CN108645905A - A method of hydrogen peroxide is detected based on solid nano hole - Google Patents
A method of hydrogen peroxide is detected based on solid nano hole Download PDFInfo
- Publication number
- CN108645905A CN108645905A CN201810506897.3A CN201810506897A CN108645905A CN 108645905 A CN108645905 A CN 108645905A CN 201810506897 A CN201810506897 A CN 201810506897A CN 108645905 A CN108645905 A CN 108645905A
- Authority
- CN
- China
- Prior art keywords
- hydrogen peroxide
- nano
- pore
- nanopore
- molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000007787 solid Substances 0.000 title claims abstract 10
- 108010001336 Horseradish Peroxidase Proteins 0.000 claims abstract description 41
- 238000001514 detection method Methods 0.000 claims abstract description 39
- 239000011148 porous material Substances 0.000 claims abstract description 27
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 26
- 102000004190 Enzymes Human genes 0.000 claims abstract description 16
- 108090000790 Enzymes Proteins 0.000 claims abstract description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 14
- 230000004048 modification Effects 0.000 claims abstract description 11
- 238000012986 modification Methods 0.000 claims abstract description 11
- 238000006911 enzymatic reaction Methods 0.000 claims abstract description 7
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910000077 silane Inorganic materials 0.000 claims abstract description 6
- 238000002444 silanisation Methods 0.000 claims abstract description 6
- 238000011282 treatment Methods 0.000 claims abstract description 6
- 102000003992 Peroxidases Human genes 0.000 claims abstract description 5
- 108040007629 peroxidase activity proteins Proteins 0.000 claims abstract description 5
- 230000004069 differentiation Effects 0.000 claims abstract 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 241000252506 Characiformes Species 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims description 6
- 238000007385 chemical modification Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 4
- 239000007853 buffer solution Substances 0.000 claims description 4
- WPPVEXTUHHUEIV-UHFFFAOYSA-N trifluorosilane Chemical group F[SiH](F)F WPPVEXTUHHUEIV-UHFFFAOYSA-N 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- YENOLDYITNSPMQ-UHFFFAOYSA-N carboxysilicon Chemical compound OC([Si])=O YENOLDYITNSPMQ-UHFFFAOYSA-N 0.000 claims description 3
- 229920000578 graft copolymer Polymers 0.000 claims description 3
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims 2
- 235000011330 Armoracia rusticana Nutrition 0.000 claims 1
- 240000003291 Armoracia rusticana Species 0.000 claims 1
- 125000003277 amino group Chemical group 0.000 claims 1
- 150000003384 small molecules Chemical class 0.000 abstract description 5
- 230000007246 mechanism Effects 0.000 abstract description 3
- 238000010009 beating Methods 0.000 abstract 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 43
- 235000011164 potassium chloride Nutrition 0.000 description 21
- 239000001103 potassium chloride Substances 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 12
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000007306 functionalization reaction Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 108091006146 Channels Proteins 0.000 description 5
- OMWQUXGVXQELIX-UHFFFAOYSA-N bitoscanate Chemical compound S=C=NC1=CC=C(N=C=S)C=C1 OMWQUXGVXQELIX-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000007672 fourth generation sequencing Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- -1 porphyrin cationic free radical compound Chemical class 0.000 description 4
- 150000003141 primary amines Chemical group 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000004971 Cross linker Substances 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000002090 nanochannel Substances 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000006479 redox reaction Methods 0.000 description 3
- 238000004557 single molecule detection Methods 0.000 description 3
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- 201000011001 Ebola Hemorrhagic Fever Diseases 0.000 description 2
- 108010093096 Immobilized Enzymes Proteins 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000000708 deep reactive-ion etching Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000012123 point-of-care testing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- ALHJDCWKGPTYCN-UHFFFAOYSA-N 1-isothiocyanato-4-(4-isothiocyanatophenyl)benzene Chemical compound C1=CC(N=C=S)=CC=C1C1=CC=C(N=C=S)C=C1 ALHJDCWKGPTYCN-UHFFFAOYSA-N 0.000 description 1
- HQFLTUZKIRYQSP-UHFFFAOYSA-N 3-ethyl-2h-1,3-benzothiazole-6-sulfonic acid Chemical compound OS(=O)(=O)C1=CC=C2N(CC)CSC2=C1 HQFLTUZKIRYQSP-UHFFFAOYSA-N 0.000 description 1
- 101710092462 Alpha-hemolysin Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 102000034573 Channels Human genes 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003928 amperometric titration Methods 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- ACECBHHKGNTVPB-UHFFFAOYSA-N silylformic acid Chemical compound OC([SiH3])=O ACECBHHKGNTVPB-UHFFFAOYSA-N 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
技术领域technical field
本发明涉及纳米孔传感检测,具体涉及一种基于固态纳米孔检测过氧化氢的方法。The invention relates to nanopore sensing and detection, in particular to a method for detecting hydrogen peroxide based on solid-state nanopores.
背景技术Background technique
纳米孔传感检测技术自1996年一经提出就被认为是一种快速非标记单分子检测的有力技术之一。纳米孔主要分为固态纳米孔与生物纳米孔。纳米孔传感技术已经成为化学和生物领域里一种新型的、重要的、极具潜力的分析检测手段。应用在DNA测序研究,单分子检测,单分子化学反应及蛋白质折叠等领域中,具有广阔的应用前景和巨大的潜在价值。纳米孔最早来源于细胞膜表面的跨膜离子通道运输现象,利用的是溶液中电阻效应的概念。类似的概念,微米孔传感器首先是由Coulter在20世纪50年代初提出来的,使得Coulter计数器得以产生和发展,并成为现在常用的血细胞计数的仪器。随着研究技术的发展,将这种小孔做到了纳米级,科学家开始尝试进行分子级的研究,而成为了一类新型的传感器。Nanopore sensing detection technology has been considered as one of the powerful technologies for rapid unlabeled single molecule detection since it was proposed in 1996. Nanopores are mainly divided into solid-state nanopores and biological nanopores. Nanopore sensing technology has become a new, important and potential analysis and detection method in the fields of chemistry and biology. It has broad application prospects and great potential value in the fields of DNA sequencing research, single-molecule detection, single-molecule chemical reaction and protein folding. Nanopores originated from the phenomenon of transmembrane ion channel transport on the surface of cell membranes, using the concept of resistance effect in solution. Similar to the concept, the micropore sensor was first proposed by Coulter in the early 1950s, which enabled the Coulter counter to be produced and developed, and has become a commonly used blood cell counting instrument. With the development of research technology, this kind of small hole has been made to the nanometer level, and scientists have begun to try to carry out research at the molecular level, which has become a new type of sensor.
由于基因测序的蓬勃发展,科学家开始研究纳米孔传感核酸分子及读取核酸分子内部信息的能力。上世纪90年代,Branton以及Kasianowicz等首次提出纳米孔传感检测技术可以用来测序,他们成功的驱动单链DNA电泳通过一个位于磷脂双分子层上的通道蛋白α-溶血素,并观察到电流阻塞现象,如果可以检测到这四种检测所产生的不同幅度的阻塞电流的话,就可以推测得出DNA的序列。因此,纳米孔被认为是最有望实现快速低成本DNA测序的第三代基因测序技术。2014年,英国Oxford Nanopore公司推出了第一款商业化的纳米孔测序仪—MinION。目前MinION的市场价是1000美元一个。英国Oxford Nanopore公司去年推出了MinION纳米孔测序仪早期试用计划,证明了MinION协助基因组装配,以及在标准实验室外快速测序微生物基因组和环境样本的潜力。美国NASA约翰逊太空中心的研究人员计划在2016年把MinION带到太空,测序国际空间站的样本。一些研究者认为,MinION可用于即时检测(POCT),例如,快速检测以诊断一个未知感染,对疾病暴发如西非埃博拉暴发的实时分析。罗氏公司也宣布,它已对纳米孔测序公司Stratos Genomics进行战略性投资,且两家公司达成合作协议,准备进一步开发单分子测序技术。在2012年7月,Stratos Genomics证实了36个碱基的DNA测序,而到2013年9月,已迅速改善到210个碱基。该公司表示,它将开发一款低成本的测序平台,融合纳米孔的速度和通量,并改善分辨率和信噪比,用于靶向和全基因组测序。2014今年6月,罗氏公司以3.5亿美金价格收购了美国纳米孔测序公司GeniaTechnologies;同在6月,罗氏公司联合风投共同投资美国纳米孔测序公司StratosGenomics 1500万美金。罗氏公司还与IBM公司共同研发固态纳米孔技术。而Illumina和Lifetech也在着力发展或投资纳米孔测序技术。布朗的公司研发出一款手掌大小的纳米孔基因测序仪,由一根USB数据线与电脑连接,可检测样本中的DNA。这种小型仪器已经在非洲用于检测埃博拉病毒。这种检测仪集成微小化,能嵌入日常生活用品,并与互联网无线连接,以持续监测健康状况。Due to the vigorous development of gene sequencing, scientists began to study the ability of nanopores to sense nucleic acid molecules and read the internal information of nucleic acid molecules. In the 1990s, Branton and Kasianowicz first proposed that nanopore sensing technology could be used for sequencing. They successfully drove single-stranded DNA electrophoresis through a channel protein α-hemolysin located on the phospholipid bilayer, and observed the current Blocking phenomenon, if the blocking currents of different magnitudes generated by these four kinds of detection can be detected, the sequence of DNA can be deduced. Therefore, nanopore is considered to be the most promising third-generation gene sequencing technology for rapid and low-cost DNA sequencing. In 2014, Oxford Nanopore, UK, launched the first commercial nanopore sequencer, MinION. The current market price of MinION is $1,000 each. Oxford Nanopore, UK, launched the MinION nanopore sequencer early trial program last year, demonstrating the potential of MinION to assist genome assembly and rapidly sequence microbial genomes and environmental samples outside of standard laboratories. Researchers at NASA's Johnson Space Center plan to take MinION to space in 2016 to sequence samples from the International Space Station. Some researchers believe that MinION can be used for point-of-care testing (POCT), for example, a rapid test to diagnose an unknown infection, real-time analysis of disease outbreaks such as the Ebola outbreak in West Africa. Roche also announced that it has made a strategic investment in nanopore sequencing company Stratos Genomics, and the two companies have reached a cooperation agreement to further develop single-molecule sequencing technology. In July 2012, Stratos Genomics demonstrated DNA sequencing of 36 bases, which has rapidly improved to 210 bases by September 2013. The company said it will develop a low-cost sequencing platform that combines the speed and throughput of nanopores with improved resolution and signal-to-noise ratio for targeted and whole-genome sequencing. In June 2014, Roche acquired Genia Technologies, an American nanopore sequencing company, for US$350 million; in June, Roche and venture capital jointly invested US$15 million in StratosGenomics, an American nanopore sequencing company. Roche is also co-developing solid-state nanopore technology with IBM. And Illumina and Lifetech are also focusing on developing or investing in nanopore sequencing technology. Brown's company has developed a palm-sized nanopore gene sequencer that connects to a computer with a USB cable and can detect DNA in samples. The small instrument is already being used in Africa to detect Ebola. This kind of detector is integrated and miniaturized, can be embedded in daily necessities, and wirelessly connected to the Internet to continuously monitor health status.
纳米孔技术除了在基因测序领域展示了巨大的吸引力和潜能之外,纳米孔作为一种快速、高通量、高灵敏的单分子传感器已经被广泛应用于单个分子检测领域发挥着其高精度,非标记的优势。如重金属离子的检测,小分子定量检测以及尿病的葡萄糖含量检测]。In addition to the great attractiveness and potential of nanopore technology in the field of gene sequencing, nanopores, as a fast, high-throughput, and highly sensitive single-molecule sensor, have been widely used in the field of single-molecule detection with high precision. , non-marked advantage. Such as the detection of heavy metal ions, the quantitative detection of small molecules and the detection of glucose content in diabetes].
近年来,越来越多的研究者开始注意到纳米孔是一种纳米级尺度限位空间,其信号易被检测,也可以作为一种高精度,非标记监测手段。而且,在纳米孔检测中,灵敏的放大特性加之小体积使样品只需要飞摩尔浓度就可以进行检测,可以用于分析经过滤后但未进一步处理的生理溶液中的生物分子样品,纳米孔单分子技术的微/纳量检测为构建快速小分子定量检测提供了极佳微型化平台。In recent years, more and more researchers have begun to notice that nanopore is a nanoscale confinement space, its signal is easy to be detected, and it can also be used as a high-precision, label-free monitoring method. Moreover, in nanopore detection, the sensitive amplification characteristics combined with the small volume allow the sample to be detected only at femtomolar concentrations, which can be used to analyze biomolecular samples in physiological solutions that have been filtered but not further processed. The micro/nano detection of molecular technology provides an excellent miniaturized platform for the construction of rapid small molecule quantitative detection.
过氧化氢(过氧化氢)是一种强氧化剂,在制药,临床,环境,采矿,纺织,食品制造业等方面广泛应用,此外,过氧化氢是生物体系内的一种重要的化学物质,具有强细胞毒性。更严重的是过氧化氢在线粒体内的积聚可能会导致癌症和神经退行性疾病,如阿尔茨海默氏症、帕金森病和亨廷顿氏舞蹈症疾病。Hydrogen peroxide (hydrogen peroxide) is a strong oxidizing agent, which is widely used in pharmaceutical, clinical, environmental, mining, textile, food manufacturing, etc. In addition, hydrogen peroxide is an important chemical substance in biological systems, Has strong cytotoxicity. What's more serious is that the accumulation of hydrogen peroxide in the mitochondria may lead to cancer and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases.
然而,传统的检测过氧化氢的方法通常使用光谱法,化学发光法,电流滴定法,电化学方法等。传统的光谱和化学发光方法通常是费时,他们需要昂贵的试剂(如:荧光标记)和设备。此外,许多电化学技术使用Pt电极来检测过氧化氢依赖的直接氧化分子。由于其选择性差,灵敏度低和电极污染。鉴于构建一种集成纳米孔单分子实时快速微/纳量过氧化氢监测手段是我国食品工业和食品安全亟待解决的问题。传统的过氧化氢传感器,多从较为宏观的水平进行研究,所得结果参数往往难以体现分子水平的酶与底物反应的动力学特征,因此,构建一种集成单分子辣根过氧化酶传感器用以实时定量检测过氧化氢的方法,显得尤为重要。However, traditional methods for detecting hydrogen peroxide usually use spectroscopic methods, chemiluminescent methods, amperometric titration methods, electrochemical methods, etc. Traditional spectroscopic and chemiluminescent methods are usually time-consuming, and they require expensive reagents (eg, fluorescent labels) and equipment. In addition, many electrochemical techniques use Pt electrodes to detect hydrogen peroxide-dependent direct oxidation of molecules. Due to its poor selectivity, low sensitivity and electrode contamination. In view of the fact that the construction of an integrated nanopore single molecule real-time rapid micro/nano hydrogen peroxide monitoring method is an urgent problem to be solved in my country's food industry and food safety. Traditional hydrogen peroxide sensors are mostly studied from a relatively macroscopic level, and the resulting parameters are often difficult to reflect the kinetic characteristics of the reaction between the enzyme and the substrate at the molecular level. Therefore, to construct an integrated single-molecule horseradish peroxidase sensor for A method for real-time quantitative detection of hydrogen peroxide is particularly important.
发明内容Contents of the invention
为了解决现有技术中存在的上述问题,本发明的目的在于构建一种集成单分子辣根过氧化酶传感器用以实时定量检测过氧化氢的方法。In order to solve the above-mentioned problems in the prior art, the object of the present invention is to construct a method for the real-time quantitative detection of hydrogen peroxide by integrating a single-molecule horseradish peroxidase sensor.
为了实现上述目的,本发明所采用的技术方案如下:一种基于固态纳米孔检测过氧化氢的方法,具体包括以下步骤:一种基于固态纳米孔检测过氧化氢的方法,具体包括以下步骤:In order to achieve the above object, the technical scheme adopted in the present invention is as follows: a method for detecting hydrogen peroxide based on solid-state nanopores, specifically comprising the following steps: a method for detecting hydrogen peroxide based on solid-state nanopores, specifically comprising the following steps:
步骤A.纳米孔的制备:在10-100nm的超薄氮化硅膜上打纳米孔;Step A. Preparation of nanopores: drilling nanopores on an ultra-thin silicon nitride film of 10-100nm;
步骤B.纳米孔的修饰及单分子酶传感器构建:用多种硅烷化处理,实现纳米孔表面和内壁差异化修饰改性,通过硅烷偶联分子将将单个辣根过氧化物酶稳定的组装固定在纳米孔孔内壁得到纳米孔传感器;Step B. Modification of nanopores and construction of single-molecule enzyme sensors: Various silanization treatments are used to achieve differential modification of the surface and inner wall of nanopores, and a single horseradish peroxidase is stably assembled by silane coupling molecules fixed on the inner wall of the nanopore to obtain a nanopore sensor;
步骤C.底物特异性传感检测:将不同浓度过氧化氢加入反应体系,分析电流特征信号,画出过氧化氢浓度标准曲线,利用该标准曲线实时定量检测过氧化氢。Step C. Substrate-specific sensing detection: Add different concentrations of hydrogen peroxide into the reaction system, analyze the current characteristic signal, draw a standard curve of hydrogen peroxide concentration, and use the standard curve to quantitatively detect hydrogen peroxide in real time.
所述步骤A中,采用FEI Strata 201FIB系统,以30kV的加速电势轰击10-100nm的超薄氮化硅膜表面打纳米孔。In the step A, the FEI Strata 201FIB system is used to bombard the surface of the 10-100nm ultra-thin silicon nitride film with an accelerating potential of 30kV to drill nanopores.
所述步骤B中,多种硅烷化处理为甲基硅烷、三氟或氨基硅烷、羧基硅烷中的一种或多种。In the step B, various silanization treatments are one or more of methylsilane, trifluoro or aminosilane, carboxylsilane.
所述步骤B中,采用梳状接枝共聚物通过共价或非共价的方式修饰在纳米孔表面,以屏蔽纳米孔内表面所带电荷。In the step B, the surface of the nanopore is modified in a covalent or non-covalent manner by using a comb-like graft copolymer to shield the charge on the inner surface of the nanopore.
所述步骤B中,采用硅烷偶联分子氨基硅烷,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,N-羟基琥珀酰亚胺实现纳米孔内壁过氧化物酶分子的固定与定点组装。In the step B, the silane coupling molecule aminosilane, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, and N-hydroxysuccinimide are used to realize the inner wall of the nanopore. Immobilization and site-directed assembly of oxidase molecules.
所述步骤B中,在化学修饰之前,将Si3N4芯片在90℃的食人鱼溶液中清洗30min,以在Si3N4表面上生成羟基,用3-APTES在甲醇中活化3h,用1,4-亚苯基二异硫氰酸酯在二甲基亚砜中处理5h,洗涤,洗涤后1,4-亚苯基二异硫氰酸酯与1mg/ml的辣根过氧化物酶分子HRP中存在的伯胺基团进行共价偶联反应将辣根过氧化物酶稳定的组装固定在纳米孔孔壁内,12-24h后用缓冲溶液彻底洗涤改性后的通道,既得纳米孔传感器。In the step B, before chemical modification, the Si3N4 chip was washed in piranha solution at 90°C for 30 min to generate hydroxyl groups on the Si3N4 surface, activated in methanol with 3-APTES for 3 h, and 1,4-phenylene 1,4-phenylene diisothiocyanate was treated with dimethyl sulfoxide for 5h, washed, and 1,4-phenylene diisothiocyanate was mixed with 1 mg/ml of horseradish peroxidase molecule HRP The horseradish peroxidase is stably assembled and fixed in the wall of the nanopore by performing a covalent coupling reaction with the primary amine group, and after 12-24 hours, the modified channel is thoroughly washed with a buffer solution to obtain a nanopore sensor.
所述步骤C中,通过对特征电流信号的分析,确定因酶促反应而产生的特征信号,测量底物的检测极限。In the step C, by analyzing the characteristic current signal, the characteristic signal generated by the enzymatic reaction is determined, and the detection limit of the substrate is measured.
本发明纳米孔检测过氧化氢检测限以及标准曲线,线性范围在5-15nmol/L,工作曲线:Y=-183.431X+3580.726,相关系数R^2=0.986,检测限达到10pmol/L。The detection limit and standard curve of the nanopore detection hydrogen peroxide of the present invention have a linear range of 5-15nmol/L, a working curve: Y=-183.431X+3580.726, a correlation coefficient R^2=0.986, and a detection limit of 10pmol/L.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
1.本发明通过纳米孔内外差异化修饰,及辣根过氧化物酶单分子在纳米孔内的可控修饰,建立了一种全新的特异性的小分子实时传感检测方法,其精度达到纳摩尔以下。利用纳米孔传感检测的快速、非标记、高灵敏的特点,研究了单个酶分子酶促动力学及其影响因素,结合固态纳米孔稳定、易于设计加工与物化改性的优点,构建出可控制的,稳定的,高灵敏度的纳米孔内单分子辣根过氧化物酶传感器件。1. Through the differential modification inside and outside the nanopore, and the controllable modification of the single molecule of horseradish peroxidase in the nanopore, the present invention establishes a new specific small molecule real-time sensing and detection method, and its precision reaches Below nanomolar. Taking advantage of the fast, non-labeling and high-sensitivity characteristics of nanopore sensing and detection, the enzymatic kinetics of a single enzyme molecule and its influencing factors were studied. Combining the advantages of solid-state nanopore stability, easy design and processing, and physical and chemical modification, a biochemical sensor was constructed. Controlled, stable, and highly sensitive in-nanopore single-molecule horseradish peroxidase sensing device.
2.纳米孔检测过氧化氢检测限以及标准曲线,线性范围在5-15nmol/L,工作曲线:Y=-183.431X+3580.726,相关系数R^2=0.986,检测限可达到10pmol/L。2. Nanopore detection hydrogen peroxide detection limit and standard curve, the linear range is 5-15nmol/L, the working curve: Y=-183.431X+3580.726, the correlation coefficient R^2=0.986, the detection limit can reach 10pmol/L.
3.通过本发明构建的纳米孔传感器检测过氧化氢时,存在过氧化氢时,会引起一定程度上的电流降低,且当过氧化氢的浓度逐步增加时,离子电流逐步发生降低,降低的离子电幅度与过氧化氢的浓度增长呈线性关系,表明所构建的纳米孔传感器对过氧化氢催化的反应具有正向的作用。3. When the nanopore sensor constructed by the present invention detects hydrogen peroxide, when there is hydrogen peroxide, it will cause a certain degree of current reduction, and when the concentration of hydrogen peroxide gradually increases, the ion current gradually decreases, and the reduced The ion electric amplitude has a linear relationship with the increase of the concentration of hydrogen peroxide, indicating that the constructed nanopore sensor has a positive effect on the reaction catalyzed by hydrogen peroxide.
4.本发明的氮化硅纳米孔内也能够通过不同手段对蛋白质、适配体、生物亲和素等实现共价固定,以求在更精细的程度上研究分子间的相互作用,诸如蛋白质之间、蛋白质和核酸之间以及配体受体间的相互作用。实现单分子水平上实时监测,可以借此用新的手段对生物分子间作用机理和生物大分子构象的微观涨落现象进行深度研究,以及提供了对某些小分子定量检测一种新途径,检测限是纳/飞摩尔级的。4. The silicon nitride nanopore of the present invention can also achieve covalent immobilization of proteins, aptamers, biophilins, etc. by different means, in order to study the interaction between molecules at a finer level, such as protein between proteins and nucleic acids, and between ligand-receptor interactions. Achieving real-time monitoring at the single-molecule level can use new means to conduct in-depth research on the mechanism of interactions between biomolecules and microscopic fluctuations in the conformation of biomacromolecules, and provides a new way to quantitatively detect some small molecules. The limit is nano/femtomolar.
附图说明Description of drawings
图1.纳米孔成像图及I-V曲线;Figure 1. Nanopore imaging diagram and I-V curve;
图2.(A)酶固定化步骤示意图;(B)酶氧化还原产生ABTS·+示意图;Figure 2. (A) Schematic diagram of enzyme immobilization steps; (B) Schematic diagram of enzyme redox to produce ABTS+;
图3.纳米孔表征图;Figure 3. Nanopore characterization diagram;
(A)HRP功能化之前和之后在0.1mol/L KCl I–V曲线以及0.1mol/L KCl包含1.5mMABT和过氧化氢;(A) I–V curves of 0.1 mol/L KCl and 0.1 mol/L KCl containing 1.5 mMABT and hydrogen peroxide before and after HRP functionalization;
(B)HRP功能化之后0.1mol/L KCl包含1.5mM ABTS的I-V曲线;(B) I-V curve of 0.1mol/L KCl containing 1.5mM ABTS after HRP functionalization;
(C)HRP功能化之后0.1mol/L KCl包含1.5mM ABTS和过氧化氢的I-V曲线;(C) I-V curve of 0.1mol/L KCl containing 1.5mM ABTS and hydrogen peroxide after HRP functionalization;
(D)未修饰的纳米孔在0.1mol/L KCl以及0.1mol/L KCl包含1.5mM ABTS和过氧化氢的I-V曲线;(D) I-V curves of unmodified nanopores containing 1.5mM ABTS and hydrogen peroxide at 0.1mol/L KCl and 0.1mol/L KCl;
图4.酶功能化纳米孔传感器重现性以及工作曲线图;Figure 4. The reproducibility and working curve of the enzyme-functionalized nanopore sensor;
(A)不同pH对HRP功能化的纳米孔的影响;(A) Effect of different pH on HRP-functionalized nanopores;
(B)HPR功能化的纳米孔检测系统的重现性;(B) Reproducibility of HPR-functionalized nanopore detection system;
(C)HPR功能化的纳米孔检测系统在0.1mol/L KCl包含1.5mM ABTS和不同浓度过氧化氢的I-V曲线;(C) I-V curves of HPR-functionalized nanopore detection system containing 1.5mM ABTS and different concentrations of hydrogen peroxide in 0.1mol/L KCl;
(D)不同浓度过氧化氢与离子电流的线性拟合。(D) Linear fit of different concentrations of hydrogen peroxide and ion current.
具体实施方式Detailed ways
本发明通过解析酶促反应的纳米孔离子电流信号,纳米孔内单个酶分子酶促反应Km与Kcat的模型机制及规律,构建了一种集成单分子酶纳米孔传感器用以实时定量检测过氧化氢,具体包括以下步骤:The present invention constructs an integrated single-molecule enzyme nanopore sensor for real-time quantitative detection of peroxidation by analyzing the nanopore ion current signal of the enzymatic reaction, and the model mechanism and law of the enzymatic reaction Km and Kcat of a single enzyme molecule in the nanopore. Hydrogen specifically comprises the following steps:
1.纳米孔的制备1. Preparation of Nanopores
制备高绝缘性的全固态氮化硅膜工艺研究,已经成功取得了30~100nm的多种膜厚的超薄氮化硅膜。将通过工艺的优化,得到符合打孔要求的10-100nm超薄氮化硅膜;通过对TEM、FIB、HIM加工系统平台中的聚焦电子束或离子束加工条件的优化,制备多种厚度、孔径以长径比,形状的纳米孔。The research on the process of preparing high-insulation all-solid-state silicon nitride film has successfully obtained ultra-thin silicon nitride films with various film thicknesses of 30-100nm. Through the optimization of the process, 10-100nm ultra-thin silicon nitride film that meets the drilling requirements will be obtained; through the optimization of the focused electron beam or ion beam processing conditions in the TEM, FIB, and HIM processing system platforms, various thicknesses, The pore size is the aspect ratio, the shape of the nanopore.
2.纳米孔的修饰及单分子酶传感器构建2. Modification of nanopores and construction of unimolecular enzyme sensors
用多种硅烷化处理(甲基硅烷、三氟硅烷、羧基硅烷等)实现纳米孔表面和内壁的差异化修饰改性。通过硅烷偶联分子将过氧化物酶偶联在纳米孔内壁。例如梳状接枝共聚物,如poly-L-lysine-graft-poly(ethylene glycol),可以通过共价或非共价的方式修饰在纳米孔表面,以屏蔽纳米孔内表面所带电荷。采用硅烷偶联分子如氨基硅烷,EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐),NHS(N-羟基琥珀酰亚胺)实现纳米孔内壁过氧化物酶分子的固定与定点组装。Various silanization treatments (methylsilane, trifluorosilane, carboxysilane, etc.) are used to achieve differential modification of the nanopore surface and inner wall. The peroxidase is coupled to the inner wall of the nanopore through a silane coupling molecule. For example, comb-like graft copolymers, such as poly-L-lysine-graft-poly (ethylene glycol), can be covalently or non-covalently modified on the surface of nanopores to shield the charges on the inner surface of nanopores. Use silane coupling molecules such as aminosilane, EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride), NHS (N-hydroxysuccinimide) to achieve nanopore inner wall Immobilization and site-directed assembly of peroxidase molecules.
关键步骤的表征:通过SEM,TEM,AFM等对纳米孔形态结构进行表征,接触角测量仪、伏安电流曲线、SEM、TEM等对纳米孔化学改性进行表征(如羧基硅烷亲水修饰,三氟硅烷疏水修饰等)。使用纳米孔内电流信号变化判断孔内过氧化物酶分子结合的速度,数量。Characterization of key steps: characterize nanopore morphology and structure by SEM, TEM, AFM, etc., and characterize nanopore chemical modification (such as carboxysilane hydrophilic modification, Trifluorosilane hydrophobic modification, etc.). The change of the current signal in the nanopore is used to determine the binding speed and quantity of peroxidase molecules in the hole.
3.底物特异性传感检测3. Substrate-specific sensing assays
将不同浓度过氧化氢加入反应体系,分析电流特征信号,画出过氧化氢浓度标准曲线,测量传感器对过氧化氢的检测极限。Add different concentrations of hydrogen peroxide into the reaction system, analyze the current characteristic signal, draw the standard curve of hydrogen peroxide concentration, and measure the detection limit of the sensor for hydrogen peroxide.
过氧化氢催化反应方程式,如下:The hydrogen peroxide catalytic reaction equation is as follows:
HRP(Fe4+=O)Porp+HA→HRP(Fe3+)Porp+A·+H2O (3)HRP(Fe 4+ =O)Porp+HA→HRP(Fe 3+ )Porp+A · +H 2 O (3)
利用2,2'-氨基-二(3-乙基-苯并噻唑啉磺酸-6)铵盐(ABTS),在过氧化氢的存在下,辣根过氧化酶HRP被氧化的产物Compound I.卟啉阳离子自由基化合物从还原态的底物分子接受一个电子生成的化合物Compound II。接着,compound II经过一个电子的传递被还原成resting enzyme,作为底物,使用ABTS,生成ABTS·+产物,利用反应过程中的电信号变化,检测酶的反应速率。Using 2,2'-amino-bis(3-ethyl-benzothiazolinesulfonic acid-6)ammonium salt (ABTS), in the presence of hydrogen peroxide, the product Compound I of horseradish peroxidase HRP is oxidized . The porphyrin cationic free radical compound accepts an electron from the reduced substrate molecule to generate Compound II. Then, compound II is reduced to resting enzyme through the transfer of an electron, and ABTS is used as a substrate to generate ABTS·+ product, and the reaction rate of the enzyme is detected by using the change of electrical signal during the reaction.
将单个辣根过氧化物酶稳定的组装固定在纳米孔孔壁内,通过对特征电流信号的分析,结合相关数学物理模型,确定因酶促反应而产生的特征信号,测量底物的检测极限;区分底物,底物类似物,竞争底物等电流特征信号的不同,并用特征信号进行酶促动力学参数的测量。A stable assembly of a single horseradish peroxidase is fixed in the nanopore wall, and through the analysis of the characteristic current signal, combined with the relevant mathematical and physical models, the characteristic signal generated by the enzymatic reaction is determined, and the detection limit of the substrate is measured ; Distinguish the difference of current characteristic signals such as substrates, substrate analogs, competing substrates, etc., and use the characteristic signals to measure the enzymatic kinetic parameters.
实施例Example
试剂和材料:APTES,Sigma;氯化钾(KCl),Sigma;甲醇,Sigma;二甲亚砜,合肥新源生物科技有限公司;辣根过氧化物酶(HRP),Sigma;ABTS,98%Sigma;过氧化氢(过氧化氢),30%SL Labor-Service;甲醇,98%Sigma;氨基硅烷,98%Sigma;Reagents and materials: APTES, Sigma; potassium chloride (KCl), Sigma; methanol, Sigma; dimethyl sulfoxide, Hefei Xinyuan Biotechnology Co., Ltd.; horseradish peroxidase (HRP), Sigma; ABTS, 98% Sigma; Hydrogen Peroxide (H2O2), 30% SL Labor-Service; Methanol, 98% Sigma; Aminosilane, 98% Sigma;
试验设备:场发射扫描电镜、马尔文粒径分析仪、分析天平、振动隔离台、屏蔽箱、银丝、移液枪、超纯水、膜片钳、Test equipment: field emission scanning electron microscope, Malvern particle size analyzer, analytical balance, vibration isolation table, shielding box, silver wire, pipette gun, ultrapure water, patch clamp,
实验溶液配制Experimental solution preparation
A.1mol/L KCl溶液的配制:用分析天平称取0.7458g的KCl,溶解,定容置10mL的容量瓶中,摇匀,并用Anotop 0.02μm的滤膜过滤,再稀释到0.1mol/L KCl。A. Preparation of 1mol/L KCl solution: Weigh 0.7458g of KCl with an analytical balance, dissolve it, put it in a 10mL volumetric flask, shake well, filter it with an Anotop 0.02μm filter membrane, and then dilute to 0.1mol/L KCl.
B.piranha溶液的配制:即食人鱼溶液,将比例是3:1(体积比)的浓硫酸(98%)和双氧水溶液(30%),在通风橱里进行配制,配制时注意防护。将双氧水溶液非常缓慢的加入到浓硫酸中,同时快速搅拌,加入顺序绝对不能颠倒。B. Preparation of piranha solution: piranha solution, the ratio is 3:1 (volume ratio) of concentrated sulfuric acid (98%) and hydrogen peroxide solution (30%), prepared in a fume hood, pay attention to protection when preparing. Add the hydrogen peroxide solution to the concentrated sulfuric acid very slowly while stirring rapidly, and the order of adding must not be reversed.
C.0.5%对苯二异硫氰酸酯配制:称取0.005g对APTES溶解于8mL的二甲亚砜中并置10mL容量瓶中定容,保存于-20℃环境,待用。C. Preparation of 0.5% p-phenylene diisothiocyanate: Weigh 0.005g of p-APTES and dissolve it in 8mL of dimethyl sulfoxide and put it in a 10mL volumetric flask to constant volume, store at -20°C until use.
样品溶液制备:用分析天平称取0.001g HRP稀释到10mmol/L PBS最终浓度(1mg/mL),保存于4℃冰箱中备用。Sample solution preparation: Weigh 0.001g of HRP with an analytical balance and dilute to a final concentration of 10mmol/L PBS (1mg/mL), and store in a 4°C refrigerator for later use.
上述制备所有溶液均由经Milli-Q水净化系统(18.2MΩ,25℃)和通过0.02μm过滤器过滤(滤纸)所得的超纯水制备。All solutions prepared above were prepared from ultrapure water obtained by passing through a Milli-Q water purification system (18.2 MΩ, 25° C.) and filtering through a 0.02 μm filter (filter paper).
一种基于固态纳米孔检测过氧化氢的方法,具体包括以下步骤:A method for detecting hydrogen peroxide based on solid-state nanopores, specifically comprising the following steps:
(1)纳米孔的制备:氮化硅膜的纳米孔,在300um厚的硅衬底淀积薄膜获得了一个独立的的氮化硅薄膜(100nm的标称厚度)。这种膜的制备是先沉积一层低应力氮化硅,再使用低压化学气相沉积(硅晶片的沉积速率为5nm/min,燃烧室压力为4mbar,衬底温度为810℃)然后是光刻(光刻的开放窗口的大小是500um×500um),深反应离子刻蚀,和四甲基氢氧化铵(TMAH)刻蚀形成50μm×50μm膜。(TMAH用于硅刻蚀,Si3N4用作蚀刻掩模,用于TMAH刻蚀。刻蚀速率约为40μm/h,Si/Si3N4刻蚀选择性大于1000。用DRIE刻蚀Si3N4(500μm×500μm),然后在80℃下进行5%TMAH刻蚀,硅片为<100>)。在FEI Strata 201FIB系统(FEI公司,Hillsboro,或美国),以30kV的加速电势轰击表面,电流值为1pA时,在Ga+离子的表面上钻孔。在SPOT模式下,铣削时间为1.5S。Si3N4薄膜芯片所得到的纳米孔由FESEM成像(图1)。小开口(AS)的半径低于FESEM分辨率,并根据电流-电压(I-V)曲线(图1)确定。(1) Preparation of nanopores: nanopores of silicon nitride membranes were deposited on a silicon substrate with a thickness of 300 um to obtain an independent silicon nitride film (nominal thickness of 100 nm). This film is prepared by first depositing a layer of low-stress silicon nitride, then using low-pressure chemical vapor deposition (the deposition rate of the silicon wafer is 5nm/min, the combustion chamber pressure is 4mbar, and the substrate temperature is 810°C) followed by photolithography (The size of the open window of photolithography is 500um×500um), deep reactive ion etching, and tetramethylammonium hydroxide (TMAH) etching to form a 50μm×50μm film. (TMAH is used for silicon etching, and Si3N4 is used as an etching mask for TMAH etching. The etching rate is about 40 μm/h, and the Si/Si3N4 etching selectivity is greater than 1000. Etching Si3N4 (500 μm×500 μm) with DRIE , and then etched with 5% TMAH at 80°C, the silicon wafer is <100>). In the FEI Strata 201 FIB system (FEI Corporation, Hillsboro, or the United States), the surface is bombarded with an accelerating potential of 30 kV and a current value of 1 pA to drill holes on the surface of Ga+ ions. In SPOT mode, the milling time is 1.5S. The resulting nanopores of the Si3N4 thin film chip were imaged by FESEM (Fig. 1). The radius of the small opening (AS) is below FESEM resolution and determined from the current-voltage (I-V) curve (Fig. 1).
(2)纳米孔HRP酶功能化:如图2所示,在图2a中给出了实验步骤的示意图。在化学修饰之前,将Si3N4芯片在90℃的食人鱼溶液中清洗30min,以在Si3N4表面上生成羟基。在化学反应过程中在通道表面生成的羟基(-OH)通过以下步骤在酶分子的表面上与伯胺修饰:首先,在Si3N4表面覆盖整个氮化硅表面,在室温下用3-APTES(1%V/V在甲醇中)活化3h(图2b)。随后,用1,4-亚苯基二异硫氰酸酯(0.5%W/V在二甲基亚砜)交联剂处理5h,然后在二甲基亚砜中进行两次洗涤,并在双蒸馏水中进行两次洗涤。下一步骤为,1,4-亚苯基二异硫氰酸酯与辣根过氧化物酶分子(HRP,1mg/ml)中存在的伯胺基团共价偶联,反应过夜。最后,用缓冲溶液彻底洗涤改性的通道。(2) Nanopore HRP enzyme functionalization: as shown in Figure 2, a schematic diagram of the experimental steps is given in Figure 2a. Before chemical modification, the Si3N4 chip was washed in piranha solution at 90 °C for 30 min to generate hydroxyl groups on the Si3N4 surface. The hydroxyl group (-OH) generated on the surface of the channel during the chemical reaction is modified on the surface of the enzyme molecule with primary amines by the following steps: First, the entire silicon nitride surface is covered on the Si3N4 surface with 3-APTES (1 %V/V in methanol) for 3h activation (Figure 2b). Subsequently, it was treated with 1,4-phenylene diisothiocyanate (0.5% W/V in DMSO) cross-linker for 5 h, followed by two washes in DMSO, and Two washes were performed in double distilled water. In the next step, 1,4-phenylene diisothiocyanate was covalently coupled to the primary amine groups present in the horseradish peroxidase molecule (HRP, 1 mg/ml) and reacted overnight. Finally, the modified channels are thoroughly washed with buffer solution.
通过控制实验,证明电流的减少实际上是源于化学表面系数改变。首先,在Si3N4表面上覆盖整个氮化硅表面,在室温下放置在甲醇(1ml)中3h。随后,芯片用二甲基亚砜(1ml)处理5h,然后在二甲基亚砜中进行两次洗涤,接着在ddH2O中进行两次洗涤。最后,用缓冲溶液进行过夜处理(1ml)。Through controlled experiments, it is proved that the reduction of current is actually due to the change of chemical surface coefficient. First, cover the entire silicon nitride surface on a Si3N4 surface in methanol (1 ml) for 3 h at room temperature. Subsequently, the chips were treated with DMSO (1 ml) for 5 h, followed by two washes in DMSO followed by two washes in ddH2O. Finally, an overnight treatment with buffer solution (1 ml) was performed.
(3)将小分子过氧化氢(过氧化氢)利用固定HRP之后的纳米孔作为传感器进行检测。(3) The small molecule hydrogen peroxide (hydrogen peroxide) is detected by using the nanopore after immobilizing HRP as a sensor.
1.纳米孔表征:1. Nanopore Characterization:
通过对称的方法制备了单圆柱形纳米孔。将纳米孔在90℃的食人鱼溶液中清洗30min,在孔表面生成羟基(-OH)基团。而对于锥形纳米孔,在中性和碱性pH下,并且在水溶液中的纳米孔主要填充有与孔壁上的固定基团相反的电荷离子,离子化基团(-OH)向孔壁施加负电荷。在外部施加的每个电势差后,所观察到的电导的原因是在纳米孔内的正离子的单极解所引起。与之相反,圆柱形纳米孔由于缺乏内在的(几何和静电)不对称而不整流电流。如图3所示,图3(A)示出了在孔壁上具有-COOH基团的圆柱形孔的理论和实验I-V曲线,为在pH=7.6的1mol/L KCl电解质溶液中测量了I-V曲线。此时溶液中电解质浓度足够高,-COO-基团对固定电荷的影响几乎可以忽略不计。因此,只有纳米孔的几何形状控制单孔膜上的离子通量。A single cylindrical nanopore was prepared by a symmetrical method. Wash the nanopores in piranha solution at 90°C for 30 minutes to generate hydroxyl (-OH) groups on the surface of the pores. Whereas for tapered nanopores, at neutral and alkaline pH, and the nanopores in aqueous solution are mainly filled with oppositely charged ions to the immobilized groups on the pore walls, the ionized groups (-OH) towards the pore walls Apply a negative charge. The observed conductance is due to the monopolar solution of positive ions inside the nanopore after each potential difference applied externally. In contrast, cylindrical nanopores do not rectify current due to the lack of intrinsic (geometric and electrostatic) asymmetry. As shown in Figure 3, Figure 3(A) shows the theoretical and experimental I-V curves of a cylindrical pore with -COOH groups on the pore wall, for which I-V curves were measured in a 1mol/L KCl electrolyte solution at pH=7.6 curve. At this time, the electrolyte concentration in the solution is high enough that the -COO- group has almost negligible effect on the fixed charge. Therefore, only the geometry of the nanopores controls the ion flux on monoporous membranes.
2.HRP生物功能化的纳米孔:2. HRP biofunctionalized nanopores:
HRP酶分子在孔壁上的共价连接是用甲醇可溶性试剂3-APTES完成的。将整个膜用3-APTES活化,3-APTES与存在于氮化硅表面上的天然氧化硅层的羟基相连。然后用1,4-亚苯基二异硫氰酸酯交联剂处理该芯片。最后,交联剂与伯胺在酶分子表面上进行共价偶联。用0.1mol/L KCl溶液在对称电解质条件下测定了HRP改性的单孔膜的I/V特性(图3)。从相应的I-V曲线测量的纳米孔电导的变化,是检测生物分子固定化和超分子生物共轭在孔表面上的主要检测方法。事实上,HRP的固定导致在1V的孔隙电导显著降低:未经修饰的圆柱形孔的电导为10ns,HRP固定后为3.33ns。所观察到的离子电导下降的66%最可能来自于有效纳米孔半径的减小。在HRP功能化之前,所用的的纳米孔具有35.5nm的半径,相同的纳米孔在HRP功能化后的半径为20.4nm。而与分子量约为3nm×3.5nm×6nm尺寸的蛋白质进行比较,纳米孔半径减小15nm是很高的。图2给出了这种减少孔隙堵塞的合理解释:这主要是因为固定的酶分子经历了分子组装的三个步骤,从而导致孔径的减小程度包含了一个固定的HRP分子,还有组装中的硅烷化和交联剂。Covalent attachment of HRP enzyme molecules to the pore walls was accomplished with the methanol-soluble reagent 3-APTES. The entire film was activated with 3-APTES, which is attached to the hydroxyl groups of the native silicon oxide layer present on the silicon nitride surface. The chip was then treated with 1,4-phenylene diisothiocyanate crosslinker. Finally, the cross-linker is covalently coupled to the primary amine on the surface of the enzyme molecule. The I/V characteristics of the HRP-modified single-porous membrane were measured under symmetric electrolyte conditions with 0.1mol/L KCl solution (Figure 3). Changes in nanopore conductance, measured from the corresponding I-V curves, are the main assays for the detection of biomolecular immobilization and supramolecular bioconjugation on the pore surface. In fact, the immobilization of HRP resulted in a significant decrease in the pore conductance at 1 V: the conductance of unmodified cylindrical pores was 10 ns, compared with 3.33 ns after HRP immobilization. The 66% of the observed drop in ion conductance most likely comes from the reduction in the effective nanopore radius. The nanopore used had a radius of 35.5 nm before HRP functionalization and the same nanopore after HRP functionalization had a radius of 20.4 nm. A reduction in nanopore radius of 15 nm is quite high compared to a protein with a molecular weight of approximately 3 nm x 3.5 nm x 6 nm. Figure 2 gives a reasonable explanation for this reduction in pore clogging: this is mainly because the immobilized enzyme molecule undergoes three steps of molecular assembly, resulting in a reduction in pore size that includes an immobilized HRP molecule, and the assembly silanization and crosslinking agent.
图3(A)所示,测量的HRP纳米通道系统整流I-V曲线的pH依赖性行为,可以为纳米通道壁成功固定化酶的研究提供证据。对单个纳米孔通道中的固定化酶在体积受限的氧化还原反应中所能起到的作用的研究:固定化HRP酶在含有2,20-氮杂双(3-乙基苯并噻唑-6-磺酸盐)(ABTS)作为底物的体系中以过氧化氢(过氧化氢)作为分析物进行测试,如图3(B)所示。图3(C)示出在过氧化氢加入之前和之后,在存在有0.1mol/L KCl(pH=6.5)的底物ABTS(1.5mmol/L)存在下记录的跨膜电流。在没有过氧化氢的情况下,I-V曲线是光滑的,非常类似于仅在0.1mol/L KCl溶液中记录的曲线。加入0.5mmol/L过氧化氢引起的正极电流显著减少,也变得更加不稳定。从而表明电流变化是在HRP、ABTS和过氧化氢存在下发生的氧化还原反应的阳离子产物的外现。As shown in Fig. 3(A), the measured pH-dependent behavior of the rectification I–V curve of the HRP nanochannel system can provide evidence for the successful immobilization of enzymes on the nanochannel wall. The role of immobilized enzymes in single nanopore channels in volume-constrained redox reactions: immobilized HRP enzymes in the presence of 2,20-azabis(3-ethylbenzothiazole- 6-sulfonate) (ABTS) as the substrate was tested with hydrogen peroxide (H2O2) as the analyte, as shown in Figure 3(B). Figure 3(C) shows the transmembrane currents recorded in the presence of the substrate ABTS (1.5 mmol/L) in the presence of 0.1 mol/L KCl (pH=6.5) before and after the addition of hydrogen peroxide. In the absence of hydrogen peroxide, the I–V curves are smooth, very similar to those recorded only in 0.1 mol/L KCl solution. The addition of 0.5mmol/L hydrogen peroxide caused a significant decrease in the cathode current and also became more unstable. Thus, it is indicated that the current change is the appearance of the cationic product of the redox reaction occurring in the presence of HRP, ABTS and hydrogen peroxide.
将小分子过氧化氢(过氧化氢)利用固定HRP之后的纳米孔作为传感器进行检测,以铵盐(ABTS)作为小分子过氧化氢的放大效应物,期望生成氧化还原产物ABTS·+,更直接的显示过氧化氢的检测结果。HRP纳米孔检测过氧化氢在ABTS、0.1mol/L KCl以及仅在0.1mol/L KCl中电流变化记录如图3(D)所示。从图中可以看出,当没有加入过氧化氢时,I-V曲线和之前基本没有变化,如图3(B)所示。但是,如图3(C)所示,电流发生了相当程度上的降低,并且很明显I-V曲线变得曲折且形状与之前大不相同,变得不再平滑,这是在加入0.5mmol/L过氧化氢之后出现的现象。与此同时,用类似大小孔径的纳米孔,但是没有被HRP修饰,来检测过氧化氢在ABTS、0.1mol/L KCl和0.1mol/L KCl中电流变化,并进行记录。发现I-V曲线基本不发生变化,包括没有加入过氧化氢和加入0.5mmol/L过氧化氢情况下,结果都是一样的。由上述的实验证明,得出只有HRP、ABTS和过氧化氢三者同时在纳米孔中,才会引起如图电流的降低以及I-V曲线形状的改变,从而表明酶催化了我们期望的氧化还原反应生成期望产物ABTS·+。The small molecule hydrogen peroxide (hydrogen peroxide) is detected by using the nanopore after immobilizing HRP as a sensor, and the ammonium salt (ABTS) is used as the amplification effect of the small molecule hydrogen peroxide, and the redox product ABTS+ is expected to be generated, and more Directly display the detection results of hydrogen peroxide. The current change records of hydrogen peroxide detected by HRP nanopore in ABTS, 0.1mol/L KCl and only in 0.1mol/L KCl are shown in Fig. 3(D). It can be seen from the figure that when no hydrogen peroxide is added, the I-V curve is basically unchanged from before, as shown in Figure 3(B). However, as shown in Figure 3(C), the current has decreased to a considerable extent, and it is obvious that the I-V curve becomes tortuous and the shape is very different from before, and it is no longer smooth. This is after adding 0.5mmol/L What happens after hydrogen peroxide. At the same time, nanopores with similar size and pore size, but not modified by HRP, were used to detect the current changes of hydrogen peroxide in ABTS, 0.1mol/L KCl and 0.1mol/L KCl, and record them. It is found that the I-V curve does not change substantially, including that the results are the same without adding hydrogen peroxide and adding 0.5mmol/L hydrogen peroxide. The above experiments prove that only HRP, ABTS and hydrogen peroxide are in the nanopore at the same time, which will cause the decrease of the current as shown in the figure and the change of the shape of the I-V curve, thus indicating that the enzyme catalyzes the redox reaction we expect The desired product ABTS·+ is formed.
3.酶功能化纳米孔传感器重现性以及工作曲线:3. Reproducibility and working curve of enzyme-functionalized nanopore sensors:
改变溶液的pH对修饰后的纳米孔的整流特性的影响,如图4(A)所示,从图中可以看出,改变pH 2~9,对HRP修饰后的纳米孔I-V曲线形状影响不是太大,但是有些许的变化,表明该纳米孔在不同pH下的工作稳定性处于合格状态。The effect of changing the pH of the solution on the rectification characteristics of the modified nanopore is shown in Figure 4(A). It can be seen from the figure that changing the pH from 2 to 9 has no effect on the shape of the I-V curve of the nanopore modified by HRP. is too large, but there are slight changes, indicating that the working stability of the nanopore at different pH is in a qualified state.
所构建的纳米孔检测系统的较重要的指标有两个:重现性以及灵敏性。通过多次测量了在存在0.1mol/L KCl、1.5mmol/L ABTS和同时不存在的情况下的过氧化氢的I-V曲线。该测量过程是需要每次经过人工操作,依次改变实验装置中的溶液种类和浓度来实现的。图4(B)是在1000mV电压下的纳米孔检测系统离子电流的重现性,可以发现,电流稳定、变化极小。以上结果表明:所构建的纳米孔传感器在重现性上的表现是合格的,这个纳米孔传感器具有较好的重现性,相同的纳米通道可以用于多次传感实验。仅需一个纳米孔就可以高质量的完成数次实际检测。There are two more important indicators of the constructed nanopore detection system: reproducibility and sensitivity. The I-V curve of hydrogen peroxide in the presence of 0.1 mol/L KCl, 1.5 mmol/L ABTS and simultaneously in the absence was measured by multiple measurements. This measurement process is realized by changing the type and concentration of the solution in the experimental device sequentially through manual operation each time. Fig. 4(B) is the reproducibility of the ion current of the nanopore detection system under the voltage of 1000mV. It can be found that the current is stable and changes very little. The above results show that the reproducibility of the constructed nanopore sensor is qualified, the nanopore sensor has good reproducibility, and the same nanochannel can be used for multiple sensing experiments. Only one nanopore is needed to complete several actual detections with high quality.
图4(C)中展示的I-V曲线是分别测量我们所构建HRP纳米孔检测系统在0.1mol/LKCl的状态下,加入1.5mmol/L ABTS和不同浓度过氧化氢后所绘制。从图中看出,当过氧化氢的浓度逐渐进行增加时,离子电流大小逐步降低,而且降低的离子电流幅度与过氧化氢的浓度是呈线性关系的,如图4(D)所示。过氧化氢线性范围5~15nmol/L,所得到的标准曲线:Y=-183.431X+3580.726,相关系数R^2=0.986,检测限最低达到了10pM。The I-V curves shown in Figure 4(C) are drawn after measuring the HRP nanopore detection system we constructed in the state of 0.1mol/L KCl, adding 1.5mmol/L ABTS and different concentrations of hydrogen peroxide. It can be seen from the figure that when the concentration of hydrogen peroxide gradually increases, the size of the ion current gradually decreases, and the magnitude of the reduced ion current is linearly related to the concentration of hydrogen peroxide, as shown in Figure 4(D). The linear range of hydrogen peroxide is 5-15nmol/L, the obtained standard curve: Y=-183.431X+3580.726, the correlation coefficient R^2=0.986, and the lowest detection limit reaches 10pM.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810506897.3A CN108645905B (en) | 2018-05-24 | 2018-05-24 | A method of hydrogen peroxide is detected based on solid nano hole |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810506897.3A CN108645905B (en) | 2018-05-24 | 2018-05-24 | A method of hydrogen peroxide is detected based on solid nano hole |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108645905A true CN108645905A (en) | 2018-10-12 |
CN108645905B CN108645905B (en) | 2019-12-03 |
Family
ID=63757761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810506897.3A Active CN108645905B (en) | 2018-05-24 | 2018-05-24 | A method of hydrogen peroxide is detected based on solid nano hole |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108645905B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109358106A (en) * | 2018-11-05 | 2019-02-19 | 中国科学院重庆绿色智能技术研究院 | A method for polysaccharide monomolecular structure analysis based on solid-state nanopore technology |
CN109856227A (en) * | 2019-02-28 | 2019-06-07 | 南通大学 | A kind of method that enzyme molecule is controllably modified in solid nano hole |
CN110132947A (en) * | 2019-06-14 | 2019-08-16 | 福州大学 | A Method for Controlling Electrochemiluminescence Signal by Surface Charge Density of Conical Micropores |
CN110231392A (en) * | 2018-10-29 | 2019-09-13 | 东南大学 | Based on the tetrahedral solid nano hole unimolecule protein detection method for amplifying signal of DNA and DNA tetrahedron |
CN110702563A (en) * | 2019-09-18 | 2020-01-17 | 西北工业大学 | A label-free chemical biological reaction detection method |
CN112834757A (en) * | 2020-12-31 | 2021-05-25 | 中国科学院重庆绿色智能技术研究院 | C-reactive protein detection method based on composite solid-state nanopore single-molecule technology |
CN114137029A (en) * | 2021-11-26 | 2022-03-04 | 复旦大学 | A kind of TA-MS/AAO heterojunction nanochannel and preparation method thereof |
WO2022100147A1 (en) * | 2020-11-13 | 2022-05-19 | Nanjing University | Programmable nano-reactors for stochastic sensing (pnrss) |
CN115078460A (en) * | 2022-02-22 | 2022-09-20 | 南京邮电大学 | Hydrogen peroxide detection reagent based on solid-state nanopore sensor and quantitative detection method thereof |
CN116060148A (en) * | 2023-02-17 | 2023-05-05 | 西南石油大学 | A method for in-situ controllable hydrophobic modification of nanochannels |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104713932A (en) * | 2015-03-24 | 2015-06-17 | 清华大学 | Multi-parameter nanopore monomolecular analyzer with alternating-current mode |
CN105806912A (en) * | 2016-05-13 | 2016-07-27 | 河南工业大学 | Method for quantitatively detecting telomerase activity based on nano pore channel and electrochemical sensing |
CN107082792A (en) * | 2012-04-09 | 2017-08-22 | 纽约哥伦比亚大学理事会 | The preparation method of nano-pore and its purposes |
CN107727705A (en) * | 2017-09-28 | 2018-02-23 | 东南大学 | A kind of enzyme reaction detects nano-pore electric sensor |
-
2018
- 2018-05-24 CN CN201810506897.3A patent/CN108645905B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107082792A (en) * | 2012-04-09 | 2017-08-22 | 纽约哥伦比亚大学理事会 | The preparation method of nano-pore and its purposes |
CN104713932A (en) * | 2015-03-24 | 2015-06-17 | 清华大学 | Multi-parameter nanopore monomolecular analyzer with alternating-current mode |
CN105806912A (en) * | 2016-05-13 | 2016-07-27 | 河南工业大学 | Method for quantitatively detecting telomerase activity based on nano pore channel and electrochemical sensing |
CN107727705A (en) * | 2017-09-28 | 2018-02-23 | 东南大学 | A kind of enzyme reaction detects nano-pore electric sensor |
Non-Patent Citations (2)
Title |
---|
LIBO ZHU等: "Hydrogen Peroxide Sensing Based on Inner Surfaces Modification of Solid-State Nanopore", 《NANOSCALE RESEARCH LETTERS》 * |
谭生伟: "功能化氮化硅纳米孔传感器的研究", 《中国博士学位论文全文数据库 信息科技辑》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110231392A (en) * | 2018-10-29 | 2019-09-13 | 东南大学 | Based on the tetrahedral solid nano hole unimolecule protein detection method for amplifying signal of DNA and DNA tetrahedron |
CN109358106A (en) * | 2018-11-05 | 2019-02-19 | 中国科学院重庆绿色智能技术研究院 | A method for polysaccharide monomolecular structure analysis based on solid-state nanopore technology |
CN109856227A (en) * | 2019-02-28 | 2019-06-07 | 南通大学 | A kind of method that enzyme molecule is controllably modified in solid nano hole |
CN110132947B (en) * | 2019-06-14 | 2021-09-28 | 福州大学 | Method for regulating electrochemiluminescence signal by charge density on surface of conical micron hole |
CN110132947A (en) * | 2019-06-14 | 2019-08-16 | 福州大学 | A Method for Controlling Electrochemiluminescence Signal by Surface Charge Density of Conical Micropores |
CN110702563A (en) * | 2019-09-18 | 2020-01-17 | 西北工业大学 | A label-free chemical biological reaction detection method |
WO2021052146A1 (en) * | 2019-09-18 | 2021-03-25 | 西北工业大学 | Label-free biochemical reaction detection method |
CN110702563B (en) * | 2019-09-18 | 2020-08-18 | 西北工业大学 | Label-free chemical biological reaction detection method |
WO2022100147A1 (en) * | 2020-11-13 | 2022-05-19 | Nanjing University | Programmable nano-reactors for stochastic sensing (pnrss) |
CN112834757A (en) * | 2020-12-31 | 2021-05-25 | 中国科学院重庆绿色智能技术研究院 | C-reactive protein detection method based on composite solid-state nanopore single-molecule technology |
CN112834757B (en) * | 2020-12-31 | 2023-02-28 | 中国科学院重庆绿色智能技术研究院 | C-reactive protein detection method based on composite solid-state nanopore monomolecular technology |
CN114137029A (en) * | 2021-11-26 | 2022-03-04 | 复旦大学 | A kind of TA-MS/AAO heterojunction nanochannel and preparation method thereof |
CN114137029B (en) * | 2021-11-26 | 2024-05-14 | 复旦大学 | TA-MS/AAO heterojunction nano-channel and preparation method thereof |
CN115078460A (en) * | 2022-02-22 | 2022-09-20 | 南京邮电大学 | Hydrogen peroxide detection reagent based on solid-state nanopore sensor and quantitative detection method thereof |
CN116060148A (en) * | 2023-02-17 | 2023-05-05 | 西南石油大学 | A method for in-situ controllable hydrophobic modification of nanochannels |
CN116060148B (en) * | 2023-02-17 | 2024-06-07 | 西南石油大学 | A method for in-situ controllable hydrophobic modification of nanochannels |
Also Published As
Publication number | Publication date |
---|---|
CN108645905B (en) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108645905B (en) | A method of hydrogen peroxide is detected based on solid nano hole | |
Rahmati et al. | An electrochemical immunosensor using SARS-CoV-2 spike protein-nickel hydroxide nanoparticles bio-conjugate modified SPCE for ultrasensitive detection of SARS‐CoV‐2 antibodies | |
Ahmadi et al. | Impedimetric paper-based enzymatic biosensor using electrospun cellulose acetate nanofiber and reduced graphene oxide for detection of glucose from whole blood | |
Liang et al. | A novel amperometric immunosensor based on three-dimensional sol–gel network and nanoparticle self-assemble technique | |
CN110146580B (en) | Method for detecting l, 5-anhydroglucitol based on persimmon tannin composite nano material | |
CN104020204B (en) | A kind of for electrochemical sensor detecting lead and its preparation method and application | |
EP1490508B1 (en) | Electrochemical detector systems | |
Sari et al. | The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP | |
BR112019016912A2 (en) | analyte detector to detect at least one analyte in at least one fluid sample, method for detecting at least one analyte in at least one fluid sample and use | |
CN107389755B (en) | Electrochemical sensor for detecting mercury, and preparation method and application thereof | |
CN104237344A (en) | Electrochemical aptamer electrode for kanamycin detection and preparation method of electrochemical aptamer electrode | |
Witt et al. | Boron doped diamond thin films for the electrochemical detection of SARS-CoV-2 S1 protein | |
Yaiwong et al. | A new portable toluidine blue/aptamer complex-on-polyethyleneimine-coated gold nanoparticles-based sensor for label-free electrochemical detection of alpha-fetoprotein | |
Liu et al. | An antifouling interface integrated with HRP-based amplification to achieve a highly sensitive electrochemical aptasensor for lysozyme detection | |
Yan et al. | Application of Ag nanoparticles decorated on graphene nanosheets for electrochemical sensing of CEA as an important cancer biomarker | |
CN111579614A (en) | A method for the detection of lead ions based on magnetic biocomposite DNase and hybrid chain reaction electrochemical biosensors | |
Wang et al. | Solid‐State Glass Nanopipettes: Functionalization and Applications | |
Sun et al. | A label-free electrochemical aptasensor for sensitive thrombin detection in whole blood | |
CN114231593B (en) | Preparation and application of a label-free methyltransferase sensor based on nanopores | |
CN106468682B (en) | A method of electrochemical nucleic acid aptamer sensor for detecting carcinoembryonic antigen | |
CN117723612A (en) | An electrochemiluminescent enzyme biosensor for detecting glucose and its preparation method and application | |
Fan et al. | An electrochemiluminescence biosensor for the determination of mercury ion via dual-amplification strategy | |
Zhu et al. | An overview of Si-based biosensors | |
CN110133065A (en) | A method for detecting copper ions using α-hemolysin nanopores | |
Zhou et al. | Immobilization of glucose oxidase on a carbon nanotubes/dendrimer-ferrocene modified electrode for reagentless glucose biosensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210622 Address after: 226019 No.205, building 6, Nantong University, No.9, Siyuan Road, Nantong City, Jiangsu Province Patentee after: Center for technology transfer, Nantong University Address before: 226000 No. 9 Siyuan Road, Chongchuan District, Nantong City, Jiangsu Province Patentee before: NANTONG University |
|
TR01 | Transfer of patent right | ||
CP03 | Change of name, title or address |
Address after: 226019 No.205, building 6, Nantong University, No.9, Siyuan Road, Nantong City, Jiangsu Province Patentee after: Nantong University Technology Transfer Center Co.,Ltd. Country or region after: China Address before: 226019 No.205, building 6, Nantong University, No.9, Siyuan Road, Nantong City, Jiangsu Province Patentee before: Center for technology transfer, Nantong University Country or region before: China |
|
CP03 | Change of name, title or address | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20181012 Assignee: Jiangsu xinruida Textile Technology Co.,Ltd. Assignor: Nantong University Technology Transfer Center Co.,Ltd. Contract record no.: X2024980043076 Denomination of invention: A method for detecting hydrogen peroxide based on solid-state nanopores Granted publication date: 20191203 License type: Common License Record date: 20241228 |
|
EE01 | Entry into force of recordation of patent licensing contract |