CN108642520A - A method of zinc is generated based on choline chloride-malonic acid eutectic system - Google Patents
A method of zinc is generated based on choline chloride-malonic acid eutectic system Download PDFInfo
- Publication number
- CN108642520A CN108642520A CN201810686128.6A CN201810686128A CN108642520A CN 108642520 A CN108642520 A CN 108642520A CN 201810686128 A CN201810686128 A CN 201810686128A CN 108642520 A CN108642520 A CN 108642520A
- Authority
- CN
- China
- Prior art keywords
- malonic acid
- choline chloride
- zinc
- electrodeposition
- eutectic system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 239000011701 zinc Substances 0.000 title claims abstract description 33
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 33
- 230000005496 eutectics Effects 0.000 title claims abstract description 17
- 229960001231 choline Drugs 0.000 title claims abstract description 16
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 15
- SNBDGFZQPKCZTO-UHFFFAOYSA-N propanedioic acid;hydrochloride Chemical compound Cl.OC(=O)CC(O)=O SNBDGFZQPKCZTO-UHFFFAOYSA-N 0.000 title claims abstract description 13
- 238000004070 electrodeposition Methods 0.000 claims abstract description 26
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000002608 ionic liquid Substances 0.000 claims abstract description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011787 zinc oxide Substances 0.000 claims abstract description 13
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 239000010949 copper Substances 0.000 claims abstract description 11
- 239000003792 electrolyte Substances 0.000 claims abstract description 9
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims abstract description 8
- -1 chloride-malonic acid-zinc oxide Chemical compound 0.000 claims abstract description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 20
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 claims description 12
- 235000019743 Choline chloride Nutrition 0.000 claims description 12
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 claims description 12
- 229960003178 choline chloride Drugs 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000008151 electrolyte solution Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000000654 additive Substances 0.000 abstract description 2
- 231100000252 nontoxic Toxicity 0.000 abstract description 2
- 230000003000 nontoxic effect Effects 0.000 abstract description 2
- 238000002203 pretreatment Methods 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005246 galvanizing Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 229910052739 hydrogen Chemical group 0.000 description 1
- 239000001257 hydrogen Chemical group 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009856 non-ferrous metallurgy Methods 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical group 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/16—Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/02—Electrodes; Connections thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
本发明涉及一种基于氯化胆碱‑丙二酸低共熔体系生成锌的方法,配置氯化胆碱‑丙二酸‑氧化锌原始电解液;接着按照固定的物质的量浓度在氯化胆碱‑丙二酸‑氧化锌离子液体加入少量的乙二胺;在上述离子液体中,锌片作为可溶性阳极,紫铜块作为阴极,将电极浸入上述离子液体后通过铜丝与电源连接,恒温下进行高电流密度恒电流电沉积;电沉积后,将样品进行超声清洗、干燥。本发明采用的原料简单,不用经过前期处理,只是添加少量的添加剂,操作简单易行,绿色环保,安全无毒,并且可采用的电流密度高,电沉积速率快,可在铜基体上快速生成锌。
The invention relates to a method for generating zinc based on a choline chloride-malonic acid eutectic system, and configures the original electrolyte of choline chloride-malonic acid-zinc oxide; Add a small amount of ethylenediamine to the choline-malonic acid-zinc oxide ionic liquid; in the above-mentioned ionic liquid, the zinc sheet is used as a soluble anode, and the copper block is used as a cathode. After the electrode is immersed in the above-mentioned ionic liquid, it is connected to the power supply through a copper wire, and the Under high current density constant current electrodeposition; after electrodeposition, the sample was ultrasonically cleaned and dried. The raw materials used in the present invention are simple, no pre-treatment is required, only a small amount of additives are added, the operation is simple and easy, green and environmentally friendly, safe and non-toxic, and the applicable current density is high, the electrodeposition rate is fast, and it can be quickly formed on the copper substrate. zinc.
Description
技术领域technical field
本发明涉及电镀工艺领域,具体涉及一种基于氯化胆碱-丙二酸低共熔体系生成锌的方法。The invention relates to the field of electroplating technology, in particular to a method for generating zinc based on a choline chloride-malonic acid eutectic system.
背景技术Background technique
我国是锌储量最大的国家,从1992年开始我国锌产量居世界第一位。金属锌作为现代工业社会中的一种基础材料,被广泛应用于各种领域。电镀锌广泛应用于钢铁材料的防护性镀层,由于锌的电沉积技术成本较低,因此适合在大范围的工业生产中被广泛推广。特别是防止大气腐蚀。传统镀锌方法有氰化物镀锌、氯化物镀锌等。其中氰化物镀锌因含有剧毒的氰化物,污染严重。氯化物镀锌电镀液中含有大量的氯化钾对设备腐蚀严重。如何在获得高质量的金属锌且消除电沉积液对环境的危害已成为绿色电化学和环保工业亟待解决的问题。my country is the country with the largest zinc reserves. Since 1992, my country's zinc production has ranked first in the world. As a basic material in modern industrial society, zinc metal is widely used in various fields. Electrogalvanizing is widely used in the protective coating of iron and steel materials. Due to the low cost of zinc electrodeposition technology, it is suitable for wide promotion in large-scale industrial production. Especially against atmospheric corrosion. Traditional galvanizing methods include cyanide galvanizing and chloride galvanizing. Among them, cyanide galvanizing is seriously polluted because it contains highly toxic cyanide. Chloride galvanizing bath contains a large amount of potassium chloride, which seriously corrodes the equipment. How to obtain high-quality metal zinc and eliminate the environmental hazards of electrodeposition solutions has become an urgent problem to be solved in the green electrochemistry and environmental protection industries.
离子液体是一种完全由离子构成的室温融盐,通常由几何结构不对称的有机阳离子和无机或有机阴离子组成。离子液体具有化学热稳定性高、不可燃、蒸气压低、电导率高、毒性小、电化学窗口宽等特性。离子液体在室温下即可得到在高温熔盐中才能电沉积得到的金属及其合金,但是又没有高温熔盐那样的强腐蚀性。低共熔离子液体通常是由一定化学计量比的季铵盐和氢键给体(如酰胺、羧酸和多元醇等化合物)组合而成的低共熔混合物。低共熔离子液体具有电化学窗口宽、溶解性和导电性好、蒸汽压低以及良好的物理化学稳定性等优点,是一种新型的绿色溶剂。在电沉积金属方面,由于低共熔离子液体能够选择性的溶解金属氧化物,同时具有良好的导电性和较负的还原电势,在室温下即可电沉积得到大多数能在水溶液中得到的金属,得到的金属质量好,电流效率高。同时,由于低共熔溶剂的制备过程简单、原料价格低廉,在有色金属冶金技术领域具有广阔的应用前景。国内梁军课题组通过通过在氯化胆碱-丙二酸低共熔体系中添加氯化锌成功地制备出锌涂层,但该方法制备锌涂层所采用的熔盐体系黏度较高,所用电流密度较低,电沉积速率较慢,厚涂层制备所需时间长(王巍,初青伟,梁军,等.氯化胆碱-丙二酸离子液体中镁合金表面电沉积电流密度对镀锌层性能的影响[J].材料保护,2013,46(8):1-4.)。Ionic liquids are room temperature molten salts composed entirely of ions, usually composed of geometrically asymmetric organic cations and inorganic or organic anions. Ionic liquids have the characteristics of high chemical and thermal stability, non-flammability, low vapor pressure, high electrical conductivity, low toxicity, and wide electrochemical window. Ionic liquids can obtain metals and their alloys that can only be electrodeposited in high-temperature molten salts at room temperature, but they are not as corrosive as high-temperature molten salts. Eutectic ionic liquids are usually eutectic mixtures composed of certain stoichiometric ratios of quaternary ammonium salts and hydrogen bond donors (such as amides, carboxylic acids, and polyols). Deep eutectic ionic liquids have the advantages of wide electrochemical window, good solubility and conductivity, low vapor pressure, and good physical and chemical stability, and are a new type of green solvent. In terms of electrodeposited metals, since eutectic ionic liquids can selectively dissolve metal oxides, and have good electrical conductivity and relatively negative reduction potential, most of the metals that can be obtained in aqueous solutions can be obtained by electrodeposition at room temperature. Metal, the resulting metal is of good quality and high current efficiency. At the same time, because the preparation process of the deep eutectic solvent is simple and the raw material price is low, it has broad application prospects in the field of non-ferrous metallurgy technology. The domestic Liang Jun research group successfully prepared zinc coating by adding zinc chloride to the choline chloride-malonic acid eutectic system, but the molten salt system used in the preparation of zinc coating by this method has a high viscosity. The current density used is low, the electrodeposition rate is slow, and the time required for thick coating preparation is long (Wang Wei, Chu Qingwei, Liang Jun, etc. Electrodeposition current on magnesium alloy surface in choline chloride-malonic acid ionic liquid The effect of density on the properties of galvanized coating [J]. Materials Protection, 2013,46(8):1-4.).
发明内容Contents of the invention
本发明的目的是针对目前低共熔电沉积制备锌涂层存在的熔盐黏度较低这一问题,通过选取新的离子液体,提出了一种基于氯化胆碱-丙二酸低共熔体系生成锌的方法。The purpose of the present invention is to solve the problem that the viscosity of the molten salt in the preparation of zinc coatings by eutectic electrodeposition is low. The method for generating zinc in the system.
为实现上述目的,本发明提供的技术方案是:To achieve the above object, the technical solution provided by the invention is:
一种基于氯化胆碱-丙二酸低共熔体系生成锌的方法,包括如下步骤:A kind of method that generates zinc based on choline chloride-malonic acid eutectic system, comprises the steps:
1)电解液的配置:按一定比例将氯化胆碱、丙二酸和氧化锌混合均匀后然后加热到88℃~92℃,恒温直到搅拌生成的透明状粘稠的液体即为氯化胆碱-丙二酸-氧化锌原始电解液;接着按照固定的物质的量浓度在氯化胆碱-丙二酸-氧化锌离子液体加入少量的乙二胺;1) Electrolyte configuration: mix choline chloride, malonic acid and zinc oxide evenly in a certain proportion, then heat to 88°C~92°C, keep the temperature until the transparent viscous liquid formed by stirring is choline chloride Alkali-malonic acid-zinc oxide original electrolyte; then add a small amount of ethylenediamine to the choline chloride-malonic acid-zinc oxide ionic liquid according to the fixed substance concentration;
2)连接电极:在上述离子液体中,锌片作为可溶性阳极,紫铜块作为阴极,阳极和阴极间距离为2cm;2) Connecting electrodes: In the above-mentioned ionic liquid, the zinc sheet is used as the soluble anode, the copper block is used as the cathode, and the distance between the anode and the cathode is 2 cm;
3)电沉积:将电极浸入上述离子液体后通过铜丝与电源连接,恒温下进行高电流密度恒电流电沉积;3) Electrodeposition: After the electrode is immersed in the above-mentioned ionic liquid, it is connected to the power supply through a copper wire, and high current density constant current electrodeposition is performed at a constant temperature;
4)取出样品:电沉积后,将样品进行超声清洗、干燥。4) Take out the sample: After electrodeposition, the sample is ultrasonically cleaned and dried.
电解液中氯化胆碱、丙二酸和氧化锌的比例摩尔比为4:4:1。The molar ratio of choline chloride, malonic acid and zinc oxide in the electrolyte is 4:4:1.
步骤1)中,乙二胺的物质的量浓度为0.1mol/L。In step 1), the concentration of ethylenediamine is 0.1mol/L.
步骤2)中采用双阳极。In step 2), double anodes are used.
步骤3)中,恒电流密度为15-25mA/cm2。In step 3), the constant current density is 15-25 mA/cm 2 .
步骤3)中,电沉积温度为90℃。In step 3), the electrodeposition temperature is 90°C.
步骤3)中,电沉积时间为60分钟。In step 3), the electrodeposition time is 60 minutes.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明采用的原料简单,不用经过前期处理,只是添加少量的添加剂,操作简单易行,绿色环保,安全无毒,并且可采用的电流密度高,电沉积速率快,可在铜基体上快速生成锌。The raw materials used in the present invention are simple, no pre-treatment is required, only a small amount of additives are added, the operation is simple and easy, green and environmentally friendly, safe and non-toxic, and the applicable current density is high, the electrodeposition rate is fast, and it can be quickly formed on the copper substrate. zinc.
附图说明Description of drawings
图1为实例1中得到的锌涂层的表面EDS图。Fig. 1 is the surface EDS figure of the zinc coating that obtains in example 1.
图2为实例2中得到的锌涂层的XRD图谱。Fig. 2 is the XRD spectrum of the zinc coating obtained in Example 2.
图3为实例3中得到的锌涂层的截面SEM图。3 is a cross-sectional SEM image of the zinc coating obtained in Example 3.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific examples.
实施例1Example 1
1)电解质中氯化胆碱、丙二酸和氧化锌的比例摩尔比为4:4:1,按一定比例将氯化胆碱、丙二酸和氧化锌混合均匀后然后加热到90℃,恒温直到搅拌生成的透明状粘稠的液体。接着加入0.1mol/L的乙二胺。1) The molar ratio of choline chloride, malonic acid and zinc oxide in the electrolyte is 4:4:1. Mix choline chloride, malonic acid and zinc oxide in a certain proportion and then heat to 90°C. Keep warm until stirring produces a clear viscous liquid. Then add 0.1mol/L ethylenediamine.
2)将锌片作为可溶性阳极,紫铜块作为阴极,放入加热至90℃的上述混合液体中进行60分钟双阳极恒电流电沉积,其中阳极和阴极间距离为2cm,电流密度为25mA/cm2。2) Use the zinc sheet as a soluble anode, and the copper block as a cathode, put it into the above mixed liquid heated to 90°C for 60 minutes of double-anode constant current electrodeposition, where the distance between the anode and the cathode is 2cm, and the current density is 25mA/cm 2 .
3)电沉积后,将样品取出用无水乙醇、去离子水超声清洗,最后用吹风机低温吹。3) After electrodeposition, the sample was taken out and cleaned ultrasonically with absolute ethanol and deionized water, and finally blown with a hair dryer at low temperature.
所得涂层的XRD图参见图2,可以发现紫铜基体上的涂层为锌涂层。Referring to Figure 2 for the XRD pattern of the obtained coating, it can be found that the coating on the copper substrate is a zinc coating.
实施例2Example 2
1)电解质中氯化胆碱、丙二酸和氧化锌的比例摩尔比为4:4:1,按一定比例将氯化胆碱、丙二酸和氧化锌混合均匀后然后加热到90℃,恒温直到搅拌生成的透明状粘稠的液体。接着加入0.1mol/L的乙二胺。1) The molar ratio of choline chloride, malonic acid and zinc oxide in the electrolyte is 4:4:1. Mix choline chloride, malonic acid and zinc oxide in a certain proportion and then heat to 90°C. Keep warm until stirring produces a clear viscous liquid. Then add 0.1mol/L ethylenediamine.
2)将锌片作为可溶性阳极,紫铜块作为阴极,放入加热至90℃的上述混合液体中进行60分钟双阳极恒电流电沉积,其中阳极和阴极间距离为2cm,电流密度为20mA/cm2。2) Use the zinc sheet as a soluble anode, and the copper block as a cathode, and put it into the above mixed liquid heated to 90°C for 60 minutes of double-anode constant current electrodeposition, wherein the distance between the anode and the cathode is 2cm, and the current density is 20mA/cm 2 .
3)电沉积后,将样品取出用无水乙醇、去离子水超声清洗,最后用吹风机低温吹。3) After electrodeposition, the sample was taken out and cleaned ultrasonically with absolute ethanol and deionized water, and finally blown with a hair dryer at low temperature.
所得涂层的EDS能谱图参见图2,可以发现紫铜基体上的涂层为锌涂层。Referring to Figure 2 for the EDS energy spectrum of the obtained coating, it can be found that the coating on the copper substrate is a zinc coating.
实施例3Example 3
1)电解质中氯化胆碱、丙二酸和氧化锌的比例摩尔比为4:4:1,按一定比例将氯化胆碱、丙二酸和氧化锌混合均匀后然后加热到90℃,恒温直到搅拌生成的透明状粘稠的液体。接着加入0.1mol/L的乙二胺。1) The molar ratio of choline chloride, malonic acid and zinc oxide in the electrolyte is 4:4:1. Mix choline chloride, malonic acid and zinc oxide in a certain proportion and then heat to 90°C. Keep warm until stirring produces a clear viscous liquid. Then add 0.1mol/L ethylenediamine.
2)将锌片作为可溶性阳极,紫铜块作为阴极,放入加热至90℃的上述混合液体中进行60分钟双阳极恒电流电沉积,其中阳极和阴极间距离为2cm,电流密度为15mA/cm2。2) Use the zinc sheet as a soluble anode, and the copper block as a cathode, and put it into the above mixed liquid heated to 90°C for 60 minutes of double-anode constant current electrodeposition, where the distance between the anode and the cathode is 2cm, and the current density is 15mA/cm 2 .
3)电沉积后,将样品取出用无水乙醇、去离子水超声清洗,最后用吹风机低温吹。3) After electrodeposition, the sample was taken out and cleaned ultrasonically with absolute ethanol and deionized water, and finally blown with a hair dryer at low temperature.
所得涂层的的表面能谱分析图参见图3,可以发现紫铜基体上的涂层与基体结合紧密。The surface energy spectrum analysis diagram of the obtained coating is shown in Figure 3, and it can be found that the coating on the copper substrate is closely combined with the substrate.
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Any skilled person who is familiar with the profession, without departing from the scope of the technical solutions of the present invention, according to the technical essence of the present invention, Any simple modifications, equivalent replacements and improvements made in the above embodiments still fall within the protection scope of the technical solution of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810686128.6A CN108642520A (en) | 2018-06-28 | 2018-06-28 | A method of zinc is generated based on choline chloride-malonic acid eutectic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810686128.6A CN108642520A (en) | 2018-06-28 | 2018-06-28 | A method of zinc is generated based on choline chloride-malonic acid eutectic system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108642520A true CN108642520A (en) | 2018-10-12 |
Family
ID=63750175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810686128.6A Pending CN108642520A (en) | 2018-06-28 | 2018-06-28 | A method of zinc is generated based on choline chloride-malonic acid eutectic system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108642520A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109796006A (en) * | 2019-03-21 | 2019-05-24 | 河北科技大学 | A kind of ionic liquid is in the preparation method and application for preparing application and nitrogen-doped carbon quantum dot in nitrogen-doped carbon quantum dot |
CN114317984A (en) * | 2022-01-04 | 2022-04-12 | 华北理工大学 | A method for selective zinc immersion using cyclone classification-ionic liquid-ultrasonic synergy |
CN114921813A (en) * | 2022-05-27 | 2022-08-19 | 中宁县宁华再生资源循环利用科技有限公司 | Electrodeposition zinc ingot processing technology based on weak acid environment leaching |
CN115323393A (en) * | 2022-08-12 | 2022-11-11 | 昆明理工大学 | A method for preparing nickel-based bimetallic hydrogen evolution catalyst by anode dissolution electrodeposition in eutectic ionic liquid |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102766888A (en) * | 2012-07-15 | 2012-11-07 | 合肥金盟工贸有限公司 | Method for plating magnesium alloy based on ionic liquid plating solution |
CN103658637A (en) * | 2013-12-12 | 2014-03-26 | 昆明理工大学 | Method for preparing arborization fine copper powder in electrolysis mode |
CN104878408A (en) * | 2015-05-26 | 2015-09-02 | 上海大学 | Method for directly electrodepositing zinc oxide to prepare micro-nano zinc layer at low temperature |
CN105088287A (en) * | 2015-08-13 | 2015-11-25 | 斌源材料科技(上海)有限公司 | Electrolyte prepared based on deep eutetic ion liquid and water and electroplating method thereof |
CN105256343A (en) * | 2015-11-23 | 2016-01-20 | 安徽工业大学 | Electrogalvanizing method based on choline chloride-xylitol deep eutectic solvent |
-
2018
- 2018-06-28 CN CN201810686128.6A patent/CN108642520A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102766888A (en) * | 2012-07-15 | 2012-11-07 | 合肥金盟工贸有限公司 | Method for plating magnesium alloy based on ionic liquid plating solution |
CN103658637A (en) * | 2013-12-12 | 2014-03-26 | 昆明理工大学 | Method for preparing arborization fine copper powder in electrolysis mode |
CN104878408A (en) * | 2015-05-26 | 2015-09-02 | 上海大学 | Method for directly electrodepositing zinc oxide to prepare micro-nano zinc layer at low temperature |
CN105088287A (en) * | 2015-08-13 | 2015-11-25 | 斌源材料科技(上海)有限公司 | Electrolyte prepared based on deep eutetic ion liquid and water and electroplating method thereof |
CN105256343A (en) * | 2015-11-23 | 2016-01-20 | 安徽工业大学 | Electrogalvanizing method based on choline chloride-xylitol deep eutectic solvent |
Non-Patent Citations (2)
Title |
---|
ANDREW P. ABBOTT等: "The effect of additives on zinc electrodeposition from deep eutectic solvents", 《ELECTROCHIMICA ACTA》 * |
刘成成等: "氯化胆碱-丙二酸离子液体的制备及性能研究", 《天津农学院学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109796006A (en) * | 2019-03-21 | 2019-05-24 | 河北科技大学 | A kind of ionic liquid is in the preparation method and application for preparing application and nitrogen-doped carbon quantum dot in nitrogen-doped carbon quantum dot |
CN109796006B (en) * | 2019-03-21 | 2022-03-01 | 河北科技大学 | Application of ionic liquid in preparation of nitrogen-doped carbon quantum dots, and preparation method and application of nitrogen-doped carbon quantum dots |
CN114317984A (en) * | 2022-01-04 | 2022-04-12 | 华北理工大学 | A method for selective zinc immersion using cyclone classification-ionic liquid-ultrasonic synergy |
CN114921813A (en) * | 2022-05-27 | 2022-08-19 | 中宁县宁华再生资源循环利用科技有限公司 | Electrodeposition zinc ingot processing technology based on weak acid environment leaching |
CN114921813B (en) * | 2022-05-27 | 2024-04-09 | 中宁县宁华再生资源循环利用科技有限公司 | Electro-deposited zinc ingot processing technology based on weak acid environment leaching |
CN115323393A (en) * | 2022-08-12 | 2022-11-11 | 昆明理工大学 | A method for preparing nickel-based bimetallic hydrogen evolution catalyst by anode dissolution electrodeposition in eutectic ionic liquid |
CN115323393B (en) * | 2022-08-12 | 2024-05-28 | 昆明理工大学 | A method for preparing a nickel-based bimetallic hydrogen evolution catalyst by anodic dissolution and electrodeposition in a eutectic ionic liquid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108642520A (en) | A method of zinc is generated based on choline chloride-malonic acid eutectic system | |
CN105256343B (en) | A kind of electrogalvanizing method based on Choline Chloride xylitol eutectic solvent | |
CN108315763A (en) | A method of preparing metallic zinc using ionic liquid electrolytic oxidation zinc | |
CN101985766B (en) | Method for electroplating Zn-Ti alloy by ionic liquid | |
CN108754557A (en) | The method that high current density electrochemistry prepares spelter coating in ionic liquid | |
CN103849911A (en) | Ionic liquid electroplating solution for preparing bright aluminum coating at low temperature and using method of ionic liquid electroplating solution | |
Böck et al. | Electrodeposition of iron films from an ionic liquid (ChCl/urea/FeCl3 deep eutectic mixtures) | |
CN105862093A (en) | Method for electroplating Ni-Cr-PTFE composite coating in ionic liquid | |
CN104485459A (en) | Method for preparing copper foil for lithium ion battery through low eutectic type ionic liquid electro-deposition | |
CN104480492A (en) | Method for preparing Ni-La alloy through ionic liquid electro-deposition | |
CN106498452A (en) | A kind of electrogalvanizing method based on glycine betaine urea water eutectic solvent | |
CN108707934A (en) | A kind of method of fast-growth thickness spelter coating on Copper substrate | |
Du et al. | Effect of coordinated water of hexahydrate on nickel platings from choline–urea ionic liquid | |
CN105018982B (en) | A kind of method that utilization ionic liquid low-temperature electro-deposition prepares cobalt manganese alloy | |
CN108707936A (en) | The method that choline chloride-glycerine system electrochemistry prepares metal spelter coating | |
CN108754556B (en) | A simple system method for electrodepositing zinc coating | |
CN103436921B (en) | A kind of method of ionic liquid electrodeposition aluminium manganese-titanium | |
CN103215622B (en) | A kind of method of electric wire copper conductor eleetrotinplate | |
CN108611664A (en) | A method of preparing metallic lead using ionic liquid electrolytic oxidation lead | |
CN113881977B (en) | Method for preparing zinc-titanium alloy at low temperature by taking titanium oxycarbide as anode | |
CN101319339A (en) | A kind of gold-plating solution and gold-plating method thereof | |
CN106757215A (en) | A kind of method that dicyandiamide ionic liquid low-temperature electro-deposition prepares lanthanum nickel alloy film | |
CN103103588A (en) | Preparation method of Al-Mn alloy prevention plating layer on surface of metallic matrix | |
CN107022778A (en) | The lug that the method and application this method of a kind of four sides nickel plating electrolytic copper foil are produced | |
CN110205651A (en) | A kind of method that low temperature electrochemical reduction barium oxide prepares vanadium metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181012 |