CN108640149A - Titanium dioxide nano hollow ball and preparation method thereof - Google Patents
Titanium dioxide nano hollow ball and preparation method thereof Download PDFInfo
- Publication number
- CN108640149A CN108640149A CN201810529196.1A CN201810529196A CN108640149A CN 108640149 A CN108640149 A CN 108640149A CN 201810529196 A CN201810529196 A CN 201810529196A CN 108640149 A CN108640149 A CN 108640149A
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- solution
- preparation
- hollow ball
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 248
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 120
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 99
- 238000000034 method Methods 0.000 claims abstract description 38
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 238000005530 etching Methods 0.000 claims abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 121
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 43
- 239000000377 silicon dioxide Substances 0.000 claims description 36
- 239000002904 solvent Substances 0.000 claims description 35
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 27
- 235000012239 silicon dioxide Nutrition 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 21
- 239000011258 core-shell material Substances 0.000 claims description 17
- 239000004005 microsphere Substances 0.000 claims description 16
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 15
- 239000012498 ultrapure water Substances 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 10
- 238000010992 reflux Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 235000019441 ethanol Nutrition 0.000 claims 10
- 239000013049 sediment Substances 0.000 claims 4
- 239000000908 ammonium hydroxide Substances 0.000 claims 2
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims 2
- 238000005253 cladding Methods 0.000 claims 2
- 241000790917 Dioxys <bee> Species 0.000 claims 1
- 229910003087 TiOx Inorganic materials 0.000 claims 1
- 239000000654 additive Substances 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 230000003628 erosive effect Effects 0.000 claims 1
- 125000004494 ethyl ester group Chemical group 0.000 claims 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 claims 1
- 239000002243 precursor Substances 0.000 abstract description 46
- 239000003513 alkali Substances 0.000 abstract description 14
- 230000001699 photocatalysis Effects 0.000 abstract description 14
- 239000013078 crystal Substances 0.000 abstract description 13
- 238000010335 hydrothermal treatment Methods 0.000 abstract description 10
- 239000002245 particle Substances 0.000 abstract description 7
- 239000003344 environmental pollutant Substances 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 231100000719 pollutant Toxicity 0.000 abstract description 6
- 238000005245 sintering Methods 0.000 abstract description 6
- 238000005054 agglomeration Methods 0.000 abstract description 5
- 230000002776 aggregation Effects 0.000 abstract description 5
- 239000006185 dispersion Substances 0.000 abstract description 5
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 5
- 239000000843 powder Substances 0.000 abstract description 5
- 238000001179 sorption measurement Methods 0.000 abstract description 5
- 238000002425 crystallisation Methods 0.000 abstract description 4
- 230000008025 crystallization Effects 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 96
- 239000002244 precipitate Substances 0.000 description 28
- 239000000203 mixture Substances 0.000 description 24
- 239000011259 mixed solution Substances 0.000 description 21
- 239000002114 nanocomposite Substances 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 10
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 9
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 9
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 description 8
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 8
- 238000005216 hydrothermal crystallization Methods 0.000 description 8
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 7
- 238000006460 hydrolysis reaction Methods 0.000 description 7
- 239000002077 nanosphere Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 7
- 229940043267 rhodamine b Drugs 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000000593 degrading effect Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- -1 nanoreactors Substances 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 239000011941 photocatalyst Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
- B01J20/28021—Hollow particles, e.g. hollow spheres, microspheres or cenospheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/51—Spheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
- C01P2004/34—Spheres hollow
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Silicon Compounds (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种二氧化钛纳米空心球的制备方法。该制备方法首先以正硅酸四乙酯为硅源,采用Stobe法制得二氧化硅微球,然后在二氧化硅微球表面包覆二氧化钛前驱物,再采用强碱腐蚀去除二氧化硅内核,最后进行水热处理,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。本发明还公开一种应用上述制备方法制备的二氧化钛纳米空心球。本发明的方法操作简单,重复性好,无需进行高温烧结,适合大规模生产,避免了二氧化钛粉体发生团聚现象,过程污染小,产品产率高,生产成本低;得到的二氧化钛纳米空心球纯度高,颗粒均匀,结晶良好,晶型可控,分散性良好,表面含有很多片状分支,比表面积大,对污染物的吸附能力以及捕获能力强,光催化效率高。
The invention discloses a preparation method of titanium dioxide nanometer hollow spheres. In the preparation method, tetraethyl orthosilicate is used as the silicon source, and the silica microspheres are prepared by the Stobe method, and then the titanium dioxide precursor is coated on the surface of the silica microspheres, and then the silica core is removed by strong alkali etching. Finally, hydrothermal treatment is carried out to prepare crystalline titanium dioxide nano hollow spheres with sheet-like branched structures on the surface. The invention also discloses a titanium dioxide nano hollow sphere prepared by the above preparation method. The method of the invention is simple in operation, good in repeatability, does not need high-temperature sintering, is suitable for large-scale production, avoids the agglomeration phenomenon of titanium dioxide powder, has little process pollution, high product yield, and low production cost; the purity of the titanium dioxide nano hollow spheres obtained is High, uniform particles, good crystallization, controllable crystal form, good dispersion, many flaky branches on the surface, large specific surface area, strong adsorption and capture capabilities for pollutants, and high photocatalytic efficiency.
Description
技术领域technical field
本发明属于纳米材料领域,涉及一种二氧化钛纳米空心球的制备方法,以及采用其制备的二氧化钛纳米空心球。The invention belongs to the field of nanometer materials, and relates to a preparation method of titanium dioxide nanometer hollow spheres and titanium dioxide nanometer hollow spheres prepared by the method.
背景技术Background technique
纳米材料由于其在结构和光电化学性能等方面的独特优势,使之成为当今材料科学领域的研究热点。纳米二氧化钛具有独特的光学性质和较高的化学稳定性、无毒、低成本、催化活性高,且完全可以与食品和人体接触,因此纳米二氧化钛在诸多领域都有着潜在的发展前景。尤其是在光催化领域,可以利用二氧化钛半导体光催化剂将太阳能转化为电能和化学能。二氧化钛半导体光催化剂在光照时会产生光生电子和空穴,光生空穴具有很强的氧化性,可以光催化降解有机污染物,达到抗菌、杀毒、自洁净的目的;而光生电子具有很强的还原性,不仅可以用于环境光催化中,还可以光催化分解水产氢制备新能源。因此,二氧化钛半导体光催化技术在环境治理中有着巨大的经济和环境效益。Due to its unique advantages in structure and photoelectrochemical properties, nanomaterials have become a research hotspot in the field of material science today. Nano-titanium dioxide has unique optical properties, high chemical stability, non-toxicity, low cost, high catalytic activity, and can completely contact with food and human body, so nano-titanium dioxide has potential development prospects in many fields. Especially in the field of photocatalysis, titanium dioxide semiconductor photocatalysts can be used to convert solar energy into electrical and chemical energy. Titanium dioxide semiconductor photocatalyst will generate photogenerated electrons and holes when it is illuminated. Photogenerated holes have strong oxidative properties and can photocatalytically degrade organic pollutants to achieve the purpose of antibacterial, antivirus and self-cleaning; while photogenerated electrons have strong Reduction, not only can be used in environmental photocatalysis, but also photocatalytic decomposition of water to produce hydrogen to prepare new energy. Therefore, titanium dioxide semiconductor photocatalysis technology has huge economic and environmental benefits in environmental governance.
但是,二氧化钛由于较宽的带隙(3.0~3.2eV),其吸收光范围主要集中在紫外光区域,而占太阳光中90%的可见光得不到利用;此外,光生电子与空穴复合率较高,光量子使用率较低,导致光催化效率不高,大大限制其应用范围。为了提高二氧化钛的光催化活性,人们利用各种方法对其进行修饰和改性,包括离子掺杂、形貌控制、贵金属负载、半导体复合等方法。其中,形貌控制具有操作简单、条件温和、过程污染小、易控制、成本低、产量高等优点。However, due to the wide band gap (3.0-3.2eV) of titanium dioxide, its absorption range is mainly concentrated in the ultraviolet region, and the visible light accounting for 90% of sunlight cannot be utilized; in addition, the recombination rate of photogenerated electrons and holes Higher, lower photon utilization rate, resulting in low photocatalytic efficiency, which greatly limits its application range. In order to improve the photocatalytic activity of titanium dioxide, various methods have been used to modify and modify it, including ion doping, morphology control, noble metal loading, semiconductor recombination and other methods. Among them, morphology control has the advantages of simple operation, mild conditions, less process pollution, easy control, low cost, and high yield.
通过形貌控制制备的二氧化钛纳米空心球是一类内核为空气或其他气体的特殊结构的核壳粒子。与其他形貌的材料相比,空心结构的二氧化钛纳米微球具有以下优点:具有较大的比表面积、较小的密度、特殊的力学、光、电等物理性质及应用价值。因此,二氧化钛纳米空心球可用作包覆材料、催化剂载体、纳米反应器以及纳米材料、生物大分子及药物缓释的载体,在生物、医药、生物工程等领域具有广阔的应用前景。Titanium dioxide hollow nanospheres prepared by shape control are a kind of core-shell particles with a special structure whose inner core is air or other gases. Compared with other morphological materials, titanium dioxide nanospheres with hollow structure have the following advantages: larger specific surface area, lower density, special mechanical, optical, electrical and other physical properties and application value. Therefore, titanium dioxide hollow nanospheres can be used as coating materials, catalyst carriers, nanoreactors, and carriers for nanomaterials, biomacromolecules, and drug sustained release, and have broad application prospects in the fields of biology, medicine, and bioengineering.
而采用现有方法制备的二氧化钛纳米空心球普遍表面圆滑,比表面积不够大,吸附能力受到限制,进而导致光催化性能不够高。此外,在现有的制备二氧化钛纳米空心球的方法中,需要经过高温烧结处理,而烧结过程不仅造成生产成本高,污染环境,产品产率不高,不适合大规模生产,而且容易导致粉体产生硬团聚现象,颗粒不均匀,分散性差,产品品质差。However, the titanium dioxide nano hollow spheres prepared by the existing method generally have a smooth surface, the specific surface area is not large enough, the adsorption capacity is limited, and the photocatalytic performance is not high enough. In addition, in the existing method of preparing hollow titanium dioxide nanospheres, high-temperature sintering treatment is required, and the sintering process not only causes high production costs, pollutes the environment, and the product yield is not high, it is not suitable for large-scale production, and it is easy to cause powder Hard agglomeration occurs, the particles are uneven, the dispersion is poor, and the product quality is poor.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
为了解决现有技术的上述问题,本发明提供一种二氧化钛纳米空心球的制备方法,该制备方法操作简单,无需进行高温烧结,适合大规模生产,避免了二氧化钛粉体发生团聚现象,过程污染小,产品产率高,生产成本低。In order to solve the above-mentioned problems in the prior art, the present invention provides a preparation method of titanium dioxide nano hollow spheres, the preparation method is simple to operate, does not require high-temperature sintering, is suitable for large-scale production, avoids the agglomeration of titanium dioxide powder, and has little process pollution , high product yield and low production cost.
本发明提供一种采用上述二氧化钛纳米空心球的制备方法制得的二氧化钛纳米空心球,该二氧化钛纳米空心球纯度高,颗粒均匀,结晶良好,分散性良好,表面含有很多片状分支,能够增加比表面积,提高对污染物的吸附能力以及捕获能力,增强光催化效率。The present invention provides titanium dioxide nano hollow spheres prepared by the method for preparing titanium dioxide nano hollow spheres. The titanium dioxide nano hollow spheres have high purity, uniform particles, good crystallization, good dispersibility, and many flaky branches on the surface, which can increase the ratio Increase the surface area, improve the adsorption capacity and capture capacity of pollutants, and enhance the photocatalytic efficiency.
(二)技术方案(2) Technical solutions
为了达到上述目的,本发明采用的主要技术方案如下:In order to achieve the above object, the main technical solutions adopted in the present invention are as follows:
本发明提供一种二氧化钛纳米空心球,首先以正硅酸四乙酯为硅源,采用Stobe法制得二氧化硅微球,然后在二氧化硅微球表面包覆二氧化钛前驱物,再采用强碱腐蚀去除二氧化硅内核,最后进行水热处理,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。The invention provides a titanium dioxide nano hollow sphere. First, tetraethyl orthosilicate is used as a silicon source to prepare silicon dioxide microspheres by the Stobe method, and then a titanium dioxide precursor is coated on the surface of the silicon dioxide microspheres, and then a strong alkali The silicon dioxide inner core is removed by etching, and finally hydrothermal treatment is carried out to prepare crystalline titanium dioxide nano hollow spheres with sheet-like branched structures on the surface.
在一个优选的实施方案中,所述以正硅酸四乙酯为硅源,采用Stobe 法制得二氧化硅微球包括:In a preferred embodiment, the silicon dioxide microspheres prepared by the Stobe method using tetraethyl orthosilicate as silicon source include:
将水、乙醇和氨水混合,配制溶剂液I;Mix water, ethanol and ammonia water to prepare solvent liquid I;
将正硅酸四乙酯加入溶剂液I中,室温下搅拌进行水解反应,采用乙醇清洗,烘干,制得二氧化硅微球。Tetraethyl orthosilicate was added to the solvent solution I, stirred at room temperature for hydrolysis reaction, washed with ethanol, and dried to obtain silica microspheres.
在一个优选的实施方案中,在配制溶剂液I的过程中,水、乙醇和氨水的体积比为5:35-40:1;和/或In a preferred embodiment, in the process of preparing solvent liquid I, the volume ratio of water, ethanol and ammonia water is 5:35-40:1; And/or
在制得二氧化硅微球的过程中,将0.5-1.5ml的正硅酸四乙酯缓慢加入溶剂液I中;和/或During the process of preparing silica microspheres, slowly add 0.5-1.5 ml of tetraethyl orthosilicate into solvent liquid I; and/or
烘干温度为50-80℃。The drying temperature is 50-80°C.
在一个优选的实施方案中,所述在二氧化硅微球表面包覆二氧化钛前驱物包括:In a preferred embodiment, the titanium dioxide precursor coated on the surface of silica microspheres includes:
将水和乙醇混合,配制溶剂液Ⅱ;Mix water and ethanol to prepare solvent solution II;
将高取代羟丙基纤维素加入溶剂液Ⅱ中,充分溶解后,加入制备好的二氧化硅微球,充分溶解,制得溶液A;Add high-substituted hydroxypropyl cellulose into solvent liquid II, and after fully dissolving, add the prepared silica microspheres and fully dissolve to obtain solution A;
将钛酸四丁酯和乙醇混合,配制溶液B;Mix tetrabutyl titanate and ethanol to prepare solution B;
将溶液B加入溶液A中,得到混合液,之后将混合液回流,离心分离,最后采用乙醇清洗,制得二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物。Add solution B to solution A to obtain a mixed solution, then reflux the mixed solution, centrifuge, and finally wash with ethanol to prepare a core-shell nanocomposite of titanium dioxide precursor coated silica microspheres.
在一个优选的实施方案中,在配制溶剂液Ⅱ的过程中,水和乙醇的体积比为1:150-300;和/或In a preferred embodiment, in the process of preparing solvent liquid II, the volume ratio of water and ethanol is 1:150-300; and/or
在制得溶液A的过程中,高取代羟丙基纤维素的添加量为50-150mg,二氧化硅微球的添加量为0.15-0.3g;和/或In the process of preparing solution A, the addition amount of high-substituted hydroxypropyl cellulose is 50-150 mg, and the addition amount of silica microspheres is 0.15-0.3 g; and/or
在配制溶液B的过程中,钛酸四丁酯和乙醇的体积比为1:3.5-5.5;和/或In the process of preparing solution B, the volume ratio of tetrabutyl titanate and ethanol is 1:3.5-5.5; and/or
在制得二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物的过程中,将4-7ml的溶液B在10-20min内滴加到溶液A中,得到混合液,所述混合液的回流温度为70-95℃,回流时间为80-150min。In the process of preparing the core-shell nanocomposite of titanium dioxide precursor coated silica microspheres, 4-7ml of solution B is added dropwise to solution A within 10-20min to obtain a mixed solution, the mixed solution The reflux temperature is 70-95°C, and the reflux time is 80-150min.
在一个优选的实施方案中,所述采用强碱腐蚀去除二氧化硅内核包括:In a preferred embodiment, the removal of the silicon dioxide inner core by strong alkali etching comprises:
将二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物超声分散于水中,加入强碱溶液,在30-70℃下搅拌,形成溶液C;Ultrasonic disperse the core-shell nanocomposite of titanium dioxide precursor coated silica microspheres in water, add a strong alkali solution, and stir at 30-70°C to form solution C;
将溶液C进行离心分离沉淀,采用超纯水和无水乙醇对沉淀物进行洗涤,至溶液接近中性,将沉淀物进行干燥,制得非晶态的二氧化钛前驱物纳米空心球。The solution C was subjected to centrifugal separation and precipitation, and the precipitate was washed with ultrapure water and absolute ethanol until the solution was close to neutral, and then the precipitate was dried to obtain amorphous titanium dioxide precursor hollow nanospheres.
在一个优选的实施方案中,在形成溶液C的过程中,所述强碱溶液为氢氧化钠和/或氢氧化钾溶液,所述强碱溶液的浓度为1-3mol/L,所述强碱溶液的体积为0.5-2ml,加入强碱溶液后在30-70℃下搅拌6-12h;和 /或In a preferred embodiment, in the process of forming solution C, the strong alkali solution is sodium hydroxide and/or potassium hydroxide solution, the concentration of the strong alkali solution is 1-3mol/L, the strong alkali solution The volume of the alkali solution is 0.5-2ml, after adding the strong alkali solution, stir at 30-70°C for 6-12h; and/or
在制得非晶态的二氧化钛前驱物纳米空心球的过程中,所述干燥的温度为50-80℃,干燥的时间为8-15h。During the process of preparing the amorphous titanium dioxide precursor nano hollow spheres, the drying temperature is 50-80° C., and the drying time is 8-15 hours.
在一个优选的实施方案中,所述水热处理包括:In a preferred embodiment, the hydrothermal treatment comprises:
将水和乙醇进行混合,配制溶液D;Mix water and ethanol to prepare solution D;
将非晶态的二氧化钛前驱物纳米空心球超声分散于溶液D中,水热处理,离心分离沉淀,采用超纯水和无水乙醇对沉淀物进行洗涤,干燥,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。Ultrasonically disperse amorphous titanium dioxide precursor nano hollow spheres in solution D, hydrothermally treat, centrifuge and precipitate, wash and dry the precipitate with ultrapure water and absolute ethanol, and obtain a sheet-like branched structure on the surface Crystalline titanium dioxide hollow nanospheres.
在一个优选的实施方案中,在配制溶液D的过程中,水和乙醇的体积比为1-2.5:1;和/或In a preferred embodiment, in the process of preparing solution D, the volume ratio of water and ethanol is 1-2.5:1; And/or
所述水热处理的温度为100-250℃,水热处理的时间为6-12h,所述干燥的温度为50-80℃,干燥的时间为8-15h。The temperature of the hydrothermal treatment is 100-250° C., the time of the hydrothermal treatment is 6-12 hours, the temperature of the drying is 50-80° C., and the drying time is 8-15 hours.
本发明还提供一种采用上述任一实施方案所述的二氧化钛纳米空心球的制备方法制得的二氧化钛纳米空心球。The present invention also provides a hollow titanium dioxide nanosphere prepared by the method for preparing hollow titanium dioxide nanosphere according to any one of the above embodiments.
(三)有益效果(3) Beneficial effects
本发明首先以正硅酸四乙酯为硅源,采用Stobe法制得二氧化硅微球,然后在二氧化硅微球表面包覆二氧化钛前驱物,再采用强碱腐蚀去除二氧化硅内核,最后进行水热处理,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。本发明的二氧化钛纳米空心球的制备方法操作简单,重复性好,无需进行高温烧结,适合大规模生产,避免了二氧化钛粉体发生团聚现象,过程污染小,产品产率高,生产成本低。采用此方法制备的二氧化钛纳米空心球纯度高,颗粒均匀,结晶良好,晶型可控,分散性良好,表面含有很多片状分支,能够增加比表面积,提高对污染物的吸附能力以及捕获能力,增强了光催化效率。In the present invention, tetraethyl orthosilicate is used as the silicon source at first, and the silicon dioxide microspheres are prepared by the Stobe method, and then the titanium dioxide precursor is coated on the surface of the silicon dioxide microspheres, and then the silicon dioxide core is removed by strong alkali corrosion, and finally Hydrothermal treatment is carried out to prepare crystalline titanium dioxide nano hollow spheres with sheet-like branched structure on the surface. The preparation method of the titanium dioxide nano hollow spheres of the present invention is simple in operation, good in repeatability, does not need high-temperature sintering, is suitable for large-scale production, avoids agglomeration of titanium dioxide powder, has little process pollution, high product yield and low production cost. Titanium dioxide nano hollow spheres prepared by this method have high purity, uniform particles, good crystallization, controllable crystal form, good dispersion, and many flaky branches on the surface, which can increase the specific surface area, improve the adsorption capacity and capture capacity of pollutants, Enhanced photocatalytic efficiency.
附图说明Description of drawings
图1是本发明实施例1中二氧化钛纳米空心球制备方法的流程示意图。Fig. 1 is a schematic flow chart of the preparation method of hollow titanium dioxide nanospheres in Example 1 of the present invention.
图2是本发明实施例1中二氧化钛纳米空心球的X射线衍射图谱;Fig. 2 is the X-ray diffraction spectrum of hollow titanium dioxide nanospheres in Example 1 of the present invention;
图3是本发明实施例1中二氧化钛纳米空心球的透射电镜图;Fig. 3 is the transmission electron microscope picture of titanium dioxide nano hollow sphere in the embodiment 1 of the present invention;
图4是本发明实施例1中二氧化钛纳米空心球在紫外光下降解罗丹明B溶液的吸收图谱;Fig. 4 is the absorption spectrum of titanium dioxide nano hollow spheres degrading Rhodamine B solution under ultraviolet light in Example 1 of the present invention;
图5是本发明实施例1中二氧化钛纳米空心球与纯二氧化钛球降解罗丹明B溶液的线性拟合曲线图谱。Fig. 5 is a linear fitting curve diagram of degradation of rhodamine B solution by titanium dioxide nano hollow spheres and pure titanium dioxide spheres in Example 1 of the present invention.
具体实施方式Detailed ways
为了更好的解释本发明,以便于理解,下面通过具体实施方式,对本发明作详细描述。In order to better explain the present invention and facilitate understanding, the present invention will be described in detail below through specific embodiments.
本实施方式提出一种二氧化钛纳米空心球的方法,首先以正硅酸四乙酯为硅源,采用Stobe法制得二氧化硅微球,然后在二氧化硅微球表面包覆二氧化钛前驱物,再采用强碱腐蚀去除二氧化硅内核,最后进行水热处理,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。This embodiment proposes a method for titanium dioxide nano hollow spheres. First, tetraethyl orthosilicate is used as the silicon source, and the silica microspheres are prepared by the Stobe method, and then the titanium dioxide precursor is coated on the surface of the silica microspheres, and then The silicon dioxide inner core is removed by strong alkali corrosion, and finally hydrothermal treatment is carried out to prepare crystalline titanium dioxide nano hollow spheres with sheet-like branched structures on the surface.
在本实施方式中,以正硅酸四乙酯为硅源,采用Stobe法制得二氧化硅微球包括以下步骤:In this embodiment, using tetraethyl orthosilicate as the silicon source, the silica microspheres prepared by the Stobe method include the following steps:
将水、乙醇和氨水按照体积比为5:35-40:1的比例混合,配制溶剂液 I;Water, ethanol and ammonia water are mixed according to the ratio of 5:35-40:1 by volume to prepare solvent liquid I;
将0.5-1.5ml的正硅酸四乙酯缓慢加入溶剂液I中,室温下搅拌5-12h,进行水解反应,然后采用乙醇清洗数次,在50-80℃下烘干,制得二氧化硅微球。Slowly add 0.5-1.5ml of tetraethyl orthosilicate into the solvent solution I, stir at room temperature for 5-12h, carry out hydrolysis reaction, then wash with ethanol for several times, and dry at 50-80°C to obtain carbon dioxide Silica microspheres.
在本实施方式中,在二氧化硅微球表面包覆二氧化钛前驱物包括以下步骤:In this embodiment, coating the titanium dioxide precursor on the surface of the silica microspheres includes the following steps:
将水和乙醇按照体积比为1:150-300的比例混合,配制溶剂液Ⅱ;Mix water and ethanol according to the volume ratio of 1:150-300 to prepare solvent liquid II;
将50-150mg的高取代羟丙基纤维素滴加到溶剂液Ⅱ中,充分溶解后,加入0.15-0.3g制备好的二氧化硅微球,充分溶解,制得均匀的混合液,记为溶液A;Add 50-150 mg of highly substituted hydroxypropyl cellulose dropwise into solvent solution II, and after fully dissolving, add 0.15-0.3 g of prepared silica microspheres, fully dissolve, and obtain a uniform mixed solution, which is recorded as Solution A;
将钛酸四丁酯和乙醇按照体积比为1:3.5-5.5的比例混合,配制溶液B;Mix tetrabutyl titanate and ethanol at a volume ratio of 1:3.5-5.5 to prepare solution B;
将4-7ml的溶液B在10-20min内滴加到溶液A中,得到混合液,之后将混合液在70-95℃回流80-150min,离心分离,最后采用乙醇清洗数次,制得二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物。Add 4-7ml of solution B dropwise to solution A within 10-20 minutes to obtain a mixed solution, then reflux the mixed solution at 70-95°C for 80-150 minutes, centrifuge, and finally wash with ethanol several times to obtain titanium dioxide Precursor-coated core-shell nanocomposites of silica microspheres.
在本实施方式中,采用强碱腐蚀去除二氧化硅内核包括以下步骤:In this embodiment, the use of strong alkali corrosion to remove the silicon dioxide core includes the following steps:
将上述的二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物超声分散于10-30ml的水中,加入0.5-2ml浓度为1-3mol/L的强碱溶液,在 30-70℃下搅拌6-12h,形成溶液C;其中强碱溶液为氢氧化钠溶液和/或氢氧化钾溶液。Ultrasonic disperse the core-shell nanocomposite of titanium dioxide precursor coated silica microspheres in 10-30ml of water, add 0.5-2ml of strong alkali solution with a concentration of 1-3mol/L, at 30-70℃ Stir for 6-12h to form solution C; wherein the strong base solution is sodium hydroxide solution and/or potassium hydroxide solution.
将溶液C在3000-4000rpm条件下进行离心分离沉淀,采用超纯水和无水乙醇对沉淀物进行洗涤,至溶液接近中性,将沉淀物在50-80℃下干燥8-15h,制得非晶态的二氧化钛前驱物纳米空心球。Centrifuge and precipitate solution C at 3000-4000rpm, wash the precipitate with ultrapure water and absolute ethanol until the solution is close to neutral, dry the precipitate at 50-80°C for 8-15h, and obtain Amorphous titanium dioxide precursor nano hollow spheres.
在本实施方式中,为了使非晶态的二氧化钛前驱物纳米空心球具有半导体晶体性能,需对非晶态的二氧化钛前驱物纳米空心球进行水热处理。其中水热处理包括以下步骤:In this embodiment, in order to make the amorphous titanium dioxide precursor nano hollow spheres have semiconductor crystal properties, it is necessary to perform hydrothermal treatment on the amorphous titanium dioxide precursor nano hollow spheres. Wherein the hydrothermal treatment comprises the following steps:
将水和乙醇按照体积比为1-2.5:1的比例混合,配制溶液D;Mix water and ethanol according to the volume ratio of 1-2.5:1 to prepare solution D;
将非晶态的二氧化钛前驱物纳米空心球样品超声分散于溶液D中,移至反应釜,100-250℃下水热6-12h,离心分离沉淀,采用超纯水和无水乙醇对沉淀物进行洗涤,在50-80℃下干燥8-15h,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。Ultrasonically disperse the nano hollow sphere sample of amorphous titanium dioxide precursor in solution D, move it to the reaction kettle, heat it in water at 100-250°C for 6-12h, centrifuge and separate the precipitate, and use ultrapure water and absolute ethanol to carry out the precipitation washing and drying at 50-80° C. for 8-15 hours to prepare crystalline titanium dioxide nano hollow spheres with sheet-like branched structures on the surface.
本发明还提供一种采用上述的二氧化钛纳米空心球的制备方法制得的二氧化钛纳米空心球。The present invention also provides a titanium dioxide nano hollow sphere prepared by the above-mentioned preparation method of the titanium dioxide nano hollow sphere.
本发明采用了模板法生成二氧化钛纳米空心球,即先利用Stobe法一步制造出二氧化硅作为模板,然后在其表面包覆上二氧化钛前驱物涂层,再经过强碱腐蚀去除二氧化硅模板,最后进行水热处理,得到晶态的二氧化钛纳米空心球。The present invention adopts the template method to generate titanium dioxide nano hollow spheres, that is, the Stobe method is used to manufacture silicon dioxide as a template in one step, and then the surface is covered with a titanium dioxide precursor coating, and then the silicon dioxide template is removed by strong alkali corrosion. Finally, hydrothermal treatment is carried out to obtain crystalline titanium dioxide nanometer hollow spheres.
具体的,在制造二氧化硅模板时,将正硅酸四乙酯作为硅源,氨水作为pH的调节剂以及反应发生的催化剂,使正硅酸四乙酯在水和乙醇的混合液中缓慢的水解,生成大小均一,分散性良好的二氧化硅微球。Specifically, when making a silica template, tetraethyl orthosilicate is used as a silicon source, and ammonia water is used as a pH regulator and a catalyst for the reaction to slowly dissolve tetraethyl orthosilicate in a mixed solution of water and ethanol. Hydrolyzed to generate silica microspheres with uniform size and good dispersion.
在进行二氧化钛前驱物涂层时,以钛酸四丁酯为钛源,高取代羟丙基纤维素作为分散剂以及粘结剂,附着在二氧化硅分子表面形成一层双分子层,进而吸附二氧化钛前驱物,使二氧化钛前驱物均匀地附着在二氧化硅层表面,形成一层均匀完整的二氧化钛前驱物包覆层。When coating the titanium dioxide precursor, tetrabutyl titanate is used as the titanium source, and highly substituted hydroxypropyl cellulose is used as the dispersant and binder, which are attached to the surface of silica molecules to form a bimolecular layer, and then adsorbed The titanium dioxide precursor makes the titanium dioxide precursor evenly adhere to the surface of the silicon dioxide layer to form a uniform and complete coating layer of the titanium dioxide precursor.
在去除二氧化硅内核时,用高浓度的氢氧化钠溶液作为腐蚀剂,强碱中的氢氧根离子和二氧化硅反应,生成硅酸盐和水,进而去除掉二氧化硅内核,然后经过超纯水和无水乙醇多次清洗,去除多余的氢氧化钠以及高取代羟丙基纤维素。When removing the silica inner core, use a high-concentration sodium hydroxide solution as an etchant, and the hydroxide ions in the strong base react with silica to form silicate and water, and then remove the silica inner core, and then pass through Wash with ultrapure water and absolute ethanol several times to remove excess sodium hydroxide and highly substituted hydroxypropyl cellulose.
最后,在水和乙醇的混合液中进行水热反应,由于前驱物在亚临界和超临界的水热条件下,反应处于分子水平,反应性提高,前驱物受热分解形成氧化物,转变为晶态,然后通过自组装,产生不同形貌的微纳米结构。Finally, the hydrothermal reaction is carried out in the mixed solution of water and ethanol. Since the precursor reacts at the molecular level under subcritical and supercritical hydrothermal conditions, the reactivity is improved, and the precursor is decomposed by heat to form oxides and transform into crystalline state, and then self-assembled to produce micro-nanostructures with different morphologies.
在水热溶剂中加入乙醇,使整个过程的反应物和产物分散均匀,流动性增大,分子间的碰撞几率趋于平缓,从而抑制二氧化钛前驱物剧烈的水解反应。因此,晶体的成核速率和生长速率相对较慢,晶体趋向于异向生长,对片状结构的生成提供有利的条件,然后这些粒子通过自组装,在二氧化钛表面衍生出片状分支,得到具有片状分支的晶态二氧化钛纳米空心球。Adding ethanol to the hydrothermal solvent makes the reactants and products in the whole process evenly dispersed, increases the fluidity, and the probability of intermolecular collisions tends to be gentle, thereby inhibiting the violent hydrolysis reaction of the titanium dioxide precursor. Therefore, the nucleation rate and growth rate of the crystals are relatively slow, and the crystals tend to grow anisotropically, which provides favorable conditions for the formation of sheet-like structures, and then these particles derive sheet-like branches on the surface of titanium dioxide through self-assembly, resulting in a Sheet-like branched crystalline titanium dioxide nanohollow spheres.
本发明的二氧化钛纳米空心球的制备方法操作简单,重复性好,无需进行高温烧结,适合大规模生产,避免了二氧化钛粉体发生团聚现象,过程污染小,产品产率高,生产成本低。The preparation method of the titanium dioxide nano hollow spheres of the present invention is simple in operation, good in repeatability, does not need high-temperature sintering, is suitable for large-scale production, avoids agglomeration of titanium dioxide powder, has little process pollution, high product yield and low production cost.
采用本发明的方法制备的二氧化钛纳米空心球纯度高,颗粒均匀,结晶良好,晶型可控,分散性良好,表面含有很多片状分支,能够增加比表面积,提高对污染物的吸附能力以及捕获能力,增强了光催化效率。The titanium dioxide nano hollow spheres prepared by the method of the present invention have high purity, uniform particles, good crystallization, controllable crystal form, good dispersion, and many lamellar branches on the surface, which can increase the specific surface area, improve the adsorption capacity and capture of pollutants ability to enhance the photocatalytic efficiency.
通过以下实施例进一步说明本发明。The invention is further illustrated by the following examples.
实施例1Example 1
如图1所示,实施例1提出一种二氧化钛纳米空心球的制备方法,具体包括以下步骤:As shown in Figure 1, embodiment 1 proposes a kind of preparation method of titanium dioxide nano hollow sphere, specifically comprises the following steps:
1、SiO2球的制备 1. Preparation of SiO spheres
1.1、将水、乙醇和氨水按照体积比为5:37:1的比例混合,配制溶剂液I;1.1. Mix water, ethanol and ammonia water according to the volume ratio of 5:37:1 to prepare solvent liquid I;
1.2、将0.8ml的正硅酸四乙酯缓慢加入到上述溶剂液I中,室温下搅拌 8h,进行水解反应,然后用乙醇清洗数次,在60℃下烘干,制得分散的SiO2球。1.2. Slowly add 0.8ml tetraethyl orthosilicate into the above solvent solution I, stir at room temperature for 8 hours, carry out hydrolysis reaction, then wash with ethanol several times, and dry at 60°C to obtain dispersed SiO 2 ball.
2、TiO2前驱物涂层2. TiO 2 precursor coating
2.1、将水和乙醇按照体积比为1:80的比例混合,配制溶剂液Ⅱ;2.1. Mix water and ethanol at a volume ratio of 1:80 to prepare solvent solution II;
2.2、将80mg的高取代羟丙基纤维素滴加到上述溶剂液Ⅱ中。充分溶解后,加入0.18g步骤1制备好的SiO2球,充分溶解,得到均匀的混合液,记为溶液A;2.2. Add 80 mg of highly substituted hydroxypropyl cellulose dropwise into the above solvent solution II. After fully dissolving, add 0.18g of SiO2 spheres prepared in step 1, fully dissolve to obtain a uniform mixed solution, which is designated as solution A;
2.3、将钛酸四丁酯和乙醇按照体积比为1:4的比例混合,配制溶液B;2.3. Mix tetrabutyl titanate and ethanol at a volume ratio of 1:4 to prepare solution B;
2.4、将6ml的溶液B在10min内滴加到溶液A中,得到混合液,之后将上述混合液在75℃回流90min,离心分离后,最后采用乙醇清洗数次,制得二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物。2.4. Add 6ml of solution B dropwise to solution A within 10 minutes to obtain a mixed solution, then reflux the above mixed solution at 75°C for 90 minutes, centrifuge, and finally wash with ethanol several times to obtain a titanium dioxide precursor coating Core-shell nanocomposites of silica microspheres.
3、去除SiO2核3. Remove SiO 2 nuclei
3.1、将上面制备的二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物超声分散于10ml水中,加入0.7ml浓度为1mol/L的氢氧化钠溶液,40℃下搅拌8h,形成溶液C;3.1. Ultrasonic disperse the core-shell nanocomposite of titanium dioxide precursor coated silica microspheres prepared above in 10ml of water, add 0.7ml of sodium hydroxide solution with a concentration of 1mol/L, and stir at 40°C for 8h to form a solution C;
3.2、将溶液C取出,在3500rpm条件下离心分离沉淀,用超纯水和无水乙醇对沉淀物进行洗涤,至溶液接近中性,将沉淀物在60℃下干燥12h,制得非晶态的二氧化钛前驱物纳米空心球,该空心球为非晶体,需要对其进行步骤4的水热结晶,使其具备半导体晶体性能。3.2. Take out the solution C, centrifuge the precipitate at 3500rpm, wash the precipitate with ultrapure water and absolute ethanol until the solution is close to neutral, dry the precipitate at 60°C for 12 hours to obtain an amorphous state The titanium dioxide precursor nano hollow spheres, which are amorphous, need to undergo the hydrothermal crystallization in step 4 to make them have semiconductor crystal properties.
4、水热结晶4. Hydrothermal crystallization
4.1、将水和乙醇按照体积比为1.5:1的比例混合,形成溶液D;4.1. Mix water and ethanol according to the volume ratio of 1.5:1 to form solution D;
4.2、将非晶态的二氧化钛前驱物纳米空心球样品超声分散于溶液D中,移至反应釜,120℃下水热10h,离心分离沉淀,采用超纯水和无水乙醇对沉淀物进行洗涤,在60℃下干燥12h,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。4.2. Ultrasonically disperse the nano hollow sphere sample of the amorphous titanium dioxide precursor in the solution D, move it to the reaction kettle, heat it in water at 120°C for 10 hours, centrifuge and separate the precipitate, and wash the precipitate with ultrapure water and absolute ethanol. Dry at 60°C for 12 hours to prepare hollow crystalline titanium dioxide nanospheres with sheet-like branched structures on the surface.
图2是实施例1中二氧化钛纳米空心球的X射线衍射图谱,从图2中可以看出,X射线衍射图谱只出现了TiO2的锐钛矿晶型的衍射峰,没有其他晶型的衍射峰产生,说明实施例1制备出了单纯的锐钛矿晶型TiO2空心球。Fig. 2 is the X-ray diffraction pattern of titanium dioxide nano hollow spheres in embodiment 1, as can be seen from Fig. 2, X-ray diffraction pattern has only appeared the diffraction peak of the anatase crystal form of TiO2 , does not have the diffraction of other crystal forms peak generation, indicating that Example 1 has prepared pure anatase crystal form TiO 2 hollow spheres.
图3是实施例1中二氧化钛纳米空心球的透射电镜图,如图3所示,实施例 1制备的TiO2空心球的空腔直径为230-300nm,壁厚为45-65nm,同时,在空心球表面上衍生出片状分支结构,片层的厚度为3-5nm。Fig. 3 is the transmission electron microscope figure of titanium dioxide nano hollow sphere in embodiment 1, as shown in Fig. 3, the TiO2 hollow sphere prepared in embodiment 1 has a cavity diameter of 230-300nm, and a wall thickness of 45-65nm. A sheet-like branch structure is derived from the surface of the hollow sphere, and the thickness of the sheet is 3-5nm.
实施例2Example 2
实施例2提出一种二氧化钛纳米空心球的制备方法,具体包括以下步骤:Embodiment 2 proposes a kind of preparation method of titanium dioxide nanometer hollow sphere, specifically comprises the following steps:
1、SiO2球的制备 1. Preparation of SiO spheres
1.1、将水、乙醇和氨水按照体积比为5:38:1的比例混合,配制溶剂液I;1.1. Mix water, ethanol and ammonia water according to the volume ratio of 5:38:1 to prepare solvent liquid I;
1.2、将1.0ml的正硅酸四乙酯缓慢加入到上述溶剂液I中,室温下搅拌10h,进行水解反应,然后用乙醇清洗数次,在50℃下烘干,制得分散的SiO2球。1.2. Slowly add 1.0ml tetraethyl orthosilicate into the above solvent solution I, stir at room temperature for 10 hours, carry out hydrolysis reaction, then wash with ethanol several times, and dry at 50°C to obtain dispersed SiO 2 ball.
2、TiO2前驱物涂层2. TiO 2 precursor coating
2.1、将水和乙醇按照体积比为1:130的比例混合,配制溶剂液Ⅱ;2.1. Mix water and ethanol according to the volume ratio of 1:130 to prepare solvent liquid II;
2.2、将100mg的高取代羟丙基纤维素滴加到上述溶剂液Ⅱ中。充分溶解后,加入0.25g步骤1制备好的SiO2球,充分溶解,得到均匀的混合液,记为溶液A;2.2. Add 100 mg of highly substituted hydroxypropyl cellulose dropwise into the above solvent solution II. After fully dissolving, add 0.25g of SiO2 spheres prepared in step 1, fully dissolve to obtain a uniform mixed solution, which is designated as solution A;
2.3、将钛酸四丁酯和乙醇按照体积比为1:4.8的比例混合,配制溶液B;2.3. Mix tetrabutyl titanate and ethanol at a volume ratio of 1:4.8 to prepare solution B;
2.4、将5ml的溶液B在10min内滴加到溶液A中,得到混合液,之后将上述混合液在85℃回流120min,离心分离后,最后采用乙醇清洗数次,制得二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物。2.4. Add 5ml of solution B dropwise to solution A within 10 minutes to obtain a mixed solution, then reflux the above mixed solution at 85°C for 120 minutes, centrifuge, and finally wash with ethanol several times to obtain a titanium dioxide precursor coating Core-shell nanocomposites of silica microspheres.
3、去除SiO2核3. Remove SiO 2 nuclei
3.1、将上面制备的二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物超声分散于30ml水中,加入1.8ml浓度为2.0mol/L的氢氧化钠溶液,50℃下搅拌12h,形成溶液C;3.1. Ultrasonic disperse the above-prepared titanium dioxide precursor-coated silica microsphere core-shell nanocomposite in 30ml of water, add 1.8ml of sodium hydroxide solution with a concentration of 2.0mol/L, and stir at 50°C for 12h to form Solution C;
3.2、将溶液C取出,在3800rpm条件下离心分离沉淀,用超纯水和无水乙醇对沉淀物进行洗涤,至溶液接近中性,将沉淀物在65℃下干燥10h,制得非晶态的二氧化钛前驱物纳米空心球,该空心球为非晶体,需要对其进行步骤4的水热结晶,使其具备半导体晶体性能。3.2. Take out solution C, centrifuge the precipitate at 3800rpm, wash the precipitate with ultrapure water and absolute ethanol until the solution is close to neutral, dry the precipitate at 65°C for 10 hours to obtain an amorphous state The titanium dioxide precursor nano hollow spheres, which are amorphous, need to undergo the hydrothermal crystallization in step 4 to make them have semiconductor crystal properties.
4、水热结晶4. Hydrothermal crystallization
4.1、将水和乙醇按照体积比为2:1的比例混合,形成溶液D;4.1. Mix water and ethanol according to the volume ratio of 2:1 to form solution D;
4.2、将非晶态的二氧化钛前驱物纳米空心球样品超声分散于溶液D中,移至反应釜,150℃下水热12h,离心分离沉淀,采用超纯水和无水乙醇对沉淀物进行洗涤,在80℃下干燥8h,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。4.2. Ultrasonically disperse the nano hollow sphere sample of the amorphous titanium dioxide precursor in the solution D, move it to the reaction kettle, heat it in water at 150°C for 12 hours, centrifuge and separate the precipitate, and wash the precipitate with ultrapure water and absolute ethanol. Dry at 80°C for 8 hours to prepare hollow crystalline titanium dioxide nanospheres with sheet-like branched structures on the surface.
实施例3Example 3
实施例3提出一种二氧化钛纳米空心球的制备方法,具体包括以下步骤:Embodiment 3 proposes a kind of preparation method of titanium dioxide nanometer hollow sphere, specifically comprises the following steps:
1、SiO2球的制备 1. Preparation of SiO spheres
1.1、将水、乙醇和氨水按照体积比为5:35:1的比例混合,配制溶剂液I;1.1. Mix water, ethanol and ammonia water according to the volume ratio of 5:35:1 to prepare solvent liquid I;
1.2、将1.2ml的正硅酸四乙酯缓慢加入到上述溶剂液I中,室温下搅拌 8h,进行水解反应,然后用乙醇清洗数次,在60℃下烘干,制得分散的SiO2球。1.2. Slowly add 1.2ml tetraethyl orthosilicate to the above solvent solution I, stir at room temperature for 8 hours, carry out hydrolysis reaction, then wash with ethanol several times, and dry at 60°C to obtain dispersed SiO 2 ball.
2、TiO2前驱物涂层2. TiO 2 precursor coating
2.1、将水和乙醇按照体积比为1:200的比例混合,配制溶剂液Ⅱ;2.1. Mix water and ethanol according to the volume ratio of 1:200 to prepare solvent solution II;
2.2、将80mg的高取代羟丙基纤维素滴加到上述溶剂液Ⅱ中。充分溶解后,加入0.2g步骤1制备好的SiO2球,充分溶解,得到均匀的混合液,记为溶液A;2.2. Add 80 mg of highly substituted hydroxypropyl cellulose dropwise into the above solvent solution II. After fully dissolving, add 0.2g of SiO2 spheres prepared in step 1, fully dissolve to obtain a uniform mixed solution, which is designated as solution A;
2.3、将钛酸四丁酯和乙醇按照体积比为1:5的比例混合,配制溶液B;2.3. Mix tetrabutyl titanate and ethanol at a volume ratio of 1:5 to prepare solution B;
2.4、将7ml的溶液B在15min内滴加到溶液A中,得到混合液,之后将上述混合液在90℃回流90min,离心分离后,最后采用乙醇清洗数次,制得二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物。2.4. Add 7ml of solution B dropwise to solution A within 15 minutes to obtain a mixed solution, then reflux the above mixed solution at 90°C for 90 minutes, centrifuge, and finally wash with ethanol several times to obtain a titanium dioxide precursor coating Core-shell nanocomposites of silica microspheres.
3、去除SiO2核3. Remove SiO 2 nuclei
3.1、将上面制备的二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物超声分散于30ml水中,加入1.8ml浓度为2.6mol/L的氢氧化钠溶液,60℃下搅拌12h,形成溶液C;3.1. Ultrasonic disperse the above-prepared titanium dioxide precursor-coated silica microsphere core-shell nanocomposite in 30ml of water, add 1.8ml of sodium hydroxide solution with a concentration of 2.6mol/L, and stir at 60°C for 12h to form Solution C;
3.2、将溶液C取出,在4000rpm条件下离心分离沉淀,用超纯水和无水乙醇对沉淀物进行洗涤,至溶液接近中性,将沉淀物在70℃下干燥15h,制得非晶态的二氧化钛前驱物纳米空心球,该空心球为非晶体,需要对其进行步骤4的水热结晶,使其具备半导体晶体性能。3.2. Take out solution C, centrifuge the precipitate at 4000rpm, wash the precipitate with ultrapure water and absolute ethanol until the solution is close to neutral, dry the precipitate at 70°C for 15 hours to obtain an amorphous state The titanium dioxide precursor nano hollow spheres, which are amorphous, need to undergo the hydrothermal crystallization in step 4 to make them have semiconductor crystal properties.
4、水热结晶4. Hydrothermal crystallization
4.1、将水和乙醇按照体积比为2.5:1的比例混合,形成溶液D;4.1. Mix water and ethanol according to the volume ratio of 2.5:1 to form solution D;
4.2、将非晶态的二氧化钛前驱物纳米空心球样品超声分散于溶液D中,移至反应釜,200℃下水热6h,离心分离沉淀,采用超纯水和无水乙醇对沉淀物进行洗涤,在70℃下干燥10h,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。4.2. Ultrasonically disperse the nano hollow sphere sample of the amorphous titanium dioxide precursor in the solution D, move it to the reaction kettle, heat it in water at 200°C for 6 hours, centrifuge and separate the precipitate, and wash the precipitate with ultrapure water and absolute ethanol. Dry at 70°C for 10 h to prepare crystalline titanium dioxide hollow nanospheres with sheet-like branched structures on the surface.
实施例4Example 4
实施例4提出一种二氧化钛纳米空心球的制备方法,具体包括以下步骤:Embodiment 4 proposes a kind of preparation method of titanium dioxide nanometer hollow sphere, specifically comprises the following steps:
1、SiO2球的制备 1. Preparation of SiO spheres
1.1、将水、乙醇和氨水按照体积比为5:40:1的比例混合,配制溶剂液I;1.1. Mix water, ethanol and ammonia water according to the volume ratio of 5:40:1 to prepare solvent liquid I;
1.2、将1.5ml的正硅酸四乙酯缓慢加入到上述溶剂液I中,室温下搅拌 12h,进行水解反应,然后用乙醇清洗数次,在80℃下烘干,制得分散的SiO2球。1.2. Slowly add 1.5ml tetraethyl orthosilicate to the above solvent solution I, stir at room temperature for 12 hours, carry out hydrolysis reaction, then wash with ethanol several times, and dry at 80°C to obtain dispersed SiO 2 ball.
2、TiO2前驱物涂层2. TiO 2 precursor coating
2.1、将水和乙醇按照体积比为1:280的比例混合,配制溶剂液Ⅱ;2.1. Mix water and ethanol according to the volume ratio of 1:280 to prepare solvent solution II;
2.2、将140mg的高取代羟丙基纤维素滴加到上述溶剂液Ⅱ中。充分溶解后,加入0.3g步骤1制备好的SiO2球,充分溶解,得到均匀的混合液,记为溶液A;2.2. Add 140 mg of highly substituted hydroxypropyl cellulose dropwise into the above solvent solution II. After fully dissolving, add 0.3g of SiO2 spheres prepared in step 1, fully dissolve to obtain a uniform mixed solution, which is designated as solution A;
2.3、将钛酸四丁酯和乙醇按照体积比为1:5.5的比例混合,配制溶液B;2.3. Mix tetrabutyl titanate and ethanol at a volume ratio of 1:5.5 to prepare solution B;
2.4、将7ml的溶液B在20min内滴加到溶液A中,得到混合液,之后将上述混合液在75℃回流150min,离心分离后,最后采用乙醇清洗数次,制得二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物。2.4. Add 7ml of solution B dropwise to solution A within 20 minutes to obtain a mixed solution, then reflux the above mixed solution at 75°C for 150 minutes, centrifuge, and finally wash with ethanol several times to obtain a titanium dioxide precursor coating Core-shell nanocomposites of silica microspheres.
3、去除SiO2核3. Remove SiO 2 nuclei
3.1、将上面制备的二氧化钛前驱物包覆二氧化硅微球的核壳纳米复合物超声分散于20ml水中,加入1.2ml浓度为1.5mol/L的氢氧化钠溶液,70℃下搅拌6h,形成溶液C;3.1. Ultrasonic disperse the above-prepared titanium dioxide precursor-coated silica microsphere core-shell nanocomposite in 20ml of water, add 1.2ml of sodium hydroxide solution with a concentration of 1.5mol/L, and stir at 70°C for 6h to form Solution C;
3.2、将溶液C取出,在3000rpm条件下离心分离沉淀,用超纯水和无水乙醇对沉淀物进行洗涤,至溶液接近中性,将沉淀物在80℃下干燥8h,制得非晶态的二氧化钛前驱物纳米空心球,该空心球为非晶体,需要对其进行步骤4的水热结晶,使其具备半导体晶体性能。3.2. Take out solution C, centrifuge the precipitate at 3000rpm, wash the precipitate with ultrapure water and absolute ethanol until the solution is close to neutral, dry the precipitate at 80°C for 8 hours to obtain an amorphous state The titanium dioxide precursor nano hollow spheres, which are amorphous, need to undergo the hydrothermal crystallization in step 4 to make them have the properties of semiconductor crystals.
4、水热结晶4. Hydrothermal crystallization
4.1、将水和乙醇按照体积比为1:1的比例混合,形成溶液D;4.1. Mix water and ethanol according to the volume ratio of 1:1 to form solution D;
4.2、将非晶态的二氧化钛前驱物纳米空心球样品超声分散于溶液D中,移至反应釜,120℃下水热12h,离心分离沉淀,采用超纯水和无水乙醇对沉淀物进行洗涤,在65℃下干燥15h,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。4.2. Ultrasonically disperse the nano hollow sphere sample of the amorphous titanium dioxide precursor in the solution D, move it to the reaction kettle, heat it in water at 120°C for 12 hours, centrifuge and separate the precipitate, and wash the precipitate with ultrapure water and absolute ethanol. Dry at 65°C for 15 hours to prepare hollow crystalline titanium dioxide nanospheres with sheet-like branched structures on the surface.
应用例Application example
采用紫外光源为300W紫外灯,有机染料为30mg/L的罗丹明B溶液,利用紫外可见分光光度计检测实施例1的二氧化钛纳米空心球作为光催化剂,在不同时间下取样样品中罗丹明B的吸光度。根据朗比-比尔定律,在同一波长下,有机染料吸收峰的强度与其浓度成正比。二氧化钛纳米空心球在紫外光下降解罗丹明B溶液的吸收图谱如图4所示,紫外光光照时间由上到下依次为0min、5min、10min、15min、20min。由图4可以看出,罗丹明B在可见区域(波长为500nm到700nm)的吸收峰随着时间降低,实施例1的二氧化钛纳米空心球在20min时的紫外光降解率可达到100%,其中,降解率的计算公式为:(初始浓度C0-某时刻浓度 Ci)/C0*100%。Adopting ultraviolet light source is 300W ultraviolet lamp, and organic dye is the rhodamine B solution of 30mg/L, utilizes ultraviolet-visible spectrophotometer to detect the titanium dioxide nanometer hollow sphere of embodiment 1 as photocatalyst, in sampling sample under different time the content of rhodamine B Absorbance. According to the Lambie-Beer law, at the same wavelength, the intensity of the organic dye absorption peak is proportional to its concentration. The absorption spectrum of titanium dioxide nano hollow spheres degrading rhodamine B solution under ultraviolet light is shown in Figure 4, and the ultraviolet light irradiation time from top to bottom is 0min, 5min, 10min, 15min, 20min. As can be seen from Fig. 4, the absorption peak of rhodamine B in the visible region (wavelength is 500nm to 700nm) decreases with time, and the ultraviolet photodegradation rate of titanium dioxide nano hollow spheres of embodiment 1 can reach 100% in 20min, wherein , the calculation formula of the degradation rate is: (initial concentration C 0 -concentration C i at a certain moment)/C 0 *100%.
作为对比,利用溶胶凝胶法制备了相似直径的纯二氧化钛球,然后分别对纯二氧化钛球以及实施例1制备的二氧化钛纳米空心球进行紫外光催化降解有机染料性能的测试,二者在紫外光下降解罗丹明B溶液的线性拟合曲线如图5所示。图5中线性拟合曲线的斜率反映光催化效率 (反应动力学常数),即斜率越大,光催化效率越好。由图5可看出,实施例1制备的二氧化钛空心球的斜率(0.32339min-1)比纯二氧化钛球的斜率(0.0223min-1)大很多,故二氧化钛空心球在紫外光下的催化降解效率比二氧化钛球高。主要原因可归结为以下三个方面:1.空壳结构很大程度上提高了产品的比表面积,增加了降解污染物的反应位;2.空壳结构的主要构成是表面的原子(内外表面),当空壳结构受到光照激发时,更多的电子被激发至价带,表面会有更多的空穴产生;3.本发明制备的二氧化钛空心球表面含有很多片状分支,这些分支在整个空心球表面伸展,提高了它对污染物的吸附能力以及捕获能力,从而极大的增强了光催化效率。As a comparison, the sol-gel method was used to prepare pure titanium dioxide spheres with similar diameters, and then the pure titanium dioxide spheres and the hollow titanium dioxide nanospheres prepared in Example 1 were tested for the performance of ultraviolet photocatalytic degradation of organic dyes. The linear fitting curve of rhodamine B solution is shown in Figure 5. The slope of the linear fitting curve in Figure 5 reflects the photocatalytic efficiency (reaction kinetic constant), that is, the larger the slope, the better the photocatalytic efficiency. It can be seen from Figure 5 that the slope (0.32339min -1 ) of the titanium dioxide hollow spheres prepared in Example 1 is much larger than that of the pure titanium dioxide spheres (0.0223min -1 ), so the catalytic degradation efficiency of the titanium dioxide hollow spheres under ultraviolet light Higher than titanium dioxide balls. The main reasons can be attributed to the following three aspects: 1. The empty shell structure greatly increases the specific surface area of the product and increases the reaction sites for degrading pollutants; 2. The main composition of the empty shell structure is the atoms on the surface (inner and outer surfaces ), when the hollow shell structure is excited by light, more electrons are excited to the valence band, and more holes will be generated on the surface; The entire surface of the hollow sphere is stretched, which improves its ability to adsorb and capture pollutants, thereby greatly enhancing the photocatalytic efficiency.
以上结合具体实施方式描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域技术人员不需要付出创造性劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明保护范围之内。The technical principle of the present invention has been described above in conjunction with the specific embodiments. These descriptions are only for explaining the principles of the present invention, and cannot be construed as limiting the protection scope of the present invention in any way. Based on the explanations herein, those skilled in the art can think of other specific implementation modes of the present invention without creative efforts, and these modes will all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810529196.1A CN108640149B (en) | 2018-05-29 | 2018-05-29 | Titanium dioxide nano hollow ball and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810529196.1A CN108640149B (en) | 2018-05-29 | 2018-05-29 | Titanium dioxide nano hollow ball and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108640149A true CN108640149A (en) | 2018-10-12 |
CN108640149B CN108640149B (en) | 2019-08-02 |
Family
ID=63758401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810529196.1A Active CN108640149B (en) | 2018-05-29 | 2018-05-29 | Titanium dioxide nano hollow ball and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108640149B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110759705A (en) * | 2019-11-13 | 2020-02-07 | 湖北工业大学 | Preparation method of composite functional ceramsite |
CN111617633A (en) * | 2020-07-02 | 2020-09-04 | 江苏博霖环保科技有限公司 | Preparation method for composite degradation of VOCs (volatile organic compounds) by multi-shell photocatalyst and activated carbon |
CN114132959A (en) * | 2021-11-15 | 2022-03-04 | 武汉科技大学 | A core-shell structure B4C@TiO2 composite powder and its preparation method |
CN119390116A (en) * | 2024-11-20 | 2025-02-07 | 江苏中研创星材料科技有限公司 | A method for preparing highly dispersed nano titanium dioxide and its product |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101481140A (en) * | 2009-02-27 | 2009-07-15 | 上海师范大学 | Preparation of multi-level flower-like structure titanium dioxide |
CN101941736A (en) * | 2010-10-21 | 2011-01-12 | 北京科技大学 | Preparation method of echinoid titanium dioxide microspheres in single/double layer cavity structure |
CN106082318A (en) * | 2016-05-26 | 2016-11-09 | 青海大学 | The preparation method of nano titanium oxide hollow ball |
-
2018
- 2018-05-29 CN CN201810529196.1A patent/CN108640149B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101481140A (en) * | 2009-02-27 | 2009-07-15 | 上海师范大学 | Preparation of multi-level flower-like structure titanium dioxide |
CN101941736A (en) * | 2010-10-21 | 2011-01-12 | 北京科技大学 | Preparation method of echinoid titanium dioxide microspheres in single/double layer cavity structure |
CN106082318A (en) * | 2016-05-26 | 2016-11-09 | 青海大学 | The preparation method of nano titanium oxide hollow ball |
Non-Patent Citations (1)
Title |
---|
TIM LESHUK ET AL.: ""Mesoporous Hollow Sphere Titanium Dioxide Photocatalysts through Hydrothermal Silica Etching"", 《ACS APPLIED MATERIALS & INTERFACES》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110759705A (en) * | 2019-11-13 | 2020-02-07 | 湖北工业大学 | Preparation method of composite functional ceramsite |
CN110759705B (en) * | 2019-11-13 | 2021-08-13 | 湖北工业大学 | Preparation method of composite functional ceramsite |
CN111617633A (en) * | 2020-07-02 | 2020-09-04 | 江苏博霖环保科技有限公司 | Preparation method for composite degradation of VOCs (volatile organic compounds) by multi-shell photocatalyst and activated carbon |
CN114132959A (en) * | 2021-11-15 | 2022-03-04 | 武汉科技大学 | A core-shell structure B4C@TiO2 composite powder and its preparation method |
CN114132959B (en) * | 2021-11-15 | 2024-04-02 | 武汉科技大学 | A core-shell structured B4C@TiO2 composite powder and preparation method thereof |
CN119390116A (en) * | 2024-11-20 | 2025-02-07 | 江苏中研创星材料科技有限公司 | A method for preparing highly dispersed nano titanium dioxide and its product |
Also Published As
Publication number | Publication date |
---|---|
CN108640149B (en) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108675345A (en) | A kind of titanium dioxide nano hollow ball and preparation method thereof | |
CN108640149B (en) | Titanium dioxide nano hollow ball and preparation method thereof | |
CN108906040B (en) | A kind of noble metal doped titanium dioxide nanocomposite material and preparation method thereof | |
CN104785280B (en) | A kind of plate-like titanium dioxide/bismuth oxybromide composite photo-catalyst and preparation method thereof | |
CN103691433B (en) | A kind of Ag doped Ti O 2material, and its preparation method and application | |
WO2021068905A1 (en) | Rhodium-doped strontium titanate inverse opal material, preparation method therefor, and application thereof in piezoelectric cooperative photocatalytic removal of organic pollutants | |
CN110479289B (en) | Composite nano cuprous oxide/zinc oxide material with photocatalytic performance as well as preparation method and application thereof | |
CN108465477A (en) | The Preparation method and use of Three-element composite photocatalyst | |
CN103551136B (en) | Attapulgite loaded quasi-one-dimensional titanium dioxide composite photocatalyst and preparation method thereof | |
CN101323504A (en) | Preparation method of macroporous-mesoporous nanocrystalline titanium dioxide film | |
CN102600822A (en) | Carbon-doped silicon dioxide and titanium dioxide composite photocatalyst and preparation method thereof | |
CN103332737B (en) | Preparation method of titanium dioxide nano-powder | |
CN107008246A (en) | Graphene quantum dot is sensitized the preparation method of sea urchin shape photocatalysis material of titanium dioxide | |
CN105289457B (en) | A kind of hollow structure TiO2The preparation method and applications of nano material | |
CN108906038B (en) | Au-TiO2Yolk structure nano composite material and preparation method thereof | |
CN104772136A (en) | Pucherite as well as preparation method and application of pucherite | |
CN105854870B (en) | A kind of Bi2WO6Stepped recess micron ball photocatalyst and preparation method thereof | |
CN103521247B (en) | A kind of preparation method of self assembly Silver-phosphate-bascomposite composite visible light photocatalytic material | |
CN102491415A (en) | Preparation method of monodispersed anatase titanium dioxide nano porous microspheres | |
CN102500402A (en) | Method for Synthesizing AgBr-TiO2 Nano-Heterostructure Photocatalyst Using Microemulsion-like System | |
CN102774885A (en) | Porous submicron sphere, porous film electrode and preparation method and application in dye sensitized solar cells thereof | |
CN110743522B (en) | High-index crystal face titanium dioxide nano catalyst and preparation method thereof | |
CN105836796A (en) | Preparation method of bell-type core-shell structured nano-TiO2(at)void(at)SiO2 powder | |
CN107008337A (en) | A kind of non-stoichiometric bismuthic acid copper nano material and its preparation method and application | |
CN101850246B (en) | SnO2 photonic crystal/TiO2 composite film photocatalyst and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |