger 1106 includes memory 2018 that stores application programs 2020 . The application program 2020 is executed using the MCU 2016 . In an embodiment, the application program 2020 is responsible for receiving commands from the embedded CPU 802 and operating the charger 1106 accordingly. Application 2020 also sends status information about charger 1106 to embedded CPU 802 .

逆变器1108的逆变器ECU 2024包括存储器2028,存储器2028存储应用程序2030。使用MCU 2026来执行应用程序2030。在实施例中,应用程序2030负责从嵌入式CPU 802接收命令和相应地操作逆变器1108。应用程序2030也向嵌入式CPU 802发送关于逆变器1108的状况信息。The inverter ECU 2024 of the inverter 1108 includes a memory 2028 which stores an application program 2030 . The application program 2030 is executed using the MCU 2026 . In an embodiment, the application program 2030 is responsible for receiving commands from the embedded CPU 802 and operating the inverter 1108 accordingly. Application 2030 also sends status information about inverter 1108 to embedded CPU 802 .

也如图20所示,每个电池组302包括电池系统控制器414,电池系统控制器414具有存储器518。每个存储器518用来存储应用程序2034。每个应用程序2034使用MCU 516来执行。应用程序2034也负责监视每个相应电池组302的单体并且将关于单体的状况信息发送到嵌入式 CPU 802。应用程序2034也负责均衡每个相应电池组302的电池单体的电压电平和荷电状态(SOC) 水平。As also shown in FIG. 20 , each battery pack 302 includes a battery system controller 414 having a memory 518 . Each memory 518 is used to store application programs 2034 . Each application program 2034 is executed using the MCU 516 . The application 2034 is also responsible for monitoring the cells of each respective battery pack 302 and sending status information about the cells to the embedded CPU 802. The application 2034 is also responsible for balancing the voltage levels and state-of-charge (SOC) levels of the battery cells of each respective battery pack 302 .

在一实施例中,每个应用程序2034如下操作。在通电时,MCU 518开始执行引导加载器软件。引导加载器软件从闪速存储器向RAM复制应用程序,并且引导加载器软件开始执行应用程序。一旦应用软件正常操作,嵌入式CPU 802询问电池组控制器414来判断其是否包含适用于在嵌入式CPU 802上执行的应用程序2008的适当硬件和软件版本。如果电池组控制器414包含不兼容的硬件版本,命令电池组控制器关机。如果电池组控制器414包含不兼容或者过期的软件版本,嵌入式CPU 802向电池组控制器提供正确或更新的应用程序,并且电池组控制器重启以开始执行新软件。In one embodiment, each application 2034 operates as follows. Upon power up, the MCU 518 begins executing bootloader software. The bootloader software copies the application program from flash memory to RAM, and the bootloader software starts executing the application program. Once the application software is operating normally, the embedded CPU 802 queries the battery pack controller 414 to determine if it contains the appropriate hardware and software versions for the application program 2008 executing on the embedded CPU 802 . If the battery pack controller 414 contains an incompatible hardware version, the battery pack controller is commanded to shut down. If the battery pack controller 414 contains an incompatible or outdated software version, the embedded CPU 802 provides the correct or updated application program to the battery pack controller, and the battery pack controller reboots to begin executing the new software.

一旦嵌入式CPU 802确定了电池组控制器414利用正确的硬件和软件操作,嵌入式CPU 802验证电池组414利用正确的配置数据操作。如果配置数据不正确,嵌入式CPU 802向电池组控制器414提供正确的配置数据,并且电池组控制器414保存这些数据以在其下一次启动期间使用。一旦嵌入式CPU 802验证了电池组控制器414利用正确的配置数据操作,电池组控制器414 执行其应用软件直到其关机。在一实施例中,应用软件包括主程序,主程序在启动时循环地运行若干过程。这些过程包括(但不限于):监视单体电压的过程;监视单体温度的过程;确定每个单体SOC的过程;逆变器单体的过程;CAN(CANBus)传输过程以及CAN(CANBus)接收过程。在应用软件内实施的其它过程包括警报和错误识别过程以及为了获得和管理并未由上述过程之一覆盖的图 21中标识的数据的过程。Once embedded CPU 802 determines that battery pack controller 414 is operating with the correct hardware and software, embedded CPU 802 verifies that battery pack 414 is operating with the correct configuration data. If the configuration data is incorrect, embedded CPU 802 provides the correct configuration data to battery pack controller 414, and battery pack controller 414 saves the data for use during its next startup. Once the embedded CPU 802 has verified that the battery pack controller 414 is operating with the correct configuration data, the battery pack controller 414 executes its application software until it shuts down. In one embodiment, the application software includes a main program, and the main program runs several processes cyclically when started. These processes include (but are not limited to): the process of monitoring cell voltage; the process of monitoring cell temperature; the process of determining the SOC of each cell; the process of inverter cells; ) receiving process. Other processes implemented within the application software include alarm and error identification processes and processes for obtaining and managing data identified in Figure 21 not covered by one of the above processes.

通过本文的描述,如相关领域技术人员应理解的,在本文中参考图20所描述的其它应用程序以类似方式操作,除了实施的过程获得并且管理不同数据。这些不同的数据在上下文中参考其它图描述。From the description herein, other applications described herein with reference to FIG. 20 operate in a similar manner, except that the implemented process obtains and manages different data, as would be understood by those skilled in the relevant art. These various data are described in context with reference to other figures.

图21是展示由电池组302的电池组控制器414获得和/或维持的示例性数据的图。如图 21所示,这些数据包括:电池组的SOC以及每个单体的SOC;电池组的电压以及每个单体的电压;电池组的平均温度以及每个单体的温度;电池组以及每个单体的AH可放电值;电池组以及每个单体的WH可放电值;电池组以及每个单体的容量;关于电池组的最后校准放电的信息;关于电池组的最后校准充电的信息;关于电池组和每个单体的AH和WI-I效率的信息;以及自放电信息。FIG. 21 is a graph illustrating exemplary data obtained and/or maintained by the battery pack controller 414 of the battery pack 302 . As shown in Figure 21, these data include: the SOC of the battery pack and the SOC of each cell; the voltage of the battery pack and the voltage of each cell; the average temperature of the battery pack and the temperature of each cell; the battery pack and AH dischargeable value of each cell; WH dischargeable value of the battery pack and each cell; capacity of the battery pack and each cell; information about the last calibrated discharge of the battery pack; about the last calibrated charge of the battery pack information; information about the AH and WI-I efficiency of the battery pack and each cell; and self-discharge information.

图22A至图22B是展示在根据本发明的电能储存单元900的实施例中由嵌入式CPU802 获得和/或维持的示例性数据的图。如图22A至图22B所示,这些数据包括:关于电池1102和每个电池组302的SOC信息;关于电池1102和每个电池组302的电压信息;关于电池1102和每个电池组302的温度信息;关于电池1102和每个电池组302的AH可放电信息;关于电池1102和每个电池组302的WH可放电信息;关于电池1102和每个电池组302的容量信息;关于电池1102 和每个电池组302的最后校准放电的信息;关于电池1102和每个电池组302的最后校准充电的信息;关于电池1102和每个电池组302的AH和WH效率的信息;以及,自放电信息。22A-22B are graphs showing exemplary data obtained and/or maintained by embedded CPU 802 in an embodiment of electrical energy storage unit 900 according to the present invention. As shown in FIGS. 22A to 22B , these data include: SOC information about the battery 1102 and each battery pack 302; voltage information about the battery 1102 and each battery pack 302; temperature information about the battery 1102 and each battery pack 302 information; AH dischargeable information about battery 1102 and each battery pack 302; WH dischargeable information about battery 1102 and each battery pack 302; capacity information about battery 1102 and each battery pack 302; information about battery 1102 and each battery pack 302 Information about the last calibration discharge of each battery pack 302; information about the last calibration charge of the battery 1102 and each battery pack 302; information about the AH and WH efficiencies of the battery 1102 and each battery pack 302; and, self-discharge information.

除了在图22A至图22B中标识的数据之外,嵌入式CPU 802也获得并且维持与电池1102 的健康或循环寿命有关的数据。这些数据在图23A至图23B中标识。In addition to the data identified in FIGS. 22A-22B , embedded CPU 802 also obtains and maintains data related to the health or cycle life of battery 1102 . These data are identified in Figures 23A-23B.

在一实施例中,在图23A至图23B中展示的数据表示充电和放电计数(即,计数器值) 的数量,其如下工作。假定例如电池最初在90%电容,并且其放电到其电容10%。这种放电表示 80%电容放电,其中,结束放电状态为10%电容。因此,对于这种放电,在放电10-24%之后并且由于76-90%电池电容放电(即,在图23B中具有值75的计数器)导致的由电池SOC表示的放电计数器将递增。以类似方式,在电池的每次充电进展或放电进展之后,嵌入式CPU 802确定适当计数器要递增并且使之递增。在软件中实施的过程增加计数值,对于不同的计数器值使用不同权重,以确定电池的有效循环寿命。出于本发明的目的,在图23A至图23B中标识的示例性计数器预期是说明性的而不是限制性的。In one embodiment, the data shown in Figures 23A-23B represent the number of charge and discharge counts (ie, counter values), which works as follows. Assume, for example, that the battery is initially at 90% capacity, and it is discharged to 10% of its capacity. This discharge represents 80% capacitive discharge, where the end discharge state is 10% capacitive. Thus, for this discharge, the discharge counter represented by battery SOC will increment after 10-24% discharge and due to 76-90% battery capacitance discharge (ie, counter with value 75 in FIG. 23B ). In a similar manner, the embedded CPU 802 determines and increments the appropriate counter after each charge progress or discharge progress of the battery. A process implemented in software increments the count value, using different weights for different counter values, to determine the effective cycle life of the battery. For purposes of the present invention, the example counters identified in FIGS. 23A-23B are intended to be illustrative and not limiting.

图24A至图24B是展示根据本发明的一实施例如何来控制电能储存单元的校准、充电和放电进展的图。如本文所描述,基于电池单体电压电平和电池单体荷电状态(SOC)水平来管理电能储存单元的电池。24A-24B are diagrams showing how the calibration, charging and discharging progress of an electrical energy storage unit is controlled according to an embodiment of the present invention. As described herein, batteries of an electrical energy storage unit are managed based on cell voltage levels and cell state-of-charge (SOC) levels.

如图24A所示并且在下文中所描述,四个高电压值2402(即,VH1、VH2、VH3和VH4)和四个高荷电状态值2406(即,SOCH1、SOCH2、SOCH3和SOCH4)用来控制充电进展。四个低电压值2404(即,VL1、VL2、VL3和VL4)和四个低荷电状态值2408(即,SOCL1、SOCL2、SOCL3、和SOCL4)用来控制放电进展。在本发明的实施例中,如在图2A中所示,用于特定电池单体集合的电压2410a(由图24A中的X表示)可能全都低于VH1的值,而用于某些或全部这些单体的SOC值2410b也处于或高于SOCH1的值。同样,如图24B所示,用于电池单体集合的电压2410c(由图24B中的X表示)也可能高于VL1的值,而用于某些或全部这些单体的SOC值2410d也处于或低于SOCL1的值。因此,如在下文中更详细地描述,所有八个电压值和所有八个SOC值如本文所描述用来管理根据本发明的电能储存单元的电池。As shown in FIG. 24A and described below, four high voltage values 2402 (i.e., V H1 , V H2 , V H3 , and V H4 ) and four high state-of-charge values 2406 (i.e., SOC H1 , SOC H2 , SOC H3 and SOC H4 ) are used to control the charging progress. Four low voltage values 2404 (ie, V L1 , V L2 , V L3 , and V L4 ) and four low state-of-charge values 2408 (ie, SOCL1 , SOCL2 , SOCL3 , and SOCL4 ) are used to control discharge progress. In an embodiment of the invention, as shown in FIG. 2A, the voltages 2410a (represented by Xs in FIG. 24A) for a particular set of battery cells may all be below the value of V H1 while for some or The SOC values 2410b for all of these monomers are also at or above the value of SOC H1 . Also, as shown in FIG. 24B, the voltage 2410c (indicated by the X in FIG. 24B) for a collection of battery cells may also be higher than the value of V L1 , while the SOC value 2410d for some or all of these cells may also be At or below the value of SOC L1 . Thus, as described in more detail below, all eight voltage values and all eight SOC values are used as described herein to manage the battery of the electrical energy storage unit according to the invention.

因为如在本文中所描述,单体电压值和单体SOC值对于根据本发明的电能储存单元的正常操作是重要的,需要周期性地校准该单元使得其适当地确定电池单体的电压电平和SOC水平。使用在软件中实施的校准过程来进行这种操作。Because, as described herein, cell voltage values and cell SOC values are important to the proper operation of an electrical energy storage unit according to the present invention, it is necessary to periodically calibrate the unit so that it properly determines the voltage levels of the battery cells. Peaceful SOC levels. This is done using a calibration procedure implemented in the software.

最初当新电能储存单元首次投入使用时执行校准过程。理想地,当电池单体首次安装到电能储存单元中时,电能储存单元电池的所有单体应在大约相同的SOC(例如,50%)。这要求最小化完成初始校准过程所需的时间量。之后,每当满足下列再校准触发标准之一时执行校准过程:标准1:自从最后校准日期经过了可编程的再校准时间间隔,例如六个月;标准2:电池单体被充电和放电(即,循环)了可编程的加权充电和放电循环次数诸如150次完全充电和完全放电循环的加权等效量;标准3:在试图均衡电池单体之后,电能储存单元电池的高SOC单体和低SOC 单体以超过可编程的SOC百分比例如2-5%不同;标准4:在电池充电期间,检测到一个单体到达值VH4,而一个或多个单体处于低于VH4的电压的情形(参看图24A)并且这种情形不能通过单体均衡来校正;标准5:在电池放电期间,检测到一个单体到达VL4,而一个或多个单体处于大于VL4的电压的情形,并且这种情形不同通过单体均衡来校正。Initially the calibration process is performed when a new electrical energy storage unit is put into service for the first time. Ideally, all cells of an electric energy storage unit battery should be at about the same SOC (eg, 50%) when the cells are first installed in the electric energy storage unit. This requires minimizing the amount of time required to complete the initial calibration process. Thereafter, the calibration process is performed whenever one of the following recalibration trigger criteria is met: Criterion 1: A programmable recalibration interval has elapsed since the last calibration date, for example six months; Criterion 2: The battery cells are charged and discharged (i.e. , cycle) a programmable weighted number of charge and discharge cycles, such as a weighted equivalent of 150 full charge and full discharge cycles; Criterion 3: After trying to balance the cells, the high SOC cells of the electric energy storage unit cells and the low SOC Cells differ by more than a programmable SOC percentage eg 2-5%; Criterion 4: During battery charging, one cell is detected reaching the value V H4 while one or more cells are at a voltage lower than V H4 situation (see Figure 24A) and this situation cannot be corrected by cell equalization; Criterion 5: During battery discharge, a cell is detected to reach V L4 while one or more cells are at a voltage greater than V L4 , and this situation is corrected by individual equalization.

当满足了上述再校准触发标准之一时,由嵌入式CPU 802设置电池再校准标志。在设置了电池再校准标志之后执行的第一电池充电是完全对电池的所有单体充电的充电进展。这种充电的目的是为了使电池的所有单体进入已知完全荷电状态。在电池单体处于这种已知的完全荷电状态之后,紧接着的电池放电被称作校准放电。校准放电的目的是确定当完全充电时多少可放电安培小时的电荷储存在电池的每个单体中和多少可放电能量储存在电池的每个单体中。在校准放电之后进行的电池充电被称作校准充电。校准充电的目的在于确定在校准放电之后,多少安培小时的电荷必须供应给每个单体并且多少瓦时的能量必须供应给每个电池单体,以使得所有单体在完全充电结束时回到其已知的条件。在实施这种校准过程期间确定的值由嵌入式CPU 802储存并且用来确定在电能储存单元正常操作期间电池单体的SOC。The battery recalibration flag is set by the embedded CPU 802 when one of the recalibration trigger criteria described above is met. The first battery charge performed after the battery recalibration flag is set is a charging progression that fully charges all cells of the battery. The purpose of this charge is to bring all cells of the battery to a known full state of charge. After the cells are at this known full state of charge, the battery discharge that follows is called a calibration discharge. The purpose of the calibration discharge is to determine how many dischargeable ampere-hours of charge are stored in each cell of the battery and how much dischargeable energy is stored in each cell of the battery when fully charged. Battery charging performed after calibration discharge is referred to as calibration charging. The purpose of the calibration charge is to determine how many ampere-hours of charge and how many watt-hours of energy must be supplied to each cell after the calibration discharge so that all cells return to its known conditions. Values determined during implementation of this calibration process are stored by embedded CPU 802 and used to determine the SOC of the battery cells during normal operation of the electrical energy storage unit.

在一实施例中,在电池再校准标志之后的第一次充电如下执行:步骤1:以CAL-I的恒定电流率给电池的单体充电直到电池的第一单体到达VH2的电压。步骤2:一旦电池的第一单体到达VH2的电压,减小电池单体充电电流到称作结束-充电-I(END-CHG-I)的值,并且重新开始对电池单体充电。步骤3:继续以结束-充电-I(END-CHG-I)电流对电池单体充电直到电池的所有单体获得在VH3与VH4之间的电压值。步骤4:如果在步骤3期间,任何单体到达VH4的电压:(a) 停止对单体充电;(b)例如使用逆变器电阻器使所有电压高于VH3的电池单体放电直到这些单体具有VH3的电压;(c)一旦所有单体电压处于或低于VH3,再次以结束-充电-I(END-CHG-I)电流开始对电池单体充电;以及(d)循环回到步骤3。这个程序当实施时将电池的所有单体充电到被称作 SOCH3的已知荷电状态(例如,大约98%的SOC)。在实施例中,充电率(CAL-I)应为约0.3C并且结束-充电-I(END-CHG-I)电流应为约0.02至0.05C。In one embodiment, the first charge after the battery recalibration flag is performed as follows: Step 1: Charge a cell of the battery at a constant current rate of CAL-I until the first cell of the battery reaches the voltage of V H2 . Step 2: Once the first cell of the battery reaches the voltage of V H2 , reduce the cell charge current to a value called END-CHG-I (END-CHG-I) and restart charging the cell. Step 3: Continue to charge the battery cells with an END-CHG-I current until all cells of the battery obtain a voltage value between V H3 and V H4 . Step 4: If during step 3, any cell reaches a voltage of V H4 : (a) stop charging the cell; (b) discharge all cells with a voltage above V H3 , e.g. using an inverter resistor, until These cells have a voltage of VH3 ; (c) once all cell voltages are at or below VH3 , start charging the cells again with an END-CHG-I current; and (d) Loop back to step 3. This procedure, when implemented, charges all cells of the battery to a known state of charge called SOC H3 (eg, approximately 98% SOC). In an embodiment, the charge rate (CAL-I) should be about 0.3C and the end-charge-I (END-CHG-I) current should be about 0.02 to 0.05C.

如上文所指出的那样,在上述充电之后的第一放电是校准放电。在实施例中,如下来执行校准放电。步骤1:以CAL-I的恒定电流率使电池的单体放电直到电池的第一单体到达VL2的电压。步骤2:一旦电池的第一单体到达VL2的电压,减小电池单体放电电流到称作结束-放电-I (例如,约0.02-0.05C)的值,并且重新开始电池单体放电。步骤3:继续以结束-放电-I (END-DISCHG-I)电流使电池单体放电直到电池的所有单体获得在VL3与VL4之间的电压值。步骤4:如果在步骤3期间,任何单体到达VL4的电压:(a)停止对单体放电;(b)例如使用逆变器电阻器使所有电压高于VL3的电池单体放电直到这些单体具有VL3的电压。在校准放电结束时,确定由每个电池放电的安培小时和由每个单体放电的瓦时,并且记录由图21、图22A和图22B所表示的这些值。如本文所描述,校准放电的目的在于在完全充电时,确定多少可放电安培小时的端个储存在每个电池单体中并且多少可放电能量储存在每个电池单体中。As noted above, the first discharge after the above-mentioned charge is a calibration discharge. In an embodiment, a calibration discharge is performed as follows. Step 1: Discharge the cells of the battery at a constant current rate of CAL-I until the first cell of the battery reaches the voltage of V L2 . Step 2: Once the first cell of the battery reaches the voltage of V L2 , reduce the cell discharge current to a value called end-discharge-I (eg, about 0.02-0.05C) and restart the cell discharge . Step 3: Continue to discharge the battery cells with an END-DISCHG-I current until all cells of the battery obtain a voltage value between V L3 and V L4 . Step 4: If during step 3, any cell reaches the voltage of VL4 : (a) stop discharging the cell; (b) discharge all cells with voltage above VL3 , e.g. using an inverter resistor, until These monomers have a voltage of V L3 . At the end of the calibration discharge, the ampere-hours discharged by each cell and the watt-hours discharged by each cell were determined and these values represented by Figures 21, 22A and 22B were recorded. As described herein, the purpose of the calibration discharge is to determine how many dischargeable ampere-hours are stored in each battery cell and how much dischargeable energy is stored in each battery cell when fully charged.

在校准放电之后,要执行的下一充电被称作校准充电。校准充电的目的在于确定在校准放电之后必须将多少安培小时的电荷供应给每个电池单体和必须将多少瓦时的能量供应给每个电池单体以使得所有单体回到充满电荷。这个过程如下进行:步骤1:以CAL-I的恒定电流率给电池的单体充电直到电池的第一单体到达VH2的电压;步骤2:一旦电池的第一单体到达VH2的电压,减小电池单体充电电流到称作结束-充电-I(END-CHG-I)的值,并且重新开始对电池单体充电。步骤3:继续以结束-充电-I(END-CHG-I)电流对电池单体充电直到电池的所有单体获得在VH3与 VH4之间的电压值。步骤4:如果在步骤3期间,任何单体到达VH4的电压:(a)停止对单体充电; (b)例如使用逆变器电阻器使所有电压高于VH3的电池单体放电直到这些单体具有VH3的电压;(c) 一旦所有单体电压处于或低于VH3,再次以结束-充电-I(END-CHG-I)电流开始对电池单体充电;以及(d)循环回到步骤3。在校准充电结束时,如图21、图22A和图22B所示来记录给每个电池单体再充电所需的确定的安培小时和给每个电池单体再充电所需的确定的瓦时。通过比较校准充电信息与校准放电信息,能确定电能储存单元的AH效率和WH效率。After the calibration discharge, the next charge to be performed is called calibration charge. The purpose of the calibration charge is to determine how many ampere-hours of charge and how many watt-hours of energy must be supplied to each battery cell after the calibration discharge to bring all the cells back to full charge. The process proceeds as follows: Step 1: Charge the cells of the battery at a constant current rate of CAL-I until the first cell of the battery reaches the voltage of V H2 ; Step 2: Once the first cell of the battery reaches the voltage of V H2 , reduce the cell charging current to a value called END-CHG-I (END-CHG-I), and restart charging the cell. Step 3: Continue to charge the battery cells with an END-CHG-I current until all cells of the battery obtain a voltage value between V H3 and V H4 . Step 4: If during step 3, any cell reaches a voltage of V H4 : (a) stop charging the cell; (b) discharge all cells with a voltage above V H3 , e.g. using an inverter resistor, until These cells have a voltage of V H3 ; (c) once all cell voltages are at or below V H3 , start charging the cells again with an END-CHG-I current; and (d) Loop back to step 3. At the end of the calibration charge, the determined ampere-hours required to recharge each battery cell and the determined watt-hours required to recharge each battery cell are recorded as shown in Figures 21, 22A and 22B . By comparing the calibrated charge information with the calibrated discharge information, the AH efficiency and WH efficiency of the electrical energy storage unit can be determined.

在本发明的实施例中,当电能储存单元的电池在正常操作期间充电时,其使用以下充电过程来充电。步骤1:从授权的使用者或者在嵌入式CPU 802上运行的应用程序接收命令,命令规定了给电能储存单元电池充电的细节。这个消息可以规定例如电池应被充电的充电电流 (CHG-I)、充电器功率(CHG-P)或SOC值。命令也可以规定充电开始时间、充电停止时间或充电持续时间。步骤2:在接收到命令之后,验证命令,并且根据规定的标准来安排充电进展。步骤3:在适当时间,电能储存单元电池根据规定的标准充电,只要并无电池单体到达大于SOCH2的SOC并且并无电池单体到达VH2的电压。步骤4:如果在充电期间,电池单体到达SOCH2的荷电状态或者 VH2的电压,充电率减小至不大于结束-充电-I(END-CHG-I)的速率,并且在一实施例中,采用单体的逆变器电阻器(即,逆变器电阻器开关闭合)来限制给单体充电的速率。步骤5:在步骤4 中减小了充电速率之后,电池单体的充电以减小的充电速率继续直到电池的所有单体获得至少 SOCH1的SOC或者在VH1与VH3之间的电压值。在电池单体获得SOCH0或VH2的值时,其逆变器电阻器用来减小其充电率。步骤6:如果在步骤5期间,任何单体到达SOCH3荷电状态或VH3的电压:(a) 停止对电池单体充电;(b)在停止充电后,具有大于SOCH2的荷电状态或者大于VH2的电压的所有电池单体使用逆变器电阻器来放电直到这些单体具有SOCH2的荷电状态或者VH2的电压;(c)一旦所有单体电压处于或低于SOCH2和VH2,再次以结束-充电-I(END-CHG-I)电流开始对电池单体充电;以及(d)循环回到步骤3。In an embodiment of the invention, when the battery of the electrical energy storage unit is charged during normal operation, it is charged using the following charging process. Step 1: Receive a command from an authorized user or an application program running on the embedded CPU 802 specifying details for charging the battery of the electrical energy storage unit. This message may specify, for example, the charging current (CHG-I), the charger power (CHG-P) or the SOC value at which the battery should be charged. Commands may also specify when charging starts, when charging stops, or when charging lasts. Step 2: After receiving the command, verify the command and schedule the charging progress according to the specified criteria. Step 3: At the appropriate time, the electric energy storage unit battery is charged according to the specified standard, as long as no cell reaches an SOC greater than SOC H2 and no cell reaches a voltage of V H2 . Step 4: If during charging, the battery cell reaches the state of charge of SOC H2 or the voltage of V H2 , the charge rate is reduced to a rate not greater than the end-charge-I (END-CHG-I) rate, and in an implementation In an example, the cell's inverter resistor is used (ie, the inverter resistor switch is closed) to limit the rate at which the cell is charged. Step 5: After reducing the charge rate in step 4, charging of the cells continues at the reduced charge rate until all cells of the battery achieve an SOC of at least SOC H1 or a voltage value between V H1 and V H3 . When a battery cell acquires a value of SOC H0 or V H2 , its inverter resistor is used to reduce its charging rate. Step 6: If during step 5, any cell reaches the voltage of SOC H3 state of charge or V H3 : (a) stop charging the battery cell; (b) have a state of charge greater than SOC H2 after stopping charging All cells at or above V H2 are discharged using inverter resistors until the cells have a state of charge of SOC H2 or a voltage of V H2 ; (c) once all cell voltages are at or below SOC H2 and V H2 , start charging the battery cell again with an END-CHG-I current; and (d) loop back to step 3.

在实施例中,在上文所描述的充电过程结束时,检查再校准标准以判断是否应当实施校准过程。如果满足了校准触发标准中的任一个,那么由嵌入式CPU 802来设置再校准标志。In an embodiment, at the end of the charging process described above, the recalibration standard is checked to determine whether the calibration process should be performed. A recalibration flag is set by the embedded CPU 802 if any of the calibration trigger criteria are met.

在本发明的实施例中,当在正常操作期间使电能储存单元的电池放电时,其使用以下充电过程放电。步骤1:接收规定电能储存单元电池的放电的细节的命令。这种命令可以规定例如应使电池放电的放电电流(DISCHG-1)、放电功率(DISCHG-P)或SOC。命令也可以规定放电开始时间、放电停止时间或放电持续时间。步骤2:在接收到命令之后,验证命令,并且根据规定的标准来安排放电进展。步骤3:在适当时间,电能储存单元电池根据规定的标准充电,只要并无电池单体到达小于SOCL2的SOC并且并无电池单体到达VL2的电压。步骤4:如果放电期间,电池单体到达SOCL2的荷电状态或者VL2的电压,放电率减小至不大于END-DTSCHG-I的速率,并且在一实施例中,采用单体的逆变器电阻器(即,逆变器电阻器开关闭合)来限制使单体放电的速率。步骤5:在步骤4中减小了充电速率之后,电池单体的充电以减小的充电速率继续直到电池的所有单体获得至少SOCL1的SOC或者在VL1与VL3之间的电压值。步骤6:如果在步骤5期间,任何单体到达SOCL3荷电状态或VL3的电压:(a)停止对电池单体放电;(b)在停止放电后,具有大于SOCL1的荷电状态或者大于VL1的电压的所有电池单体使用逆变器电阻器来放电直到这些单体具有SOCL1的荷电状态或者VL1的电压;(c)在所有单体电压处于SOCL1或VL1之后,断开所有逆变器开关并且停止电池单体放电。In an embodiment of the invention, when the battery of the electrical energy storage unit is discharged during normal operation, it is discharged using the following charging process. Step 1: Receiving a command specifying details of the discharge of the electrical energy storage unit battery. Such a command can specify, for example, the discharge current (DISCHG-1), the discharge power (DISCHG-P) or the SOC at which the battery should be discharged. A command may also specify a discharge start time, a discharge stop time, or a discharge duration. Step 2: After receiving the command, verify the command and schedule the discharge progress according to the specified criteria. Step 3: At the appropriate time, the electric energy storage unit battery is charged according to the specified standard, as long as no cell reaches an SOC less than SOC L2 and no cell reaches a voltage of V L2 . Step 4: If during discharge, the battery cell reaches the state of charge of SOC L2 or the voltage of V L2 , the discharge rate is reduced to a rate not greater than END-DTSCHG-I, and in one embodiment, the inverse of the cell is used The inverter resistor (ie, the inverter resistor switch is closed) to limit the rate at which the cells are discharged. Step 5: After reducing the charge rate in step 4, charging of the cells continues at the reduced charge rate until all cells of the battery achieve an SOC of at least SOC L1 or a voltage value between V L1 and V L3 . Step 6: If during step 5, any cell reaches the voltage of SOC L3 state of charge or V L3 : (a) stop discharging the battery cell; (b) have a state of charge greater than SOC L1 after stopping discharging or all cells at a voltage greater than V L1 are discharged using the inverter resistors until the cells have a state of charge of SOC L1 or a voltage of V L1 ; (c) when all cell voltages are at SOC L1 or V L1 Afterwards, all inverter switches are turned off and battery cell discharge is stopped.

在放电过程结束时,检查电池再校准标准以判断是否应实施校准过程。如果满足了校准触发标准中的任何标准,那么由嵌入式CPU 802来设置电池再校准标志。At the end of the discharge process, check the battery recalibration standard to determine if the calibration process should be performed. The battery recalibration flag is set by the embedded CPU 802 if any of the calibration trigger criteria are met.

如本文所描述,嵌入式CPU 802和电池组302持续地监视ESU电池的所有单体的电压电平和SOC水平。如果在任何时间,单体电压或单体SOC超过了或低于规定的电压或SOC安全值 (例如,VH4、SOCH4、VL4、或SOCL4),嵌入式CPU 802立即停止,无论当前正在进行什么操作,并且适当地开始如下文所描述的过度充电预防或过度放电预防过程。As described herein, the embedded CPU 802 and battery pack 302 continuously monitor the voltage levels and SOC levels of all cells of the ESU battery. If at any time, the cell voltage or cell SOC exceeds or falls below a specified voltage or SOC safety value (for example, VH4, SOCH4, VL4, or SOCL4), the embedded CPU 802 stops immediately, regardless of what operation is currently in progress , and appropriately start the overcharge prevention or overdischarge prevention process as described below.

例如在嵌入式CPU 802检测到电池单体具有高于VH4的电压或者大于SOCH4的荷电状态的任何时间,实施过度充电预防过程。在实施例中,当实施过度充电预防过程时,其接通连接电网的逆变器(若可用)并且以被称作OCP-DISCHG-I(例如5Amps)的电流率使电池单体放电直到电池的所有单体处于或低于SOCH3的荷电状态水平和处于或低于VH3的电压电平。如果并未提供连接电网的逆变器来使电池单体放电,那么使用逆变器电阻器来使荷电状态水平大于SOCH3或者电压电平高于VH3的任何单体放电直到所有单体处于小于或等于SOCH3的荷电状态水平和小于或等于VH3的电压电平。An overcharge prevention process is implemented, for example, any time the embedded CPU 802 detects that a battery cell has a voltage above VH4 or a state of charge above SOCH4. In an embodiment, when the overcharge prevention process is implemented, it switches on the grid-connected inverter (if available) and discharges the battery cells at a current rate called OCP-DISCHG-I (eg, 5 Amps) until the battery All cells are at or below SOCH3 state of charge level and at or below VH3 voltage level. If a grid-connected inverter is not provided to discharge the battery cells, use the inverter resistors to discharge any cells with a state of charge level greater than SOCH3 or a voltage level greater than VH3 until all cells are at less than Or equal to the state of charge level of SOCH3 and a voltage level less than or equal to VH3.

如果在操作期间,嵌入式CPU 802检测到电池单体电压小于VL4或荷电状态小于SOCL4,嵌入式CPU 802将立即停止当前执行的操作并且开始实施过度放电预防过程。过度放电预防过程接通充电器(若可用)并且以被称作ODP-CHG-I(例如,5Amps)的电流率给电池充电直到电池的所有单体处于或高于荷电状态水平SOCL3并且处于或高于VL3的电压电平。如果并未提供用来给电池单体充电的充电器,那么个别电池组逆变器充电器用来给荷电状态水平低于SOCL3或者电压电平低于VL3的任何单体充电直到所有单体处于大于或等于SOCL3的荷电状态水平和大于或等于 VL3的电压电平。If during operation, the embedded CPU 802 detects that the battery cell voltage is less than VL4 or the state of charge is less than SOCL4, the embedded CPU 802 will immediately stop the currently executing operation and begin to implement the over-discharge prevention process. The over-discharge prevention process turns on the charger (if available) and charges the battery at a current rate called ODP-CHG-I (eg, 5 Amps) until all cells of the battery are at or above state-of-charge level SOCL3 and are at or a voltage level higher than VL3. If no chargers are provided to charge the cells, the individual battery pack inverter chargers are used to charge any cells with a state of charge level below SOCL3 or a voltage level below VL3 until all cells are at A state of charge level greater than or equal to SOCL3 and a voltage level greater than or equal to VL3.

如本文所描述,电池组302的功能之一在于控制其电池单体的电压逆变器和SOC逆变器。这使用在软件中实施的过程实现。在一实施例中,这个过程如下。嵌入式CPU 802监视并且维持由电池组302传输的电压和SOC信息的拷贝。信息由嵌入式CPU 802用于计算目标SOC值和/ 或目标电压值,目标SOC值和/或目标电压值通信到电池组302。电池组302然后试图将通信的目标值匹配到规定公差范围。如上文描述,这由电池组302通过使用例如逆变器电阻器或能量转移电路元件和逆变器充电器来实现。As described herein, one of the functions of the battery pack 302 is to control the voltage inverters and SOC inverters of its battery cells. This is achieved using a process implemented in software. In one embodiment, this process is as follows. Embedded CPU 802 monitors and maintains a copy of the voltage and SOC information transmitted by battery pack 302 . The information is used by embedded CPU 802 to calculate target SOC values and/or target voltage values that are communicated to battery pack 302 . The battery pack 302 then attempts to match the communicated target value to a specified tolerance range. As described above, this is accomplished by the battery pack 302 using, for example, inverter resistors or energy transfer circuit elements and an inverter charger.

为了更全面地理解如何来根据本发明的实施例实现逆变器,考虑由图25中的上半部中所描绘的电池单体电压值或单体SOC值2502a所表示的情形。电池组1(BP-1)的单体2504关于值 V/SOC2紧密地居中。电池组2(BP-2)的单体2506关于在V/SOC2与V/SOC3之间的值松散地居中。电池组3(BP-3)的单体2508关于值V/SOC1紧密地居中。电池组4(BP-4)的单体2510关于在V/SOC2 与V/SOC3之间的值松散地居中。假定由嵌入式CPU 802通信到电池组的目标值是在图25的底半部中展示的值(即,在V/SOC2与V/SOC3之间的值),由电池组采取以下措施来实现这个目标值。对于电池组1,电池组逆变器充电器(例如,交流逆变器充电器416)可以接通以向单体2504添加电荷并且因此将其值从图25中上半部中展示的值增加到图25的下半部中展示的值。对于电池组2,电池组均衡充电器可以接通以向单体2506添加电荷,同时闭合与特定高值单体相关联的均衡电阻器(从而使充电电流通过),并且然后切断均衡充电器同时仍使均衡电阻器中的某些闭合以从最高值单体放出能量直到单体2506实现图25中的下半部中展示的状态。对于电池组3,电池组均衡充电器可以接通以向单体2508添加电荷,同时闭合与特定高值单体相关联的逆变器电阻器 (从而使充电电流通过)直到单体2508实现了图25的下半部中展示的状态。对于电池组4,无需平均衡,因为单体2510已经符合目标值。For a more complete understanding of how to implement an inverter according to an embodiment of the present invention, consider the situation represented by the battery cell voltage values or cell SOC values 2502a depicted in the upper half of FIG. 25 . Cells 2504 of battery pack 1 (BP-1) are closely centered with respect to the value V/SOC2. Cells 2506 of battery pack 2 (BP-2) are loosely centered with respect to values between V/SOC2 and V/SOC3. Cells 2508 of battery pack 3 (BP-3) are closely centered with respect to the value V/SOC1. Cells 2510 of battery pack 4 (BP-4) are loosely centered with respect to values between V/SOC2 and V/SOC3. Assuming that the target value communicated to the battery pack by the embedded CPU 802 is the value shown in the bottom half of Figure 25 (i.e., a value between V/SOC2 and V/SOC3), the following steps are taken by the battery pack to achieve this target value. For Pack 1, a pack inverter charger (e.g., AC inverter charger 416) may be turned on to add charge to cell 2504 and thus increase its value from that shown in the upper half of FIG. 25 to the values shown in the lower half of Figure 25. For Pack 2, the pack equalizer charger can be turned on to add charge to the cells 2506 while closing the equalizer resistor associated with the particular high value cell (thus allowing charge current to pass), and then shut off the equalizer charger at the same time Some of the balancing resistors are still closed to discharge energy from the highest value cell until cell 2506 achieves the state shown in the bottom half of FIG. 25 . For Pack 3, the pack equalizing charger can be turned on to add charge to the cells 2508 while closing the inverter resistors associated with the particular high value cell (thus allowing charge current to pass) until the cells 2508 achieve The state shown in the lower half of Figure 25. For battery pack 4, no balancing is required because the cells 2510 already meet the target values.

图26A、图26B、图26C和图26D是展示根据本发明的另一个实施例的示例电池组2600 的图。具体而言,图26A和图26B描绘了电池组2600的正视图,图26C描绘了电池组2600的分解图;以及图26D描绘了电池组2600的正视图和侧视图。如图26A至图26D所示,电池组2600 的外壳可以包括前面板2602、盖子或覆盖物2612、后面板2616和底部2618。盖子2612包括左侧部分和右侧部分,盖子112可以包括多个通气孔以便于空气通过电池组2600和冷却电池组2600 的内部部件。在一非限制性实施例中,盖子2612为“U”形并且可以由单件金属、塑料制成或者本领域普通技术人员已知的任何其它材料制成。图48A至图48B的电池组(下文)可以如根据图 26A至图26D的电池组2600所描述的那样实施。26A, 26B, 26C and 26D are diagrams showing an example battery pack 2600 according to another embodiment of the present invention. Specifically, FIGS. 26A and 26B depict front views of battery pack 2600 , FIG. 26C depicts an exploded view of battery pack 2600 ; and FIG. 26D depicts front and side views of battery pack 2600 . As shown in FIGS. 26A-26D , the housing of the battery pack 2600 may include a front panel 2602 , a lid or cover 2612 , a rear panel 2616 and a bottom 2618 . Cover 2612 includes a left side portion and a right side portion, and cover 112 may include a plurality of vent holes to facilitate passage of air through battery pack 2600 and to cool internal components of battery pack 2600 . In a non-limiting example, the cover 2612 is "U" shaped and may be made from a single piece of metal, plastic, or any other material known to those of ordinary skill in the art. The battery pack of FIGS. 48A-48B (below) may be implemented as described with respect to battery pack 2600 of FIGS. 26A-26D .

可以使用图26C所示的紧固件2628来组装电池组2600的外壳,紧固件可以是螺钉和螺栓或者本领域普通技术人员已知的任何其它紧固件。电池组2600的外壳还可以包括前手柄2610 和后手柄2614。如图26C所示,前板2602可以经由前面板安装件2620联接到盖子2612和底部 2618。在一实施例中,电池组2600实施为可安装到机架上的设备模块。例如,电池组2600可以实施为标准19英寸机架(例如,宽度为19英寸的前面板2602,和深度为22与24英寸之间并且高度为四个机架单位或“U”的电池组2600,其中U为等于1.752英寸的标准单位)。如图26C所示,电池组2600可以包括附连到底部2618上的一个或多个安装件2622。安装件2622可以用来将电池组2600固定于机架中以便将多个电池组布置成堆叠配置(在图47的BESS 4700中展示)。The housing of the battery pack 2600 can be assembled using the fasteners 2628 shown in Figure 26C, which can be screws and bolts or any other fasteners known to those of ordinary skill in the art. The housing of the battery pack 2600 may also include a front handle 2610 and a rear handle 2614 . As shown in FIG. 26C , front panel 2602 may be coupled to lid 2612 and bottom 2618 via front panel mounts 2620. In one embodiment, the battery pack 2600 is implemented as a rack-mountable equipment module. For example, battery pack 2600 may be implemented in a standard 19-inch rack (e.g., front panel 2602 is 19 inches wide, and battery pack 2600 is between 22 and 24 inches deep and four rack units or "U" high. , where U is a standard unit equal to 1.752 inches). As shown in FIG. 26C , battery pack 2600 may include one or more mounts 2622 attached to base 2618 . Mounts 2622 may be used to secure battery pack 2600 in a rack for arranging multiple battery packs in a stacked configuration (shown in BESS 4700 of FIG. 47 ).

在图26A至图26D中,电池组2600包括可连接到电池组的负端子的功率连接器2604和可连接到电池组的正端子的功率连接器2606。在其它实施例中,功率连接器2604可以用来连接电池组的正端子,并且功率连接器2606可以用来连接到电池组的负端子。如图26A和图26B 所示,功率连接器2604和2606可以设置于电池组2600的前板或前面板2602上。电缆(未图示) 可以附连到功率连接器2604和2606并且用来向电池组2600添加能量或者从电池组600去除能量。In FIGS. 26A-26D , the battery pack 2600 includes a power connector 2604 connectable to the negative terminal of the battery pack and a power connector 2606 connectable to the positive terminal of the battery pack. In other embodiments, power connector 2604 may be used to connect to the positive terminal of the battery pack, and power connector 2606 may be used to connect to the negative terminal of the battery pack. As shown in FIGS. 26A and 26B , power connectors 2604 and 2606 may be disposed on the front panel or front panel 2602 of the battery pack 2600 . Cables (not shown) may be attached to power connectors 2604 and 2606 and used to add power to battery pack 2600 or remove power from battery pack 600 .

电池组2600的前面板2602也可以包括状况灯和复位按钮2608。在一实施例中,状况按钮2608是能按压以重置或重新启动电池组2600的按钮。在一实施例中,绕按钮2608中心的外环可以被点亮以指示电池组2600的操作状况。这种点亮可以由光源诸如一个或多个发光二极管生成,光源联接到状况按钮2608或者为状况按钮2608的部分。在此实施例中,不同颜色点亮可以指示电池组的不同操作状态。例如,恒定或稳态绿光可以指示电池组2600处于正常操作状态;闪烁或选通绿光可以指示电池组2600处于正常操作状态并且电池组2600目前正使电池逆变器;恒定或稳态黄光可以指示警告或者电池组2600处于错误状态;闪烁或选通黄光可以指示警告或电池组2600处于错误状态并且电池组2600目前正使电池逆变器;恒定或稳态红光可以指示电池组 2600处于警报状态;闪烁或选通红光可以指示电池组2600需要被替换;以及无光从状况灯发出可以指示电池组2600没有电力和/或需要替换。在某些实施例中,当状况灯发出红光(稳态或闪烁)或者无光时,在电池组2600或外部控制器中的连接器自动断开以防止电池充电或放电。如对于本领域普通技术人员显而易见的是,点亮以指示电池组2600的操作状况的任何颜色、频闪技术等在本发明的范围内。The front panel 2602 of the battery pack 2600 may also include status lights and a reset button 2608 . In one embodiment, the status button 2608 is a button that can be pressed to reset or restart the battery pack 2600 . In an embodiment, an outer ring around the center of the button 2608 may be illuminated to indicate the operating condition of the battery pack 2600 . Such illumination may be generated by a light source, such as one or more light emitting diodes, coupled to or part of the status button 2608 . In this embodiment, lighting up of different colors may indicate different operating states of the battery pack. For example, a constant or steady green light may indicate that the battery pack 2600 is in normal operation; a flashing or strobe green light may indicate that the battery pack 2600 is in normal operation and that the battery pack 2600 is currently powering the battery inverter; a constant or steady yellow light may indicate that the battery pack 2600 is in normal operation. A light can indicate a warning or that the battery pack 2600 is in an error state; a flashing or strobe yellow light can indicate a warning or that the battery pack 2600 is in an error state and that the battery pack 2600 is currently invertering the battery; a constant or steady state red light can indicate a battery pack 2600 is in an alarm state; flashing or strobing red light may indicate that battery pack 2600 needs to be replaced; and no light from the status light may indicate that battery pack 2600 has no power and/or needs to be replaced. In certain embodiments, when the status light glows red (steady or flashing) or is off, a connector in the battery pack 2600 or external controller is automatically disconnected to prevent battery charging or discharging. As would be apparent to one of ordinary skill in the art, any color, strobe technique, etc. that illuminates to indicate the operating condition of the battery pack 2600 is within the scope of the present invention.

转至图26C-26D,展示了安置于电池组2600的外壳内侧的示例部件,包括(但不限于) 均衡充电器2632、电池组控制器(BPC)2634和电池模块控制器(BMC)2638。均衡充电器2632 可以是电源,诸如直流电源,并且可以向在电池组中的所有电池单体提供能量。在一实施例中,均衡充电器2632可以同时向电池组中的所有电池单体提供能量。BMC 2638联接到电池模块2636 并且可以从包括于电池模块2636中的电池单体选择性地放能,以及对电池模块2636进行测量(例如,电压和温度)。BPC 2634可以控制均衡充电器2632和BMC 2638以均衡或调整电池模块的电压和/或充电状态到目标电压和/或充电状态值。Turning to FIGS. 26C-26D , example components disposed inside the housing of the battery pack 2600 are shown, including, but not limited to, an equalizing charger 2632 , a battery pack controller (BPC) 2634 , and a battery module controller (BMC) 2638 . The equalizing charger 2632 may be a power source, such as a DC power source, and may provide energy to all battery cells in the battery pack. In one embodiment, the equalizing charger 2632 can provide energy to all battery cells in the battery pack simultaneously. The BMC 2638 is coupled to the battery module 2636 and may selectively discharge energy from battery cells included in the battery module 2636 as well as take measurements (eg, voltage and temperature) on the battery module 2636 . The BPC 2634 can control the equalizing charger 2632 and the BMC 2638 to equalize or adjust the voltage and/or state of charge of the battery modules to target voltage and/or state of charge values.

如图所示,电池组2600包括多个电池模块并且BMC(例如,电池模块控制器2638)联接到每个电池模块(例如,电池模块2636)。在下文更详细地描述的一实施例中,n个BMC(其中 n大于或等于2)可以以菊花链连接在一起并且联接到BPC以形成单线通信网络。在此示例布置中,每个BMC可以具有唯一地址并且通过将一个或多个消息定址到任何所希望的BMC的唯一地址,BPC 可以与BMC中每一个通信。一个或多个消息(其包括BMC的唯一地址)可以包括以下指令:例如从电池模块去除能量、停止从电池模块去除能量、测量并且报告电池模块的温度以及测量并且报告电池模块的电压。在一实施例中,BPC 2634可以使用轮询技术从BMC中每一个获得测量值(例如,温度、电压)。BPC 2634可以计算或(从电池组2600外侧的控制器)接收电池组2600的目标电压,并且可以使用逆变器充电器2632和BMC的网络来调整电池模块中每一个到目标电压。因此,电池组2600可以认为是智能电池组,能自行调整其电池单体到目标电压。As shown, battery pack 2600 includes multiple battery modules and a BMC (eg, battery module controller 2638 ) is coupled to each battery module (eg, battery module 2636 ). In an embodiment described in more detail below, n BMCs (where n is greater than or equal to 2) can be daisy-chained together and coupled to BPCs to form a single-wire communication network. In this example arrangement, each BMC can have a unique address and the BPC can communicate with each of the BMCs by addressing one or more messages to any desired BMC's unique address. The one or more messages (which include the unique address of the BMC) may include instructions to, for example, remove energy from the battery module, stop removing energy from the battery module, measure and report temperature of the battery module, and measure and report voltage of the battery module. In an embodiment, the BPC 2634 may obtain measurements (eg, temperature, voltage) from each of the BMCs using polling techniques. The BPC 2634 can calculate or receive (from a controller outside the battery pack 2600) the target voltage for the battery pack 2600 and can use the network of inverter chargers 2632 and BMCs to regulate each of the battery modules to the target voltage. Therefore, the battery pack 2600 can be regarded as a smart battery pack, which can automatically adjust its battery cells to the target voltage.

连接电池组2600的各个部件的电布线从图中省略以增强可视性。然而,图26D展示了电池组2600中的示例布线。在图示实施例中,逆变器充电器2632和电池组控制器2634可以连接到底部2618或安装于底部2618上。虽然被展示安装于电池组2600的左侧上,逆变器充电器2632 和电池组控制器2634,以及安置于电池组2600中的所有其它部件可以安置于电池组2600内的任何位置。The electrical wiring connecting the various components of the battery pack 2600 is omitted from the figure to enhance visibility. However, FIG. 26D illustrates example wiring in a battery pack 2600. In the illustrated embodiment, inverter charger 2632 and battery pack controller 2634 may be connected to or mounted on base 2618 . Although shown mounted on the left side of the battery pack 2600 , the inverter charger 2632 and the battery pack controller 2634 , as well as all other components disposed in the battery pack 2600 may be disposed anywhere within the battery pack 2600 .

电池模块2636包括多个电池单体。任意多个电池单体可以包括于电池模块2636中。示例电池单体包括(但不限于)锂离子电池单体,诸如18650或26650个电池单体。电池单体可以是圆柱形电池单体、棱柱形电池单体或者袋式电池单体,仅给出几个例子。电池单体或电池模块可以例如高达100个AH电池单体或电池模块。在某些实施例中,电池单体连接成串联/并联配置。示例性电池单体配置包括(但不限于):1P16S配置、2P16S配置、3P16S配置、4P16S配置、 1P12S配置、2P12S配置、3P12S配置以及4P12S配置。本领域普通技术人员已知的其它配置也在本发明的范围内。电池模块2636包括正端子和负端子用来向包括于其中的多个电池单体添加能量或者从电池单体去除能量。The battery module 2636 includes a plurality of battery cells. Any number of battery cells may be included in the battery module 2636 . Example cells include, but are not limited to, lithium-ion cells, such as 18650 or 26650 cells. The cells may be cylindrical cells, prismatic cells, or pouch cells, just to give a few examples. The battery cells or battery modules can be, for example, up to 100 AH battery cells or battery modules. In certain embodiments, the battery cells are connected in a series/parallel configuration. Exemplary battery cell configurations include, but are not limited to: 1P16S configuration, 2P16S configuration, 3P16S configuration, 4P16S configuration, 1P12S configuration, 2P12S configuration, 3P12S configuration, and 4P12S configuration. Other configurations known to those of ordinary skill in the art are also within the scope of the present invention. The battery module 2636 includes positive and negative terminals for adding energy to or removing energy from the plurality of battery cells included therein.

如图26C所示,电池组2600包括形成电池组件的12个电池模块。在另一实施例中,电池组2600包括形成电池组件的包括16个电池模块。在其它实施例中,电池组2600包括形成电池组件的20个电池模块或25个电池模块。如对于本领域普通技术人员显而易见的是,任何数量的电池模块可以连接以形成电池组2600的电池组件。在电池组2600中,被布置为电池组件的电池模块可以布置为串联配置。As shown in FIG. 26C, the battery pack 2600 includes 12 battery modules forming a battery assembly. In another embodiment, the battery pack 2600 includes 16 battery modules forming a battery assembly. In other embodiments, the battery pack 2600 includes 20 battery modules or 25 battery modules forming a battery assembly. Any number of battery modules may be connected to form a battery assembly of battery pack 2600, as would be apparent to one of ordinary skill in the art. In the battery pack 2600, battery modules arranged as a battery assembly may be arranged in a series configuration.

在图26C中,电池模块控制器2638联接到电池模块2636。电池模块控制器2638可以联接到电池模块2636的正端子和负端子。电池模块控制器2638可以被配置成执行下列功能中的一个、某些或全部功能:从电池模块2636去除能量;测量电池模块2636的电压;以及测量电池模块2636的温度。如本领域普通技术人员应理解的,电池模块控制器2638并不限于执行刚刚描述的功能。在一实施例中,电池模块控制器2638实施为安置于印刷电路板上的一个或多个电路。在电池组2600中,一个电池模块控制器联接到电池组2600中的电池模块中的每一个或安装于其上。此外,每个电池模块控制器可以经由布线而联接到一个或多个相邻的电池模块控制器以便形成通信网络。如图27A所示,n个电池模块控制器(其中n是大于或等于二的整数)可以以菊花链连接在一起并且联接到电池组控制器从而形成通信网络。In FIG. 26C , battery module controller 2638 is coupled to battery module 2636 . A battery module controller 2638 may be coupled to the positive and negative terminals of the battery module 2636 . The battery module controller 2638 may be configured to perform one, some, or all of the following functions: removing energy from the battery module 2636; measuring the voltage of the battery module 2636; and measuring the temperature of the battery module 2636. As will be understood by those of ordinary skill in the art, the battery module controller 2638 is not limited to performing the functions just described. In one embodiment, the battery module controller 2638 is implemented as one or more circuits disposed on a printed circuit board. In the battery pack 2600 , one battery module controller is coupled to or mounted on each of the battery modules in the battery pack 2600 . Additionally, each battery module controller may be coupled to one or more adjacent battery module controllers via wiring to form a communication network. As shown in FIG. 27A, n battery module controllers (where n is an integer greater than or equal to two) can be daisy-chained together and coupled to the battery pack controllers to form a communication network.

图27A是展示根据本发明的一实施例由电池组控制器和多个电池模块控制器形成的示例通信网络2700的图。在图27A中,电池组控制器(BPC)2710联接到n个电池模块控制器(BMC) 2720、2730、2740、2750和2760。换言之,n个电池模块控制器(其中n上大于或等于二的整数) 以菊花链连接在一起并且联接到电池组控制器2710以形成通信网络2700,通信网络700被称作分布式菊花链式电池管理系统(BMS)。具体而言,BPC 2710经由通信线2715联接到BMC 2720, BMC 2720经由通信线2725联接到BMC 2730,BMC 2730经由通信线2735联接到BMC 2740,以及 BMC 2750经由通信线2755联接到BMC 2760以形成通信网络。每个通信线2715、2725、2735和 2755可以是单个线,形成单线通信网络,单线通信网络允许BCM 2710与BCM720-2760中每一个通信,并且反之亦然。如对于本领域技术人员显而易见的是,任何数量的BMC可以在通信系统2700 中以菊花链的方式连接在一起。Figure 27A is a diagram showing an example communication network 2700 formed by a battery pack controller and a plurality of battery module controllers according to an embodiment of the invention. In FIG. 27A , a battery pack controller (BPC) 2710 is coupled to n battery module controllers (BMCs) 2720 , 2730 , 2740 , 2750 and 2760 . In other words, n battery module controllers (where n is an integer greater than or equal to two) are daisy-chained together and coupled to battery pack controller 2710 to form communication network 2700, which is referred to as a distributed daisy-chained Battery Management System (BMS). Specifically, BPC 2710 is coupled to BMC 2720 via communication line 2715, BMC 2720 is coupled to BMC 2730 via communication line 2725, BMC 2730 is coupled to BMC 2740 via communication line 2735, and BMC 2750 is coupled to BMC 2760 via communication line 2755 to form Communications network. Each communication line 2715, 2725, 2735, and 2755 may be a single wire, forming a single-wire communication network that allows the BCM 2710 to communicate with each of the BCMs 720-2760, and vice versa. Any number of BMCs may be daisy-chained together in communication system 2700, as will be apparent to those skilled in the art.

在通信网络2700中的每个BMC可以具有唯一地址,BCP 2710使用该地址来与个别BMC 通信。例如,BMC 2720可以具有0002的地址,BMC 2730可以具有0003的地址,BMC 2740可以具有0004的地址,BMC 2750可以具有0005的地址,以及BMC 2760可以具有0006的地址。BPC 2710 可以通过将一个或多个消息定址到任何所希望的BMC的唯一地址,与BMC中每一个通信。一个或多个消息(其包括BMC的唯一地址)可以包括以下指令:例如从电池模块去除能量、停止从电池模块去除能量、测量并且报告电池模块的温度以及测量并且报告电池模块的电压。BPC 2710可以轮询BMC以获得关于电池组的电池模块的测量值,诸如电压和温度测量值。可以使用本领域技术人员已知的任何轮询技术。在某些实施例中,BPC 2710持续地向BMC轮询测量值从而持续地监视在电池组中的电池模块的电压和温度。Each BMC in communication network 2700 may have a unique address that BCP 2710 uses to communicate with the individual BMC. For example, BMC 2720 may have an address of 0002, BMC 2730 may have an address of 0003, BMC 2740 may have an address of 0004, BMC 2750 may have an address of 0005, and BMC 2760 may have an address of 0006. The BPC 2710 can communicate with each of the BMCs by addressing one or more messages to any desired BMC's unique address. The one or more messages (which include the unique address of the BMC) may include instructions to, for example, remove energy from the battery module, stop removing energy from the battery module, measure and report temperature of the battery module, and measure and report voltage of the battery module. The BPC 2710 may poll the BMC for measurements about the battery modules of the battery pack, such as voltage and temperature measurements. Any polling technique known to those skilled in the art may be used. In some embodiments, the BPC 2710 continuously polls the BMC for measurements to continuously monitor the voltage and temperature of the battery modules in the battery pack.

例如,BPC 2710可以设法与BMC 2740通信,例如以便获得安装了BMC 2740的电池模块的温度和电压测量值。在此示例中,BPC 2710生成消息并且发送消息(或指令),消息定址到 BMC 2740(例如,地址0004)。在通信网络2700中的其它BMC可以将BPC 2710发送的消息的地址解码,但是仅具有消息的唯一地址的BMC(在此示例中,BMC 2740)可以响应。在此示例中, BMC 2740从BPC 2710接收消息(例如,消息经过通信线2715、2725和2735到达BMC2740),并且生成响应并且经由单线通信网络(例如,响应经过通信线2735、2725和2715到达BPC 2710) 发送到BPC 2710。BPC 2710可以接收响应并且指导BMC 2740执行功能(例如,从其所安装的电池模块去除能量)。在其它实施例中,可以使用其它类型的通信网络(除了通信网络2700之外)。诸如RS232或RS485通信网络。For example, the BPC 2710 may seek to communicate with the BMC 2740, eg, to obtain temperature and voltage measurements of the battery modules in which the BMC 2740 is installed. In this example, the BPC 2710 generates and sends a message (or instruction) addressed to the BMC 2740 (eg, address 0004). Other BMCs in communication network 2700 can decode the address of the message sent by BPC 2710, but only the BMC with the message's unique address (in this example, BMC 2740) can respond. In this example, BMC 2740 receives messages from BPC 2710 (e.g., messages arrive at BMC 2740 via communication lines 2715, 2725, and 2735), and generates responses and sends them via a single-wire communication network (e.g., responses arrive at BPC via communication lines 2735, 2725, and 2715). 2710) to the BPC 2710. BPC 2710 may receive the response and instruct BMC 2740 to perform a function (eg, remove energy from a battery module it mounts). In other embodiments, other types of communication networks (in addition to communication network 2700) may be used. Such as RS232 or RS485 communication network.

图FIG.27B是用于在电池模块控制器诸如图26C的电池模块控制器2638或者图27A的电池模块控制器2720接收指令的示例方法27000的流程图。27A.关于图27B所描述的电池模块控制器可以包括于通信网络中,通信网络包括多于一个隔离、分布式、菊花链式电池模块控制器,诸如图27A的通信网络2700。FIG. 27B is a flowchart of an example method 27000 for receiving instructions at a battery module controller, such as battery module controller 2638 of FIG. 26C or battery module controller 2720 of FIG. 27A . 27A. The battery module controller described with respect to FIG. 27B may be included in a communication network comprising more than one isolated, distributed, daisy-chained battery module controller, such as the communication network 2700 of FIG. 27A.

图27B的方法27000可以实施为可以由处理器执行的软件或固件。即,方法27000的每个阶段可以实施为存储于非暂时计算机可读存储装置上的一个或多个计算机可读指令,计算机可读指令当由处理器执行时造成处理器实施一个或多个操作。例如,方法27000的可以实施为一个或多个计算机可读指令,计算机可读指令存储于电池模块控制器的处理器中并且由电池模块控制器的处理器执行(例如,图1C的电池组模块控制器138或者图27A的电池模块控制器2720),电池模块控制器安装于电池组(例如,图26A至图26D的电池组2600)中的电池模块(例如,图 26C的电池模块2636)上。Method 27000 of FIG. 27B may be implemented as software or firmware executable by a processor. That is, each stage of Method 27000 may be implemented as one or more computer-readable instructions stored on a non-transitory computer-readable storage device that, when executed by a processor, cause the processor to perform one or more operations . For example, method 27000 can be implemented as one or more computer readable instructions stored in and executed by a processor of a battery module controller (e.g., the battery module of FIG. 1C controller 138 or the battery module controller 2720 of FIG. 27A), the battery module controller is installed on the battery module (for example, the battery module 2636 of FIG. 26C ) in the battery pack (for example, the battery pack 2600 of FIGS. 26A to 26D ). .

由于图27B的描述参考电池组的部件,为了清楚起见,当描述图27B的方法27000的不同阶段时,在图26A至图26D的电池组2600的示例实施例中枚举的部件和图27A的示例通信网络用来参考具体部件。然而,图26A至图26D的电池组2600和通信网络2700只是示例,并且可以使用并非图26A至图26D中所描绘的示例实施例的电池组和并非在图27A中描绘的示例实施例的通信网络2700的实施例来实施方法27000。Since the description of FIG. 27B refers to components of the battery pack, for clarity, when describing the different stages of the method 27000 of FIG. 27B, the components enumerated in the example embodiment of the battery pack 2600 of FIGS. Example communication networks are used to refer to specific components. However, the battery pack 2600 and communication network 2700 of FIGS. 26A-26D are examples only, and battery packs other than the example embodiment depicted in FIGS. 26A-26D and communication networks other than the example embodiment depicted in FIG. 27A may be used. An embodiment of the network 2700 to implement the method 27000.

在开始时(阶段27100),该方法27000继续到阶段27200,在阶段7020,电池模块控制器接收消息。例如,电池组控制器可以与菊花链式电池模块控制器的网络通信(例如图27A) 以便逆变器电池组(例如,在图26A至图26D的5个电池组2600)中的电池。可以在电池模块控制器的通信端子处经由通信线(例如在图27A的5个通信线2715)接收消息。这个通信可以包括 (但不限于)指导电池模块控制器的网络提供安装了电池模块控制器的电池模块的电压和/或温度测量值,并且指导电池模块控制器从分别安装了电池模块控制器的电池模块去除能量或者停止去除能量。Upon initiation (Stage 27100), the Method 27000 proceeds to Stage 27200, where at Stage 7020 the battery module controller receives a message. For example, a battery pack controller may communicate with a network of daisy-chained battery module controllers (eg, FIG. 27A ) to invert cells in a battery pack (eg, 5 battery packs 2600 in FIGS. 26A-26D ). Messages may be received at the communication terminals of the battery module controller via communication lines (eg, five communication lines 2715 in FIG. 27A ). This communication may include, but is not limited to, instructing the network of battery module controllers to provide voltage and/or temperature measurements of the battery modules in which the battery module controllers are installed, and instructing the battery module controllers to obtain information from the battery module controllers in which the battery module controllers are installed. The battery module removes energy or stops removing energy.

如关于图27A所讨论,在通信网络(例如图27A的通信网络2700)的每个电池模块控制器(例如,图27A的BMC 2720)可以具有唯一地址,电池组控制器(例如,图27A的BPC 2710)使用唯一地址来与电池模块控制器通信。因此,在阶段27200接收的消息可以包括其计划用于的电池模块控制器的地址和将由电池模块控制器执行的指令。在阶段27300,电池模块控制器判断包括于该消息中的地址是否匹配电池模块控制器的唯一地址。如果地址并不匹配,方法27000返回至阶段27200并且电池模块控制器等待新消息。即,电池模块控制器响应于判断出与该消息相关联的地址并不匹配电池模块控制器的唯一地址而忽略与该消息相关联的指令。如果地址并不匹配,方法27000前进到阶段27400。As discussed with respect to FIG. 27A , each battery module controller (e.g., BMC 2720 of FIG. 27A ) on a communication network (e.g., communication network 2700 of FIG. 27A ) can have a unique address, and a battery pack controller (e.g., The BPC 2710) uses a unique address to communicate with the battery module controller. Thus, the message received at stage 27200 may include the address of the battery module controller it is intended for and the instructions to be executed by the battery module controller. At stage 27300, the battery module controller determines whether the address included in the message matches the unique address of the battery module controller. If the addresses do not match, Method 27000 returns to Stage 27200 and the Battery Module Controller waits for a new message. That is, the battery module controller ignores the instruction associated with the message in response to determining that the address associated with the message does not match the unique address of the battery module controller. If the addresses do not match, Method 27000 proceeds to Stage 27400.

在阶段27400,电池模块控制器将包括于该消息中的指令解码并且该方法27000前进到阶段27500。在阶段27500,向电池模块轮询电压测量值。同样,指令可以(但不限于)测量并且报告电池模块的温度,测量并且报告电池模块的电压,从电池模块去除能量(例如在电池模块的端子上施加一个或多个分流电阻器),停止从电池模块去除能量(例如,停止向电池模块的端子施加一个或多个分流电阻器),或者在测量电池电压之前校准电压测量值。在各种实施例中,温度和电压测量值可以作为实际温度和电压值发送,或者作为编码数据发送,可以在报告了测量值之后对编码的数据进行解码。在阶段27500之后,方法27000循环回到阶段27200并且电池模块控制器等待新消息。At stage 27400 the battery module controller decodes the instructions included in the message and the method 27000 proceeds to stage 27500. At stage 27500, the battery module is polled for voltage measurements. Likewise, the instructions may, but are not limited to, measure and report the temperature of the battery module, measure and report the voltage of the battery module, remove energy from the battery module (e.g., apply one or more shunt resistors across the terminals of the battery module), stop The battery module is de-energized (eg, by stopping the application of one or more shunt resistors to the terminals of the battery module), or the voltage measurement is calibrated prior to measuring the battery voltage. In various embodiments, temperature and voltage measurements may be sent as actual temperature and voltage values, or as encoded data that may be decoded after the measurements are reported. After Stage 27500, Method 27000 loops back to Stage 27200 and the Battery Module Controller waits for new messages.

图28是展示根据本发明的一实施例的示例电池组控制器2800的图。图26C和图26D的电池组控制器2634可以如根据图28的电池组控制器2800所描述那样实施。图27A的电池组控制器2710可以如根据图28的电池组控制器2800所描述那样实施。FIG. 28 is a diagram showing an example battery pack controller 2800 according to an embodiment of the invention. The battery pack controller 2634 of FIGS. 26C and 26D may be implemented as described with respect to the battery pack controller 2800 of FIG. 28 . Battery pack controller 2710 of FIG. 27A may be implemented as described with respect to battery pack controller 2800 of FIG. 28 .

如图28所示,示例电池组控制器2800包括直流输入2802(其可以是隔离的5V直流输入)、充电器开关电路2804、DIP-开关2806、JTAG连接件2808、CAN(CANBus)连接件2810、微处理器单元(MCU)2812、存储器2814、外部EEPROM 2816、温度监视电路2818、状况灯和复位按钮2820、看门狗计时器2822和电池模块控制器(BMC)通信连接件2824。As shown in Figure 28, an example battery pack controller 2800 includes a DC input 2802 (which may be an isolated 5V DC input), a charger switch circuit 2804, a DIP-switch 2806, a JTAG connection 2808, a CAN (CANBus) connection 2810 , microprocessor unit (MCU) 2812, memory 2814, external EEPROM 2816, temperature monitoring circuit 2818, status lights and reset button 2820, watchdog timer 2822, and battery module controller (BMC) communication connection 2824.

在一实施例中,电池组控制器2800也从存储电池单体中的能量供电。电池组控制器 2800可以由直流输入2802连接到电池单体。在其它实施例中,电池组控制器2800可以从连接到直流输入2802的交流至直流电源供电。在这些实施例中,直流-直流电源然后可以将输入直流电转换为适合于操作电池组控制器2800的各个电部件的一个或多个功率级。In one embodiment, the battery pack controller 2800 is also powered from energy stored in the battery cells. The battery pack controller 2800 can be connected to the battery cells by a DC input 2802. In other embodiments, battery pack controller 2800 may be powered from an AC to DC power source connected to DC input 2802 . In these embodiments, the DC-DC power supply may then convert the input DC power to one or more power stages suitable for operating the various electrical components of the battery pack controller 2800 .

在图28展示的示例性实施例中,充电器开关电路2804联接到MCU 2812。充电器开关电路2804和MCU 2812可以用来控制逆变器充电器诸如图26C的逆变器充电器2632的操作。如上文所描述,逆变器充电器可以向电池组的电池单体添加能量。在一实施例中,温度监视电路2818 包括一个或多个温度传感器,温度传感器可以监视在电池组内的热源温度,诸如用来向电池组的电池单体添加能量的逆变器充电器的温度。In the exemplary embodiment shown in FIG. 28 , charger switch circuit 2804 is coupled to MCU 2812 . Charger switching circuit 2804 and MCU 2812 may be used to control the operation of an inverter charger, such as inverter charger 2632 of FIG. 26C. As described above, an inverter charger can add energy to the cells of the battery pack. In one embodiment, the temperature monitoring circuit 2818 includes one or more temperature sensors that can monitor the temperature of a heat source within the battery pack, such as the temperature of an inverter charger used to add energy to the cells of the battery pack .

电池组控制器2800也可以包括若干接口和/或连接器用于通信。这些接口和/或连接器可以联接到MCU 2812,如图28所示。在一实施例中,这些接口和/或连接器包括:DIP-开关2806,其可以用来设置用于标识电池组控制器2800的软件比特的一部分;JTAG连接件2808,其可以用来测试和调试电池组控制器2800;CAN(CANBus)连接件2810,其可以用来与电池组外侧的控制器通信;以及,BMC通信连接件2824,其可以用来与一个或多个电池模块控制器诸如电池模块控制器的分布式菊花链式网络(例如,图27A)通信。例如,电池组控制器2800可以经由BMC通信连接件2824联接到通信线,例如图27A的通信线2715。Battery pack controller 2800 may also include several interfaces and/or connectors for communication. These interfaces and/or connectors may be coupled to MCU 2812 as shown in FIG. 28 . In one embodiment, these interfaces and/or connectors include: DIP-switches 2806, which can be used to set a portion of the software bits used to identify the battery pack controller 2800; JTAG connectors 2808, which can be used to test and Debug battery pack controller 2800; CAN (CANBus) connection 2810, which may be used to communicate with controllers outside the battery pack; and, BMC communication connection 2824, which may be used to communicate with one or more battery module controllers such as A distributed daisy-chain network (eg, FIG. 27A ) of battery module controllers communicates. For example, battery pack controller 2800 may be coupled to a communication line, such as communication line 2715 of FIG. 27A , via BMC communication connection 2824 .

电池组控制器2800还包括外部EEPROM 2816。外部EEPROM 2816可以存储电池组的值,测量值等。当切断电池组的电源时这些值、测量值等可以持续(即,将不由于失去电力而丢失)。外部EEPROM 2816也可以存储可执行的代码或指令,诸如用来操纵微处理器单元2812的可执行代码或指令。The battery pack controller 2800 also includes an external EEPROM 2816 . An external EEPROM 2816 can store battery pack values, measurements, etc. These values, measurements, etc. may persist (ie, will not be lost due to loss of power) when power to the battery pack is removed. External EEPROM 2816 may also store executable code or instructions, such as those used to operate microprocessor unit 2812 .

微处理器单元(MCU)2812联接到存储器2814。MCU 2812用来执行管理电池组的应用程序。如本发明所述的那样,在一实施例中,该应用程序可以执行以下功能(但不限于这些功能):监视电池组2600的电池单体的电压和温度;逆变器电池组2600的电池单体;监视并且控制(若需要)电池组2600的温度;处置在电池组2600与电能存储系统的其它部件之间的通信;以及生成警告和/或警报,以及采取其它适当措施来保护电池组600的电池单体。Microprocessor unit (MCU) 2812 is coupled to memory 2814 . The MCU 2812 is used to execute application programs for managing the battery pack. As described in the present invention, in one embodiment, the application program can perform the following functions (but not limited to these functions): monitor the voltage and temperature of the battery cells of the battery pack 2600; cells; monitor and control (if necessary) the temperature of the battery pack 2600; handle communications between the battery pack 2600 and other components of the electrical energy storage system; and generate warnings and/or alarms, and take other appropriate measures to protect the battery pack 600 battery cells.

如上文所描述,电池组控制器可以从电池模块控制器获得温度和电压测量值。温度读数可以用来确保电池单体在其规定的温度限度内操作并且调整由MCU 2812上执行的应用程序计算和/或使用的温度相关值。同样,电压读数例如用来确保电池单体在其规定的电压限度内操作。As described above, the battery pack controller may obtain temperature and voltage measurements from the battery module controllers. The temperature readings can be used to ensure that the battery cells are operating within their specified temperature limits and to adjust temperature related values calculated and/or used by applications executing on the MCU 2812 . Likewise, voltage readings are used, for example, to ensure that the battery cells are operating within their specified voltage limits.

看门狗计时器2822用来监视和确保电池组控制器2800的适当操作。在电池组控制器 2800操作期间发生不可恢复错误或者计划外无限软件循环的情况下,看门狗计时器2822可以重置电池组控制器2800使得其正常重新开始操作。状况灯和复位按钮2820可以用来对电池组控制器2800进行手动重置操作。如图28所示,状况灯和复位按钮2820和看门狗计时器2822可以联接到MCU 2812。A watchdog timer 2822 is used to monitor and ensure proper operation of the battery pack controller 2800 . In the event of an unrecoverable error or an unplanned infinite software loop during operation of the battery pack controller 2800, the watchdog timer 2822 can reset the battery pack controller 2800 so that it resumes normal operation. The status light and reset button 2820 can be used to manually reset the battery pack controller 2800 . As shown in FIG. 28 , a status light and reset button 2820 and a watchdog timer 2822 may be coupled to the MCU 2812 .

图29展示了根据本发明的一实施例的示例电池模块控制器2900的图。图26C和图26D 的电池组控制器2638可以如根据图29的电池组控制器2900所描述那样实施。图27A的电池模块控制器2720、2730、2740、2750和2760中每一个可以如根据图9的电池模块控制器2900所描述那样实施。电池模块控制器2900可以安装于电池组的电池模块上并且可以执行以下功能(但不限于此):测量电池模块的电压;测量电池模块的温度;以及从电池模块去除能量(放电)。FIG. 29 shows a diagram of an example battery module controller 2900 according to an embodiment of the invention. The battery pack controller 2638 of FIGS. 26C and 26D may be implemented as described with respect to the battery pack controller 2900 of FIG. 29 . Each of battery module controllers 2720 , 2730 , 2740 , 2750 , and 2760 of FIG. 27A may be implemented as described with respect to battery module controller 2900 of FIG. 9 . The battery module controller 2900 may be installed on the battery modules of the battery pack and may perform the following functions (but not limited thereto): measuring the voltage of the battery module; measuring the temperature of the battery module; and removing energy (discharging) from the battery module.

在图29中,电池模块控制器2900包括处理器2905、电压参考2910、一个或多个电压测试电阻器2915、电源2920、故障安全电路2925、分流开关2930、一个或多个分流电阻器2935、极性保护电路2940、隔离电路2945和通信线2950。处理器2905控制电池模块控制器2900。处理器905经由电源2920从电池模块控制器900所安装的电池模块接收电力。电源2920可以是直流电源。如图29所示,电源2920联接到电池模块的正端子并且向处理器2905提供电力。处理器 2905也经由极性保护电路2940联接到电池模块的负端子,极性保护电路940在电池模块控制器不当地安装于电池模块上的情况下保护电池模块控制器2900(例如,在图29中原本要联接到正端子的电池模块控制器2900的部件被不当地联接到负端子并且反之亦然)。In FIG. 29, a battery module controller 2900 includes a processor 2905, a voltage reference 2910, one or more voltage test resistors 2915, a power supply 2920, a fail-safe circuit 2925, a shunt switch 2930, one or more shunt resistors 2935, Polarity protection circuit 2940 , isolation circuit 2945 and communication line 2950 . The processor 2905 controls the battery module controller 2900 . The processor 905 receives power from the battery module installed in the battery module controller 900 via the power supply 2920 . Power supply 2920 may be a DC power supply. As shown in FIG. 29 , a power supply 2920 is coupled to the positive terminal of the battery module and provides power to the processor 2905 . The processor 2905 is also coupled to the negative terminal of the battery module via a polarity protection circuit 2940, which protects the battery module controller 2900 in the event that the battery module controller is improperly installed on the battery module (e.g., in FIG. 29 components of the battery module controller 2900 that were intended to be coupled to the positive terminal are improperly coupled to the negative terminal and vice versa).

电池模块控制器2900可以经由通信线2950(其可以单个线)与电池组的其它部件(例如,电池组控制器,诸如图26C的电池组控制器2634)通信。如关于图27A的示例通信网络所描述,通信线2950也可以用来以菊花链方式将电池模块控制器2900连接到电池组控制器和/或一个或多个其它电池模块控制器从而形成通信网络。通信线2950可以经由安置于电池组控制器2900 上的通信端子联接到电池组控制器2900。照此,电池模块控制器2900可以经由通信线2950来发送和接收消息(包括从电池组控制器发送的指令)。当充当通信网络的部分时,电池模块控制器 2900可以被分配唯一网络地址,唯一网络地址可以存储于处理器2905的存储装置中。Battery module controller 2900 may communicate with other components of the battery pack (eg, a battery pack controller such as battery pack controller 2634 of FIG. 26C ) via communication line 2950 (which may be a single wire). As described with respect to the example communication network of FIG. 27A , communication lines 2950 may also be used to daisy chain battery module controllers 2900 to battery pack controllers and/or one or more other battery module controllers to form a communication network. . The communication line 2950 may be coupled to the battery pack controller 2900 via a communication terminal disposed on the battery pack controller 2900 . As such, the battery module controller 2900 can send and receive messages (including instructions sent from the battery pack controller) via the communication line 2950 . When serving as part of a communication network, the battery module controller 2900 may be assigned a unique network address, which may be stored in a memory device of the processor 2905.

电池模块控制器2900可以经由隔离电路2945与联接到通信线的其它部件(例如,电池组控制器、其它电池模块控制器,在电池组外部的计算系统)电隔离。在图29中,隔离电路 2945安置于通信线2950与处理器2905之间。同样,通信线2950可以经由安置于电池组控制器 2900上的通信端子联接到电池组控制器2900。这个通信端子可以安置于通信线2950与隔离电路 2945之间,或者可以是隔离电路2945的部分。隔离电路2945可以将处理器2905电容联接到通信线2950或者可以提供本领域技术人员已知的其它形式的电隔离。Battery module controller 2900 may be electrically isolated from other components (eg, battery pack controller, other battery module controllers, computing systems external to the battery pack) coupled to communication lines via isolation circuit 2945 . In FIG. 29, isolation circuitry 2945 is disposed between communication line 2950 and processor 2905. Also, the communication line 2950 may be coupled to the battery pack controller 2900 via a communication terminal disposed on the battery pack controller 2900. This communication terminal may be disposed between the communication line 2950 and the isolation circuit 2945, or may be part of the isolation circuit 2945. Isolation circuitry 2945 may capacitively couple processor 2905 to communication line 2950 or may provide other forms of electrical isolation known to those skilled in the art.

如上文所解释,电池模块控制器2900可以测量其所安装的电池模块的电压。如图29 所示,处理器2905联接到电压测试电阻器2915,电压测试电阻器2915联接到电池模块的正端子。处理器2905可以测量在测试电阻器2915两端的电压并且比较这个测量电压与电压参考2910来确定电池模块的电压。如关于图27A所描述,可以由电池组控制器来指导电池模块控制器2900测量电池模块的电压。在执行了电压测量值之后,处理器2905可以经由通信线2950向电池组控制器报告电压测量值。As explained above, the battery module controller 2900 may measure the voltage of the battery module installed therein. As shown in Figure 29, the processor 2905 is coupled to a voltage test resistor 2915, which is coupled to the positive terminal of the battery module. Processor 2905 may measure the voltage across test resistor 2915 and compare this measured voltage to voltage reference 2910 to determine the voltage of the battery module. As described with respect to FIG. 27A, the battery module controller 2900 may be directed by the battery pack controller to measure the voltage of the battery modules. After performing the voltage measurement, the processor 2905 may report the voltage measurement to the battery pack controller via the communication line 2950 .

电池模块控制器2900也可以从其所安装的电池模块去除能量。如图29所示,处理器 2905联接到故障安全电路2925,故障安全电路925联接到分流开关2930。分流开关2930也经由极性保护电路2940联接到负端子。分流电阻器2935安置于电池模块的正端子与分流开关2930 之间。在此实施例中,当分流开关2930断开时,分流电阻器2935并不施加到电池模块的正端子和负端子,并且当分流开关2930闭合时,分流电阻器2935施加到电池模块的正端子和负端子以便从电池模块去除能量。处理器2905可以指导分流开关2930以将电阻器2935选择性地施加到电池模块的正端子和负端子以便从电池模块去除能量。在一实施例中,处理器2905以有规律的间隔 (例如,每30秒一次)指导分流开关2930施加分流电阻器2935以便使电池模块持续地放电。The battery module controller 2900 may also remove energy from the battery modules it is installed in. As shown in FIG. 29 , processor 2905 is coupled to failsafe circuit 2925 , and failsafe circuit 925 is coupled to shunt switch 2930 . Shunt switch 2930 is also coupled to the negative terminal via polarity protection circuit 2940 . A shunt resistor 2935 is disposed between the positive terminal of the battery module and the shunt switch 2930 . In this embodiment, when the shunt switch 2930 is open, the shunt resistor 2935 is not applied to the positive and negative terminals of the battery module, and when the shunt switch 2930 is closed, the shunt resistor 2935 is applied to the positive terminal of the battery module and negative terminal to remove energy from the battery module. Processor 2905 may direct shunt switch 2930 to selectively apply resistor 2935 to the positive and negative terminals of the battery module to remove energy from the battery module. In one embodiment, processor 2905 directs shunt switch 2930 to apply shunt resistor 2935 at regular intervals (eg, once every 30 seconds) to continuously discharge the battery module.

故障安全电路2925可以防止分流开关2930从电池模块去除太多能量。在处理器2905 故障的情况下,故障安全电路2925可以指导分流开关2930停止将分流电阻器835施加到电池模块的正端子和负端子。举例而言,处理器2905以有规律的间隔(例如每30秒一次)指导分流开关2930施加分流电阻器2935以便使电池模块持续地放电。安置于处理器2905与分流开关2930 之间的故障安全电路2925可以监视处理器2905发送给分流开关2930的指令。在处理器2905向分流开关2930发送安排指令失败(这可能是由于处理器2905故障造成)的情况下,故障安全电路2925可以指导或造成分流开关2930断开,防止电池模块进一步放电。处理器2905可以指导故障安全电路2925防止分流开关2930使电池模块放电低于阈值电压或充电状态水平,阈值电压或充电状态水平可以在电池模块控制器2900或者外部控制器(例如,电池组控制器)中存储或计算。The fail-safe circuit 2925 can prevent the shunt switch 2930 from removing too much energy from the battery module. In the event of processor 2905 failure, fail-safe circuitry 2925 may direct shunt switch 2930 to stop applying shunt resistor 835 to the positive and negative terminals of the battery module. For example, processor 2905 directs shunt switch 2930 to apply shunt resistor 2935 at regular intervals (eg, once every 30 seconds) to continuously discharge the battery module. Fail-safe circuitry 2925 disposed between processor 2905 and shunt switch 2930 may monitor instructions sent by processor 2905 to shunt switch 2930 . In the event that processor 2905 fails to send scheduling instructions to shunt switch 2930 (which may be due to processor 2905 failure), fail-safe circuit 2925 may instruct or cause shunt switch 2930 to open, preventing further discharge of the battery module. The processor 2905 can direct the fail-safe circuit 2925 to prevent the shunt switch 2930 from discharging the battery module below a threshold voltage or state-of-charge level, which can be in the battery module controller 2900 or an external controller (e.g., a battery pack controller). ) to store or calculate.

图29的电池模块控制器2900还包括温度传感器2955,温度传感器955可以测量电池模块控制器2900所连接的电池模块的温度。如图29所描绘,温度传感器2955联接到处理器2905 并且可以向处理器2905提供温度测量值。本领域技术人员已知的任何温度传感器可以用来实施温度传感器2955。The battery module controller 2900 of FIG. 29 also includes a temperature sensor 2955 that can measure the temperature of the battery module to which the battery module controller 2900 is connected. As depicted in FIG. 29 , temperature sensor 2955 is coupled to processor 2905 and can provide temperature measurements to processor 2905 . Any temperature sensor known to those skilled in the art may be used to implement temperature sensor 2955 .

示例串控制器Example String Controller

图30是展示示例串控制器3000的图。具体而言,图30展示了串控制器3000的示例部件。在图30中所描绘的示例部件可以用来实施图48A的公开的串控制器4804。串控制器3000 包括串控制板3024,串控制板1124控制串控制器3000的总操作。串控制板可以作为安装于印刷电路板(例如,图31A的串控制板3130)上的一个或多个电路或集成电路。串控制板3024可以包括或者实施为处理单元,诸如微处理器单元(MCU)3025、存储器3027和可执行代码。在串控制板3024中展示的单元3026、3028、3030和3042可以实施于硬件、软件或硬件与软件的组合中。单元3026、3028、3030、3032和3042可以是安装于印刷电路板或单个集成电路上的个别电路。FIG. 30 is a diagram showing an example string controller 3000 . Specifically, FIG. 30 illustrates example components of a string controller 3000. The example components depicted in FIG. 30 may be used to implement the disclosed string controller 4804 of FIG. 48A. String controller 3000 includes string control board 3024 , and string control board 1124 controls the overall operation of string controller 3000 . The string control board can be implemented as one or more circuits or integrated circuits mounted on a printed circuit board (eg, string control board 3130 of FIG. 31A ). String control board 3024 may include or be implemented as a processing unit, such as a microprocessor unit (MCU) 3025, memory 3027, and executable code. Units 3026, 3028, 3030, and 3042 shown in string control board 3024 may be implemented in hardware, software, or a combination of hardware and software. Units 3026, 3028, 3030, 3032, and 3042 may be individual circuits mounted on a printed circuit board or a single integrated circuit.

由串控制器3000执行的功能可以包括(但不限于)下列功能:发出电池串接触器控制命令,测量电池串电压;测量电池串电流;计算电池串安培小时计数;在系统控制器(例如,在充电站)与电池组控制器之间分程传递询问;处理询问响应消息;集合电池串数据;执行对电池组的软件装置ID分配;检测在电池串中的接地故障电流;并且检测警报和警告条件并且采取适当校正措施。MCU 3025可以通过执行存储于存储器3027中的代码而实行这些功能。Functions performed by string controller 3000 may include, but are not limited to, the following functions: issuing string contactor control commands, measuring string voltage; measuring string current; calculating string ampere-hour counts; Splitting queries between the charging station) and the battery pack controller; processing query response messages; aggregating battery string data; performing software device ID assignment to the battery pack; detecting ground fault current in the battery strings; and detecting alarms and warning condition and take appropriate corrective action. The MCU 3025 can carry out these functions by executing code stored in the memory 3027 .

串控制器3000包括电池串端子3002和3004以分别联接到电池串(也被称作电池组的串)的正端子和负端子。电池串端子3002和3004联接到串控制板3024上的电压感测单元3042,电压感测单元1142可以用来测量电池串电压。String controller 3000 includes battery string terminals 3002 and 3004 to couple to the positive and negative terminals of battery strings (also referred to as battery strings), respectively. The battery string terminals 3002 and 3004 are coupled to a voltage sensing unit 3042 on the string control board 3024, and the voltage sensing unit 1142 can be used to measure the battery string voltage.

串控制器3000还包括分别联接到电力控制系统(PCS)的正端子和负端子的PCS端子 3006和3008。如图所示,正电池串端子3002经由接触器3016联接到正PCS端子3006并且负电池串端子3004经由接触器3018联接到负PCS端子3008。串控制板3024分别经由接触器控制单元3026和3030而联接到负PCS端子1108。串控制板1124分别经由接触器控制单元1126和1130 来控制接触器3016和3018(以断开和闭合),允许电池串向PCS提供能量(放电)或者当接触器 3016和3018闭合时从PCS接收能量(充电)。熔断器3012和3014保护电池串避免过大电流流动。String controller 3000 also includes PCS terminals 3006 and 3008 coupled to positive and negative terminals of a power control system (PCS), respectively. As shown, positive string terminal 3002 is coupled to positive PCS terminal 3006 via contactor 3016 and negative string terminal 3004 is coupled to negative PCS terminal 3008 via contactor 3018 . String control board 3024 is coupled to negative PCS terminal 1108 via contactor control units 3026 and 3030, respectively. The string control board 1124 controls the contactors 3016 and 3018 (to open and close) via the contactor control units 1126 and 1130 respectively, allowing the battery strings to provide energy (discharge) to the PCS or to receive energy from the PCS when the contactors 3016 and 3018 are closed. energy (charging). Fuses 3012 and 3014 protect the battery strings from excessive current flow.

串控制器3000还包括用来联接到其它装置的通信端子3010和3012。在一实施例中,通信端子3010可以将串控制器3000联接到电池串的电池组控制器,允许串控制器3000发出询问、指令等。例如,串控制器3000可以发出指令,指令由电池组用于单体逆变器。在一实施例中,通信端子3012可以将串控制器3000联接到阵列控制器,诸如图48A的阵列控制器4808。通信端子 3010和3012可以允许串控制器3000在阵列控制器(例如,图48A的阵列控制器4808)与电池组控制器之间分程传递询问,集合电池串数据,执行到电池组的软件装置ID分配,检测警报和警告条件并且采取适当校正措施,以及其它功能。在并不包括阵列控制器的系统中,串控制器可以联接到系统控制器。String controller 3000 also includes communication terminals 3010 and 3012 for coupling to other devices. In an embodiment, the communication terminal 3010 can connect the string controller 3000 to the battery pack controller of the battery string, allowing the string controller 3000 to issue inquiries, instructions, and the like. For example, the string controller 3000 may issue commands that are used by the battery packs for the individual inverters. In an embodiment, communication terminals 3012 may couple string controller 3000 to an array controller, such as array controller 4808 of FIG. 48A . Communication terminals 3010 and 3012 may allow string controller 3000 to pass queries between an array controller (e.g., array controller 4808 of FIG. 48A ) and a battery pack controller, aggregate battery string data, and execute software devices to the battery pack. ID assignment, detection of alarm and warning conditions and taking appropriate corrective action, among other functions. In systems that do not include an array controller, the string controller can be coupled to the system controller.

串控制器3000包括电源单元3022。图31A的电源3120可以如关于图30的电源单元3022所描述那样实施。在此实施例中,电源单元3022可以提供多于一个直流电源电压。例如,电源单元3022可以向功率串控制板3024提供一个电源电压并且提供另一电源电压来操作接触器 3016和3018。在一实施例中,+5V直流电源可以用于串控制板3022,并且+12V直流可以用来闭合接触器3016和3018。The string controller 3000 includes a power supply unit 3022 . The power supply 3120 of FIG. 31A may be implemented as described with respect to the power supply unit 3022 of FIG. 30 . In this embodiment, the power supply unit 3022 can provide more than one DC power supply voltage. For example, power supply unit 3022 may provide one supply voltage to power string control board 3024 and another supply voltage to operate contactors 3016 and 3018. In one embodiment, +5V DC power can be used for string control board 3022 and +12V DC can be used to close contactors 3016 and 3018 .

串控制板3024包括电流感测单元3028,电流感测单元3028从电流传感器3020接收输入,电流传感器3020可以允许串控制器测量电池串电流,计算电池串安培小时计数以及其它功能。此外,电流感测单元3028可以提供用于过电流保护的输入。例如如果过电流(电流水平高于预定阈值)由电流传感器3020感测到,电流传感器单元3028可以向MCU 3025提供值,该值指导接触器控制单元3026和3030以分别断开接触器3016和3018,切断电池串与PCS。同样,熔断器 3012和3014也可以提供过电流保护,当超过阈值电流时,断开电池与PCS。The string control board 3024 includes a current sense unit 3028 that receives input from a current sensor 3020 that may allow the string controller to measure string current, calculate string ampere hour counts, and other functions. Additionally, the current sense unit 3028 may provide an input for over-current protection. For example, if an overcurrent (current level above a predetermined threshold) is sensed by the current sensor 3020, the current sensor unit 3028 may provide a value to the MCU 3025 which instructs the contactor control units 3026 and 3030 to open the contactors 3016 and 3018, respectively , cut off the battery string and PCS. Likewise, fuses 3012 and 3014 can also provide overcurrent protection by disconnecting the battery from the PCS when a threshold current is exceeded.

串控制器3000包括电池电压和接地故障检测(例如,图31A的电池电压和接地故障检测3110)。端子3038和3040可以将串控制器3000联接到电池组串中间的电池组。例如,在22 个电池组的串中,端子3038可以连接到电池组11的负端子并且端子3040可以连接到电池组12 的正端子。考虑图48B,SC1可以经由端子3038和3040联接到BP 11和BP 12。接地故障检测单元3032使用电阻器3034测量在电池串中间的电压并且提供接地故障保护。熔断器3036提供过电流保护。String controller 3000 includes battery voltage and ground fault detection (eg, battery voltage and ground fault detection 3110 of FIG. 31A ). Terminals 3038 and 3040 may couple string controller 3000 to a battery pack in the middle of the battery string. For example, in a string of 22 batteries, terminal 3038 may be connected to the negative terminal of battery pack 11 and terminal 3040 may be connected to the positive terminal of battery pack 12 . Considering FIG. 48B , SC1 may be coupled to BP 11 and BP 12 via terminals 3038 and 3040 . Ground fault detection unit 3032 uses resistor 3034 to measure the voltage across the battery string and provides ground fault protection. Fuses 3036 provide overcurrent protection.

图31A至图31B是展示示例串控制器3100的图。如图31A所示,串控制器3100保持电池电压和接地故障检测单元3110、电源3120、串控制板3130、正极熔断器3140和正极接触器3150。图31B展示了串控制器3100的另一角度并且描绘了负极熔断器3160、负极接触器3170和电流传感器3180。这些部件在下文中关于图30更详细地描述。31A-31B are diagrams illustrating an example string controller 3100 . As shown in FIG. 31A , string controller 3100 maintains battery voltage and ground fault detection unit 3110 , power supply 3120 , string control board 3130 , positive fuse 3140 and positive contactor 3150 . FIG. 31B shows another angle of string controller 3100 and depicts negative fuse 3160 , negative contactor 3170 and current sensor 3180 . These components are described in more detail below with respect to FIG. 30 .

示例电池组逆变器算法Example Battery Pack Inverter Algorithm

图32是示出(展示)用于逆变器电池组诸如图26A至图26D的电池组2600的示例方法3200,电池组2600包括多个电池模块、逆变器充电器、电池组控制器和隔离、分布式菊花链电池模块控制器的网络。方法3200可以实施为可以由处理器执行的软件或固件。即,方法3200 的每个阶段可以实施为存储于非暂时计算机可读存储装置上的一个或多个计算机可读指令,计算机可读指令当由处理器执行时造成处理器实施一个或多个操作。例如,方法3200可以实施为一个或多个计算机可读指令,计算机可读指令存储于电池组(例如,图26A至图26D的电池组2600) 中的电池组控制器(例如,图26C的电池组控制器2634)中存储和执行。32 is an illustration (demonstration) of an example method 3200 for an inverter battery pack, such as the battery pack 2600 of FIGS. 26A-26D , comprising a plurality of battery modules, an inverter charger, a battery pack controller, and Network of isolated, distributed daisy-chained battery module controllers. Method 3200 may be implemented as software or firmware executable by a processor. That is, each stage of method 3200 may be implemented as one or more computer-readable instructions stored on a non-transitory computer-readable storage device that, when executed by a processor, cause the processor to perform one or more operations . For example, method 3200 can be implemented as one or more computer readable instructions stored in a battery pack controller (eg, battery pack 2600 of FIGS. 26A-26D ) in a battery pack (eg, battery pack 2600 of FIG. 26C ). stored and executed in the group controller 2634).

由于图32的描述参考电池组的部件,为了清楚起见,当描述图32的方法3200的不同阶段时,在图26A至图26D的电池组2600的示例实施例中枚举的部件图的示例用来参考具体部件。然而,图26A至图26D的电池组2600仅是一示例,并且方法3200可以使用并非图26A至图 26D中描绘的示例性实施例的电池组的实施例来实施。Since the description of FIG. 32 refers to components of the battery pack, for clarity, when describing the different stages of the method 3200 of FIG. to refer to specific parts. However, the battery pack 2600 of FIGS. 26A-26D is just one example, and the method 3200 may be practiced using embodiments of a battery pack other than the exemplary embodiment depicted in FIGS. 26A-26D .

在开始时,方法3200前进到阶段3210,在阶段1310,由电池组控制器诸如电池组控制器2634接收目标电压值。目标值可以用于逆变器电池组中的每个电池模块(例如电池模块2636) 的电压和/或充电状态并且可以从外部控制器诸如关于图48A或图或图31A至图31B所描述的串控制器接收。在阶段3215,向电池模块轮询电压测量值。例如,电池组控制器2634可以从安装到电池模块上的电池模块控制器(例如,电池模块控制器2638)中每一个请求电压测量值。同样,一个电池模块控制器可以安装于电池模块中每一个上。每个电池模块控制器可以测量安装了电池模块控制器的电池模块的电压,并且将测量的电压通信给电池组控制器2634。并且,如关于图27A 所讨论,电池组控制器和多个隔离、分布式菊花链式电池模块控制器可以联接在一起以形成通信网路。可以依序执行轮询(例如,轮询BMC 2720、之后BMC 2730,之后BMC 2740,以此类推)。在一实施例中,目标充电值状态可以在阶段3210接收,而不是目标电压值。Initially, method 3200 proceeds to stage 3210 where a target voltage value is received by a battery pack controller, such as battery pack controller 2634 . Target values can be used for the voltage and/or state of charge of each battery module (eg, battery module 2636) in the inverter battery pack and can be obtained from an external controller such as described with respect to FIG. 48A or FIG. 31A-31B . The string controller receives. In stage 3215, the battery module is polled for voltage measurements. For example, battery pack controller 2634 may request voltage measurements from each of the battery module controllers (eg, battery module controller 2638 ) mounted to the battery modules. Also, one battery module controller may be mounted on each of the battery modules. Each battery module controller may measure the voltage of the battery module in which the battery module controller is installed, and communicate the measured voltage to the battery pack controller 2634 . Also, as discussed with respect to FIG. 27A, a battery pack controller and multiple isolated, distributed daisy-chained battery module controllers can be coupled together to form a communication network. Polling may be performed sequentially (eg, polling BMC 2720, then BMC 2730, then BMC 2740, and so on). In an embodiment, a target state of charge value may be received in stage 3210 instead of a target voltage value.

在阶段3220,关于每个轮询的电池模块电压是否处于可接受范围做出判断。这个可接受范围可以由高于和/或低于所接收的目标电压的一个或多个阈值电压来确定。例如,电池组控制器2634可以使用开始放电值、停止放电值、开始充电值和停止电压值,使用这些值判断是否应执行电池模块的逆变器。在一实施例中,开始放电值可以大于停止放电值(二者可以大于目标值) 并且开始充电值可以小于停止充电值(二者可以都小于目标值)。通过将存储的偏移值添加到所接收的目标电压值,可以导出这些阈值。在一实施例中,可接受范围可以在开始放电值与开始充电值之间,指示可能不需要逆变器的范围。如果所有电池模块电压在可接受范围内,方法3200继续到阶段3225。在阶段3225,逆变器充电器(例如,逆变器充电器2632)切断(如果接通)并且已经施加的每个电池模块控制器2638的分流电阻器诸如图29的分流电阻器2935断开以停止从电池模块去除能量。例如,电池组控制器2634可以指导逆变器充电器2632以停止向电池组2600 的电池模块提供能量。电池组控制器2634也可以指导每个电池模块控制器(每个电池模块控制器向其所安装的电池模块施加分流电阻器)停止施加分流电阻器并且因此从电池模块去除能量。方法3200然后返回到步骤3215,其中再次向电池组的电池模块轮询电压值。At stage 3220, a determination is made as to whether each polled battery module voltage is within an acceptable range. This acceptable range may be determined by one or more threshold voltages above and/or below the received target voltage. For example, the battery pack controller 2634 may use the start discharge value, stop discharge value, start charge value, and stop voltage value, using these values to determine whether the inverter of the battery module should be executed. In one embodiment, the start discharge value may be greater than the stop discharge value (both may be greater than the target value) and the start charge value may be smaller than the stop charge value (both may be less than the target value). These thresholds can be derived by adding the stored offset value to the received target voltage value. In an embodiment, the acceptable range may be between the start discharge value and the start charge value, indicating a range where an inverter may not be needed. If all battery module voltages are within acceptable ranges, method 3200 continues to stage 3225 . In stage 3225, the inverter charger (e.g., inverter charger 2632) is switched off (if switched on) and each battery module controller 2638 shunt resistor such as shunt resistor 2935 of FIG. 29 that has been applied is switched off. to stop removing energy from the battery module. For example, battery pack controller 2634 may direct inverter charger 2632 to cease providing energy to the battery modules of battery pack 2600 . The battery pack controller 2634 may also instruct each battery module controller (each applying a shunt resistor to its mounted battery module) to stop applying the shunt resistor and thereby remove energy from the battery module. Method 3200 then returns to step 3215 where the battery modules of the battery pack are again polled for voltage values.

返回至阶段3220,如果所有电池模块电压都不在可接受范围内,这些方法继续到阶段 3230。在阶段3230,对于每个电池模块,判断电池模块电压是否高于开始放电值。如果电压高于开始放电值,方法3200继续至阶段3235,在阶段1335,施加联接到电池模块的电池模块控制器 (例如,电池模块控制器2638)的分流电阻器以便从模块移除(排放)能量。该方法然后继续到阶段3240。Returning to stage 3220, if all battery module voltages are not within acceptable ranges, the methods continue to stage 3230. In stage 3230, for each battery module, it is determined whether the battery module voltage is higher than the start discharge value. If the voltage is above the start discharge value, method 3200 continues to stage 3235 where a shunt resistor coupled to the battery module's battery module controller (e.g., battery module controller 2638) is applied for removal (draining) from the module energy. The method then continues to stage 3240.

在阶段3240,对于每个电池模块,判断电池模块电压是否高于开始放电值。如果电压低于停止放电值,方法3200继续至阶段3245,其中联接到电池模块的电池模块控制器(例如电池模块控制器2638)的分流电阻器断开以便停止从模块放能。即,电池模块控制器停止(多个) 将分流电阻器施加到其所安装的电池模块的端子上。这防止电池模块控制器从电池模块去除能量。该方法然后继续到阶段3250。In stage 3240, for each battery module, it is determined whether the battery module voltage is higher than the start discharge value. If the voltage is below the stop discharge value, method 3200 proceeds to stage 3245 where a shunt resistor coupled to a battery module controller (eg, battery module controller 2638 ) of the battery module is opened to stop discharging energy from the module. That is, the battery module controller stops applying the shunt resistor(s) to the terminals of the battery module to which it is mounted. This prevents the battery module controller from removing energy from the battery module. The method then continues to stage 3250.

在阶段3250,判断出至少一个电池模块电压低于开始放电值。如果任何电压低于开始充电值,方法3200继续到阶段3255,在阶段1355,接通逆变器充电器以向所有电池模块提供能量。例如,电池组控制器2634可以指导逆变器充电器2632接通,向电池组2600的电池模块中每一个提供能量。方法3200然后继续到阶段3260。At stage 3250, it is determined that at least one battery module voltage is below the start discharge value. If any voltage is below the start charge value, method 3200 continues to stage 3255 where the inverter charger is turned on to provide energy to all battery modules. For example, battery pack controller 2634 may direct inverter charger 2632 to turn on, providing energy to each of the battery modules in battery pack 2600 . Method 3200 then proceeds to stage 3260.

在阶段3260,判断出所有电池模块电压高于停止充电值。如果所有电压高于停止充电值,方法3200继续到阶段3265,其中切断(如果在先前接通)逆变器充电器以停止对电池组的电池模块充电。例如,电池组控制器2634可以指导逆变器充电器2632以停止向电池组2600的电池模块提供能量。方法3200然后返回到阶段3215,在阶段1315,再次向电池模块轮询电压测量值。因此,如先前所描述,方法3200的阶段3215至3260可以持续地逆变器电池组诸如电池组 2600内的电池模块的能量。At stage 3260, it is determined that all battery module voltages are higher than the stop-charging value. If all voltages are above the stop charge value, method 3200 proceeds to stage 3265 where the inverter charger is switched off (if previously switched on) to stop charging the battery modules of the battery pack. For example, battery pack controller 2634 may instruct inverter charger 2632 to stop providing energy to the battery modules of battery pack 2600 . Method 3200 then returns to stage 3215 where the battery module is again polled for voltage measurements. Thus, stages 3215 through 3260 of method 3200 may continuously inverter the energy of battery modules within a battery pack, such as battery pack 2600, as previously described.

虽然上述逆变器示例仅讨论了逆变器四个电池组,逆变器过程可以应用于逆变器任何数量的电池组。而且,由于这个过程可以适用于SOC值以及电压值,能在根据本发明的电能储存单元中在任何时候实施这个过程,并且并不限于当电能储存单元的电池充电或放电时的时间段。Although the inverter example above only discusses inverters with four battery banks, the inverter process can be applied to inverters with any number of battery banks. Also, since this process can be applied to SOC values as well as voltage values, this process can be implemented at any time in the electric energy storage unit according to the present invention, and is not limited to the time period when the battery of the electric energy storage unit is charged or discharged.

用于电池组的示例质保跟踪器Example warranty tracker for battery packs

在一实施例中,基于电池组诸如图26A至图26D的电池组2600的电池使用的质保可以考虑与电池组相关联的各种数据,诸如(但不限于)充电和放电率、电池温度和电池电压。如对于本领域技术人员显而易见的是,下文所公开的质保跟踪器可以实施和适用于上文所描述的系统和方法中。嵌入于电池组中的质保跟踪器可以使用这条数据来计算表示电池使用了一段时间的质保值。计算的质保值可以在电池寿命中集合,并且累积值可以用来确定质保范围。利用这种方案,质保不仅可以将电池组的总放电考虑进来,而且也考虑使用的电池组的方式。根据一实施例,关于图33至图36进一步讨论用来计算质保值的各种数据。In an embodiment, a warranty based on battery usage of a battery pack, such as battery pack 2600 of FIGS. battery voltage. As will be apparent to those skilled in the art, the quality assurance tracker disclosed below can be implemented and adapted in the systems and methods described above. A warranty tracker embedded in the battery pack can use this data to calculate a warranty value representing how long the battery has been used. The calculated warranty values can be aggregated over battery life, and the accumulated value can be used to determine warranty coverage. With this approach, the warranty can take into account not only the total discharge of the battery pack, but also the manner in which the battery pack is used. Various data used to calculate the warranty value are further discussed with respect to FIGS. 33-36 , according to an embodiment.

电池组的充电和放电率与流动进出电池组的电流量相关并且可以基于该电流量来近似或确定,可以测量流动进出电池组的电流量。一般而言,更高的充电和放电率可以产生更多热(比较低速率更多),这可能会在电池组上造成应力,缩短了电池组的寿命和/或导致意外的故障或其它问题。图33是展示了根据一实施例用来计算质保值的、在电流测量值与电流系数之间的示例相互关系的图。对于电池组,诸如图26A至图26D的电池组2600,可以直接测量电流,并且可以提供电池组的充电和/或放电率。The charge and discharge rates of the battery pack are related to and can be approximated or determined based on the amount of current flowing into and out of the battery pack, which can be measured. In general, higher charge and discharge rates can generate more heat (more than lower rates), which can stress the battery pack, shortening the life of the battery pack and/or causing unexpected failures or other problems . FIG. 33 is a graph illustrating an example correlation between current measurements and current coefficients used to calculate warranty values according to one embodiment. For a battery pack, such as battery pack 2600 of FIGS. 26A-26D , the current can be measured directly and the charge and/or discharge rate of the battery pack can be provided.

不同容量的电池的正常充电和放电率可以变化。因此,在一实施例中,电流测量值可以规范化以便采用不同电池组的正常充电和放电率。本领域技术人员将认识到测量的电流可以基于电池组的容量规范化,产生充电率。作为一示例,1C的规范化放电率将在一小时递送电池组额定容量,例如,1,000mAh电池将提供1,000mA放电电流一小时。充电率可以允许采用相同标准来确定正常充电和放电,无论电池组额定在1,000mAh或100Ah或者本领域普通技术人员已知的任何其它额定值。Normal charge and discharge rates can vary for batteries of different capacities. Thus, in one embodiment, the current measurements can be normalized to use the normal charge and discharge rates of the different battery packs. Those skilled in the art will recognize that the measured current can be normalized based on the capacity of the battery pack, resulting in a charge rate. As an example, a normalized discharge rate of 1C would deliver the battery pack's rated capacity in one hour, eg, a 1,000mAh battery would provide a discharge current of 1,000mA for one hour. The rate of charge may allow the same criteria to be used to determine normal charge and discharge whether the battery pack is rated at 1,000mAh or 100Ah or any other rating known to those of ordinary skill in the art.

仍考虑图33,根据一实施例,示例曲线图3302展示了作为规范化充电率3304的函数的电流系数3306。通过将测量电流转换为相对应的电流系数,电流测量值可以用来计算质保值。在一实施例中,测量电流首先规范化以产生充电率。充电率指示电池组的充电或放电率并且允许一致的质保计算,与电池组的容量无关。充电率然后可以映射到电流系数用于质保计算。例如,图1C的规范化充电率可以映射到电流系数2,而3C的充电率可以映射到电流系数10,指示更高的充电或放电率。在一实施例中,对于充电和放电率,可以维持单独的映射集合。在一实施例中,这些映射可以存储于查找表中,查找表存在于电池组内的计算机可读存储装置中。在另一实施例中,映射和电流系数可以存储于电池组外部的计算机可读存储装置中。替代地,在一实施例中,预先限定的数学函数可以映射到充电率或电流测量值以产生相对应的电流系数,而不是明确存储映射和电流系数。Still considering FIG. 33 , an example graph 3302 illustrates current coefficient 3306 as a function of normalized charge rate 3304 , according to an embodiment. By converting the measured current into the corresponding current coefficient, the current measurement can be used to calculate the warranty value. In one embodiment, the measured current is first normalized to yield the charge rate. The charge rate indicates the charge or discharge rate of the battery pack and allows consistent warranty calculations regardless of the capacity of the battery pack. Charge rates can then be mapped to current coefficients for warranty calculations. For example, the normalized charge rate of Figure 1C can be mapped to a current factor of 2, while the charge rate of 3C can be mapped to a current factor of 10, indicating a higher charge or discharge rate. In an embodiment, separate sets of maps may be maintained for charge and discharge rates. In one embodiment, these mappings may be stored in a look-up table that resides on a computer readable storage device within the battery pack. In another embodiment, the map and current coefficients may be stored in a computer readable storage device external to the battery pack. Alternatively, in one embodiment, a predefined mathematical function may be mapped to a charge rate or current measurement to generate a corresponding current coefficient, rather than explicitly storing the mapping and current coefficient.

在一实施例中,高于最大充电率质保阈值3308的计算的充电率可以立即使电池组的质保失效。这个阈值可以预先限定或者由质保跟踪器动态设置。在一非限制性示例中,最大质保阈值3308可以设置为2C的充电率。高于最大质保阈值3308的计算的充电率可以指示不当地使用电池组,并且因此质保可能并不涵盖因此所产生的问题。在一实施例中,对于电池组的充电率和放电率,可以限定最大质保阈值,而不是维持用于充电和放电二者的单个阈值。In an embodiment, a calculated charge rate above the maximum charge rate warranty threshold 3308 may immediately void the battery pack's warranty. This threshold can be predefined or dynamically set by the quality assurance tracker. In a non-limiting example, the maximum warranty threshold 3308 may be set at a charge rate of 2C. A calculated charge rate above the maximum warranty threshold 3308 may indicate misuse of the battery pack, and thus warranty may not cover resulting issues. In an embodiment, instead of maintaining a single threshold for both charge and discharge, a maximum warranty threshold may be defined for the charge and discharge rates of the battery pack.

温度是可能会影响到电池性能的另一因素。一般而言,更高的温度可能由于生成更高的内部温度而会造成电池组以更快的速率老化,更高的内部温度造成在电池组上增加的应力。这可能会缩短电池组的寿命。另一方面,较低的温度可能会在给电池组充电时造成损坏。Temperature is another factor that can affect battery performance. In general, higher temperatures may cause the battery pack to age at a faster rate by generating higher internal temperatures, which cause increased stress on the battery pack. This may shorten the life of the battery pack. On the other hand, lower temperatures can cause damage while charging the battery pack.

图34是展示了根据一实施例用来计算质保值的温度测量值与温度系数之间的示例相互关系的图。电池组,诸如图26A至26D的电池组2600可以包括一个或多个电池温度测量电路,电池温度测量电路测量在电池组内的个别电池单体或个别电池模块的温度。示例曲线图3402展示了根据一实施例作为测量温度3404的函数的温度系数3406。通过将测量的温度转换成相对应温度系数,温度测量值可以用来计算质保值。在一实施例中,温度测量值可以映射到温度系数以用于质保计算。例如,20℃的正常操作温度可以映射到1的温度系数,而40℃的更高的温度将映射到更高的温度系数。更高的温度系数可以指示电池损耗以更快的速率发生。在一实施例中,这些映射可以存储于查找表中,查找表存在于电池组内的计算机可读存储装置中。在另一实施例中,映射和温度系数可以存储于电池组外部的计算机可读存储装置中。替代地,在一实施例中,预先限定的数学函数可以适用于温度测量值以产生相对应的温度系数,而不是明确地存储映射和温度系数。34 is a graph illustrating an example correlation between temperature measurements and temperature coefficients used to calculate warranty values according to one embodiment. A battery pack, such as battery pack 2600 of FIGS. 26A-26D , may include one or more battery temperature measurement circuits that measure the temperature of individual battery cells or individual battery modules within the battery pack. Example graph 3402 illustrates temperature coefficient 3406 as a function of measured temperature 3404 according to an embodiment. By converting the measured temperature into a corresponding temperature coefficient, the temperature measurement can be used to calculate the warranty value. In an embodiment, temperature measurements may be mapped to temperature coefficients for quality assurance calculations. For example, a normal operating temperature of 20°C may map to a temperature coefficient of 1, while a higher temperature of 40°C will map to a higher temperature coefficient. A higher temperature coefficient can indicate that battery wear is occurring at a faster rate. In one embodiment, these mappings may be stored in a look-up table that resides on a computer readable storage device within the battery pack. In another embodiment, the map and temperature coefficient may be stored in a computer readable storage device external to the battery pack. Alternatively, in one embodiment, a predefined mathematical function may be applied to temperature measurements to generate corresponding temperature coefficients, rather than explicitly storing the map and temperature coefficients.

质保阈值也可以是电池温度的函数,诸如当温度低于预先限定的值时对电池组进行充电。在一实施例中,低于最低温度质保阈值3408或者高于最大温度质保阈值3410的操作温度可以立即使电池组的质保失效。这些阈值可以预先限定或者由质保跟踪器动态设置。低于最小质保阈值3408或者高于最大质保阈值3410的计算的操作温度可以指示不当地使用电池组,并且因此质保可能并不涵盖因此所产生的问题。在一实施例中,可以限定电池组的充电和放电的最大和最小质保阈值,而不是维持充电和放电的相同阈值。The warranty threshold may also be a function of battery temperature, such as charging the battery pack when the temperature is below a predefined value. In one embodiment, operating temperatures below the minimum temperature warranty threshold 3408 or above the maximum temperature warranty threshold 3410 may immediately void the battery pack's warranty. These thresholds can be predefined or dynamically set by the quality assurance tracker. A calculated operating temperature below the minimum warranty threshold 3408 or above the maximum warranty threshold 3410 may indicate misuse of the battery pack, and thus warranty may not cover resulting issues. In an embodiment, instead of maintaining the same thresholds for charge and discharge, maximum and minimum warranty thresholds for charge and discharge of the battery pack may be defined.

电压和/或充电状态是可能影响电池性能的额外因素。电池组的电压(其可以测量)可以用来计算或者以其它方式来确定电池组的充电状态。一般而言,很高或很低充电状态或电压造成在电池组上的应力增加。而这会缩短电池组的寿命。Voltage and/or state of charge are additional factors that can affect battery performance. The voltage of the battery pack (which can be measured) can be used to calculate or otherwise determine the state of charge of the battery pack. In general, very high or low state of charge or voltage causes increased stress on the battery pack. This, in turn, shortens the life of the battery pack.

图35是展示了根据一实施例用来计算质保值的、在电压测量值与电压系数之间的示例相互关系的图。电池组,诸如图26A至26D的电池组2600可以包括一个或个电池电压测量电路,电池电压测量电路测量在电池组内的个别电池单体的电压或电池模块的电压。这些电压测量值可以集合或平均化以用于计算电池组的质保值。在一实施例中,可以计算电池组的充电状态并且用来计算质保值;然而,这种计算并非总是准确的并且必须小心地确定质保计算系数。在一实施例中,电池组的测量电压可以是包含于电池组内的每个电池单体或每个电池模块的平均测量电压。35 is a graph illustrating an example correlation between voltage measurements and voltage coefficients used to calculate warranty values according to one embodiment. A battery pack, such as the battery pack 2600 of FIGS. 26A-26D , may include one or more battery voltage measurement circuits that measure the voltage of individual battery cells or battery modules within the battery pack. These voltage measurements can be aggregated or averaged for use in calculating the warranty value of the battery pack. In one embodiment, the state of charge of the battery pack can be calculated and used to calculate the warranty value; however, this calculation is not always accurate and the warranty calculation factor must be determined carefully. In an embodiment, the measured voltage of the battery pack may be an average measured voltage of each battery cell or each battery module included in the battery pack.

在图35中,示例曲线图3502展示了根据一实施例作为测量电压3504函数的电压系数 3506。通过将测量电压转换成相对应电压系数,电压测量值可以用来计算质保值。在一实施例中,电压测量值可以映射到电压系数以用于质保计算。这些映射可以针对于包含于电池组中的电池的特定类型。例如,包括一个或多个锂离子电池单体的电池组可以具有电压测量值3.2V为的平均单体,3.2V的电压测量可以映射到电压系数1。相比而言,在3.6V或2.8V的电压测量可以映射到更高的电压系数。在一实施例中,这些映射可以存储于查找表中,查找表存在于电池组内的计算机可读存储装置中。在另一实施例中,映射和电压系数可以存储于电池组外部的计算机可读存储装置中。替代地,在一实施例中,预先限定的数学函数可以适用于电压测量以产生相对应的电压系数,而不是明确地存储映射和电压系数。In FIG. 35 , an example graph 3502 illustrates voltage coefficient 3506 as a function of measured voltage 3504 according to an embodiment. Voltage measurements can be used to calculate warranty values by converting the measured voltages into corresponding voltage coefficients. In an embodiment, voltage measurements may be mapped to voltage coefficients for use in warranty calculations. These maps may be specific to the type of batteries contained in the battery pack. For example, a battery pack including one or more Li-ion battery cells may have an average cell voltage measurement of 3.2V, which may be mapped to a voltage factor of 1. In contrast, voltage measurements at 3.6V or 2.8V can be mapped to higher voltage coefficients. In one embodiment, these mappings may be stored in a look-up table that resides on a computer readable storage device within the battery pack. In another embodiment, the map and voltage coefficients may be stored in a computer readable storage device external to the battery pack. Alternatively, in one embodiment, a predefined mathematical function may be applied to the voltage measurements to generate corresponding voltage coefficients, rather than explicitly storing the mapping and voltage coefficients.

在一实施例中,低于最低电压质保阈值3508或者高于最大电压质保阈值3510的测量电压可以立即使电池组的质保失效。这些阈值可以预先限定或者由质保跟踪器动态设置。在一非限制性示例中,最低质保阈值3508和最大质保阈值3510可以设置为分别指示电池单体的过度放电和过度充电。低于最小质保阈值3508或者高于最大质保阈值3510的测量电压可以指示不当地使用电池组,并且因此质保可能并不涵盖因此所产生的问题。In one embodiment, a measured voltage below the minimum voltage warranty threshold 3508 or above the maximum voltage warranty threshold 3510 may immediately void the battery pack's warranty. These thresholds can be predefined or dynamically set by the quality assurance tracker. In a non-limiting example, minimum warranty threshold 3508 and maximum warranty threshold 3510 may be set to indicate overdischarge and overcharge of a battery cell, respectively. A measured voltage below the minimum warranty threshold 3508 or above the maximum warranty threshold 3510 may indicate misuse of the battery pack, and thus warranty may not cover resulting issues.

图36A是展示了根据一实施例如何确定电池续航值3650的图。该值也用于确定电池质保何时失效。如图36A所示,在时间(T+1)的电池续航值3650等于在时间(T)的电池寿命值与在时间(T)的电流因数积(CF(T)),在(T)的电压因数积(VF(T))和在(T)(TF(T))的温度因素积(TF(T))之和,在一实施例中,电池续航值3650由电池组操作系统150的电池续航时间监控器 162生成。Figure 36A is a diagram illustrating how the battery life value 3650 is determined according to one embodiment. This value is also used to determine when the battery warranty expires. As shown in FIG. 36A, the battery life value 3650 at time (T+1) is equal to the battery life value at time (T) and the current factor product (CF (T) ) at time (T), and at (T) The sum of the voltage factor product (VF (T) ) and the temperature factor product (TF (T) ) at (T)(TF (T ) ), in one embodiment, the battery life value 3650 is determined by the battery pack operating system 150 The battery life monitor 162 generates.

图36B是展示了根据一实施例用于使电池组的质保失效的示例质保阈值的图。如前面所述,对电池组的不当使用会致使质保自动失效。例如,极端的操作温度,电压,或者充电/放电率可使质保立即失效。Figure 36B is a graph illustrating example warranty thresholds for voiding the warranty of a battery pack according to one embodiment. As mentioned earlier, improper use of the battery pack will automatically void the warranty. For example, extreme operating temperatures, voltages, or charge/discharge rates can immediately void the warranty.

在各种实施例中,电池组可以存储在电池组的寿命中的最低记录电压3601、最大记录电压3602、最低记录温度3603、最大记录温度3604、最大记录充电电流3605、以及最大记录放电电流3606。这些值可以由能测量或计算前述数据的任何装置或装置组合来记录,诸如(但不限于)分别地,一个或多个电池电压测量电路、电池温度测量电路和电流测量电路,这些装置将关于图35至图36进一步描述。在一替代实施例中,电池组可以在计算机可读存储装置中最大记录电流,而不是最大充电和放电电流。在一实施例中,数据测量可以在电池寿命期间周期性地记录于计算机可读存储装置中。对于最小值3601和3603,如果新记录的值小于存储的最小值,那么先前存储的值被新记录的值重写。对于最大值3602、3604、3605和3606,如果新记录的值大于存储的最小值,那么先前存储的值被新记录的值重写。In various embodiments, the battery pack may store the lowest recorded voltage 3601 , the highest recorded voltage 3602 , the lowest recorded temperature 3603 , the highest recorded temperature 3604 , the largest recorded charge current 3605 , and the largest recorded discharge current 3606 over the lifetime of the battery pack. . These values may be recorded by any device or combination of devices capable of measuring or calculating the aforementioned data, such as, but not limited to, one or more battery voltage measurement circuits, battery temperature measurement circuits, and current measurement circuits, respectively, which will relate to Figures 35-36 further describe. In an alternative embodiment, the battery pack may record a maximum current in a computer readable storage device instead of a maximum charge and discharge current. In one embodiment, data measurements may be periodically recorded in the computer readable storage device during the life of the battery. For minimum values 3601 and 3603, if the newly recorded value is less than the stored minimum value, then the previously stored value is overwritten by the newly recorded value. For maximum values 3602, 3604, 3605, and 3606, if the newly recorded value is greater than the stored minimum value, then the previously stored value is overwritten by the newly recorded value.

在一实施例中,每个电池组可以在计算机可读存储装置中保持质保阈值列表,例如,阈值3611-3616。在另一实施例中,质保阈值列表可以保持在电池组外部的计算机可读存储装置中。质保阈值可以指示用来确定质保范围外部的电池组的使用的最小和最大限度。质保跟踪器可以周期性地比较最小和与最大值3601-3606与质保阈值3611-3616以判断电池组的质保是否将失效。In an embodiment, each battery pack may maintain a list of warranty thresholds, eg, thresholds 3611-3616, in computer readable storage. In another embodiment, the list of warranty thresholds may be maintained in a computer readable storage device external to the battery pack. Warranty thresholds may indicate minimum and maximum usage of the battery pack used to determine out-of-warranty coverage. The warranty tracker can periodically compare the minimum and maximum sums 3601-3606 with the warranty thresholds 3611-3616 to determine if the battery pack's warranty will be voided.

在一实施例中,电池组可以将质保状况存储于计算机可读存储装置中。质保状况可以是能表示状况的任何类型的数据。例如,质保状况可以是二进制标志,二进制标志判断质保是否失效。质保状况也可以例如是具有一组可能值的枚举类型,诸如(但不限于)有效、到期和失效。In one embodiment, the battery pack may store the warranty status in the computer readable storage device. Warranty status can be any type of data that can represent a status. For example, the warranty status may be a binary flag, and the binary flag determines whether the warranty is invalid. Warranty status may also, for example, be an enumerated type with a set of possible values such as (but not limited to) active, expired and expired.

如图36B所示,质保状况基于所记录的最小和最大值3601-3606与预先限定的质保阈值3611-3616之间的对比来设置。例如,最小记录电压3601是1.6V并且最低电压阈值3611是 2.0V。在此示例中,最小记录电压3601小于最低电压阈值3611,并且因此质保失效,如在框3621 中所示。这将在质保状况中反映出来并且存储。在各种实施例中,当质保失效时,可以生成电子通信并且由电池组和/或系统来发送,其中,电池组用来向选定个人通知质保已经失效。电子通信也可以包括关于造成质保失效的条件或使用的细节。As shown in Figure 36B, the warranty status is set based on a comparison between the recorded minimum and maximum values 3601-3606 and the predefined warranty thresholds 3611-3616. For example, the minimum recording voltage 3601 is 1.6V and the minimum voltage threshold 3611 is 2.0V. In this example, the minimum recording voltage 3601 is less than the minimum voltage threshold 3611 and therefore the warranty is voided, as shown in block 3621 . This will be reflected in the warranty status and stored. In various embodiments, when the warranty expires, an electronic communication may be generated and sent by the battery pack and/or the system, wherein the battery pack is used to notify selected individuals that the warranty has expired. Electronic communications may also include details about conditions or use that will void the warranty.

图37是展示根据一实施例的电池组的示例使用的图。除了如关于图36所描述记录最小数据值和最大数据值之外,也可以收集使用频率统计。例如,使用统计可以基于电池电压测量值、电池温度测量值充电/放电电流测量值和功率计算(如电压测量值乘以电流测量值)来记录。FIG. 37 is a diagram showing an example use of a battery pack according to an embodiment. In addition to recording the minimum and maximum data values as described with respect to FIG. 36, usage frequency statistics may also be collected. For example, usage statistics may be recorded based on battery voltage measurements, battery temperature measurements, charge/discharge current measurements, and power calculations such as voltage measurements times current measurements.

在一实施例中,对于每种类型的记录数据,可以限定一个或多个值范围。在图37所示的示例中,限定的测量电压范围是2.0V-2.2V、2.2V-2.4V、2.4V-2.6V、2.6V-2.8 V、2.8V-3.0V、3.0V-3.2V、3.2V-3.3V、3.3V-3.4V、3.4V-3.5V、3.5V至 3.6V和3.6V-3.7V。这些范围可以是锂离子电池常见的,例如以便俘获与这些电池相关联的典型电压。每个限定的范围可以与计数器相关联。在一实施例中,每个计数器存储于电池组内的计算机可读存储装置中。在其它实施例中,计数器可以存储于电池组外部,例如在电存储单元的串控制器、阵列控制器或系统控制器中(例如,参看图48A)。这可以允许在多个电池组上进一步集合使用统计。In an embodiment, for each type of recorded data, one or more value ranges may be defined. In the example shown in Figure 37, the defined measurement voltage ranges are 2.0V-2.2V, 2.2V-2.4V, 2.4V-2.6V, 2.6V-2.8V, 2.8V-3.0V, 3.0V-3.2V , 3.2V-3.3V, 3.3V-3.4V, 3.4V-3.5V, 3.5V to 3.6V and 3.6V-3.7V. These ranges may be common to lithium-ion batteries, for example, in order to capture the typical voltages associated with these batteries. Each defined range can be associated with a counter. In one embodiment, each counter is stored in a computer readable storage device within the battery pack. In other embodiments, the counter may be stored external to the battery pack, such as in the string controller, array controller, or system controller of the electrical storage unit (see, eg, FIG. 48A ). This may allow further aggregation of usage statistics across multiple battery packs.

在一实施例中,可以周期性地取得电压测量值。当测量值在限定范围内时,相关联的计数器可以递增。那么,每个计数器的值表示属于相关联值范围内的测量频率。然后使用频率统计来创建直方图,直方图显示在电池组的寿命中或者在一段时间中的使用测量分布。同样,对于其它测量值或计算的数据,诸如(但不限于)电池温度测量值和充电/放电电流测量值,可以记录频率统计。In one embodiment, voltage measurements may be taken periodically. An associated counter may be incremented when the measured value is within a defined range. The value of each counter then represents the measured frequency that falls within the associated value range. Frequency statistics are then used to create a histogram showing the distribution of usage measurements over the life of the battery pack or over a period of time. Likewise, frequency statistics may be recorded for other measured or calculated data, such as, but not limited to, battery temperature measurements and charge/discharge current measurements.

例如,电池使用3702表示在电池组寿命期间进行的电压测量值分布。电池使用3702 可以指示电池组的普通或正常使用,具有在3.0V与3.2V之间的最高测量频率。相比而言,电池使用3704可能指示更不利的使用。For example, battery usage 3702 represents the distribution of voltage measurements taken over the life of the battery pack. Battery usage 3702 may indicate normal or normal usage of the battery pack, with a highest measurement frequency between 3.0V and 3.2V. In contrast, battery usage 3704 may indicate more adverse usage.

直方图,诸如在图37中显示的那些,可以适用于制造商或销售商确定电池组的不当或未覆盖使用的范围。在一实施例中,分布数据也可以用来分析和诊断电池组缺陷和质保索赔。Histograms, such as those shown in FIG. 37, may be useful for a manufacturer or seller to determine the extent of improper or uncovered use of a battery pack. In one embodiment, distribution data may also be used to analyze and diagnose battery pack defects and warranty claims.

图38是展示了根据一实施例的示例质保跟踪器的图。质保跟踪器3810包括处理器3812、存储器3814、电池电压测量电路3816和电池温度测量电路3818。电池电压测量电路3816 和电池温度测量电路3818可以实施为安置于印刷电路板上的单个电路或单独电路。在某些实施例中,诸如在上文中详细描述的那些,安置于电池组中的每个电池模块可以联接到电池模块控制器,电池模块控制器包括电池电压测量电路以及电池温度测量电路。在这些实施例中,示例质保跟踪器3810的处理器3812和存储器3814可以是电池组控制器(诸如图28的电池组控制器2800)的一部分或者实施为电池组控制器内。例如,质保跟踪器可以实施为存储器2814中的可执行代码,可执行代码由电池组控制器2800的MCU 2812执行以提供质保跟踪器的功能。Figure 38 is a diagram illustrating an example warranty tracker, according to an embodiment. Warranty tracker 3810 includes processor 3812 , memory 3814 , battery voltage measurement circuit 3816 and battery temperature measurement circuit 3818 . Battery voltage measurement circuit 3816 and battery temperature measurement circuit 3818 may be implemented as a single circuit or as separate circuits disposed on a printed circuit board. In certain embodiments, such as those described in detail above, each battery module disposed in the battery pack can be coupled to a battery module controller that includes battery voltage measurement circuitry as well as battery temperature measurement circuitry. In these embodiments, the processor 3812 and memory 3814 of the example warranty tracker 3810 may be part of or implemented within a battery pack controller, such as the battery pack controller 2800 of FIG. 28 . For example, the warranty tracker may be implemented as executable code in memory 2814 that is executed by the MCU 2812 of the battery pack controller 2800 to provide the functionality of the warranty tracker.

在各种实施例中,电压可以测量为包含于电池组内的电池单体或电池模块的集合电压或平均电压。电池温度测量电路3818可以包括一个或多个温度传感器以周期性地测量在电池组内的电池单体温度或电池模块温度并且将集合或平均温度测量值发送到处理器3812。In various embodiments, voltage may be measured as an aggregate voltage or an average voltage of battery cells or battery modules contained within a battery pack. Battery temperature measurement circuitry 3818 may include one or more temperature sensors to periodically measure battery cell temperatures or battery module temperatures within the battery pack and send aggregate or average temperature measurements to processor 3812 .

在一实施例中,处理器3812也从电池电流测量电路3822接收周期性电流测量值。电池电流测量电路3822可以在质保跟踪器3810的外部。例如,电池电流测量电路3822可以存在于串控制器3820(例如图30的串控制器3000)内。在另一实施例中,电池电流测量电路3822可以是质保跟踪器3810的部分。In one embodiment, processor 3812 also receives periodic current measurements from battery current measurement circuit 3822 . The battery current measurement circuit 3822 may be external to the warranty tracker 3810 . For example, battery current measurement circuit 3822 may reside within string controller 3820 (eg, string controller 3000 of FIG. 30 ). In another embodiment, battery current measurement circuit 3822 may be part of warranty tracker 3810 .

处理器3812可以基于所接收的电压、温度和电流测量值来计算质保值。在一实施例中,每个质保值表示在记录所接收的测量时的电池使用。一旦接收,测量值可以转换为用于计算质保值的相关联的系数。例如,从电池电压测量电路3816接收的电压测量值可以转换为相对应的电压系数,如关于图35所描述。同样,所接收的温度测量值和电流测量值可以转换为相对应温度和电流系数,如关于图33和图34所描述。Processor 3812 may calculate a warranty value based on the received voltage, temperature and current measurements. In one embodiment, each warranty value represents battery usage while recording the received measurement. Once received, the measured values can be converted to associated coefficients for calculating warranty values. For example, voltage measurements received from battery voltage measurement circuit 3816 may be converted to corresponding voltage coefficients, as described with respect to FIG. 35 . Likewise, received temperature and current measurements may be converted to corresponding temperature and current coefficients, as described with respect to FIGS. 33 and 34 .

在一实施例中,处理器3812可以通过将电压系数、温度系数和电流系数乘在一起来计算质保值。例如,当电池组不充电也不放电时电流系数可为0。计算的质保值因此将也为0,指示未发生使用。在另一实例中,当电池温度和电压在最佳水平时,相对应温度和电压系数可以为1。所计算的质保值然后将等于对应于测量电流的电流系数。当所有系数大于零时,质保值基于电压、温度和电流测量值指示电池使用。In one embodiment, the processor 3812 may calculate the warranty value by multiplying together the voltage coefficient, temperature coefficient, and current coefficient. For example, the current coefficient may be zero when the battery pack is neither charging nor discharging. The calculated warranty value will therefore also be 0, indicating that no usage has occurred. In another example, when the battery temperature and voltage are at optimal levels, the corresponding temperature and voltage coefficients may be 1. The calculated QA value will then be equal to the current coefficient corresponding to the measured current. Warranty values indicate battery usage based on voltage, temperature, and current measurements when all coefficients are greater than zero.

如先前所描述,额外测量值或计算数据也可以用于计算质保值。根据一实施例,质保值也可以基于任何组合电压、温度和电流系数来计算。As previously described, additional measured or calculated data can also be used to calculate the warranty value. According to an embodiment, the warranty value can also be calculated based on any combination of voltage, temperature and current coefficients.

虽然质保值表示在一时间点的电池使用,电池组的质保基于电池组寿命的电池使用(其可以由电池组的制造商限定)。在一实施例中,存储器3814存储累积质保值,累积质保值表示在电池组的使用寿命。每次计算质保值时,处理器3812可以向存储器3814中存储的累积质保值添加质保值。然后使用累积质保值来判断电池质保值有效还是到期。While the warranty value represents battery usage at a point in time, the battery pack's warranty is based on battery usage over the life of the battery pack (which may be defined by the battery pack's manufacturer). In one embodiment, the memory 3814 stores a cumulative warranty value that represents the lifetime of the battery pack. Processor 3812 may add a warranty value to the cumulative warranty value stored in memory 3814 each time a warranty value is calculated. Then use the cumulative warranty value to determine whether the battery warranty value is valid or expired.

图39是根据一实施例用来计算和存储累积质保值的示例方法。示例方法的每个阶段可以表示存储于计算机可读存储装置上的计算机可读指令,计算机可读指令由处理器执行,造成处理器执行一个或多个操作。Figure 39 is an example method for calculating and storing cumulative warranty values, according to one embodiment. Each stage of the example method may represent computer readable instructions stored on a computer readable storage device, the computer readable instructions being executed by a processor, causing the processor to perform one or more operations.

方法3900始于阶段3904,测量电池组内的电池单体电压。在一实施例中,用于不同电池单体或电池模块的电池单体电压测量值可以在电池组上集合或平均化。在阶段3906,可以测量电池单体温度。在一实施例中,不同电池单体或电池模块的电池单体温度测量值可以在电池组上集合或平均化。在阶段3908,可以接收充电/放电电流测量值。阶段3904、3906和3908可以以同时或以任何次序执行。Method 3900 begins at stage 3904 with measuring battery cell voltages within the battery pack. In one embodiment, cell voltage measurements for different cells or modules may be aggregated or averaged across the battery pack. At stage 3906, battery cell temperature may be measured. In one embodiment, battery cell temperature measurements of different battery cells or battery modules may be aggregated or averaged across the battery pack. At stage 3908, charge/discharge current measurements can be received. Stages 3904, 3906 and 3908 may be performed simultaneously or in any order.

在阶段3910,使用测量的电池电压、测量的电池温度和所接收的电流测量值来计算质保值。在一实施例中,每个质保值表示在记录所接收的测量值时的电池使用。一旦接收,测量值可以转换为用于计算质保值的相关联的系数。例如,电压测量值可以转换为关于图所描述的相对应的电压系数。35.同样,所接收的温度测量值和电流测量值可以转换为相对应温度和电流系数,如关于图33和图34所描述。In stage 3910, a warranty value is calculated using the measured battery voltage, the measured battery temperature and the received current measurement. In one embodiment, each warranty value represents battery usage while recording the received measurement. Once received, the measured values can be converted to associated coefficients for calculating warranty values. For example, voltage measurements may be converted to corresponding voltage coefficients as described with respect to the graph. 35. Likewise, the received temperature and current measurements may be converted to corresponding temperature and current coefficients as described with respect to FIGS. 33 and 34 .

在一实施例中,可以通过使电压系数、温度系数和电流系数乘在一起来计算质保值。例如,当电池组不充电也不放电时电流系数可为0。计算的质保值因此将也为0,指示未发生使用。在另一实例中,当电池温度和电压在最佳水平时,相对应温度和电压系数可以为1。所计算的质保值然后将等于对应于测量电流的电流系数。当所有系数大于零时,质保值基于电压、温度和电流测量值指示电池使用。In one embodiment, the warranty value may be calculated by multiplying together the voltage coefficient, temperature coefficient, and current coefficient. For example, the current coefficient may be zero when the battery pack is neither charging nor discharging. The calculated warranty value will therefore also be 0, indicating that no usage has occurred. In another example, when the battery temperature and voltage are at optimal levels, the corresponding temperature and voltage coefficients may be 1. The calculated QA value will then be equal to the current coefficient corresponding to the measured current. Warranty values indicate battery usage based on voltage, temperature, and current measurements when all coefficients are greater than zero.

如先前所描述,额外测量值或计算数据也可以用于计算质保值。根据一实施例,质保值也可以基于任何组合电压、温度和电流系数来计算。As previously described, additional measured or calculated data can also be used to calculate the warranty value. According to an embodiment, the warranty value can also be calculated based on any combination of voltage, temperature and current coefficients.

在阶段3912,所计算的质保值添加到存储的累积质保值。在一实施例中,累积质保值可以存储于电池组内。在其它实施例中,累积质保值可以存储于电池组外部。然后可以使用累积质保值来判断电池组质保是有效的或到期的,如将在下文中关于图40和图41进一步讨论。At stage 3912, the calculated warranty value is added to the stored cumulative warranty value. In one embodiment, the cumulative warranty value can be stored in the battery pack. In other embodiments, the cumulative warranty value may be stored external to the battery pack. The cumulative warranty value can then be used to determine whether the battery pack warranty is valid or expired, as will be discussed further below with respect to FIGS. 40 and 41 .

图40是根据一实施例使用质保跟踪器的示例方法。图40可以由计算机或者人操作者在能量管理系统诸如能量管理系统处执行。图40始于阶段4002,此时接收指示电池组具有操作问题或者在其它方面具有缺陷的警告或警报。在一实施例中,警报可以作为电子邮件或其它电子通信方式向负责监视电池组的操作者发布。在其它实施例中,警告或警报可以是听觉或视觉警报,例如在有缺陷电池组上的闪烁红光,诸如在上文中关于图26A和图26B的状况按钮2608所描述的警告。Figure 40 is an example method of using the Warranty Tracker, according to one embodiment. Figure 40 may be performed by a computer or a human operator at an energy management system such as an energy management system. Figure 40 begins at stage 4002 when a warning or alert is received indicating that the battery pack has operational problems or is otherwise defective. In one embodiment, the alert may be issued as an email or other electronic communication to the operator responsible for monitoring the battery pack. In other embodiments, the warning or alarm may be an audible or visual alarm, such as a flashing red light on a defective battery pack, such as the warning described above with respect to the status button 2608 of FIGS. 26A and 26B .

在阶段4004,比较存储于有缺陷的电池组中的累积质保值与预先限定的阈值。这个阈值可以设置为基于电池组的正常使用而提供特定质保阶段。例如,阈值可以设置为使得电池组可以基于正常使用而涵盖10年的质保。以此方式,电池组的野蛮使用可以减小电池组的有效质保期。At stage 4004, the cumulative warranty value stored in the defective battery pack is compared to a predefined threshold. This threshold can be set to provide a specific warranty period based on normal usage of the battery pack. For example, the threshold may be set such that the battery pack is covered by a 10-year warranty based on normal use. In this way, brutal use of the battery pack can reduce the effective warranty period of the battery pack.

在阶段4006,判断所存储的累积质保值是否超过预先限定的阈值。如果存储的累积值超过了预先限定的阈值,方法4000继续进行到阶段4008。在阶段4008,判断电池组的质保到期。如果存储的累积值并不超过阈值,方法结束,指示电池组质保并未到期。At stage 4006, it is determined whether the stored cumulative warranty value exceeds a predefined threshold. If the stored cumulative value exceeds the predefined threshold, method 4000 proceeds to stage 4008 . At stage 4008, it is determined that the battery pack's warranty has expired. If the stored cumulative value does not exceed the threshold, the method ends, indicating that the battery pack warranty has not expired.

图41是展示根据一实施例的示例电池组和相关联的质保信息的图。当电池组被报告为有缺陷时,可以执行对质保信息的分析。如图41所示,电池组4104存在于电存储单元4102中,类似于图48A和图48B的电存储单元4802的电池组。响应于电池组4104有操作问题,从电存储单元4102移除电池组4104用于分析。Figure 41 is a diagram showing an example battery pack and associated warranty information, according to an embodiment. Analysis of warranty information may be performed when a battery pack is reported as defective. As shown in Figure 41, a battery pack 4104 is present in the electrical storage unit 4102, similar to the battery pack of the electrical storage unit 4802 of Figures 48A and 48B. In response to the battery pack 4104 having an operational problem, the battery pack 4104 is removed from the electrical storage unit 4102 for analysis.

在一实施例中,电池组4104可以连接到具有显示器4106的计算装置。以此方式,电池组操作者、销售商或者制造商能查看各种质保信息和状况从而确定哪一方在经济上负责维修电池组4104。在图41所示的示例中,质保阈值可以设置为500,000,000并且电池组的累积质保值为500,000,049。由于累积质保值超过了质保阈值,电池组质保确定到期,并且电池组操作者或拥有者应在财务上负责维修。In an embodiment, the battery pack 4104 may be connected to a computing device having a display 4106 . In this way, a battery pack operator, seller, or manufacturer can review various warranty information and conditions to determine which party is financially responsible for repairing the battery pack 4104 . In the example shown in FIG. 41 , the warranty threshold may be set at 500,000,000 and the cumulative warranty value for the battery pack is 500,000,049. As the cumulative warranty value exceeds the warranty threshold, the battery pack warranty is determined to expire and the battery pack operator or owner is financially responsible for the repair.

在一实施例中,可以查看电池组4104的质保信息,而无需从电存储单元4102物理地去除电池组4104。例如,存储的质保信息可以经由可以访问的网络发送到电池组4104外部的装置以进行分析。In an embodiment, warranty information for the battery pack 4104 can be viewed without physically removing the battery pack 4104 from the electrical storage unit 4102 . For example, stored warranty information may be sent via an accessible network to a device external to the battery pack 4104 for analysis.

对具有操作问题或缺陷的电池组的示例检测Example detection of a battery pack with operational issues or defects

图42是展示根据一实施例基于自放电率和充电时间的电池组的示例分布的图。曲线4202展示了在一段时间基于每个电池组的自放电率4206的电池组的示例分布。轴线4204指示具有特定自放电率的电池组的数量。曲线4202指示正常分布,其中某些电池组具有更高或更低的自放电。42 is a graph showing an example distribution of battery packs based on self-discharge rate and charge time according to an embodiment. Curve 4202 illustrates an example distribution of battery packs based on each battery pack's self-discharge rate 4206 over time. Axis 4204 indicates the number of battery packs with a particular self-discharge rate. Curve 4202 indicates a normal distribution, where some battery packs have higher or lower self-discharge.

曲线4208展示了基于每个电池组的充电时间4210,电池组的类似分布。在一实施例中,计时器可以跟踪逆变器充电器诸如图26C的逆变器充电器2632的操作时间来确定在一段时间电池组的充电时间。轴线4212指示在一段时间具有类似充电时间的电池组的数量。Curve 4208 shows a similar distribution of battery packs based on charge time 4210 for each pack. In one embodiment, a timer may track the operating time of an inverter charger, such as inverter charger 2632 of FIG. 26C, to determine the charging time of the battery pack over a period of time. Axis 4212 indicates the number of battery packs that have similar charge times over a period of time.

如图42所示,电池组的自放电率和充电时间预期相似。在一实施例中,可以在一段时间收集多个电池组的数据以便确定电池分布4202和4208。多个电池组的平均充电时间可以提供健康电池组,例如在可接受的公差内操作的电池组的预期充电时间的可靠指示。可以从这些分布中选择高于平均充电时间的最大预期方差4214。例如,可以将最大方差4214设置为与多个电池组的平均充电时间的两个标准偏差。在一实施例中,超过最大方差4214的充电时间可以表示电池组具有操作问题或缺陷。本领域技术人员将认识到最大方差4214可以是高于电池组的预期充电时间的任何值并且可以是静态的或者随着收集额外数据而动态更新。As shown in Figure 42, the battery pack's self-discharge rate and charge time are expected to be similar. In an embodiment, data may be collected for multiple battery packs over a period of time in order to determine battery distributions 4202 and 4208 . The average charge time of multiple battery packs may provide a reliable indication of the expected charge time of a healthy battery pack, eg, a battery pack operating within acceptable tolerances. From these distributions, the maximum expected variance 4214 above the average charge time can be selected. For example, the maximum variance 4214 may be set to two standard deviations from the average charge time for the plurality of battery packs. In an embodiment, a charge time exceeding the maximum variance 4214 may indicate that the battery pack has an operational problem or defect. Those skilled in the art will recognize that the maximum variance 4214 can be any value above the expected charge time of the battery pack and can be static or dynamically updated as additional data is collected.

图43是根据一实施例的电池组(诸如图26A至图26D的电池组2600)的温度与充电时间之间的关系的图。曲线4302展示了基于每个电池组的充电时间4306,电池组的类似分布。轴线4304指示在一段时间具有类似充电时间的电池组的数量。如图43所示,曲线4302表示对于电池组中的每个电池组,基于20℃的一致电池温度的电池分布。在实施例中,电池温度可以是例如包含于电池组内的每个电池单体或者每个电池模块的平均温度。43 is a graph of temperature versus charge time for a battery pack, such as battery pack 2600 of FIGS. 26A-26D , according to an embodiment. Curve 4302 shows a similar distribution of battery packs based on charge time 4306 for each battery pack. Axis 4304 indicates the number of battery packs that have similar charge times over a period of time. As shown in FIG. 43 , curve 4302 represents the cell distribution based on a consistent cell temperature of 20° C. for each of the battery packs. In an embodiment, the battery temperature may be, for example, an average temperature of each battery cell or each battery module included in the battery pack.

温度对于电池组的性能具有显著影响。例如,更高的温度可能会提高电池的自放电率。在一非限制性实施例中,电池组可以每个月在20℃时自放电2%并且在30℃增加到每个月10%。曲线4310展示了基于充电时间4306的电池组的分布,其中每个电池具有30℃的温度。在30℃,每个电池组的充电时间维持正常分布,但是平均和预期充电时间转移。Temperature has a significant effect on the performance of a battery pack. For example, higher temperatures may increase a battery's self-discharge rate. In a non-limiting example, the battery pack can self-discharge 2% per month at 20°C and increase to 10% per month at 30°C. Curve 4310 shows the distribution of batteries based on charging time 4306, where each battery has a temperature of 30°C. At 30°C, the normal distribution of charge times for each pack was maintained, but the average and expected charge times shifted.

因为分布在不同温度转移,最大方差4308可以更新补偿温度波动。在一实施例中,一个或多个温度传感器可以监视电池组的平均电池单体或者电池模块温度。温度传感器可以在电池组的内部或外部。最大方差4308然后可以响应于温度变化而动态地调整。例如,如果电池组的平均电池模块温度经确定为30℃,最大预期方差可以调整为最大方差4312。这可以防止替换健康电池组,例如当电池组的充电时间在30℃温度处降低到最大方差4308与最大方差4312之间时。在其它实施例中,可以监视环境温度,作为电池模块温度的替代或组合,并且可以响应于环境温度变化来动态地调整最大方差4308。As the distribution shifts at different temperatures, the maximum variance 4308 can be updated to compensate for temperature fluctuations. In one embodiment, one or more temperature sensors may monitor the average cell or battery module temperature of the battery pack. The temperature sensor can be internal or external to the battery pack. The maximum variance 4308 can then be dynamically adjusted in response to temperature changes. For example, if the average battery module temperature of the battery pack is determined to be 30° C., the maximum expected variance may be adjusted to be the maximum variance 4312 . This may prevent replacement of a healthy battery pack, for example, when the charging time of the battery pack drops between the maximum variance 4308 and the maximum variance 4312 at a temperature of 30°C. In other embodiments, the ambient temperature may be monitored instead or in combination with the battery module temperature, and the maximum variance 4308 may be dynamically adjusted in response to ambient temperature changes.

图44是展示了根据一实施例用来检测具有操作问题或缺陷的电池组的示例系统的图。在一实施例中,系统4400包括电池组4402和分析器4408。对于本领域技术人员显而易见的是,下文所公开的检测技术可以实施和使用于上文所描述的系统和方法中。电池组4402可以包括逆变器充电器4404,诸如图26C的逆变器充电器2632和计时器4406。电池组4402可以联接到电网 4410。这使得逆变器充电器4404在适当时接通和切断以向电池组4402的单体充电。FIG. 44 is a diagram illustrating an example system for detecting battery packs with operational problems or defects, according to an embodiment. In one embodiment, the system 4400 includes a battery pack 4402 and an analyzer 4408 . It will be apparent to those skilled in the art that the detection techniques disclosed below can be implemented and used in the systems and methods described above. The battery pack 4402 may include an inverter charger 4404, such as the inverter charger 2632 of FIG. 26C, and a timer 4406. The battery pack 4402 may be coupled to an electrical grid 4410. This causes the inverter charger 4404 to switch on and off as appropriate to charge the cells of the battery pack 4402 .

在一实施例中,计时器4406记录逆变器充电器4404操作时的时间量。计时器4406嵌入于电池组内,作为电池组控制器的部分,诸如图28的电池组控制器2800。替代地,计时器 4406可以单独于电池组控制器。在一实施例中,计时器4406可以在特定时段之后或者在特定时间间隔重置。例如,计时器4406可以在每个月的第一天重置以便记录逆变器充电器4404在这个月期间操作的时间量。替代地,计时器4406可以维持累积操作时间或者规定的充电器运行时间,例如在最后30天操作的时间。In one embodiment, the timer 4406 records the amount of time the inverter charger 4404 is operating. Timer 4406 is embedded within the battery pack as part of a battery pack controller, such as battery pack controller 2800 of FIG. 28 . Alternatively, timer 4406 may be separate from the battery pack controller. In an embodiment, the timer 4406 may reset after a certain period of time or at certain time intervals. For example, timer 4406 may be reset on the first day of each month to record the amount of time inverter charger 4404 was operating during the month. Alternatively, the timer 4406 may maintain a cumulative operating time or a prescribed charger run time, such as the time in the last 30 days of operation.

在一实施例中,计时器4406可以向分析器4408周期性地发送所记录的操作时间。在一实施例中,分析器4408可以是电池组4402的一部分。例如,分析器4408可以集成到电池组 2808的电池组控制器内,诸如图28的电池组控制器2800。在其它实施例中,分析器4408可以在电池组4402外部并且可以实施于任何计算系统上。在其中电池组4408是BESS诸如图48A和图 48B的BESS 4802的一部分的一实施例中,分析器4408可以是如关于图48A所描述的串控制器、阵列控制器或者系统控制器的部分。In an embodiment, the timer 4406 may periodically send the recorded operating time to the analyzer 4408 . In an embodiment, analyzer 4408 may be part of battery pack 4402 . For example, analyzer 4408 may be integrated into a battery pack controller of battery pack 2808, such as battery pack controller 2800 of FIG. 28 . In other embodiments, analyzer 4408 may be external to battery pack 4402 and may be implemented on any computing system. In an embodiment where battery pack 4408 is part of a BESS, such as BESS 4802 of FIGS. 48A and 48B , analyzer 4408 may be part of a string controller, array controller, or system controller as described with respect to FIG. 48A .

在一实施例中,分析器4408可以选择一时间段并且比较选定的时间段的记录操作时间与阈值时间。阈值时间可以指示从逆变器充电器4406的预期操作时间的最大确定方差。预期操作时间可以表示对于选定时间段,电池组的预期充电时间,考虑到诸如(但不限于)下列因素:电池使用和自放电率。分析器4408可以基于从多个电池组收集的数据的统计分析来设置预期操作时间和阈值时间并且可以随着收集额外数据而进行调整。如果电池组4402是电池组阵列的一部分,可以基于阵列中电池组的全部或子集的分析来确定预期和阈值操作时间。此外,在一实施例中可以基于平均电池单体或者或者电池组的电池模块温度或者电池组周围的环境温度来动态地确定阈值时间,如在上文中关于图43所描述。在一实施例中,一个或多个温度传感器可以监视电池组温度或者环境温度并且向分析器4408提供测量值。分析器4408然后可以使用接收的温度测量值以调整阈值时间。In an embodiment, the analyzer 4408 may select a time period and compare the recorded operation time for the selected time period to a threshold time. The threshold time may indicate the maximum determined variance from the expected operating time of the inverter charger 4406 . The expected operating time may represent the expected charging time of the battery pack for a selected time period, taking into account factors such as (but not limited to): battery usage and self-discharge rate. Analyzer 4408 can set expected operating times and threshold times based on statistical analysis of data collected from multiple battery packs and can be adjusted as additional data is collected. If battery pack 4402 is part of a battery pack array, expected and threshold operating times may be determined based on an analysis of all or a subset of the battery packs in the array. Additionally, the threshold time may be dynamically determined in one embodiment based on the average cell or battery module temperature of the battery pack or the ambient temperature around the battery pack, as described above with respect to FIG. 43 . In an embodiment, one or more temperature sensors may monitor battery pack temperature or ambient temperature and provide measurements to analyzer 4408 . Analyzer 4408 may then use the received temperature measurement to adjust the threshold time.

在一实施例中,如果记录的操作时间超过了阈值时间,分析器4408可以确定电池组具有操作问题或缺陷并且可能需要维护和/或替换。在此情况下,分析器4408可以向适当方诸如负责监视电池组的操作者发布警报。在一实施例中,可以作为电子邮件或其它电子通信来发出警报。在其它实施例中,发出的警报可以是声响或视觉的,例如在电池组上闪烁的红灯,诸如上文关于图26A和图26B的状况按钮2608所描述的警告。In an embodiment, if the recorded operating time exceeds a threshold time, the analyzer 4408 may determine that the battery pack has an operating problem or defect and may require maintenance and/or replacement. In this case, the analyzer 4408 may issue an alert to appropriate parties such as the operator responsible for monitoring the battery pack. In one embodiment, the alert may be issued as an email or other electronic communication. In other embodiments, the alert issued may be audible or visual, such as a flashing red light on the battery pack, such as the warning described above with respect to the status button 2608 of FIGS. 26A and 26B .

在一实施例中,分析器4408也可以响应于确定电池组具有操作问题或缺陷而中止电池组的操作。这可以充当用来排除操作具有操作问题或缺陷的电池组而发生到任何不利效果的机构。In an embodiment, the analyzer 4408 may also suspend operation of the battery pack in response to determining that the battery pack has an operational problem or defect. This may serve as a mechanism to preclude any adverse effects that may occur from operating the battery pack with operational problems or defects.

图45是展示,根据一实施例从电池组阵列集合数据以进行分析的图。如所解释的那样,能量系统,诸如图48A(下图)的电存储系统4802包括多个电池组4502。每个电池组4502可以包括计时器用来记录电池组充电的时间量。记录的时间可以存储于每个电池组中,如在图4504所示。在一实施例中,每个计时器可以集成到每个电池组的电池组控制器内,诸如图28的电池组控制器 2800,包括处理器和用来存储所记录的时间的存储器。Figure 45 is a diagram showing the aggregation of data from a battery array for analysis according to one embodiment. As explained, an energy system, such as the electrical storage system 4802 of FIG. 48A (lower panel), includes a plurality of battery packs 4502 . Each battery pack 4502 may include a timer to record the amount of time the battery pack has been charged. The recorded time can be stored in each battery pack, as shown in graph 4504. In one embodiment, each timer may be integrated into a battery pack controller for each battery pack, such as battery pack controller 2800 of FIG. 28 , including a processor and memory to store recorded times.

在一实施例中,可以由一个或多个串控制器(诸如下图48A的串控制器4804)来集合每个电池组的记录时间,如在4506所示。和/或由阵列控制器(诸如下图48A的阵列控制器4808) 和/或由系统控制器(诸如图48A的系统控制器4812)控制,如在4508处所示。如图45所示,每个串控制器可以管理多个电池组的子集。In an embodiment, the recorded times for each battery pack may be aggregated, as shown at 4506, by one or more string controllers, such as string controller 4804 of FIG. 48A below. and/or controlled by an array controller (such as array controller 4808 of FIG. 48A below) and/or by a system controller (such as system controller 4812 of FIG. 48A ), as shown at 4508 . As shown in Figure 45, each string controller can manage a subset of multiple battery packs.

在一实施例中,可以由一个或多个串控制器或者阵列或系统控制器将集合的记录时间发送到一个或多个分析器4510,诸如图28的分析器4408。分析器4510可以收集关于多个电池组的数据以便检测并且识别具有操作问题或缺陷的电池组,如关于图44所描述。在一实施例中,分析器4510可以是每个串控制器和/或阵列或系统控制器的部分。以此方式,分析可以定位于成组的电池组上,或者对于整个系统执行。在一实施例中,分析器4510可以在多个电池组、串控制器、阵图46是展示了根据一实施例用来检测具有操作问题或缺陷的电池组的示例方法的流程图。示例方法的每个阶段可以表示存储于计算机可读存储装置上的计算机可读指令,计算机可读指令由处理器执行,造成处理器执行一个或多个操作。In an embodiment, the aggregated recording times may be sent by one or more string controllers or array or system controllers to one or more analyzers 4510 , such as analyzer 4408 of FIG. 28 . Analyzer 4510 may collect data on multiple battery packs in order to detect and identify battery packs with operational problems or defects, as described with respect to FIG. 44 . In an embodiment, analyzer 4510 may be part of each string controller and/or array or system controller. In this way, analysis can be localized on grouped battery packs, or performed for the entire system. In an embodiment, analyzer 4510 may be used in multiple battery packs, string controllers, arrays. Figure 46 is a flowchart illustrating an example method for detecting battery packs with operational problems or defects according to an embodiment. Each stage of the example method may represent computer readable instructions stored on a computer readable storage device, the computer readable instructions being executed by a processor, causing the processor to perform one or more operations.

方法4600始于阶段4602,记录逆变器充电器操作的时间量。逆变器充电器可以是电池组的诸如图26C的逆变器充电器2632的部分并且被配置成给电池组的单体充电。Method 4600 begins at stage 4602 by recording the amount of time the inverter charger is operating. The inverter charger may be part of a battery pack such as inverter charger 2632 of FIG. 26C and configured to charge cells of the battery pack.

在阶段4604,比较特定时间段的记录的操作时间与阈值时间。阈值时间可以指示来自逆变器充电器的预期操作时间的确定的方差。预期操作时间可以表示对于选定时间段,电池组的预期充电时间,考虑到诸如(但不限于)下列因素:电池使用和自放电率。At stage 4604, the recorded operating time for a particular time period is compared to a threshold time. The threshold time may indicate a variance from the determination of the expected operating time of the inverter charger. The expected operating time may represent the expected charging time of the battery pack for a selected time period, taking into account factors such as (but not limited to): battery usage and self-discharge rate.

在阶段4606,判断记录的操作时间是否超过阈值时间。这可以指示电池组充电长于预期并且可能需要维护和/或替换。在阶段4608,如果记录的操作时间超过阈值时间,警报可以提供给适当方,诸如负责监视电池组的计算机或人操作者(例如,能量管理系统)。在一实施例中,可以作为电子邮件或其它电子通信来发出警报。在其它实施例中,发出的警报可以是音响或视觉的,例如在电池组上的红灯。返回至阶段4606,如果记录的操作时间并不超过阈值时间,方法结束。At stage 4606, it is determined whether the recorded operating time exceeds a threshold time. This can indicate that the battery pack is charging longer than expected and may need maintenance and/or replacement. At stage 4608, if the recorded operating time exceeds a threshold time, an alert may be provided to an appropriate party, such as a computer or human operator responsible for monitoring the battery pack (eg, an energy management system). In one embodiment, the alert may be issued as an email or other electronic communication. In other embodiments, the alert may be audible or visual, such as a red light on the battery pack. Returning to stage 4606, if the recorded operation time does not exceed the threshold time, the method ends.

图47展示了示例电池能量储存系统(“BESS”)4700。具体而言,图47展示了BESS4700 的截面图。BESS 4700能作为独立系统(例如,商业实施例4720)操作或者其可以与BESS单元组合在一起形成较大系统(例如,公用设施4730)的一部分。在图47中展示的实施例中,BESS 4700 容纳于容器(类似于货运集装箱)中并且可以移动(例如,由卡车运输)。本领域技术人员已知的其它外壳也在本发明的范围内。FIG. 47 illustrates an example battery energy storage system (“BESS”) 4700 . Specifically, Figure 47 shows a cross-sectional view of the BESS4700. BESS 4700 can operate as a stand-alone system (eg, business embodiment 4720) or it can be combined with BESS units to form part of a larger system (eg, utility 4730). In the embodiment shown in Figure 47, the BESS 4700 is housed in a container (similar to a shipping container) and can be moved (eg, transported by truck). Other enclosures known to those skilled in the art are also within the scope of the present invention.

如图47所示,BESS 4700包括多个电池组,诸如电池组4710。如图所示,电池组能堆叠在BESS 4700中的机架上。这种布置允许操作者易于接近电池组中每一个用于替换、维护、测试等。多个电池组可以串联,其可以被称作一串电池组或者电池组串。As shown in FIG. 47 , BESS 4700 includes multiple battery packs, such as battery pack 4710 . As shown, battery packs can be stacked on racks in the BESS 4700. This arrangement allows an operator easy access to each of the battery packs for replacement, maintenance, testing, and the like. Multiple battery packs may be connected in series, which may be referred to as a battery string or battery string.

在一实施例中(在下文中更详细地解释),每个电池组包括:电池单体(其可以布置于电池模块中);电池组控制器,其监视电池单体;逆变器充电器(例如,直流电源),其向电池单体中每一个添加能量;以及,电池模块控制器的分布式菊花链式网络,其可以对电池单体进行某些测量并且从电池单体移除能量。电池组控制器可以控制电池模块控制器的网络和逆变器充电器以控制电池组的荷电状态或电压。在此实施例中。包括于BESS 4700中的电池组被认为是“智能”电池组,“智能”电池组能接收目标电压或荷电状态值并且自行逆变器到目标水平。In one embodiment (explained in more detail below), each battery pack includes: battery cells (which may be arranged in battery modules); a battery pack controller that monitors the battery cells; an inverter charger ( For example, a DC power supply), which adds energy to each of the battery cells; and, a distributed daisy-chain network of battery module controllers, which can make certain measurements on and remove energy from the battery cells. The battery pack controller can control the network of battery module controllers and inverter chargers to control the state of charge or voltage of the battery pack. In this example. The battery packs included in the BESS 4700 are considered "smart" battery packs that can receive a target voltage or state of charge value and self-invert to the target level.

图47展示了BESS 4700是高度可缩放的,从小千瓦时级系统到多兆瓦时级系统。例如,图47的商业实施例4720包括单个BESS单元,其能提供400kWh能量(但是并不限于此)。商业实施例4720包括功率控制系统(PCS)4725,功率控制系统(PCS)4725在BESS单元的背部安装到外壳上。PCS 4725可以连接到电网。PCS 4725包括一个或多个双向功率转换器,其能使用例如由能量监视站的操作者经由计算机通过网络(例如,因特网、以太网等)发出的命令来使多个电池组充电和放电。PCS 4725能控制双向功率转换器的有效功率和无功功率。而且,在某些实施例中,当电网不可用和/或BESS 4720与电网断开连接时,PCS 4725能作为备用电源操作。Figure 47 shows that the BESS 4700 is highly scalable from small kilowatt-hour systems to multi-megawatt-hour systems. For example, the commercial embodiment 4720 of FIG. 47 includes a single BESS unit capable of providing 400 kWh of energy (but is not limited thereto). The commercial embodiment 4720 includes a power control system (PCS) 4725 mounted to the housing on the back of the BESS unit. PCS 4725 can be connected to the grid. The PCS 4725 includes one or more bi-directional power converters capable of charging and discharging multiple battery packs using commands, eg, issued by the operator of the energy monitoring station via a computer over a network (eg, Internet, Ethernet, etc.). PCS 4725 can control the active power and reactive power of bidirectional power converters. Also, in some embodiments, the PCS 4725 can operate as a backup power source when the grid is unavailable and/or the BESS 4720 is disconnected from the grid.

另一方面,图47的公用设施实施例4730包括六个BESS单元(标记为4731-4736),其中的每一个能提供400kWh的能量(但是并不限于此)。因此,公用设施实施例4730一起可以提供2.4MWh能量。在公用设施实施例中,BESS单元中每一个一起连接到中央PCS 4737,其包括一个或多个双向功率转换器,双向功率转换器能使用例如由能量监视站的操作者经由计算机通过网络(例如,因特网、以太网等)发出的命令来使多个电池组充电和放电。PCS 4737能控制双向功率转换器的有效功率和无功功率。PCS 4737可以联接到电网。而且,在某些实施例中,当电网不可用和/或BESS与电网断开连接时,PCS 4737能作为备用电源操作。On the other hand, the utility embodiment 4730 of FIG. 47 includes six BESS units (labeled 4731-4736), each of which can provide 400 kWh of energy (but is not limited thereto). Thus, the utility embodiments 4730 together can provide 2.4MWh of energy. In a utility embodiment, the BESS units are each connected together to a central PCS 4737, which includes one or more bi-directional power converters that can be used, for example, by an operator of an energy monitoring station via a computer over a network (e.g. , Internet, Ethernet, etc.) to charge and discharge multiple battery packs. PCS 4737 can control the active power and reactive power of bidirectional power converters. PCS 4737 can be connected to the grid. Also, in some embodiments, the PCS 4737 can operate as a backup power source when the grid is unavailable and/or the BESS is disconnected from the grid.

图48A是展示了根据一实施例的示例BESS 4802的框图。BESS 4802可以经由通信网络4822联接到能量管理系统(EMS)4826。通信网络4822可以是任何类型的通信网络,包括(但不限于)因特网、蜂窝电话网等。联接到通信网络4822的其它装置,诸如计算机4828,也可以与 BESS 4802通信。例如,计算机4828可以安置于BESS 4802的制造商处以维护(监视、运行诊断测试等)BESS 4802。在其它实施例中,计算机4828可以表示对BESS 4802执行维护的现场技术人员的移动装置。现场监视装置4824也可以经由通信网络4822联接到EMS4826。现场监视装置 4824可以联接到替代能源(例如,太阳能设备、风力设备等)以测量由替代能源生成的能量。同样,监视装置4818可以联接到BESS 4802并且测量由BESS 4802生成的能量。虽然在图48A中展示了两个监视装置,本领域技术人员将认识到监视由能源(常规和/或替代能源)生成的能量的额外监视装置可以以类似方式连接到通信网络4822。在EMS 4826处的人操作者和/或计算机化系统能分析并且监视连接到通信网络4822的监视装置的输出并且遥控BESS 4802的操作。例如,EMS 4826可以指导BESS 4802根据需要(例如为了满足需求、稳定线路频率等)充电(经由PCS 4820 从电网汲取能量)或放电(经由PCS4820向电网提供能量)。Figure 48A is a block diagram illustrating an example BESS 4802 according to an embodiment. BESS 4802 can be coupled to an energy management system (EMS) 4826 via a communication network 4822 . Communications network 4822 may be any type of communications network including, but not limited to, the Internet, a cellular telephone network, and the like. Other devices coupled to the communication network 4822, such as a computer 4828, may also communicate with the BESS 4802. For example, computer 4828 may be located at the manufacturer of BESS 4802 to maintain (monitor, run diagnostic tests, etc.) BESS 4802. In other embodiments, computer 4828 may represent the mobile device of a field technician performing maintenance on BESS 4802 . Site monitoring device 4824 may also be coupled to EMS 4826 via communications network 4822. The site monitoring device 4824 may be coupled to an alternative energy source (eg, solar power, wind power, etc.) to measure the energy generated by the alternative energy source. Likewise, a monitoring device 4818 may be coupled to the BESS 4802 and measure the energy generated by the BESS 4802. Although two monitoring devices are shown in FIG. 48A , those skilled in the art will recognize that additional monitoring devices monitoring energy generated by energy sources (conventional and/or alternative) may be connected to communication network 4822 in a similar manner. Human operators and/or computerized systems at the EMS 4826 can analyze and monitor the output of monitoring devices connected to the communication network 4822 and remotely control the operation of the BESS 4802. For example, EMS 4826 may instruct BESS 4802 to charge (draw energy from the grid via PCS 4820 ) or discharge (provide energy to the grid via PCS 4820 ) as needed (eg, to meet demand, stabilize line frequency, etc.).

BESS 4802包括用来控制BESS 4802的控制层次的等级。BESS 4802的控制层次从高开始依次为为系统控制器、阵列控制器、串控制器、电池组控制器和电池模块控制器。例如,系统控制器4812可以联接到一个或多个阵列控制器(例如,阵列控制器4808),阵列控制器中的每一个可以联接到一个或多个串控制器(例如,串控制器4804),串控制器中的每一个可以联接到一个或多个电池组控制器,电池组控制器中的每一个可以联接到一个或多个电池模块控制器。电池组控制器和电池模块控制器与电池组4806(a)-4806(n)安装在一起,如在上文中关于图26至图 29详细地讨论。BESS 4802 includes levels of control hierarchy used to control BESS 4802 . The control levels of BESS 4802 are system controller, array controller, string controller, battery pack controller and battery module controller from high to high. For example, system controller 4812 may be coupled to one or more array controllers (e.g., array controller 4808), each of which may be coupled to one or more string controllers (e.g., string controller 4804) , each of the string controllers may be coupled to one or more battery pack controllers, and each of the battery pack controllers may be coupled to one or more battery module controllers. The battery pack controller and battery module controller are installed with the battery packs 4806(a)-4806(n), as discussed in detail above with respect to FIGS. 26-29.

如图48A所示,系统控制器4812经由通信链路4816(a)联接到监视装置4818并且经由通信链路4816(b)联接到通信网络4822,并且经由通信链路4816(c)联接到PCS 4820。在图48A 中,通信链路4816(a)-(c)是MOD总线,但是可以使用任何有线和无线通信链路。在一实施例中,系统控制器4812也通过TCP/IP连接器4817而连接到通信网络4822。As shown in FIG. 48A , system controller 4812 is coupled to monitoring device 4818 via communication link 4816(a) and to communication network 4822 via communication link 4816(b), and to the PCS via communication link 4816(c). 4820. In FIG. 48A, communication links 4816(a)-(c) are MOD buses, but any wired and wireless communication links may be used. In one embodiment, the system controller 4812 is also connected to the communication network 4822 through a TCP/IP connector 4817 .

系统控制器4812能监视BESS 4802的操作并且将BESS 4802的操作报告给EMS4826或者连接到通信网络4822并且被配置成与BESS 4802通信的任何其它装置。系统控制器4812也可以从EMS 4826接收指令并且处理指令,并且将指令转发到适当阵列控制器(例如,阵列控制器 4806)以执行。系统控制器4812也可以与PCS 4820通信,PCS 4820可以联接到电网,以控制BESS 4802的充电和放电。System controller 4812 can monitor and report the operation of BESS 4802 to EMS 4826 or any other device connected to communication network 4822 and configured to communicate with BESS 4802 . System controller 4812 may also receive instructions from EMS 4826 and process the instructions and forward the instructions to the appropriate array controller (eg, array controller 4806) for execution. The system controller 4812 can also communicate with the PCS 4820, which can be coupled to the grid, to control the charging and discharging of the BESS 4802.

尽管在图48A中,系统控制器4812被展示安置于BESS 4802中,在其它实施例中,系统控制器4812可以安置于BESS 4802外侧并且通信地联接到BESS 4802。再次考虑图47,商业实施例4720可以是由企业、公寓、酒店等使用的单独单元。系统控制器可以安置于商业实施例4720 的BESS内,例如以经由通信网络与EMS或者在企业、公寓、酒店等的计算机通信。Although in FIG. 48A the system controller 4812 is shown disposed within the BESS 4802 , in other embodiments the system controller 4812 may be disposed outside of the BESS 4802 and communicatively coupled to the BESS 4802 . Considering FIG. 47 again, the commercial embodiment 4720 may be a single unit used by a business, apartment, hotel, etc. A system controller may be located within the BESS of the business embodiment 4720, eg, to communicate with an EMS or a computer at a business, apartment, hotel, etc. via a communication network.

在其它实施例中,诸如公用设施实施例4730中,BESS单元4731-4736中的仅一个可以包括系统控制器。例如,在图47中,BESS单元4731可以包括系统控制器而BESS单元4732-4736 可以不包括系统控制器。在这种情形下,BESS 4731被认为是主单元并且用来控制BESS单元 4732-4736,BESS单元4732-4736被认为是从单元。而且,在此情形下,包括于BESS单元4732-4736 中每一个内的最高控制层次是阵列控制器,阵列控制器联接到BESS单元4731内的系统控制器并且与系统控制器通信。In other embodiments, such as utility embodiment 4730, only one of the BESS units 4731-4736 may include a system controller. For example, in FIG. 47, BESS unit 4731 may include a system controller and BESS units 4732-4736 may not include a system controller. In this case, BESS 4731 is considered the master unit and is used to control BESS units 4732-4736, which are considered slave units. Also, in this case, the highest level of control included within each of the BESS units 4732-4736 is the array controller, which is coupled to and communicates with the system controller within the BESS unit 4731.

再次考虑图48A,系统控制器4812经由通信链路4814联接到阵列控制器4808。阵列控制器4808经由通信链路4810联接到一个或多个串控制器诸如串控制器4804。虽然图48A描绘了三个串控制器(SC(1)-(3)),更多或更少串控制器可以联接到阵列控制器4808。在图48A中,通信链路4810是CAN总线并且通信链路4814是TCP/IP链路,但是也可以使用其它有线或无线通信链路。Considering again FIG. 48A , system controller 4812 is coupled to array controller 4808 via communication link 4814 . Array controller 4808 is coupled to one or more string controllers such as string controller 4804 via communication link 4810 . Although FIG. 48A depicts three string controllers (SC(1)-(3)), more or fewer string controllers may be coupled to array controller 4808. In Figure 48A, communication link 4810 is a CAN bus and communication link 4814 is a TCP/IP link, although other wired or wireless communication links may also be used.

在BESS 4802中的每个串控制器联接到一个或多个电池组。例如,串控制器4804联接到电池组4806(a)-(n),这些电池组串联以形成电池组串。任何数量的电池组可以连接在一起以形成电池组串。电池组串能在BESS 4802中并联。并联的两个或更多个电池组串可以被称作一阵列电池组或者电池组的阵列。在一实施例中,BESS 4802包括电池组阵列,电池组阵列具有六个并联的电池组串,其中电池组串中每一个具有22个串联的电池组。Each string controller in the BESS 4802 is coupled to one or more battery packs. For example, string controller 4804 is coupled to battery packs 4806(a)-(n), which are connected in series to form a battery string. Any number of battery packs can be connected together to form a battery string. Battery strings can be connected in parallel in BESS 4802. Two or more strings of batteries connected in parallel may be referred to as an array battery or an array of batteries. In one embodiment, the BESS 4802 includes a battery array having six battery strings connected in parallel, where each of the battery strings has 22 battery strings connected in series.

顾名思义,串控制器可以监视并并控制电池组串中的电池组。由串控制器执行的功能可以包括(但不限于)下列:发出电池串接触器控制命令;测量电池串电压;测量电池串流;计算电池串安培小时计数;在系统控制器(例如在充电站)与电池组控制器之间分程传递询问;处理询问响应消息;集合电池串数据;执行软件装置ID到电池组的分配;检测在电池串中的接地故障电流;以及,检测警报和警告条件并且采取适当校正措施。串控制器的示例实施例在下文中关于图30、图31A和图31B展开描述。As the name implies, a string controller monitors and controls the battery packs in a battery string. Functions performed by the string controller may include, but are not limited to, the following: issuing string contactor control commands; measuring string voltage; measuring string current; calculating string amp-hour counts; ) and the battery pack controller; process query response messages; aggregate battery string data; perform assignment of software device IDs to battery packs; detect ground fault current in battery strings; and, detect alarm and warning conditions and take appropriate corrective action. Example embodiments of string controllers are described below with respect to Figures 30, 31A and 31B.

同样,阵列控制器可以监视并且控制电池组阵列。由阵列控制器执行的功能可以包括 (但不限于)下列:向电池组串发送状况询问;从电池组串接收并且处理询问响应;执行电池组串接触器控制;将电池组阵列数据广播到系统控制器;处理警报消息以确定所需措施,对于来自命令线接口的手动命令或询问做出响应(例如,在EMS处),允许技术人员使用命令线接口来设置或改变配置设置,运行由命令线解释器所理解的相同命令和询问组成的测试脚本;以及将测试脚本所生成的数据广播到数据服务器以用于收集。Likewise, an array controller can monitor and control the battery array. Functions performed by the array controller may include (but are not limited to) the following: sending status queries to strings; receiving and processing query responses from strings; performing string contactor control; broadcasting battery array data to the system Controller; processes alarm messages to determine required action, responds to manual commands or queries from a command line interface (e.g., at an EMS), allows a technician to use the command line interface to set or change configuration settings, runs commands A test script composed of the same commands and queries understood by the line interpreter; and broadcasting the data generated by the test script to the data server for collection.

图48B展示了示例BESS的截面图。图48B展示了三个电池组串(“串1”、“串2”和“串3”),其中的每一个包括串控制器(分别地,“SC1”、“SC2”、和“SC3”)和22个串联的电池组。串1-3可以并联并且受到阵列控制器4808控制。Figure 48B shows a cross-sectional view of an example BESS. Figure 48B shows three battery strings ("String 1", "String 2", and "String 3"), each of which includes a string controller ("SC1", "SC2", and "SC3" respectively). ) and 22 battery packs connected in series. Strings 1-3 can be paralleled and controlled by the array controller 4808.

在串1中,标记22个电池组中每一个(“BP1”至“BP 22”),展示了电池组串联的次序。即,BP1连接到串控制器(SC1)的正端子和BP 2,BP 2连接到BP1和BP3,BP3连接到BP 2和BP4,以此类推。如图所示,BP 22连接到SC1的负端子。在图示实施例中,SC1可以接入串1的中部(即,BP11和BP12)。在一实施例中,中点接地并且包括接地故障检测装置。In String 1, each of the 22 battery packs ("BP1" through "BP 22") is labeled, showing the order in which the battery packs are connected in series. That is, BP1 is connected to the positive terminal of the string controller (SC1) and BP2, BP2 is connected to BP1 and BP3, BP3 is connected to BP2 and BP4, and so on. As shown, BP 22 is connected to the negative terminal of SC1. In the illustrated embodiment, SC1 may access the middle of string 1 (ie, BP11 and BP12). In an embodiment, the midpoint is grounded and includes ground fault detection means.

BESS 4802包括一个或多个照明单元4830和一个或多个风扇4832,它们可以以有规律的间隔安置于BESS 4802的天花板中。照明单元4830可以向BESS 4802的内部提供照明。风扇 4832定向成使得它们从天花板向BESS 4802的地板吹风(即,它们吹入到BESS4802的内部)。 BESS 4802也可以包括拆分式空调单元,其包括容纳于BESS 4802的外壳内的空气处置装置4834 和容纳于BESS 4802的外壳外侧的冷凝器4836。空调单元和风扇4832可以受到控制(例如,由阵列控制器4808控制)以形成空气流动系统并且调节容纳于BESS4802内的电池组的温度。The BESS 4802 includes one or more lighting units 4830 and one or more fans 4832, which may be positioned in the ceiling of the BESS 4802 at regular intervals. Lighting unit 4830 may provide lighting to the interior of BESS 4802 . The fans 4832 are oriented such that they blow air from the ceiling to the floor of the BESS 4802 (i.e., they blow into the interior of the BESS 4802). The BESS 4802 may also include a split air conditioning unit comprising an air handling device 4834 housed within the BESS 4802 housing and a condenser 4836 housed outside the BESS 4802 housing. Air conditioning units and fans 4832 may be controlled (eg, by array controller 4808 ) to create an air flow system and regulate the temperature of battery packs housed within BESS 4802 .

示例BESS外壳Example BESS shell

图49A、图49B和图49C是展示示例BESS 4900的外壳(例如,定制货运集装箱)的图。在图49A至图49C中,标出了BESS 4900的外壳的背部和前部。如图所示,一个或多个PCS4910 可以安装于BESS 4900的背部上,其将BESS 4900联接到电网。BESS 4900的前部可以包括一个或多个门(未图示),门可以提供到外壳内侧的接近。操作者可以通过门进入BESS4900并且接近 BESS 4900的内部部件(例如,电池组、计算机等)。图49A描绘了BESS 4900,其中其外壳顶部就位。49A, 49B, and 49C are diagrams showing an example BESS 4900 enclosure (eg, a custom shipping container). In Figures 49A-49C, the back and front of the housing of the BESS 4900 are marked. As shown, one or more PCS4910 can be mounted on the back of the BESS 4900, which couples the BESS 4900 to the grid. The front of the BESS 4900 may include one or more doors (not shown) that may provide access to the inside of the enclosure. An operator can enter the BESS 4900 through the door and gain access to the internal components of the BESS 4900 (e.g., battery pack, computer, etc.). Figure 49A depicts the BESS 4900 with its housing top in place.

图49B描绘了BESS 4900,其中移除了其外壳顶部。可以看出,BESS 4900包括一个或多个天花板4920、一个或多个照明单元4930和一个或多个风扇4940。照明单元4930和风扇4940 可以以有规律的间隔安置于天花板4920中。照明单元4930能向BESS 4900的内部提供照明。风扇4940定向成使得它们从天花板4920向BESS 4900的地板吹风(即,它们吹入到BESS 4900的内部)。在容纳于BESS 4900中的电池组齿架上方的开口4950允许暖风向上吹到外壳顶部与天花板4920之间的空间,在天花板4920上方形成热空气区域。图49C描绘了移除了天花板4920的 BESS 4900。可以看出,在容纳于BESS 4900中的电池组齿架上方设有开口4950。Figure 49B depicts the BESS 4900 with its housing top removed. As can be seen, the BESS 4900 includes one or more ceilings 4920 , one or more lighting units 4930 and one or more fans 4940 . Lighting units 4930 and fans 4940 may be installed in the ceiling 4920 at regular intervals. The lighting unit 4930 can provide lighting to the interior of the BESS 4900 . The fans 4940 are oriented such that they blow air from the ceiling 4920 to the floor of the BESS 4900 (ie, they blow into the interior of the BESS 4900). Openings 4950 above the battery pack racks housed in the BESS 4900 allow warm air to blow upward into the space between the top of the enclosure and the ceiling 4920 , creating a hot air zone above the ceiling 4920 . Figure 49C depicts the BESS 4900 with the ceiling 4920 removed. It can be seen that an opening 4950 is provided above the battery pack rack received in the BESS 4900 .

图50A、图50B和图50C是展示没有外壳的示例BESS 5000的图(即,BESS 5000的内部结构)。图50A和图50B展示了从不同角度观察的容纳于BESS 5000内的电池组的齿架。图50C 展示了BESS 5000的正视图。这是可以由在BESS 5000前方开门并且进入BESS 5000以执行维护或测试的操作者可以看到的视图。图50C展示了在BESS 5000的背部的拆分式空调单元5010。空调单元5010受到控制(例如,受到阵列控制器控制)以调节BESS 5000的温度。空调单元5010 向BESS 5000的内部提供冷空气并且在BESS 5000的走道中形成冷空气区域。50A, 50B, and 50C are diagrams showing an example BESS 5000 without a housing (ie, the internal structure of the BESS 5000). Figures 50A and 50B illustrate the racks of the battery pack housed within the BESS 5000 viewed from different angles. Figure 50C shows a front view of the BESS 5000. This is the view that may be seen by an operator who opens the door in front of the BESS 5000 and enters the BESS 5000 to perform maintenance or testing. Figure 50C shows the split air conditioning unit 5010 on the back of the BESS 5000. The air conditioning unit 5010 is controlled (eg, by an array controller) to regulate the temperature of the BESS 5000 . The air conditioning unit 5010 supplies cool air to the inside of the BESS 5000 and forms a cool air area in the aisle of the BESS 5000 .

图51展示了示例BESS 5100的另一正视图并且描绘了在BESS 5100中的空气流动。如关于图49A至图49C和图50A至图50C所解释,在BESS 5100的天花板中的风扇将来自天花板上方的热空气区域5100的热空气吹向BESS 5100的地板。在BESS 5100的背部的A/C单元将热空气从BESS 5100抽出并且将冷空气提供到BESS 5100内部,形成冷空气区域5120。冷空气调节容纳于BESS 5100内的电池组的温度,并且随着其冷却电池组,上升到热空气区域5110。FIG. 51 shows another front view of an example BESS 5100 and depicts air flow within the BESS 5100. As explained with respect to FIGS. 49A-49C and 50A-50C , fans in the ceiling of the BESS 5100 blow hot air from the hot air area 5100 above the ceiling toward the floor of the BESS 5100 . The A/C unit at the back of the BESS 5100 draws hot air out of the BESS 5100 and provides cool air into the interior of the BESS 5100 , forming a cool air zone 5120 . The cold air regulates the temperature of the battery packs housed within the BESS 5100 and rises into the hot air region 5110 as it cools the battery packs.

图52A和52B是展示了示例BESS 5200连接到双向电源转换器5202的图。在一实施例中,BESS5200包括两个外部HVAC单元5204a和5204b。在一实施例中,双向电源转换器5202可通过在能源监控站的操作者经由计算机通过网络(例如因特网,以太网等)发送需求,为设置在 BESS5200内的多个电池组充电和放电。52A and 52B are diagrams illustrating an example BESS 5200 connected to a bidirectional power converter 5202. In one embodiment, BESS 5200 includes two external HVAC units 5204a and 5204b. In one embodiment, the bi-directional power converter 5202 can charge and discharge multiple battery packs installed in the BESS 5200 by an operator at the energy monitoring station sending a request via a computer via a network (such as the Internet, Ethernet, etc.).

图52B是BESS 5200更详细的视图,如在图52B中所示,在一实施例中,BESS 5200可以有多个门5206,其可以打开来获得对堆叠电池5208的接触,堆叠电池可通过升降车(未图示)在BESS 5200内安装和拆除。这使得每一个堆叠电池5208可作为一个独立单元装设在BESS 5200外部和用来运输和安装。FIG. 52B is a more detailed view of the BESS 5200. As shown in FIG. 52B, in one embodiment, the BESS 5200 can have multiple doors 5206 that can be opened to gain access to stacked cells 5208, which can be raised and lowered. Carts (not shown) are installed and removed within the BESS 5200. This allows each stacked battery 5208 to be housed outside the BESS 5200 as an independent unit for transport and installation.

图53A和53B是根据一实施例进一步展示了BESS 5200的图。图53A展示门5206闭合的BESS 5200的后视图,图53B展示)门5206打开的BESS 5200的后视图。53A and 53B are diagrams further illustrating the BESS 5200, according to one embodiment. Figure 53A shows a rear view of the BESS 5200 with the door 5206 closed, and Figure 53B shows a rear view of the BESS 5200 with the door 5206 open.

图54A,54B和54C是展示其门处于打开状态和顶部被移走的BESS 5200的图。装设有多个堆叠电池5208的BESS 5200被展示。在一实施例中,BESS 5200也包括开关设备5210,其被安置于BESS 5200的末端。Figures 54A, 54B and 54C are diagrams showing the BESS 5200 with its door open and the top removed. A BESS 5200 incorporating multiple stacked batteries 5208 is shown. In one embodiment, the BESS 5200 also includes a switchgear 5210 disposed at an end of the BESS 5200 .

图54B根据一实施例展示了更详细的开关设备5210。图54C展示一实施例包括开关设备5210安置于BESS 5200一末端的另一视图。Figure 54B shows a switchgear 5210 in more detail, according to one embodiment. FIG. 54C shows another view of an embodiment including a switchgear 5210 disposed at one end of the BESS 5200 .

图55A,55B,55C和55D是展示了根据一实施例不同示例的模块化,可堆叠BESS系统的图。图55A展示一具有十五个堆叠电池5208,一个空调开关设备单元5502,一个直流电开关设备单元5504的BESS 5500。在一实施例中,每一个堆叠电池5208可作为一个独立单元装设在BESS 5500的外部或内部。55A, 55B, 55C and 55D are diagrams illustrating different examples of modular, stackable BESS systems according to one embodiment. FIG. 55A shows a BESS 5500 with fifteen stacked batteries 5208 , one air conditioner switchgear unit 5502 , and one DC switchgear unit 5504 . In one embodiment, each stacked battery 5208 can be mounted on the outside or inside of the BESS 5500 as a separate unit.

图55B展示一具有九个堆叠电池5208,一个交流电开关设备单元5502和一个直流电开关设备单元5504的BESS 5510。图55C展示一具有五个堆叠电池5208,一个交流电开关单元 5502,一个直流电开关单元5504的BESS 5520。图55D展示一具有七个堆叠电池5208,一个交流电开关单元5502和一个直流电开关设备单元5504的BESS 5530。FIG. 55B shows a BESS 5510 with nine stacked batteries 5208 , one AC switchgear unit 5502 and one DC switchgear unit 5504 . Figure 55C shows a BESS 5520 with five stacked cells 5208, one AC switching unit 5502, one DC switching unit 5504. FIG. 55D shows a BESS 5530 with seven stacked batteries 5208 , one AC switchgear unit 5502 and one DC switchgear unit 5504 .

图56A,56B,56C,56D和56E是展示根据已实施例的一个模块化,可堆叠的堆叠电池5208。堆叠电池5208具有一个堆叠电池控制器5602(这里也可以称之为电池串控制器)和十七个堆叠电池5604.有机玻璃挡板5606保护堆叠电池控制器5602和堆叠电池5604的表面。堆叠电池5208具有一个基座5608,使得其可以通过升降车(未图示)或相似设备被提升或移动。图56B 展示根据一实施例移开有机玻璃挡板5606的堆叠电池5208的另一视图。Figures 56A, 56B, 56C, 56D and 56E illustrate a modular, stackable stacked battery 5208 according to embodiments. The stacked battery 5208 has one stacked battery controller 5602 (may also be referred to herein as a battery string controller) and seventeen stacked batteries 5604. The plexiglass baffle 5606 protects the surfaces of the stacked battery controller 5602 and the stacked batteries 5604. The stacked battery 5208 has a base 5608 so that it can be lifted or moved by a lift truck (not shown) or similar device. Figure 56B shows another view of stacked cells 5208 with plexiglass baffle 5606 removed, according to one embodiment.

图56C是根据一实施例堆叠电池5602的爆炸分解图。如图56C所示,堆叠电池5620可具有一个堆叠电池控制器5602,九个堆叠电池5604和一个堆叠电池基座5608.图56D是根据一实施例进一步展示堆叠电池基座5608的堆叠电池5608的另一个爆炸分解图。图56E是根据一实施例进一步展示堆叠电池基座5608的堆叠电池5208的一个视图。Figure 56C is an exploded exploded view of a stacked battery 5602 according to one embodiment. As shown in Figure 56C, a stacked battery 5620 may have a stacked battery controller 5602, nine stacked batteries 5604, and a stacked battery base 5608. Figure 56D is a further illustration of a stacked battery 5608 illustrating the stacked battery base 5608, according to an embodiment Another exploded view. Figure 56E is a view of the stacked battery 5208 further illustrating the stacked battery base 5608, according to one embodiment.

图57A,57B,57C,57D,57E和57F是根据一实施例展示的一模块化,堆叠式电池组5604 (这里也可以称之为电池单元)的图。电池组5604可与上文详述的图1B的电池组104和图26A 至26D的电池组2600具有相似功能和相似结构。57A, 57B, 57C, 57D, 57E, and 57F are diagrams of a modular, stacked battery pack 5604 (also referred to herein as battery cells) according to one embodiment. Battery pack 5604 may have similar functionality and similar structure to battery pack 104 of FIG. 1B and battery pack 2600 of FIGS. 26A-26D detailed above.

图57A展示安装了有机玻璃挡板5606的电池组5604.图57B展示移除了有机玻璃挡板 5606的电池组5604.如图57B可见,电池组5604具有一个电池组控制单元5702。电池组控制单元5702或电池组控制器的功能和结构已在上文描述。Figure 57A shows the battery pack 5604 with the plexiglass baffle 5606 installed. Figure 57B shows the battery pack 5604 with the plexiglass baffle 5606 removed. As seen in Figure 57B, the battery pack 5604 has a battery pack control unit 5702. The function and structure of the battery pack control unit 5702 or the battery pack controller have been described above.

图57C是展示移除了顶部的电池组5604的另一视图。图57D是展示为了能够更好地看到用在电池组5604内的电池单体5704而移除了其外壳的电池组5604的一个视图。图57E是展示移除了电池组控制单元5702的电池组5604的一个视图。如图57E所示,电池组5604包括两个电池装配件5710a和5710b。Figure 57C is another view showing the battery pack 5604 with the top removed. FIG. 57D is a view showing the battery pack 5604 with its housing removed to better see the battery cells 5704 used within the battery pack 5604 . FIG. 57E is a view showing the battery pack 5604 with the battery pack control unit 5702 removed. As shown in Figure 57E, battery pack 5604 includes two battery assemblies 5710a and 5710b.

图58A,58B和58C是根据实施例进一步展示模块化,堆叠式电池组5604的图。图58A展示安装了有机玻璃挡板5606的电池组5604。58A, 58B, and 58C are diagrams further illustrating a modular, stacked battery pack 5604, according to an embodiment. FIG. 58A shows a battery pack 5604 with a plexiglass baffle 5606 installed.

图58B是展示电池组5604的有机玻璃挡板5606,电池组控制单元5702,和电池装配件5710a和5710n的爆炸分解图。这些电池组5604的组成部件可封装在电池组外壳5802内。图 58C是展示电池组5604的有机玻璃挡板5606,电池组控制单元5702,和电池装配件5710a和5710b 的另一爆炸分解图。58B is an exploded exploded view showing the plexiglass shield 5606 of the battery pack 5604, the battery pack control unit 5702, and the battery assemblies 5710a and 5710n. The constituent components of these battery packs 5604 may be housed within a battery pack housing 5802 . Figure 58C is another exploded exploded view showing the plexiglass shield 5606 of the battery pack 5604, the battery pack control unit 5702, and the battery assemblies 5710a and 5710b.

图59A,59B和59C是根据实施例展示一模块化,堆叠式电池组5604的电池装配5710的图。如图59A所示,电池装配5710包括电池单体5704,电池模块控制单元5902和总线5904.每一个电池模块控制单元5902可监视和控制两组电池单体,其中每组电池单体与一个或多个电池单体5704并联。电池模块控制单元5902(称之为电池模块控制器)的功能和结构已在上文描述。59A, 59B and 59C are diagrams illustrating a battery assembly 5710 of a modular, stacked battery pack 5604, according to an embodiment. As shown in FIG. 59A, battery assembly 5710 includes battery cells 5704, battery module control unit 5902 and bus 5904. Each battery module control unit 5902 can monitor and control two sets of battery cells, where each set of battery cells is connected to one or Multiple battery cells 5704 are connected in parallel. Battery module control unit 5902 ( The function and structure of what is called a battery module controller) have been described above.

图59B是一电池装配5710的爆炸分解图。在一实施例中,每一个电池装配5710具有四个电池模块控制单元5902.图59C是一电池模块控制单元5902的更加详细的视图。电池模块控制单元5902可与上文根据图26C所述的电池模块控制器2638具有相似功能和相似结构,或可与上文根据图29所述的电池模块控制器2900具有相似功能和相似结构。FIG. 59B is an exploded exploded view of a battery assembly 5710 . In one embodiment, each battery assembly 5710 has four battery module control units 5902. FIG. 59C is a more detailed view of a battery module control unit 5902. The battery module control unit 5902 may have similar functions and similar structures to the battery module controller 2638 described above with reference to FIG. 26C , or may have similar functions and similar structures to the battery module controller 2900 described above with reference to FIG. 29 .

图60A和60B是根据实施例展示的一示例性电池组控制器5602的图。在图60A中,展示安装了有机玻璃挡板5606的电池组控制器5602。图60B是一电池组控制器5602的一个爆炸分解图。电池组控制器5602的功能和结构已在上文描述,例如关于图30的串控制器3000.60A and 60B are diagrams of an exemplary battery pack controller 5602, shown according to embodiments. In FIG. 60A, a battery pack controller 5602 is shown with a plexiglass bezel 5606 installed. FIG. 60B is an exploded exploded view of a battery pack controller 5602. The function and structure of the battery pack controller 5602 has been described above, for example, with respect to the string controller 3000 of FIG. 30.

图61A,61B,61C和61D是展示一示例性电池组控制器5702的图。图61A展示一电池组控制器5702的第一视角的图。图61B展示电池组控制器5702的第二视角的图。图61C展示与后背封盖分离的电池组控制器5702的第三视角的图。图61D展示与后背封盖分离的电池组控制器 5702的第四视角的图。电池组控制器5702的功能和结构已在上文描述,例如关于图4和图5的电池组控制器414或图27的电池控制器2710或图28的电池组控制器2800。61A, 61B, 61C and 61D are diagrams illustrating an exemplary battery pack controller 5702. FIG. 61A shows a diagram of a battery pack controller 5702 from a first perspective. FIG. 61B shows a diagram of a battery pack controller 5702 from a second perspective. Figure 61C shows a diagram from a third perspective of the battery pack controller 5702 detached from the back cover. Figure 61D shows a diagram from a fourth perspective of the battery pack controller 5702 detached from the back cover. The function and structure of battery controller 5702 has been described above, eg, with respect to battery controller 414 of FIGS. 4 and 5 or battery controller 2710 of FIG. 27 or battery controller 2800 of FIG. 28 .

通过本文给出的描述,如相关领域的技术人员应理解的,能使用处理硬件、固件、软件和/或其组合诸如专用集成电路(ASIC)来实施本发明的各种特点。使用硬件、固件和/或软件来实施这些特点将对于相关领域的技术人员是显而易见的。而且,虽然在上文中描述了各种实施例,应了解它们可以以举例说明的方式给出并且无限制意义。对于相关领域的技术人员显而易见的是,在不偏离本发明的范围的情况下能做出各种变化。From the description given herein, various features of the invention can be implemented using processing hardware, firmware, software, and/or combinations thereof, such as application specific integrated circuits (ASICs), as will be understood by those skilled in the relevant art(s). The use of hardware, firmware, and/or software to implement these features will be apparent to those skilled in the relevant arts. Also, while various embodiments have been described above, it should be understood that they have been presented by way of illustration, and not limitation. It will be apparent to those skilled in the relevant art that various changes can be made without departing from the scope of the invention.

应意识到详细描述部分而非发明内容和摘要部分预期用于解释权利要求。发明内容和摘要部分可以陈述了(多个)发明者设想到的本发明的一个或多个示例性实施例而不是所有示例性实施例,并且因此预期并不以任何方式限制本发明和权利要求。It should be appreciated that the Detailed Description, rather than the Summary and Abstract, are intended to be used for interpreting the claims. The Summary and Abstract sections may set forth one or more, but not all, exemplary embodiments of the invention as contemplated by the inventor(s), and thus are not intended to limit the invention and claims in any way .

在上文中借助于功能构建块描述了本发明的实施例,功能构建块展示了所规定的功能和其关系的实施。这些功能构建块的边界在本文中任意地限定以便于描述。也可以限定替代边界,只要适当地执行规定的功能和其关系。而且,标识符诸如“(a)”、“(b)”、“(i)”、“(ii)”等有时用于不同的元件或步骤。这些标识符出于清楚目的而使用并无需指定元件或步骤的次序。Embodiments of the invention have been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can also be defined so long as the specified functions and relationships thereof are appropriately performed. Also, identifiers such as "(a)", "(b)", "(i)", "(ii)", etc. are sometimes used for different elements or steps. These identifiers are used for clarity and do not necessarily specify the order of elements or steps.

具体实施例的前文的描述也将全面地披露本发明的一般性质,其它人通过采用本领域技术内的知识能够易于修改和/或调适以用于各种应用诸如具体实施例,无需过度实验,而不偏离本发明的一般构思。因此,基于本文中展示的教导内容和引导,这些调适和修改预期在所公开的实施例的意义和范围内。应了解本文中的短语或术语是出于描述目的并且并无限制意义,使得本说明书的术语或短语将由本领域技术人员根据教导内容和指导来解释。The foregoing descriptions of specific embodiments will also fully disclose the general nature of the invention, which others can readily modify and/or adapt for various applications such as specific embodiments without undue experimentation, by employing knowledge within the skill in the art. without departing from the general idea of the invention. Therefore, such adaptations and modifications are intended to be within the meaning and scope of the disclosed embodiments, based on the teaching and guidance presented herein. It should be understood that the phrases or terms herein are for the purpose of description and have no limiting meaning, so that the terms or phrases of this specification will be interpreted by those skilled in the art according to the teachings and guidance.

本发明的范畴和范围不应限于上文所描述的实施例,而是应仅根据以下权利要求和其等效物来限定。The scope and scope of the present invention should not be limited to the embodiments described above, but should be defined only in accordance with the following claims and their equivalents.

Claims (20)

1.一种电池系统,包括:1. A battery system comprising: 堆叠电池基座;stacked battery base; 多个堆叠式电池组置于电池组基座的顶部;以及a plurality of stacked battery packs placed on top of the battery pack base; and 一个堆叠式电池组控制器与所述多个堆叠式电池组中的一个通电连接并被配置成与多个堆叠式电池组通讯连接,其中每一个多个堆叠式电池组包括:A stacked battery pack controller galvanically connected to one of the plurality of stacked battery packs and configured to communicate with a plurality of stacked battery packs, wherein each of the plurality of stacked battery packs includes: 多个电池单体;以及a plurality of battery cells; and 被配置成根据从堆叠式电池组控制器接收的信息来控制多个电池单体用以调整电池单体的电能储存的电池组控制器。A battery pack controller configured to control the plurality of battery cells to adjust electrical energy storage of the battery cells based on information received from the stacked battery pack controller. 2.根据权利要求1所述的一种电池系统,其还包括:2. A battery system according to claim 1, further comprising: 多个电池组放电器,其与电池组控制器连接,被设置成对所述每一个电池单体单独放电;以及a plurality of battery dischargers connected to the battery controller and configured to discharge each of said battery cells individually; and 电池组充电器,其与电池组控制器连接,被配置成对多个堆叠式电池组内的每个电池单体进行充电。A battery pack charger, coupled to the battery pack controller, is configured to charge each battery cell within the plurality of stacked battery packs. 3.根据权利要求2所述的一种电池系统,所述每一个堆叠式电池组的电池组控制器被配置成通过多个电池组放电器和充电器来调控电池组。3. A battery system according to claim 2, the battery pack controller of each stacked battery pack configured to condition the battery pack through a plurality of battery pack dischargers and chargers. 4.根据权利要求3所述的一种电池系统,所述调控堆叠式电池组,电池组控制器进一步被配置成:4. A battery system according to claim 3, said regulating and controlling the stacked battery pack, the battery pack controller is further configured to: 指导电池组充电器为多个电池单体充电,直到其中一个电池单体的电压超过第一充电阈值为止;instructing the battery pack charger to charge the plurality of battery cells until the voltage of one of the battery cells exceeds a first charging threshold; 指导电池组充电器为多个电池单体在电压降低时充电,直至每一个电池单体的电压超过第二充电阈值为止。The battery pack charger is directed to charge the plurality of battery cells while the voltage is decreasing until the voltage of each battery cell exceeds a second charging threshold. 指导多个电池组放电器对多个电池单体进行放电,直至每个电池单体的电压降至第一充电阈值与第二充电阈值之间;以及directing the plurality of battery dischargers to discharge the plurality of battery cells until the voltage of each battery cell falls between a first charge threshold and a second charge threshold; and 确定一个安倍小时值和一个瓦特小时值,用于为多个电池单体充电。Determines an Ampere-hour value and a Watt-hour value for charging multiple battery cells. 5.根据权利要求3所述的一种电池系统,所述调控堆叠式电池组,电池控制器进一步被配置成:5. A battery system according to claim 3, said regulating and controlling the stacked battery pack, the battery controller is further configured to: 指导多个电池组放电器对多个堆叠电池单体进行放电,直至其中一个电池单体的电压降低于第一放电阈值为止;instructing a plurality of battery pack dischargers to discharge a plurality of stacked battery cells until the voltage of one of the battery cells drops below a first discharge threshold; 指导多个电池组放电器在电压降低时对多个电池单体进行放电,直至每个电池单体的电压低于第二放电阈值;以及directing the plurality of battery pack dischargers to discharge the plurality of battery cells as the voltage decreases until the voltage of each battery cell is below a second discharge threshold; and 确定一个安倍小时值和一个瓦特小时值为多个电池单体放电用。Determine an Ampere-hour value and a Watt-hour value for the discharge of multiple battery cells. 6.根据权利要求3所述的一种电池系统,所述电池组调控是基于一个电池调控标记实现的,所述电池调控标记为一个调控触发器所设定。6 . The battery system according to claim 3 , the regulation of the battery pack is realized based on a battery regulation flag, and the battery regulation flag is set by a regulation trigger. 7.根据权利要求6所述的一种电池系统,其中当至少两个电池单体的充电状态不同于至少两个预设阈值时,调控触发器触发调整电池单体的均衡。7 . The battery system according to claim 6 , wherein when the state of charge of at least two battery cells is different from at least two preset thresholds, the adjustment trigger triggers to adjust the balance of the battery cells. 8.根据权利要求2所述的一种电池系统,还包括电池系统控制器,所述电池系统控制器被设置成通过堆叠式电池组控制器传输充电放电信号指令到所有的堆叠式电池组的电池组控制器。8. A battery system according to claim 2, further comprising a battery system controller configured to transmit charge and discharge signal instructions to all stacked battery packs through the stacked battery pack controller Battery pack controller. 9.根据权利要求8所述的一种电池系统,所述充电放电信号指令包括初始充电电流,降低的充电电流,初始放电率和降低的充电率。9 . The battery system according to claim 8 , the charging and discharging signal instruction includes an initial charging current, a reduced charging current, an initial discharging rate and a reduced charging rate. 10.根据权利要求8所述的一种电池系统,所述充电放电信号指令包括至少一个充电起始时间,至少一个充电停止时间,一个充电持续时间,一个放电起始时间,一个放电停止时间和一个放电持续时间。10. A battery system according to claim 8, the charge and discharge signal instruction includes at least one charge start time, at least one charge stop time, one charge duration, one discharge start time, one discharge stop time and A discharge duration. 11.一种电能储存系统,包括:11. An electrical energy storage system comprising: 电池基座;battery base; 多个个电池组连接在一起置于电池组基座顶部;Multiple battery packs are connected together and placed on top of the battery pack base; 一个电池组控制器与所述多个电池组中的一个通电连接并被配置成与多个电池组通讯连接;以及a battery pack controller galvanically connected to one of the plurality of battery packs and configured to communicate with the plurality of battery packs; and 被设置成与电池组控制器通讯连接的电池系统控制器,其中每一个电池组包括:a battery system controller configured to communicate with the battery pack controller, wherein each battery pack includes: 多个电池单体:以及Multiple battery cells: and 电池组控制器,所述电池组控制器被设置成通过从堆叠式电池组控制器接收的信息来控制电池单体的电能储存。A battery pack controller configured to control electrical energy storage of the battery cells via information received from the stacked battery pack controller. 12.根据权利要求11所述的一种电能储存系统,其还包括:12. An electrical energy storage system according to claim 11, further comprising: 多个电池组放电器,所述电池组放电器被设置成对每一个电池单体进行单独放电;以及a plurality of battery dischargers configured to discharge each battery cell individually; and 电池组充电器,所述电池组充电器与电池组控制器连接,其被设置成对每一个堆叠式电池组的电池单体进行充电。A battery pack charger, the battery pack charger is connected to the battery pack controller, and is configured to charge the battery cells of each stacked battery pack. 13.根据权利要求12所述的一种电能储存系统,其中所述电池系统控制器进一步被设置成指导每一个堆叠式电池组的电池组控制器通过多个电池组放电器和电池组充电器来调控堆叠式电池组。13. An electrical energy storage system according to claim 12, wherein the battery system controller is further configured to direct the battery pack controller of each stacked battery pack through a plurality of battery pack dischargers and battery pack chargers To regulate the stacked battery pack. 14.根据权利要求13所述的一种电能储存系统,其中所述调控堆叠式电池组,电池组控制器进一步被设置成:14. An electric energy storage system according to claim 13, wherein said control stacked battery pack, the battery pack controller is further configured to: 指导电池组充电器对多个电池单体充电,直至其中一个电池单体的电压达到第一充电阈值为止;instructing the battery pack charger to charge a plurality of battery cells until the voltage of one of the battery cells reaches a first charging threshold; 指导电池组充电器为多个电池单体在电压降低时进行充电,直至每一个电池单体的电压超过第二充电阈值为止。Instructing the battery pack charger to charge the plurality of battery cells when the voltage drops until the voltage of each battery cell exceeds the second charging threshold. 指导多个电池放电器对多个电池单体进行放电,直至每一个电池单体的电压降至第一充电阈值和第二充电阈值之间;以及directing the plurality of battery dischargers to discharge the plurality of battery cells until the voltage of each battery cell falls between a first charge threshold and a second charge threshold; and 确定一个安倍小时值和一个瓦特小时值,用来为多个电池单体充电。Determine an Ampere-hour value and a Watt-hour value to charge multiple battery cells. 15.根据权利要求13中所述的一种电能储存系统,其中所述调控堆叠式电池组,电池组控制器进一步被设置成:15. An electric energy storage system according to claim 13, wherein said control stacked battery pack, the battery pack controller is further configured to: 指导电池组放电器对多个电池单体进行放电,直至其中一个电池单体的电压低于第一放电阈值;instructing the discharger of the battery pack to discharge a plurality of battery cells until the voltage of one of the battery cells is lower than the first discharge threshold; 指导电池组放电器对多个电池单体在电压降低时进行放电,直至其中一个电池单体的电压低于第二充电阈值;以及instructing the battery discharger to discharge the plurality of battery cells at reduced voltage until the voltage of one of the battery cells is below a second charge threshold; and 确定一个安倍小时值和一个瓦特小时值为多个电池单体放电。Determine an Ampere-hour value and a Watt-hour value to discharge multiple battery cells. 16.根据权利要求13所述的一种电能储存系统,其中所述堆叠式电池组的调控是基于一个电池调控标记实现的,所述电池调控标记为一个调控触发器所设定。16. An electric energy storage system according to claim 13, wherein the regulation of the stacked battery pack is realized based on a battery regulation flag, and the battery regulation flag is set by a regulation trigger. 17.根据权利要求16所述的一种电能储存系统,其中当至少两个电池单体的充电状态不同于至少两个预设阈值时,调控触发器触发调整电池单体的均衡。17. An electrical energy storage system according to claim 16, wherein when the state of charge of at least two battery cells is different from at least two preset thresholds, the regulation trigger triggers to adjust the balancing of the battery cells. 18.根据权利要求12所述的一种电能储存系统,其中电池系统控制器被设置成通过堆叠电池组控制器传输充电放电信号指令到所有的堆叠式电池组的电池组控制器。18. An electric energy storage system according to claim 12, wherein the battery system controller is configured to transmit charge and discharge signal instructions to the battery pack controllers of all the stacked battery packs through the stacked battery pack controller. 19.根据权利要求18所述的一种电能储存系统,所述充电放电信号指令包括初始充电电流,降低的充电电流,初始放电率和降低的充电率。19. An electric energy storage system according to claim 18, said charge and discharge signal instructions include an initial charge current, a reduced charge current, an initial discharge rate and a reduced charge rate. 20.根据权利要求18所述的一种电能储存系统,所述充电放电信号指令包括至少一个充电起始时间,至少一个充电停止时间,一个充电持续时间,一个放电起始时间,一个放电停止时间和一个放电持续时间。20. An electric energy storage system according to claim 18, said charge and discharge signal instruction includes at least one charge start time, at least one charge stop time, one charge duration, one discharge start time, one discharge stop time and a discharge duration.
CN201810422475.8A 2017-12-18 2018-05-05 Battery energy storage system and its control system and its application Expired - Fee Related CN108649595B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/845,598 US10536007B2 (en) 2011-03-05 2017-12-18 Battery energy storage system and control system and applications thereof
USUS15/845,598 2017-12-18

Publications (2)

Publication Number Publication Date
CN108649595A true CN108649595A (en) 2018-10-12
CN108649595B CN108649595B (en) 2021-10-22

Family

ID=63749537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810422475.8A Expired - Fee Related CN108649595B (en) 2017-12-18 2018-05-05 Battery energy storage system and its control system and its application

Country Status (1)

Country Link
CN (1) CN108649595B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200266648A1 (en) * 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Method for charging battery and electronic device applying the method
CN112711197A (en) * 2020-12-21 2021-04-27 东软睿驰汽车技术(沈阳)有限公司 Control parameter adjusting method and device and related product
CN113396506A (en) * 2019-02-04 2021-09-14 艾思玛太阳能技术股份公司 Container for energy supply system, energy supply system and providing method thereof
TWI744721B (en) * 2019-11-19 2021-11-01 廣達電腦股份有限公司 Battery device and control metheod thereof
CN114094677A (en) * 2022-01-18 2022-02-25 瑞诺技术(深圳)有限公司 Home energy storage system based on new energy electric energy conversion and management system thereof
TWI805310B (en) * 2022-04-07 2023-06-11 英屬開曼群島商桓鼎股份有限公司 Energy storage type stacked plate structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403679A (en) * 1992-06-15 1995-04-04 Gnb Industrial Battery Co. Modular battery cabinet assembly
US20100237829A1 (en) * 2009-03-19 2010-09-23 Yoshinao Tatebayashi Assembled battery system and assembled battery protection device
US20150044521A1 (en) * 2013-08-06 2015-02-12 Analog Devices, Inc. Battery cell with discretion to drive loads within battery stack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403679A (en) * 1992-06-15 1995-04-04 Gnb Industrial Battery Co. Modular battery cabinet assembly
US20100237829A1 (en) * 2009-03-19 2010-09-23 Yoshinao Tatebayashi Assembled battery system and assembled battery protection device
US20150044521A1 (en) * 2013-08-06 2015-02-12 Analog Devices, Inc. Battery cell with discretion to drive loads within battery stack

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396506A (en) * 2019-02-04 2021-09-14 艾思玛太阳能技术股份公司 Container for energy supply system, energy supply system and providing method thereof
CN113396506B (en) * 2019-02-04 2024-01-26 艾思玛太阳能技术股份公司 Container for energy supply system, energy supply system and method of providing the same
US12261311B2 (en) 2019-02-04 2025-03-25 Sma Solar Technology Ag Energy supply sub-system for an energy supply system, energy supply system, and method for providing same
US20200266648A1 (en) * 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Method for charging battery and electronic device applying the method
US11916425B2 (en) * 2019-02-14 2024-02-27 Samsung Electronics Co., Ltd. Method for charging battery and electronic device applying the method
TWI744721B (en) * 2019-11-19 2021-11-01 廣達電腦股份有限公司 Battery device and control metheod thereof
CN112711197A (en) * 2020-12-21 2021-04-27 东软睿驰汽车技术(沈阳)有限公司 Control parameter adjusting method and device and related product
CN114094677A (en) * 2022-01-18 2022-02-25 瑞诺技术(深圳)有限公司 Home energy storage system based on new energy electric energy conversion and management system thereof
TWI805310B (en) * 2022-04-07 2023-06-11 英屬開曼群島商桓鼎股份有限公司 Energy storage type stacked plate structure

Also Published As

Publication number Publication date
CN108649595B (en) 2021-10-22

Similar Documents

Publication Publication Date Title
US11843278B2 (en) Microgrid power system
US10536007B2 (en) Battery energy storage system and control system and applications thereof
US9847654B2 (en) Battery energy storage system and control system and applications thereof
US20170345101A1 (en) World-wide web of networked, smart, scalable, plug & play battery packs having a battery pack operating system, and applications thereof
CN108649595B (en) Battery energy storage system and its control system and its application
US9882401B2 (en) Battery energy storage system
US9331497B2 (en) Electrical energy storage unit and control system and applications thereof
CN105939035B (en) Electric energy storage unit and control system and use thereof
US10699278B2 (en) Battery pack monitoring and warranty tracking system
CN106199447B (en) Quality assurance tracker for battery pack
CN106154178B (en) System and method for detecting battery pack having operational problems or defects
US9923247B2 (en) Battery pack with integrated battery management system
US10122186B2 (en) Battery management systems (BMS) having isolated, distributed, daisy-chained battery module controllers
CN106849212A (en) Battery energy storage system, control system thereof and application thereof
US10788537B2 (en) Modular system for monitoring batteries
WO2012114479A1 (en) Power storage system provided with batteries
KR20140120161A (en) System for testing battery management system
WO2013136413A1 (en) Power storage system and method for controlling power storage module
Chitturi et al. Evaluation of UPS for Intersection Traffic Signals with LED: Findings for Alpha Novus 1000 UPS
CN119171599A (en) UPS configuration method, device and energy storage system
Chitturi et al. Evaluation of UPS for Intersection Traffic Signals with LED: Findings for Myers PB-1250PC UPS
JP2025508433A (en) Energy storage system and method using second-life electric vehicle batteries
Chitturi et al. Evaluation of Three Recent Models of UPS for Intersection Traffic Signals with LEDs
JP2025029902A (en) Energy storage system and method for controlling charging and discharging
KR20240010165A (en) Battery module test device and method using individual cell charging and discharging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211022

CF01 Termination of patent right due to non-payment of annual fee