CN108611638B - 高磨耗比、高断裂强度微米金刚石厚膜及其制备方法 - Google Patents
高磨耗比、高断裂强度微米金刚石厚膜及其制备方法 Download PDFInfo
- Publication number
- CN108611638B CN108611638B CN201810580017.7A CN201810580017A CN108611638B CN 108611638 B CN108611638 B CN 108611638B CN 201810580017 A CN201810580017 A CN 201810580017A CN 108611638 B CN108611638 B CN 108611638B
- Authority
- CN
- China
- Prior art keywords
- film layer
- diamond
- micron diamond
- layer
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 123
- 239000010432 diamond Substances 0.000 title claims abstract description 123
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 238000005299 abrasion Methods 0.000 title claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 28
- 239000013078 crystal Substances 0.000 claims abstract description 21
- 238000001308 synthesis method Methods 0.000 claims abstract description 5
- 238000013329 compounding Methods 0.000 claims abstract description 4
- 239000000758 substrate Substances 0.000 claims description 27
- 229910052710 silicon Inorganic materials 0.000 claims description 22
- 239000010703 silicon Substances 0.000 claims description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 21
- 238000000151 deposition Methods 0.000 claims description 16
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 238000001764 infiltration Methods 0.000 claims description 6
- 230000008595 infiltration Effects 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000009713 electroplating Methods 0.000 claims description 3
- 238000000608 laser ablation Methods 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 238000007747 plating Methods 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 238000005530 etching Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 86
- 238000004140 cleaning Methods 0.000 description 8
- 239000011733 molybdenum Substances 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000861 blow drying Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000259 microwave plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/36—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明为一种高磨耗比、高断裂强度微米金刚石厚膜及其制备方法,属于超硬材料制备技术领域。本发明厚膜由紧密连接的多层微米金刚石膜层和多层金属膜层复合而成的,微米金刚石膜层和金属膜层依次间隔设置,且最顶层和最底层都为微米金刚石膜层;微米金刚石膜中(110)晶粒取向占优,晶粒尺寸为10‑200μm,膜厚度为50‑200μm;金属膜层的厚度为1‑10μm。制备时,采用化学气相沉积方法沉积金刚石膜层,采用薄膜合成方法制备金属膜层。本发明通过添加金属膜层阻断微米金刚石晶粒的长大,使后续的金刚石在金属层表面重新形核并生长。最终获得的金刚石厚膜主要由细小晶粒(110)取向占优的微米金刚石构成,具有高的磨耗比和高的断裂强度。
Description
技术领域
本发明属于超硬材料制备技术领域,具体是一种高磨耗比、高断裂强度微米金刚石厚膜及其制备方法。
背景技术
化学气相沉积(CVD)金刚石膜具有优异的综合物理化学性质,在机械、航空航天、光学等领域具有良好的应用前景。当CVD金刚石膜作为切削或修整工具使用时,耐磨性能和断裂强度是两个主要的性能指标。
与其它取向的CVD金刚石相比,(110)取向占优的CVD金刚石具有耐磨性高,生长温度适中的特点。但是,由于CVD金刚石膜的制备一般通过等离子体辅助实现,随着膜厚度的增加,基片在等离子体中的位置会发生改变,膜的沉积环境即所处温度场、流场、电磁场、氢原子及碳基团的浓度等,均会发生不同程度的改变。因此,择优取向会发生改变。与此同时,随着沉积时间的延长,晶粒的长大,膜中晶界的尺度会增加,数量减少,晶界间的孔洞等其它大尺度缺陷出现的几率也会同时增加。这种组织结构的变化,会造成CVD金刚石膜断裂强度的降低。
发明内容
本发明的目的是为了解决常规方法制备的金刚石厚膜表面粗糙、断裂强度差的问题,而提供一种高磨耗比、高断裂强度微米金刚石厚膜,该厚膜是由多层微米金刚石膜层/金属膜层交替排列而成的。同时,本发明的另一个目的是提供上述厚膜的制备方法。
本发明是通过如下技术方案实现的:
一种高磨耗比、高断裂强度微米金刚石厚膜,是由紧密连接的多层微米金刚石膜层和多层金属膜层复合而成的,其中,微米金刚石膜层和金属膜层依次间隔设置,且最顶层和最底层都为微米金刚石膜层;所述的微米金刚石膜层中(110)晶粒取向占优,且晶粒尺寸为10-200μm,所述的微米金刚石膜层的厚度为50-200μm,所述的金属膜层的厚度为1-10μm。
作为优选的技术方案,所述的金属膜层采用能够与金刚石形成良好结合强度的强碳化物形成元素。
作为优选的技术方案,所述的强碳化物形成元素为Mo、W、Cr、Ti、Zr、Ta、V。
上述高磨耗比、高断裂强度微米金刚石厚膜的制备方法,包括如下步骤:
首先,利用化学气相沉积方法在硅基片表面沉积(110)取向占优的微米金刚石膜层;具体为:使用单面抛光单晶硅片作为基片,用粒度为0.2-0.5µm的金刚石细粉手工研磨硅片表面,然后用酒精进行超声清洗,并用冷风吹干,用化学气相沉积方法在其表面沉积第一层微米金刚石膜层,控制金刚石晶粒为(110)占优取向,控制金刚石晶粒尺寸为10-200μm,控制微米金刚石膜层的厚度为50-200μm;
然后,利用薄膜合成方法在微米金刚石膜层上制备金属膜层;具体为:用酒精超声清洗沉积了微米金刚石膜层的基片表面,并用冷风吹干,利用薄膜合成方法在微米金刚石膜层表面制备第一层金属膜层,并控制金属膜层的厚度为1-10μm;
接着,使用粒度为0.2-0.5µm金刚石细粉研磨金属膜层表面及基片边缘表面,然后用酒精进行超声清洗,并用冷风吹干,再在金属膜层上继续利用化学气相沉积方法沉积(110)取向占优的微米金刚石膜层,以此类推,按间隔顺序依次进行微米金刚石膜层的沉积和金属膜层的制备,直到达到厚膜所需的总厚度为止;其中,最后一层为微米金刚石膜层;
最后,将硅基片去除即可获得所述的高磨耗比、高断裂强度微米金刚石厚膜。
作为优选的技术方案,所述的微米金刚石膜层的制备方法采用微波等离子体化学气相沉积法、热丝等离子体化学气相沉积法或直流电弧等离子体喷射化学气相沉积法;所述的金属膜层的制备方法采用双层辉光等离子体渗金属、磁控溅射、电镀或化学镀。
作为优选的技术方案,所述的硅基片的去除方法为:采用酸溶液腐蚀去除,或采用激光切除。
本发明的微米金刚石厚膜之所以能够具有高的耐磨性与断裂强度,是因为利用金属膜层阻断了金刚石晶粒的柱状生长,使得厚膜的柱状晶结构变为细小晶粒结构。化学气相沉积金刚石膜层时,金刚石生长呈柱状晶的竞争生长方式,随着膜厚度的增加,晶粒逐渐增大,晶粒间的空隙增大,非金刚石相增多,使得金刚石膜的断裂强度等力学性能严重下降,在加载的情况下,造成金刚石膜的断裂失效。同时金刚石膜的表面粗糙度也随厚膜增加而增大。而采用本发明方法制备的微米金刚石厚膜,由于加入了多层金属膜层,阻断了晶粒的柱状晶长大,使得每一层的金刚石膜是在金属膜层上重新形核,重新生长,从而将粗大的柱状晶粒变为细小的晶粒,这使得金刚石膜加载作用力时,可以将力分散到更多的晶粒内进行,应力集中小,而且,晶粒越多,晶界面积越大,晶界越曲折,裂纹越不容易扩展,从而同多层中间金属膜层的添加,提高了厚膜的断裂强度。同时,通过多层金属膜层的加入,利用金属韧性高于金刚石韧性,使得复合厚膜韧性得到提高。金属膜层阻断晶粒长大及(110)取向金刚石有利于降低微米金刚石膜的粗糙度,提高其磨耗比。
本发明与现有技术相比,具有以下有益效果:
1)厚膜断裂强度、磨耗比性能显著提高;
2)厚膜内应力显著减小;
3)采用不同表面处理技术结合的方法,进一步拓宽了超硬材料的制备技术领域。
附图说明
此处的附图用来提供对本发明的进一步说明,构成本申请的一部分,本发明的示意性实施例及其说明用来解释本发明,并不构成对本发明的不当限定。
图1为本发明高磨耗比、高断裂强度微米金刚石厚膜的结构示意图。
图2为厚膜制备过程中所使用的钼模简图。
图中:1-微米金刚石膜层、2-金属膜层、3-硅基片、4-钼模。
图3为本发明高磨耗比、高断裂强度微米金刚石厚膜的截面SEM图。
图4为本发明高磨耗比、高断裂强度微米金刚石厚膜的表面SEM图。
图5为本发明高磨耗比、高断裂强度的微米金刚石厚膜表面XRD图。
具体实施方式
为了使本领域技术人员更好的理解本发明,以下结合参考附图并结合实施例对本发明作进一步清楚、完整的说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
一种高磨耗比、高断裂强度微米金刚石厚膜,是由紧密连接的多层微米金刚石膜层1和多层金属膜层2复合而成的,其中,微米金刚石膜层1和金属膜层2依次间隔设置,且最顶层和最底层都为微米金刚石膜层1;所述的微米金刚石膜层1中(110)取向晶粒占优,晶粒尺寸为10-200μm,微米金刚石膜层1的厚度为50-200μm,所述的金属膜层2的厚度为1-10μm。
所述的金属膜层采用能够与金刚石形成良好结合强度的强碳化物形成元素例如Mo、W、Cr、Ti、Zr、Ta、V。
上述高磨耗比、高断裂强度微米金刚石厚膜的制备方法,包括如下步骤:首先,利用化学气相沉积方法在硅基片表面沉积(110)取向占优的微米金刚石膜层;然后,利用薄膜合成方法在微米金刚石膜层上制备金属膜层;接着,再在金属膜层上继续利用化学气相沉积方法沉积(110)取向占优的微米金刚石膜层,以此类推,按间隔顺序依次进行微米金刚石膜层的沉积和金属膜层的制备,直到达到厚膜所需的总厚度为止;其中,每层微米金刚石膜层的厚度控制在50-200μm,微米金刚石膜层的金刚石晶粒尺寸控制在10-200μm,每层金属膜层的厚度控制在1-10μm;最后,将硅基片去除即可获得所述的高磨耗比、高断裂强度微米金刚石厚膜。
所述的微米金刚石膜层的制备方法采用微波等离子体化学气相沉积法、热丝等离子体化学气相沉积法或直流电弧等离子体喷射化学气相沉积法;所述的金属膜层的制备方法采用双层辉光等离子体渗金属、磁控溅射、电镀或化学镀;所述的硅基片的去除方法采用酸溶液腐蚀去除或采用激光切除。
以下通过一个具体的制备实施例,对本发明制备方法作进一步的说明,该实施例中,使用到的设备有TYUT型微波等离子体化学气相沉积设备与双辉等离子体渗金属设备,具体包括以下步骤:
一、微波等离子体化学气相沉积微米金刚石膜层
①清理硅基片表面:使用直径为60mm,厚度为5mm的单面抛光单晶硅圆片作为硅基片3,用粒度为0.5µm的金刚石细粉手工研磨单晶硅抛光表面30min,之后放入酒精中超声清洗20min,并用冷风吹干;放入如图2所示的钼模2中,钼模2的外径为65mm、高度为10mm、凹槽直径60.1mm、深度为5.5mm;
打开TYUT型MPCVD设备反应腔体,将基台擦拭干净;将装有硅基片3的钼模4放置于反应腔体内基台中央位置,关闭腔体后,先开机械泵进行抽真空,待腔体压力抽至5Pa以下时,打开分子泵,待腔体的真空度抽至1*10-4Pa后 ,关闭分子泵,通入纯度99.9999%的氢气,流量控制在400sccm,待腔体气压升高至0.8KPa时,微波功率设置0.6KW,打开微波电源,之后同时升高气压与功率,待微波功率升高至5KW,腔体压力为10KPa,通入纯度99.999%的甲烷,甲烷流量控制在氢气流量的1%-3%;待硅基片3温度升高至900±5℃时,稳定参数,进行金刚石膜的沉积,沉积时间为20h,保证微米金刚石膜层厚度为100±5µm;
二、双层辉光离子渗金属技术渗钼处理
①清理硅基片表面:将上面沉积好微米金刚石膜层的硅基片3,放入酒精中超声处理30min,然后用冷风吹干;
装炉:将沉积了第一层微米金刚石膜层的硅基片3放入如图2所示的钼模2中,钼模2的外径为65mm、高度为10mm、凹槽直径60.1mm、深度为5.5mm;然后放置在双层辉光渗金属装置中的基台上,靶材为直径80mm、厚度5mm、纯度99.999%的钼,靶材采用悬挂式放置,靶材与硅基片3间距为20mm,溅射气体为纯度99.999%的高纯氩气;
⑤保温处理:保温15min后,关闭溅射靶电源与基材电源,1.5h后关闭氩气,随炉冷却至室温后取出,金属Mo膜层厚度为1μm。
三、接着,使用粒度为0.2-0.5µm金刚石细粉研磨金属膜层表面及基片边缘表面,然后用酒精进行超声清洗,并用冷风吹干,再在金属膜层上继续利用化学气相沉积方法沉积(110)取向占优的微米金刚石膜层,以此类推,按间隔顺序依次进行微米金刚石膜层的沉积和金属膜层的制备,待厚膜的整体厚度达到400±10μm时,停止制备,将成品放入体积比为1∶2的氢氟酸与硝酸混合液中40h,腐蚀掉硅基片3,即得到高磨耗比、高断裂强度的微米金刚石厚膜。
所制的微米金刚石厚膜无局部裂纹,平均拉曼半峰宽:3.0cm-1,断裂强度:950±5Mpa,磨耗比:60-80万。
图3为本发明高磨耗比、高断裂强度微米金刚石厚膜的截面SEM图。从图中可以得出的结论是:每层金刚石的厚度相差不多,约为100μm。中间Mo夹层平整,且厚度很薄,为1μm。可以看得出,金刚石的柱状晶粒被阻断,每一层重新形核生长,这有利于金刚石厚膜断裂强度的提高。
图4为本发明高磨耗比、高断裂强度的多层金刚石膜层/金属膜层复合厚膜的表面SEM图。从图中可以得出的结论是:表面金刚石晶粒细小(20-100μm),且表面多呈现长方形的(110)金刚石晶面,这两点都会使得厚膜的磨耗比大大提高。
图5为本发明高磨耗比、高断裂强度的多层金刚石膜层/金属膜层复合厚膜的表面XRD图。从图可以看出,(110)晶面衍射峰强度最高,表示复合微米金刚石厚膜表面晶面主要为金刚石(110)晶面。
上面是对本发明实施例中的技术方案进行了清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
Claims (6)
1.一种高磨耗比、高断裂强度微米金刚石厚膜,其特征在于:该厚膜是由紧密连接的多层微米金刚石膜层和多层金属膜层复合而成的,其中,微米金刚石膜层和金属膜层依次间隔设置,且最顶层和最底层都为微米金刚石膜层;所述的微米金刚石膜层中(110)晶粒取向占优,且晶粒尺寸为10-200μm,所述的微米金刚石膜层的厚度为50-200μm,所述的金属膜层的厚度为1-10μm。
2.根据权利要求1所述的高磨耗比、高断裂强度微米金刚石厚膜,其特征在于:所述的金属膜层采用能够与金刚石形成良好结合强度的强碳化物形成元素。
3.根据权利要求2所述的高磨耗比、高断裂强度微米金刚石厚膜,其特征在于:所述的强碳化物形成元素为Mo、W、Cr、Ti、Zr、Ta、V。
4.根据权利要求1-3任一所述的高磨耗比、高断裂强度微米金刚石厚膜的制备方法,其特征在于,包括如下步骤:首先,利用化学气相沉积方法在硅基片表面沉积(110)取向占优的微米金刚石膜层;然后,利用薄膜合成方法在微米金刚石膜层上制备金属膜层;接着,再在金属膜层上继续利用化学气相沉积方法沉积(110)取向占优的微米金刚石膜层,以此类推,按间隔顺序依次进行微米金刚石膜层的沉积和金属膜层的制备,直到达到厚膜所需的总厚度为止;其中,每层微米金刚石膜层的厚度控制在50-200μm,每层金属膜层的厚度控制在1-10μm;最后,将硅基片去掉即可。
5.根据权利要求4所述的高磨耗比、高断裂强度微米金刚石厚膜的制备方法,其特征在于:所述的微米金刚石膜层的制备方法采用微波等离子体化学气相沉积法、热丝等离子体化学气相沉积法或直流电弧等离子体喷射化学气相沉积法;所述的金属膜层的制备方法采用双层辉光等离子体渗金属、磁控溅射、电镀或化学镀。
6.根据权利要求4或5所述的高磨耗比、高断裂强度微米金刚石厚膜的制备方法,其特征在于:将硅基片去除的方法是用酸溶液腐蚀去除或采用激光切除。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810580017.7A CN108611638B (zh) | 2018-06-07 | 2018-06-07 | 高磨耗比、高断裂强度微米金刚石厚膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810580017.7A CN108611638B (zh) | 2018-06-07 | 2018-06-07 | 高磨耗比、高断裂强度微米金刚石厚膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108611638A CN108611638A (zh) | 2018-10-02 |
CN108611638B true CN108611638B (zh) | 2020-04-17 |
Family
ID=63664871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810580017.7A Active CN108611638B (zh) | 2018-06-07 | 2018-06-07 | 高磨耗比、高断裂强度微米金刚石厚膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108611638B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110330950B (zh) * | 2019-08-02 | 2020-12-22 | 太原理工大学 | 含金刚石条的复合散热材料及其制备方法 |
CN113549867B (zh) * | 2021-07-09 | 2022-04-29 | 北京科技大学 | 一种大冷量传输全碳柔性冷链结构的制备方法 |
CN114318287B (zh) * | 2021-12-23 | 2023-11-03 | 深圳技术大学 | 金刚石自支撑膜的制备方法和金刚石自支撑膜 |
CN114921766B (zh) * | 2022-05-26 | 2023-10-13 | 太原理工大学 | 一种金刚石/金属复合散热片及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103147063A (zh) * | 2013-02-21 | 2013-06-12 | 太原理工大学 | 一种TiNi合金表面制备金刚石涂层的方法 |
CN103594306A (zh) * | 2013-11-13 | 2014-02-19 | 太原理工大学 | 一种金刚石/金属复合材料夹持杆及制备方法 |
CN104561925A (zh) * | 2015-01-20 | 2015-04-29 | 太原理工大学 | 一种自支撑金刚石膜的制备方法 |
CN106835054A (zh) * | 2017-02-25 | 2017-06-13 | 太原理工大学 | 金刚石单晶表面金属化处理的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9469918B2 (en) * | 2014-01-24 | 2016-10-18 | Ii-Vi Incorporated | Substrate including a diamond layer and a composite layer of diamond and silicon carbide, and, optionally, silicon |
-
2018
- 2018-06-07 CN CN201810580017.7A patent/CN108611638B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103147063A (zh) * | 2013-02-21 | 2013-06-12 | 太原理工大学 | 一种TiNi合金表面制备金刚石涂层的方法 |
CN103594306A (zh) * | 2013-11-13 | 2014-02-19 | 太原理工大学 | 一种金刚石/金属复合材料夹持杆及制备方法 |
CN104561925A (zh) * | 2015-01-20 | 2015-04-29 | 太原理工大学 | 一种自支撑金刚石膜的制备方法 |
CN106835054A (zh) * | 2017-02-25 | 2017-06-13 | 太原理工大学 | 金刚石单晶表面金属化处理的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108611638A (zh) | 2018-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108611638B (zh) | 高磨耗比、高断裂强度微米金刚石厚膜及其制备方法 | |
CN108570655B (zh) | 一种自支撑纳米金刚石厚膜的制备方法 | |
CN107620033B (zh) | 一种高纯强致密max相涂层的制备方法 | |
CN103894695B (zh) | 一种cvd金刚石厚膜与硬质合金的焊接方法 | |
CN110371955B (zh) | 一种石墨烯-金属复合材料的制备方法 | |
CN111321381B (zh) | 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法 | |
CN113981392B (zh) | 一种Ti-Al-C MAX相涂层及其低温成相制备方法 | |
CN113770381B (zh) | 一种3d打印金刚石/金属基复合材料及其制备方法和应用 | |
CN108411242B (zh) | 一种具有抗粒子冲刷表面层的热障涂层及其制备方法 | |
CN110129729A (zh) | 镍基合金表面NiCrAlY/NiCrAlY-YSZ/YSZ热障涂层及其制备方法 | |
CN111910172B (zh) | 复合式涂层pcbn切削刀具及其制备方法 | |
CN103184402A (zh) | 一种稀土改性金属陶瓷涂层的制备方法 | |
CN114507858A (zh) | 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法 | |
CN111302833A (zh) | 改善铝对氧化铝陶瓷润湿性的方法 | |
CN111910168B (zh) | 一种cvd金刚石厚膜-陶瓷复合片钎焊刀具及其制备方法 | |
CN118345341A (zh) | 一种钨靶材及其制备方法 | |
CN117364021A (zh) | 一种高韧性硬质涂层及制备工艺和应用以及刀具 | |
CN109207917B (zh) | 一种NiCrAlSi/CeO2掺杂YSZ热障涂层及其制备方法 | |
CN116121700B (zh) | 一种耐火元素掺杂的耐磨梯度HfMSiCN陶瓷层及其制备方法 | |
CN117144295A (zh) | 一种TaB2-Ta复合涂层及其制备方法 | |
CN108265272B (zh) | 纳米多层氮化硅陶瓷涂层、其制备方法与应用 | |
CN113529166B (zh) | 一种生长大面积金刚石单晶的方法 | |
CN115074731A (zh) | 一种多孔复合TiCN/TiAlXN耐磨抗氧化涂层及其制备方法、应用 | |
Peng et al. | Characterization and adhesion strength of diamond films deposited on silicon nitride inserts by dc plasma jet chemical vapour deposition | |
CN111014616A (zh) | HfZrWMoVNbN/CrSiN高熵合金纳米复合涂层压铸铝模具及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |