CN108624020A - Seawater degradation material with adjustable use period and degradation period and preparation method thereof - Google Patents
Seawater degradation material with adjustable use period and degradation period and preparation method thereof Download PDFInfo
- Publication number
- CN108624020A CN108624020A CN201810566827.7A CN201810566827A CN108624020A CN 108624020 A CN108624020 A CN 108624020A CN 201810566827 A CN201810566827 A CN 201810566827A CN 108624020 A CN108624020 A CN 108624020A
- Authority
- CN
- China
- Prior art keywords
- seawater
- polyvinyl alcohol
- degradation
- degradable material
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013535 sea water Substances 0.000 title claims abstract description 129
- 239000000463 material Substances 0.000 title claims abstract description 128
- 230000015556 catabolic process Effects 0.000 title claims abstract description 81
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 81
- 238000002360 preparation method Methods 0.000 title claims abstract description 34
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 134
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 134
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 33
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 33
- 238000012986 modification Methods 0.000 claims abstract description 30
- 230000004048 modification Effects 0.000 claims abstract description 30
- 229920000728 polyester Polymers 0.000 claims abstract description 30
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 239000004014 plasticizer Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 238000002347 injection Methods 0.000 claims abstract 2
- 239000007924 injection Substances 0.000 claims abstract 2
- 238000001125 extrusion Methods 0.000 claims description 22
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 21
- 239000008187 granular material Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 18
- 229920001610 polycaprolactone Polymers 0.000 claims description 15
- 239000004632 polycaprolactone Substances 0.000 claims description 15
- 230000003179 granulation Effects 0.000 claims description 13
- 238000005469 granulation Methods 0.000 claims description 13
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 13
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 10
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 10
- 238000006136 alcoholysis reaction Methods 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 claims description 6
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 5
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical group OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 5
- 235000011187 glycerol Nutrition 0.000 claims description 5
- 239000000600 sorbitol Substances 0.000 claims description 5
- 239000012792 core layer Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims description 4
- 244000248349 Citrus limon Species 0.000 claims 1
- 235000005979 Citrus limon Nutrition 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 150000007513 acids Chemical class 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 6
- 239000007864 aqueous solution Substances 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000007789 sealing Methods 0.000 abstract description 2
- 238000003756 stirring Methods 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000001746 injection moulding Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229920000747 poly(lactic acid) Polymers 0.000 description 3
- 239000004626 polylactic acid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920000426 Microplastic Polymers 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 239000013502 plastic waste Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- QQGISFDJEJMKIL-JAIQZWGSSA-N (5z)-5-[[3-(hydroxymethyl)thiophen-2-yl]methylidene]-10-methoxy-2,2,4-trimethyl-1h-chromeno[3,4-f]quinolin-9-ol Chemical group C1=CC=2NC(C)(C)C=C(C)C=2C2=C1C=1C(OC)=C(O)C=CC=1O\C2=C/C=1SC=CC=1CO QQGISFDJEJMKIL-JAIQZWGSSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 241000902900 cellular organisms Species 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Biological Depolymerization Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
本发明公开了一种使用周期和降解周期可调的海水降解材料及其制备方法。所述使用周期和降解周期可调的海水降解材料由如下重量份数的原料制成:热塑性改性后的聚乙烯醇8‑90份;聚酯8‑90份;相容剂0‑2份。所述海水降解材料的制备方法,包括如下步骤:1)聚乙烯醇热塑性改性:将聚乙烯醇和增塑剂混匀,经密封塑化,挤出造粒制得;2)海水降解材料的制备:将热塑性改性后的聚乙烯醇、聚酯和相容剂按比例混匀,经挤出造粒,注塑得到使用周期和降解周期可调的海水降解材料。本发明的海水降解材料为可通过熔融共混加工的PVA复合材料,工艺简单可控、能耗低,有效克服了以PVA水溶液为基础的传统工艺成本高、效率低的问题。The invention discloses a seawater degradation material with adjustable service period and degradation period and a preparation method thereof. The seawater degradable material with adjustable service period and degradation period is made of the following raw materials in parts by weight: 8-90 parts of thermoplastically modified polyvinyl alcohol; 8-90 parts of polyester; 0-2 parts of compatibilizer . The preparation method of the seawater degradable material comprises the following steps: 1) thermoplastic modification of polyvinyl alcohol: mixing polyvinyl alcohol and a plasticizer, sealing and plasticizing, extruding and granulating; 2) making the seawater degradable material Preparation: The thermoplastically modified polyvinyl alcohol, polyester and compatibilizer are mixed in proportion, extruded and granulated, and injection molded to obtain a seawater degradable material with adjustable service life and degradation cycle. The seawater degradable material of the present invention is a PVA composite material that can be processed through melt blending, has a simple and controllable process and low energy consumption, and effectively overcomes the problems of high cost and low efficiency of the traditional process based on PVA aqueous solution.
Description
技术领域technical field
本发明涉及海水净化技术领域。更具体地,涉及一种使用周期和降解周期可调的海水降解材料及其制备方法。The invention relates to the technical field of seawater purification. More specifically, it relates to a seawater degradable material with adjustable use period and degradation period and a preparation method thereof.
背景技术Background technique
近年来,全球每年使用塑料及其制品已不少于2.4亿吨,据保守估计其中有480-1270万吨的塑料垃圾被直接丢弃或从陆地通过河道、风力最终进入海洋,并且通过洋流使它们广泛存在于整个海洋生态系统中。这些塑料垃圾受太阳辐射(如光降解、脆化)、风化、波浪机械力和生物群等作用,最终形成微小型的塑料碎片或颗粒,当直径低于5mm时即可定义为“微塑料”。从大体积塑料制品到微塑料,都是以固体形式存在而难降解的塑料垃圾,对海洋生态环境造成了严重的破坏,因此开发在海水环境中能自行“消失不见”且随后能快速降解的塑料对解决海洋塑料污染问题具有重大的意义。In recent years, the world has used no less than 240 million tons of plastics and their products every year. It is conservatively estimated that 4.8-12.7 million tons of plastic waste is directly discarded or enters the ocean from land through rivers and wind, and is transported by ocean currents. Widely present in the whole marine ecosystem. These plastic wastes are affected by solar radiation (such as photodegradation, embrittlement), weathering, wave mechanical force, and biota, and finally form tiny plastic fragments or particles, which can be defined as "microplastics" when the diameter is less than 5mm. . From large-volume plastic products to microplastics, they all exist in solid form and are difficult to degrade plastic waste, which has caused serious damage to the marine ecological environment. Therefore, it is possible to develop products that can "disappear" in the seawater environment and can be quickly degraded afterwards. Plastic is of great significance to solving the problem of marine plastic pollution.
为了使材料在被废弃进入海水后能够尽快“消失不见”,很多水溶性高分子材料充分满足这一条件。但是为了不对海洋环境造成污染,材料要能进行降解,生产对环境无危害的小分子。基于以上考虑,聚乙烯醇(PVA)可以满足要求,其不仅具有随聚合度或醇解度改变而可调的水溶性,可通过非石油化工路线合成,还可在污水污泥、河水等湿环境中有细菌存在的条件下,进行完全生物降解,因此在石油资源日益枯竭和陆地海洋塑料污染日益加剧的背景下,使用PVA作为海水降解材料的主要组分,具有重大的应用前景。但是由于PVA多羟基强氢键的特点,使其分解温度(200~250℃)与熔点(230℃)接近,热塑性加工困难,因此,目前PVA的加工几乎都是基于其水溶液为主。In order to make the material "disappear" as soon as possible after being discarded into seawater, many water-soluble polymer materials fully meet this condition. However, in order not to pollute the marine environment, the material must be able to degrade and produce small molecules that are not harmful to the environment. Based on the above considerations, polyvinyl alcohol (PVA) can meet the requirements. It not only has adjustable water solubility with changes in the degree of polymerization or alcoholysis, can be synthesized through non-petrochemical routes, and can also be used in wet water such as sewage sludge and river water. Under the conditions of the presence of bacteria in the environment, complete biodegradation is carried out. Therefore, in the context of the depletion of petroleum resources and the increasing plastic pollution of land and oceans, using PVA as the main component of seawater degradation materials has great application prospects. However, due to the strong hydrogen bond characteristics of PVA's polyhydric groups, its decomposition temperature (200-250°C) is close to its melting point (230°C), making thermoplastic processing difficult. Therefore, the processing of PVA is almost always based on its aqueous solution.
为了实现PVA低成本、高效率的熔融加工,需要加入增塑剂如多元醇类、羧酸类物质和与PVA形成氢键复合,抑制PVA结晶,使熔点降低,加工区间变宽,达到提高PVA热塑加工使用周期和降解周期的目的。如CN 106589852A公开了一种降解周期可调的水体降解材料,然而其中使用聚乙烯醇作为水解促进剂直接与脂肪族聚酯、助剂熔融挤出是不可取的,因为未先热塑性改性的PVA不仅热塑性加工困难,制品易分解,使用力学性能损失,而且不具有良好的水溶性。还值得注意的是,PVA虽可完全生物降解,但其降解对降解环境要求较高,若在以低温、高盐、高压、流动和稀营养为特征的海洋环境中,其中微生物数目和种类较土壤和河水来说是甚少的,基本可以肯定,尽管PVA的水溶性可使其溶解在海水中因而促进生物降解,PVA降解速度还是相对较慢的。同时,PVA作为制品材料使用来说,则表现出耐水性差的缺陷。如何在保证PVA水溶性的同时又能克服PVA使用时耐水性差的问题,这是个富有挑战性的技术难题。In order to achieve low-cost and high-efficiency melt processing of PVA, it is necessary to add plasticizers such as polyols and carboxylic acids to form hydrogen bond complexes with PVA to inhibit the crystallization of PVA, lower the melting point, and widen the processing range to improve PVA. Purpose of thermoplastic processing use cycle and degradation cycle. For example, CN 106589852A discloses a water-degradable material with adjustable degradation cycle, but it is not advisable to use polyvinyl alcohol as a hydrolysis accelerator to melt and extrude directly with aliphatic polyester and auxiliary agents, because it is not thermoplastically modified PVA is not only difficult to process thermoplastically, the product is easy to decompose, the use of mechanical properties is lost, and it does not have good water solubility. It is also worth noting that although PVA can be completely biodegraded, its degradation has higher requirements on the degradation environment. Soil and river water are very few, and it is basically certain that although the water solubility of PVA can make it dissolve in seawater and thus promote biodegradation, the degradation rate of PVA is relatively slow. Simultaneously, PVA shows the defect of poor water resistance when used as a product material. How to overcome the poor water resistance of PVA while ensuring the water solubility of PVA is a challenging technical problem.
因此,本发明提供了一种使用周期和降解周期可调的海水降解材料及其制备方法,至少解决上述之一的问题。Therefore, the present invention provides a seawater degradable material with adjustable use period and degradation period and a preparation method thereof, at least solving one of the above-mentioned problems.
发明内容Contents of the invention
本发明的一个目的在于提供一种使用周期和降解周期可调的海水降解材料。An object of the present invention is to provide a seawater degradable material with adjustable service period and degradation period.
本发明的另一个目的在于提供一种使用周期和降解周期可调的海水降解材料的制备方法。Another object of the present invention is to provide a method for preparing a seawater degradable material with adjustable use period and degradation period.
为达到上述第一个目的,本发明采用下述技术方案:In order to achieve the above-mentioned first object, the present invention adopts the following technical solutions:
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的聚乙烯醇8-90份;8-90 parts of polyvinyl alcohol after thermoplastic modification;
聚酯8-90份;8-90 parts of polyester;
相容剂0-2份。0-2 parts of compatibilizer.
优选地,所述热塑性改性后的聚乙烯醇通过将聚乙烯醇和增塑剂混匀,经密封塑化,挤出造粒制得;其中,聚乙烯醇和增塑剂的质量比为80:20-90:10。Preferably, the thermoplastically modified polyvinyl alcohol is prepared by mixing polyvinyl alcohol and a plasticizer, sealing and plasticizing, and extrusion granulation; wherein the mass ratio of polyvinyl alcohol and plasticizer is 80: 20-90:10.
优选地,所述塑化的温度为室温-60℃;进一步地,在本发明的某些具体实施方式中,例如,所述塑化的温度为室温-30℃、室温-40℃、室温-50℃、30-40℃、30-50℃、30-60℃、40-50℃、40-60℃、50-60℃等。Preferably, the plasticizing temperature is room temperature-60°C; further, in some specific embodiments of the present invention, for example, the plasticizing temperature is room temperature-30°C, room temperature-40°C, room temperature- 50°C, 30-40°C, 30-50°C, 30-60°C, 40-50°C, 40-60°C, 50-60°C, etc.
优选地,所述塑化的时间为3-6h;进一步地,在本发明的某些具体实施方式中,例如,所述塑化的时间为3-4h、3-5h、4-5h、4-6h、5-6h等。Preferably, the plasticizing time is 3-6h; further, in some specific embodiments of the present invention, for example, the plasticizing time is 3-4h, 3-5h, 4-5h, 4h -6h, 5-6h, etc.
优选地,所述挤出造粒的温度为160-200℃;进一步地,在本发明的某些具体实施方式中,例如,所述挤出造粒的温度为160-170℃、170-200℃等。Preferably, the extrusion granulation temperature is 160-200°C; further, in some specific embodiments of the present invention, for example, the extrusion granulation temperature is 160-170°C, 170-200°C ℃ and so on.
优选地,所述聚乙烯醇的聚合度为300-2600,所述聚乙烯醇的醇解度为88%-99%。Preferably, the degree of polymerization of the polyvinyl alcohol is 300-2600, and the degree of alcoholysis of the polyvinyl alcohol is 88%-99%.
优选地,所述聚乙烯醇的型号为0388、0488、0499、0588、0599、1099、1399、1599、1788、1792、1795、1797、1799、2088、2099、2488、2499、2699。Preferably, the model of the polyvinyl alcohol is 0388, 0488, 0499, 0588, 0599, 1099, 1399, 1599, 1788, 1792, 1795, 1797, 1799, 2088, 2099, 2488, 2499, 2699.
优选地,所述增塑剂选自山梨醇、1,4-丁二醇、甘油、乙二醇、柠檬酸中的一种或多种。Preferably, the plasticizer is selected from one or more of sorbitol, 1,4-butanediol, glycerin, ethylene glycol, and citric acid.
优选地,所述聚酯为标准样条在海水中一年内失重30wt%以上的聚酯。Preferably, the polyester is a polyester whose standard bar loses more than 30wt% weight within one year in seawater.
优选地,所述聚酯为聚己内酯和/或聚羟基烷酸酯。Preferably, the polyester is polycaprolactone and/or polyhydroxyalkanoate.
优选地,所述相容剂选自ADR-4380、ADR-4370S、KH-560、KH-570、MDI和HDI中的一种或多种。Preferably, the compatibilizer is selected from one or more of ADR-4380, ADR-4370S, KH-560, KH-570, MDI and HDI.
优选地,所述海水降解材料为合金材料或皮芯结构的材料。Preferably, the seawater degradation material is an alloy material or a material with a skin-core structure.
优选地,所述皮芯结构的海水降解材料中,皮层材料为聚酯,芯层材料为热塑性改性后的聚乙烯醇。Preferably, in the seawater degradable material of the skin-core structure, the material of the skin layer is polyester, and the material of the core layer is thermoplastically modified polyvinyl alcohol.
为达到上述第二个目的,本发明采用下述技术方案:In order to achieve the above-mentioned second purpose, the present invention adopts the following technical solutions:
一种上述使用周期和降解周期可调的海水降解材料的制备方法,包括如下步骤:A preparation method of the above-mentioned seawater degradable material with adjustable use period and degradation period, comprising the steps of:
1)聚乙烯醇热塑性改性:1) Thermoplastic modification of polyvinyl alcohol:
将聚乙烯醇和增塑剂混匀,经密封塑化,挤出造粒制得;Mix polyvinyl alcohol and plasticizer, seal and plasticize, extrude and granulate;
2)海水降解材料的制备:将热塑性改性后的聚乙烯醇、聚酯和相容剂按比例混匀,经挤出造粒,注塑得到使用周期和降解周期可调的海水降解材料。2) Preparation of seawater degradable material: mixing thermoplastically modified polyvinyl alcohol, polyester and compatibilizer in proportion, extrusion granulation, injection molding to obtain seawater degradable material with adjustable service life and degradation period.
优选地,步骤1)中所述塑化的温度为室温-60℃;进一步地,在本发明的某些具体实施方式中,例如,步骤1)中所述塑化的温度为室温-30℃、室温-40℃、室温-50℃、30-40℃、30-50℃、30-60℃、40-50℃、40-60℃、50-60℃等。Preferably, the plasticizing temperature in step 1) is room temperature-60°C; further, in some specific embodiments of the present invention, for example, the plasticizing temperature in step 1) is room temperature-30°C , Room temperature -40°C, room temperature -50°C, 30-40°C, 30-50°C, 30-60°C, 40-50°C, 40-60°C, 50-60°C, etc.
优选地,步骤1)中所述塑化的时间为3-6h;进一步地,在本发明的某些具体实施方式中,例如,步骤1)中所述塑化的时间为3-4h、3-5h、4-5h、4-6h、5-6h等。Preferably, the plasticizing time in step 1) is 3-6h; further, in some specific embodiments of the present invention, for example, the plasticizing time in step 1) is 3-4h, 3h -5h, 4-5h, 4-6h, 5-6h, etc.
优选地,步骤1)中所述挤出造粒的温度为160-200℃;进一步地,在本发明的某些具体实施方式中,例如,步骤1)中所述挤出造粒的温度为160-170℃、170-200℃等。Preferably, the extrusion granulation temperature in step 1) is 160-200°C; further, in some specific embodiments of the present invention, for example, the extrusion granulation temperature in step 1) is 160-170°C, 170-200°C, etc.
优选地,步骤2)中所述挤出造粒的温度为160-200℃;进一步地,在本发明的某些具体实施方式中,例如,步骤2)中所述挤出造粒的温度为160-170℃、170-200℃等。Preferably, the extrusion granulation temperature in step 2) is 160-200°C; further, in some specific embodiments of the present invention, for example, the extrusion granulation temperature in step 2) is 160-170°C, 170-200°C, etc.
优选地,步骤2)中所述注塑的温度为170-210℃;进一步地,在本发明的某些具体实施方式中,例如,步骤2)中所述注塑的温度为170-180℃、170-190℃、180-190℃、180-210℃、190-210℃等。Preferably, the injection molding temperature in step 2) is 170-210°C; further, in some specific embodiments of the present invention, for example, the injection molding temperature in step 2) is 170-180°C, 170°C -190°C, 180-190°C, 180-210°C, 190-210°C, etc.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
(1)本发明的海水降解材料,原料可通过非石油化工路线合成,且都属于完全生物降解材料,符合可持续发展的要求。(1) The raw materials of the seawater degradable material of the present invention can be synthesized through non-petrochemical routes, and all belong to completely biodegradable materials, which meet the requirements of sustainable development.
(2)本发明的海水降解材料为可通过熔融共混加工的PVA复合材料,工艺简单可控、能耗低,有效克服了以PVA水溶液为基础的传统工艺成本高、效率低的问题。(2) The seawater degradable material of the present invention is a PVA composite material that can be processed by melt blending. The process is simple and controllable, and the energy consumption is low, which effectively overcomes the problems of high cost and low efficiency of the traditional process based on PVA aqueous solution.
(3)本发明的海水降解材料既可以为相容性良好的合金材料结构,也可以为皮芯结构,其中皮层组分为聚酯,芯层组分为热塑性改性后的聚乙烯醇,这些结构一定程度上抑制了PVA在使用期间的吸湿性,大大延长了制品的使用周期。(3) The seawater degradable material of the present invention can be an alloy material structure with good compatibility, and can also be a skin-core structure, wherein the skin layer component is polyester, and the core layer component is thermoplastically modified polyvinyl alcohol, These structures inhibit the hygroscopicity of PVA during use to a certain extent, greatly prolonging the service life of the product.
(4)本发明的海水降解材料通过改变PVA型号或PVA/聚酯复合材料的比例,使海水降解材料具有了可调节的使用周期和海水降解周期。(4) By changing the PVA type or the ratio of the PVA/polyester composite material, the seawater degradable material of the present invention has an adjustable service period and seawater degradation period.
(5)本发明的海水降解材料能够满足在军事或民用的船舶和一些海上用品等方面的实际需求。(5) The seawater degradable material of the present invention can meet the actual needs in aspects such as military or civilian ships and some marine supplies.
具体实施方式Detailed ways
为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。In order to illustrate the present invention more clearly, the present invention will be further described below in conjunction with preferred embodiments. Those skilled in the art should understand that the content specifically described below is illustrative rather than restrictive, and should not limit the protection scope of the present invention.
本发明提供了一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:热塑性改性后的聚乙烯醇8-90份;聚酯8-90份;相容剂0-2份。本发明在制备海水降解材料时,使用热塑性改性后的聚乙烯醇不仅改善了PVA的水溶性、热稳定性和力学性能,还可通过工艺简单可控和能耗低的热塑性加工制备PVA复合材料,得到的海水降解材料具有在常温下不低于2年的使用周期,废弃物进入海水后发生明显的降解。The invention provides a seawater degradable material with adjustable service period and degradation period, which is made of the following raw materials in parts by weight: 8-90 parts of thermoplastically modified polyvinyl alcohol; 8-90 parts of polyester; compatible Dose 0-2 parts. When the present invention prepares seawater degradable materials, the use of thermoplastically modified polyvinyl alcohol not only improves the water solubility, thermal stability and mechanical properties of PVA, but also prepares PVA composites through thermoplastic processing with simple and controllable technology and low energy consumption. Materials, the obtained seawater degradable materials have a service life of not less than 2 years at room temperature, and the waste will be significantly degraded after entering seawater.
其中,热塑性改性后的聚乙烯醇的作用为促进海水降解材料的吸水性;聚酯的作用为促进海水降解材料的生物降解性和抑制海水降解材料在使用期间的吸水性;相容剂的作用为通过偶联方式,增强聚乙烯醇与聚酯之间的相互作用。Among them, the role of thermoplastically modified polyvinyl alcohol is to promote the water absorption of seawater degradation materials; the role of polyester is to promote the biodegradability of seawater degradation materials and inhibit the water absorption of seawater degradation materials during use; the compatibilizer The role is to enhance the interaction between polyvinyl alcohol and polyester through coupling.
热塑性改性一个可能的实现方式是,通过将聚乙烯醇和增塑剂按质量比80:20-90:10加入高速搅拌机中进行多次搅拌,直到充分混合均匀,制得预混料,然后将预混料密封放置于室温-60℃条件下塑化3-6h,取出后在双螺杆挤出机中160-200℃条件下挤出造粒,制得热塑性改性后的聚乙烯醇。其中,增塑剂的作用为对PVA进行塑化。A possible realization of thermoplastic modification is to add polyvinyl alcohol and plasticizer in a mass ratio of 80:20-90:10 to a high-speed mixer for multiple times until fully mixed to obtain a premix, and then The premix is sealed and placed at room temperature -60°C for plasticization for 3-6 hours, and then extruded and granulated in a twin-screw extruder at 160-200°C to obtain thermoplastically modified polyvinyl alcohol. Among them, the role of the plasticizer is to plasticize the PVA.
可选地,所述聚乙烯醇的聚合度为300-2600,所述聚乙烯醇的醇解度为88%-99%。在所述聚合度范围和醇解度范围的聚乙烯醇为常见的市售聚乙烯醇,原料易获得,性质稳定,水溶性随聚合度或醇解度的增加而变差。Optionally, the degree of polymerization of the polyvinyl alcohol is 300-2600, and the degree of alcoholysis of the polyvinyl alcohol is 88%-99%. The polyvinyl alcohol in the range of the degree of polymerization and the degree of alcoholysis is common commercially available polyvinyl alcohol, the raw material is easy to obtain, the property is stable, and the water solubility becomes worse with the increase of the degree of polymerization or the degree of alcoholysis.
进一步地,所述增塑剂优选自山梨醇、1,4-丁二醇、甘油、乙二醇、柠檬酸中的一种或多种;上述增塑剂为常见的多元醇类及羧酸类物质,不仅价格低廉,且对PVA热塑性改性的效果显著。Further, the plasticizer is preferably selected from one or more of sorbitol, 1,4-butanediol, glycerin, ethylene glycol, and citric acid; the above-mentioned plasticizers are common polyols and carboxylic acids Such substances are not only cheap, but also have a remarkable effect on the thermoplastic modification of PVA.
可选地,为得到在海水中能降解且降解得较快的聚酯,所述聚酯优选为标准样条在海水中一年内失重30wt%以上的聚酯。Optionally, in order to obtain a polyester that can be degraded in seawater and degrades quickly, the polyester is preferably a polyester whose weight loss exceeds 30wt% in seawater for a standard strip within one year.
进一步地,所述聚酯为聚己内酯和/或聚羟基烷酸酯,所述聚酯不仅具有优异的海水降解性能,还可通过微生物发酵合成,符合可持续发展的要求。Further, the polyester is polycaprolactone and/or polyhydroxyalkanoate, and the polyester not only has excellent seawater degradation performance, but also can be synthesized by microbial fermentation, meeting the requirements of sustainable development.
作为优选地方案,所述相容剂选自ADR-4380、ADR-4370S、KH-560、KH-570、MDI和HDI中的一种或多种;所述相容剂为常见的市售商品化偶联剂,对PVA和聚酯之间的相互作用起到明显增强作用。As a preferred scheme, the compatibilizer is selected from one or more of ADR-4380, ADR-4370S, KH-560, KH-570, MDI and HDI; the compatibilizer is a common commercial product The coupling agent can significantly enhance the interaction between PVA and polyester.
此外,本发明的海水降解材料既可以为相容性良好的合金材料结构,也可以为皮芯结构,其中皮层组分为聚酯,芯层组分为热塑性改性后的聚乙烯醇,这些结构一定程度上都抑制了吸水性问题,从而有利于较长期使用。所述的合金材料结构通过聚酯对PVA的牵制作用,且这种作用可通过添加相容剂来增强,从而抑制了PVA的吸水性;所述的皮芯结构通过皮层聚酯的疏水作用和机械隔离作用,从而抑制了芯层PVA的吸水性。In addition, the seawater degradable material of the present invention can be an alloy material structure with good compatibility, or a skin-core structure, wherein the skin layer component is polyester, and the core layer component is thermoplastically modified polyvinyl alcohol. The structure suppresses the problem of water absorption to a certain extent, which is conducive to longer-term use. The structure of the alloy material is through the pulling effect of the polyester on the PVA, and this effect can be enhanced by adding a compatibilizer, thereby suppressing the water absorption of the PVA; Mechanical isolation, thereby inhibiting the water absorption of the core PVA.
另外,本发明的第二方面还提供了一种上述使用周期和降解周期可调的海水降解材料的制备方法,包括如下步骤:In addition, the second aspect of the present invention also provides a method for preparing the above-mentioned seawater degradable material with adjustable use period and degradation period, comprising the following steps:
1)聚乙烯醇热塑性改性:1) Thermoplastic modification of polyvinyl alcohol:
将聚乙烯醇和增塑剂混匀,经密封塑化,挤出造粒制得;Mix polyvinyl alcohol and plasticizer, seal and plasticize, extrude and granulate;
2)海水降解材料的制备:将热塑性改性后的聚乙烯醇、聚酯和相容剂按比例混匀,经挤出造粒,注塑得到使用周期和降解周期可调的海水降解材料。2) Preparation of seawater degradable material: mixing thermoplastically modified polyvinyl alcohol, polyester and compatibilizer in proportion, extrusion granulation, injection molding to obtain seawater degradable material with adjustable service life and degradation period.
以下,对合成方法中的各步骤,进行详细说明。Hereinafter, each step in the synthesis method will be described in detail.
步骤1)中一个可能的实现方式是,通过将聚乙烯醇和增塑剂按质量比80:20-90:10加入高速搅拌机中进行多次搅拌,直到充分混合均匀,制得预混料,然后将预混料密封放置于室温-60℃条件下塑化3-6h,取出后在双螺杆挤出机中160-200℃条件下挤出造粒,制得热塑性改性后的聚乙烯醇。A possible implementation in step 1) is to add polyvinyl alcohol and plasticizer in a high-speed mixer at a mass ratio of 80:20-90:10 and stir several times until fully mixed to obtain a premix, and then The premix is sealed and placed at room temperature -60°C for plasticization for 3-6 hours, and then extruded and granulated in a twin-screw extruder at 160-200°C to obtain thermoplastically modified polyvinyl alcohol.
步骤2)中一个可能的实现方式是,将热塑性改性后的聚乙烯醇、聚酯和相容剂进行预混合,得混合物,再通过双螺杆160-200℃条件下挤出造粒,170-210℃条件下注塑得到使用周期和降解周期可调的海水降解材料。A possible implementation in step 2) is to pre-mix the thermoplastically modified polyvinyl alcohol, polyester and compatibilizer to obtain a mixture, and then extrude and granulate the mixture through twin-screw at 160-200°C, 170 The seawater degradable material with adjustable service period and degradation period was obtained by injection molding at -210°C.
本发明中,制备方法如无特殊说明则均为常规方法,所用的原料如无特别说明均可从公开的商业途径获得或根据现有技术制得。In the present invention, the preparation methods are conventional methods unless otherwise specified, and the raw materials used can be obtained from public commercial sources or prepared according to the prior art unless otherwise specified.
实施例1Example 1
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的0388聚乙烯醇:8份;0388 polyvinyl alcohol after thermoplastic modification: 8 parts;
聚己内酯:90份;Polycaprolactone: 90 parts;
ADR-4380:2份。ADR-4380: 2 servings.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将0388聚乙烯醇和山梨醇按80:20的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于室温条件下塑化6h,取出后在双螺杆挤出机中,挤出温度160℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: add 0388 polyvinyl alcohol and sorbitol in a mass ratio of 80:20 to a high-speed mixer and stir for several times, stirring for 1 to 2 minutes each time until fully mixed and uniform, to obtain a premixed Then seal the premixed material and place it at room temperature for plasticization for 6 hours. After taking it out, extrude and granulate it in a twin-screw extruder at an extrusion temperature of 160°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:将步骤1)制得的热塑性改性后的聚乙烯醇8份、聚己内酯90份和2份ADR-4380进行预混合,得混合物,再通过双螺杆160℃条件下挤出造粒,170℃条件下注塑得到测试样条,制得合金材料结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: 8 parts of thermoplastically modified polyvinyl alcohol, 90 parts of polycaprolactone and 2 parts of ADR-4380 prepared in step 1) are pre-mixed to obtain a mixture, and then passed through a twin-screw 160 Extrude and granulate under the condition of 170°C, and inject the test sample under the condition of 170°C to obtain the seawater degradable material with alloy material structure. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
实施例2Example 2
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的0388聚乙烯醇:90份;0388 polyvinyl alcohol after thermoplastic modification: 90 parts;
聚羟基烷酸酯:10份。Polyhydroxyalkanoate: 10 parts.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将0388聚乙烯醇和1,4-丁二醇按90:10的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于60℃烘箱中塑化3h,取出后在双螺杆挤出机中,挤出温度160℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: add 0388 polyvinyl alcohol and 1,4-butanediol in a mass ratio of 90:10, and then add them to a high-speed mixer for multiple times of stirring, stirring for 1-2 minutes each time, until fully mixed and uniform , to prepare the premix, then seal the premix and place it in a 60°C oven for plasticization for 3 hours, take it out and extrude and granulate it in a twin-screw extruder at an extrusion temperature of 160°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇90份、聚羟基烷酸酯10份进行预混合,得混合物,再通过双螺杆160℃条件下挤出造粒,170℃条件下注塑得到测试样条,制得皮芯结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: premix 90 parts of thermoplastically modified polyvinyl alcohol and 10 parts of polyhydroxyalkanoate obtained in step 1) to obtain a mixture, and then extrude it through a twin-screw at 160° C. After granulation, test specimens were obtained by injection molding at 170°C, and a seawater-degradable material with a skin-core structure was obtained. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
实施例3Example 3
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的0588聚乙烯醇:20份;0588 polyvinyl alcohol after thermoplastic modification: 20 parts;
聚羟基烷酸酯:79份;Polyhydroxyalkanoate: 79 parts;
ADR-4370s:1份。ADR-4370s: 1 serving.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将0588聚乙烯醇和甘油按85:15的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于30℃烘箱中塑化5h,取出后在双螺杆挤出机中,挤出温度160℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: add 0588 polyvinyl alcohol and glycerin in a mass ratio of 85:15 to a high-speed mixer for multiple times of stirring, stirring for 1-2 minutes each time, until fully mixed to obtain a premix , and then seal the premix and place it in an oven at 30°C for plasticization for 5 hours. After taking it out, extrude and granulate it in a twin-screw extruder at an extrusion temperature of 160°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇20份、聚羟基烷酸酯79份和1份ADR-4370s进行预混合,得混合物,再通过双螺杆160℃条件下挤出造粒,170℃条件下注塑得到测试样条,制得合金材料结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: 20 parts of thermoplastically modified polyvinyl alcohol, 79 parts of polyhydroxyalkanoate and 1 part of ADR-4370s obtained in step 1) are pre-mixed to obtain a mixture, and then passed through double The screw was extruded and granulated at 160°C, and the test sample was obtained by injection molding at 170°C to obtain a seawater-degradable material with an alloy material structure. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
实施例4Example 4
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的0588聚乙烯醇:80份;0588 polyvinyl alcohol after thermoplastic modification: 80 parts;
聚己内酯:20份。Polycaprolactone: 20 parts.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将0588聚乙烯醇和乙二醇按80:20的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于40℃烘箱中塑化4h,取出后在双螺杆挤出机中,挤出温度160℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: Add 0588 polyvinyl alcohol and ethylene glycol in a mass ratio of 80:20 to a high-speed mixer for multiple times of stirring, stirring for 1 to 2 minutes each time, until fully mixed and uniform, to prepare the pre- Mix the materials, then seal the premix and place it in an oven at 40°C for plasticization for 4 hours, take it out and extrude and granulate it in a twin-screw extruder at an extrusion temperature of 160°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇80份、聚己内酯20份进行预混合,得混合物,再通过双螺杆160℃条件下挤出造粒,170℃条件下注塑得到测试样条,制得皮芯结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: 80 parts of thermoplastically modified polyvinyl alcohol and 20 parts of polycaprolactone prepared in step 1) are pre-mixed to obtain a mixture, and then extruded by twin-screw at 160°C Pelletizing, injection molding at 170°C to obtain test specimens, and a seawater-degradable material with a skin-core structure. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
实施例5Example 5
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的0599聚乙烯醇:30份;0599 polyvinyl alcohol after thermoplastic modification: 30 parts;
聚羟基烷酸酯:68.5份;Polyhydroxyalkanoate: 68.5 parts;
KH560:1.5份。KH560: 1.5 parts.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将0599聚乙烯醇和柠檬酸按90:10的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于50℃烘箱中塑化3h,取出后在双螺杆挤出机中,挤出温度170℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: Add 0599 polyvinyl alcohol and citric acid in a mass ratio of 90:10 to a high-speed mixer for multiple times of stirring, stirring for 1 to 2 minutes each time, until fully mixed and uniform to obtain a premixed The premixed material was then sealed and placed in an oven at 50°C for plasticization for 3 hours. After taking it out, it was extruded and granulated in a twin-screw extruder at an extrusion temperature of 170°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇30份、聚羟基烷酸酯68.5份和1.5份KH560进行预混合,得混合物,再通过双螺杆170℃条件下挤出造粒,200℃条件下注塑得到测试样条,制得合金材料结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: 30 parts of thermoplastically modified polyvinyl alcohol, 68.5 parts of polyhydroxyalkanoate and 1.5 parts of KH560 obtained in step 1) are pre-mixed to obtain a mixture, and then passed through a twin-screw 170 Extrude and granulate under the condition of ℃, injection molding under the condition of 200℃ to obtain the test sample, and obtain the seawater degradable material with alloy material structure. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
实施例6Example 6
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的0599聚乙烯醇:70份;0599 polyvinyl alcohol after thermoplastic modification: 70 parts;
聚己内酯:30份。Polycaprolactone: 30 parts.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将0599聚乙烯醇和山梨醇按80:20的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于室温条件下塑化6h,取出后在双螺杆挤出机中,挤出温度170℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: Add 0599 polyvinyl alcohol and sorbitol in a mass ratio of 80:20 to a high-speed mixer and stir for several times, stirring for 1 to 2 minutes each time until fully mixed and uniform, to obtain a premixed Then seal the premixed material and place it at room temperature for plasticization for 6 hours. After taking it out, extrude and granulate it in a twin-screw extruder at an extrusion temperature of 170°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇70份、聚己内酯30份进行预混合,得混合物,再通过双螺杆170℃条件下挤出造粒,200℃条件下注塑得到测试样条,制得皮芯结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: pre-mix 70 parts of thermoplastically modified polyvinyl alcohol and 30 parts of polycaprolactone obtained in step 1) to obtain a mixture, and then extrude through twin-screw at 170°C Pelletizing, injection molding at 200°C to obtain test specimens, to obtain a seawater-degradable material with a skin-core structure. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
实施例7Example 7
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的1788聚乙烯醇:40份;1788 polyvinyl alcohol after thermoplastic modification: 40 parts;
聚己内酯:59.5份;Polycaprolactone: 59.5 parts;
MDI:0.5份。MDI: 0.5 parts.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将1788聚乙烯醇和1,4-丁二醇按90:10的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于60℃烘箱中塑化3h,取出后在双螺杆挤出机中,挤出温度170℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: add 1788 polyvinyl alcohol and 1,4-butanediol in a mass ratio of 90:10 to a high-speed mixer and stir for several times, stirring for 1 to 2 minutes each time until fully mixed and uniform , to prepare the premix, then seal the premix and place it in an oven at 60°C for plasticization for 3 hours, take it out, extrude and granulate it in a twin-screw extruder at an extrusion temperature of 170°C, and obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇40份、聚己内酯59.5份和0.5份MDI进行预混合,得混合物,再通过双螺杆170℃条件下挤出造粒,180℃条件下注塑得到测试样条,制得合金材料结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: 40 parts of thermoplastically modified polyvinyl alcohol, 59.5 parts of polycaprolactone and 0.5 part of MDI prepared in step 1) are pre-mixed to obtain a mixture, and then passed through a twin-screw at 170 ° C Extrude and granulate under the condition of 180 ℃ to obtain the test sample, and obtain the seawater degradable material of the alloy material structure. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
实施例8Example 8
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的1788聚乙烯醇:60份;1788 polyvinyl alcohol after thermoplastic modification: 60 parts;
聚羟基烷酸酯:40份。Polyhydroxyalkanoate: 40 parts.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将1788聚乙烯醇和甘油按85:15的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于30℃烘箱中塑化5h,取出后在双螺杆挤出机中,挤出温度170℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: Add 1788 polyvinyl alcohol and glycerin in a mass ratio of 85:15 to a high-speed mixer for multiple times of stirring, stirring for 1 to 2 minutes each time, until fully mixed to obtain a premix , then seal the premix and place it in an oven at 30°C for plasticization for 5 hours, take it out and extrude and granulate it in a twin-screw extruder at an extrusion temperature of 170°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇60份、聚羟基烷酸酯40份进行预混合,得混合物,再通过双螺杆170℃条件下挤出造粒,190℃条件下注塑得到测试样条,制得皮芯结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: pre-mix 60 parts of thermoplastically modified polyvinyl alcohol and 40 parts of polyhydroxyalkanoate obtained in step 1) to obtain a mixture, and then extrude it through a twin-screw at 170°C. After granulation, test specimens were obtained by injection molding at 190°C, and a seawater-degradable material with a skin-core structure was obtained. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
实施例9Example 9
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的1792聚乙烯醇:90份;1792 polyvinyl alcohol after thermoplastic modification: 90 parts;
聚羟基烷酸酯:8份;Polyhydroxyalkanoate: 8 parts;
KH-570:2份。KH-570: 2 servings.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将1792聚乙烯醇和乙二醇按80:20的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于40℃烘箱中塑化4h,取出后在双螺杆挤出机中,挤出温度170℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: add 1792 polyvinyl alcohol and ethylene glycol in a mass ratio of 80:20 to a high-speed mixer and stir for several times, stirring for 1 to 2 minutes each time, until fully mixed and uniform, to prepare the pre- Mix the materials, then seal the premix and place it in an oven at 40°C for plasticization for 4 hours, take it out and extrude and granulate it in a twin-screw extruder at an extrusion temperature of 170°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇90份、聚羟基烷酸酯8份和2份KH-570进行预混合,得混合物,再通过双螺杆170℃条件下挤出造粒,190℃条件下注塑得到测试样条,制得合金材料结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: 90 parts of thermoplastically modified polyvinyl alcohol, 8 parts of polyhydroxyalkanoate and 2 parts of KH-570 prepared in step 1) are pre-mixed to obtain a mixture, and then passed through double The screw was extruded and granulated at 170°C, and the test sample was obtained by injection molding at 190°C to obtain a seawater-degradable material with an alloy material structure. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
实施例10Example 10
一种使用周期和降解周期可调的海水降解材料,由如下重量份数的原料制成:A seawater degradable material with adjustable use period and degradation period, made of the following raw materials in parts by weight:
热塑性改性后的2699聚乙烯醇:50份;2699 polyvinyl alcohol after thermoplastic modification: 50 parts;
聚己内酯:48份;Polycaprolactone: 48 parts;
HDI:2份。HDI: 2 servings.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将2699聚乙烯醇和乙二醇按80:20的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于40℃烘箱中塑化4h,取出后在双螺杆挤出机中,挤出温度200℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: Add 2699 polyvinyl alcohol and ethylene glycol in a mass ratio of 80:20 to a high-speed mixer for multiple times of stirring, stirring for 1 to 2 minutes each time until fully mixed and uniform, to prepare the pre- Mix the materials, then seal the premix and place it in an oven at 40°C for plasticization for 4 hours, take it out and extrude and granulate it in a twin-screw extruder at an extrusion temperature of 200°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇50份、聚己内酯48份和2份HDI进行预混合,得混合物,再通过双螺杆200℃条件下挤出造粒,210℃条件下注塑得到测试样条,制得合金材料结构的海水降解材料。所制得的海水降解材料的海水降解性能和使用力学性能分别见表1和表2。2) Preparation of seawater degradable material: 50 parts of thermoplastically modified polyvinyl alcohol, 48 parts of polycaprolactone and 2 parts of HDI prepared in step 1) are pre-mixed to obtain a mixture, and then passed through a twin-screw at 200 ° C Extrude and granulate under the condition of 210 ℃ to obtain the test sample, and obtain the seawater degradable material of the alloy material structure. The seawater degradation properties and service mechanical properties of the prepared seawater degradable materials are shown in Table 1 and Table 2, respectively.
表1海水降解材料的海水降解性能Table 1 Seawater degradation performance of seawater degradable materials
表2海水降解材料的使用力学性能Table 2 Mechanical properties of seawater degradable materials
对比例1Comparative example 1
一种海水降解材料,由如下重量份数的原料制成:A seawater degradation material is made of the following raw materials in parts by weight:
1788聚乙烯醇:40份;1788 polyvinyl alcohol: 40 parts;
聚己内酯:59.5份;Polycaprolactone: 59.5 parts;
MDI:0.5份。MDI: 0.5 parts.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
将聚乙烯醇40份、聚己内酯59.5份和0.5份MDI进行预混合,得混合物,再通过双螺杆220℃条件下挤出造粒,230℃条件下注塑得到测试样条,制得海水降解材料。Pre-mix 40 parts of polyvinyl alcohol, 59.5 parts of polycaprolactone and 0.5 parts of MDI to obtain a mixture, then extrude and granulate through twin-screw at 220°C, and inject test samples at 230°C to obtain seawater degradable material.
结果表明:与实施例7相比,该对比例中的聚乙烯醇并未预先进行热塑性改性,因而得到的海水降解材料只能在220℃较高温度条件下熔融挤出,发生明显的热降解,力学性能损失,水溶性较差,海水降解30天后失重3wt%,60天后失重7wt%,分别远远低于实施例7的9wt%和19wt%。The results show that: compared with Example 7, the polyvinyl alcohol in this comparative example has not been thermoplastically modified in advance, so the obtained seawater degradable material can only be melted and extruded at a relatively high temperature of 220°C, and significant heat loss occurs. Degradation, loss of mechanical properties, poor water solubility, 3wt% weight loss after 30 days of seawater degradation, 7wt% weight loss after 60 days, far lower than 9wt% and 19wt% of Example 7 respectively.
对比例2Comparative example 2
一种海水降解材料,由如下重量份数的原料制成:A seawater degradation material is made of the following raw materials in parts by weight:
热塑性改性后的0588聚乙烯醇:80份;0588 polyvinyl alcohol after thermoplastic modification: 80 parts;
聚乳酸:20份。Polylactic acid: 20 parts.
上述海水降解材料的制备,包括如下步骤:The preparation of the above-mentioned seawater degradation material comprises the following steps:
1)聚乙烯醇热塑性改性:将0588聚乙烯醇和乙二醇按80:20的质量比例,依次加入高速搅拌机中进行多次搅拌,每次搅拌1~2min,直至充分混合均匀,制得预混料,然后将预混料密封放置于40℃烘箱中塑化4h,取出后在双螺杆挤出机中,挤出温度160℃下挤出造粒,制得热塑性改性的聚乙烯醇;1) Thermoplastic modification of polyvinyl alcohol: Add 0588 polyvinyl alcohol and ethylene glycol in a mass ratio of 80:20 to a high-speed mixer for multiple times of stirring, stirring for 1 to 2 minutes each time, until fully mixed and uniform, to prepare the pre- Mix the materials, then seal the premix and place it in an oven at 40°C for plasticization for 4 hours, take it out and extrude and granulate it in a twin-screw extruder at an extrusion temperature of 160°C to obtain thermoplastically modified polyvinyl alcohol;
2)海水降解材料的制备:再将步骤1)制得的热塑性改性后的聚乙烯醇80份、聚乳酸20份进行预混合,得混合物,再通过双螺杆170℃条件下挤出造粒,180℃条件下注塑得到测试样条,制得海水降解材料。2) Preparation of seawater degradable material: pre-mix 80 parts of thermoplastically modified polyvinyl alcohol and 20 parts of polylactic acid prepared in step 1) to obtain a mixture, and then extrude and granulate through twin-screw at 170°C , The test sample was obtained by injection molding at 180°C, and the seawater degradable material was prepared.
结果表明:该对比例制得的海水降解材料海水降解30天后失重29wt%,60天后失重43wt%,分别远远低于实施例4的69wt%和89wt%。因而使用在海水中降解缓慢甚至不降解的聚酯如聚乳酸与聚乙烯醇形成复合材料,不利于促进该复合材料的海水降解性能。The results show that: the seawater degradable material prepared in this comparative example loses 29wt% after 30 days of seawater degradation, and loses 43wt% after 60 days, which are far lower than 69wt% and 89wt% of Example 4, respectively. Therefore, the use of polyesters such as polylactic acid and polyvinyl alcohol that degrade slowly or even not in seawater to form a composite material is not conducive to promoting the seawater degradation performance of the composite material.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the implementation of the present invention. Those of ordinary skill in the art can also make It is impossible to exhaustively list all the implementation modes here, and any obvious changes or changes derived from the technical solutions of the present invention are still within the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810566827.7A CN108624020B (en) | 2018-06-05 | 2018-06-05 | A seawater degradable material with adjustable use cycle and degradation cycle and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810566827.7A CN108624020B (en) | 2018-06-05 | 2018-06-05 | A seawater degradable material with adjustable use cycle and degradation cycle and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108624020A true CN108624020A (en) | 2018-10-09 |
CN108624020B CN108624020B (en) | 2020-12-11 |
Family
ID=63691143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810566827.7A Active CN108624020B (en) | 2018-06-05 | 2018-06-05 | A seawater degradable material with adjustable use cycle and degradation cycle and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108624020B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109880326A (en) * | 2019-03-06 | 2019-06-14 | 南京工程学院 | A water-degradable polyester composite material with controllable degradation cycle and preparation method thereof |
CN109880325A (en) * | 2019-03-06 | 2019-06-14 | 南京工程学院 | A kind of fully degradable new polyester composite material and preparation method thereof |
CN112694726A (en) * | 2021-03-05 | 2021-04-23 | 海南赛诺实业有限公司 | Modified PGA material with higher processing performance and preparation method thereof |
CN115537968A (en) * | 2022-09-09 | 2022-12-30 | 明新梅诺卡(江苏)新材料有限公司 | Polylactic acid sea-island fiber and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1405230A (en) * | 2001-09-20 | 2003-03-26 | 轻工业塑料加工应用研究所 | Hydrolytic biodegradable plastic shaping material and preparation method thereof |
US20050288399A1 (en) * | 2004-06-25 | 2005-12-29 | Ming-Tung Chen | Biodegradable plastic composition and producing method thereof |
CN105199412A (en) * | 2015-09-09 | 2015-12-30 | 青岛鑫铁成汽车配件有限公司 | Interpenetrating polymer network enhanced fully-degradable biomass matrix composite material and preparation method thereof |
CN106589852A (en) * | 2016-12-15 | 2017-04-26 | 中国科学院理化技术研究所 | Water degradation material with adjustable degradation period and preparation method thereof |
-
2018
- 2018-06-05 CN CN201810566827.7A patent/CN108624020B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1405230A (en) * | 2001-09-20 | 2003-03-26 | 轻工业塑料加工应用研究所 | Hydrolytic biodegradable plastic shaping material and preparation method thereof |
US20050288399A1 (en) * | 2004-06-25 | 2005-12-29 | Ming-Tung Chen | Biodegradable plastic composition and producing method thereof |
CN105199412A (en) * | 2015-09-09 | 2015-12-30 | 青岛鑫铁成汽车配件有限公司 | Interpenetrating polymer network enhanced fully-degradable biomass matrix composite material and preparation method thereof |
CN106589852A (en) * | 2016-12-15 | 2017-04-26 | 中国科学院理化技术研究所 | Water degradation material with adjustable degradation period and preparation method thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109880326A (en) * | 2019-03-06 | 2019-06-14 | 南京工程学院 | A water-degradable polyester composite material with controllable degradation cycle and preparation method thereof |
CN109880325A (en) * | 2019-03-06 | 2019-06-14 | 南京工程学院 | A kind of fully degradable new polyester composite material and preparation method thereof |
CN112694726A (en) * | 2021-03-05 | 2021-04-23 | 海南赛诺实业有限公司 | Modified PGA material with higher processing performance and preparation method thereof |
CN115537968A (en) * | 2022-09-09 | 2022-12-30 | 明新梅诺卡(江苏)新材料有限公司 | Polylactic acid sea-island fiber and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108624020B (en) | 2020-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108624020B (en) | A seawater degradable material with adjustable use cycle and degradation cycle and preparation method thereof | |
CN103159984B (en) | All-degradable thermoplastic starch/polylactic acid blend material and preparation method thereof | |
CN102108196A (en) | A kind of preparation method of polylactic acid degradable material | |
CN106519311B (en) | A kind of thermoplastic starch-polyvinyl alcohol anti-fog film and preparation method thereof | |
CN103087482A (en) | Fully-degradable heat-insulation mulch and preparation method thereof | |
CN100532453C (en) | A polylactic acid foam plastic sheet for plastic absorption and its preparation method | |
CN101544813A (en) | Rapid crystallization polylactic acid composite material and preparation method thereof | |
CN102604164A (en) | Master batch capable of fully and biologically degrading plastic film and preparation method thereof | |
CN101654528B (en) | Biodegradable resin for agricultural film and production method thereof | |
CN112778723A (en) | Starch-based degradable desorption tube material and preparation method thereof | |
CN101665619B (en) | Egg-shell powder filled poly-lactic acid composite material and preparation method thereof | |
CN101948598A (en) | Method for preparing biodegradable membrane | |
CA2596970C (en) | A substantially completely biodegradable high starch polymer | |
CN116904001A (en) | Formula of degradable plastic bag and preparation method thereof | |
CN1315927C (en) | Green degradable resin and production thereof | |
CN101693773A (en) | Acorn powder/polycaprolactone composite material and preparation method thereof | |
CN102617969B (en) | Preparation method of thermoplastic konjac glucomannan/polybutylene succinate blend material | |
CN108117709A (en) | Modified polyvinylalcohol material and preparation method thereof | |
CN103724667A (en) | Thermoplastic biodegradable material and preparation method thereof | |
CN111518352A (en) | High-temperature water-soluble PVA master batch composition and high-temperature water-soluble PVA particles | |
CN1315928C (en) | Aliphatic polyester/starch/clay ternary degradable resin and production thereof | |
CN102276825A (en) | Process for manufacturing polyvinyl chloride (PVC) internal lubricant | |
CN101805464B (en) | Preparation method of biological resin material for film blowing | |
CN102604308A (en) | Preparation method of blow molding type thermoplastic konjak glucomannan/poly-caprolactone composite resin | |
CN109880325A (en) | A kind of fully degradable new polyester composite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |