[go: up one dir, main page]

CN108611344A - The preparation and application of AtAGM2 and AtAGM3 encoding genes and enzyme - Google Patents

The preparation and application of AtAGM2 and AtAGM3 encoding genes and enzyme Download PDF

Info

Publication number
CN108611344A
CN108611344A CN201611133399.6A CN201611133399A CN108611344A CN 108611344 A CN108611344 A CN 108611344A CN 201611133399 A CN201611133399 A CN 201611133399A CN 108611344 A CN108611344 A CN 108611344A
Authority
CN
China
Prior art keywords
sequence
acetylglucosamine
seq
phosphate
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611133399.6A
Other languages
Chinese (zh)
Inventor
尹恒
贾晓晨
李悝悝
曹海龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201611133399.6A priority Critical patent/CN108611344A/en
Publication of CN108611344A publication Critical patent/CN108611344A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention discloses two phosphoacetylglucosamine mutase (Arabidopsis thaliana N acetylpHospHoglucosamine mutase 2,3 for deriving from arabidopsis (Arabidopsis thaliana);AtAGM2, AtAGM3) gene order and its application.The present invention provides a kind of methods preparing acetyl glucosamine transphosphorylase, it i.e. will be in the gene cloning to coli expression carrier of enzyme, obtain can heterogenous expression mutase E. coli recombinant stain, the mutase activity that AtAGM2 all has with AtAGM3. two kinds of AGM albumen catalysis pbosphohexose isomers is prepared with recombinant bacterial strain heterogenous expression, can be applied to enzyme law catalysis synthesis uridine 5'-diphosphate acetylglucosamine (UDP GlcNAc) or production pbosphohexose isomers field.

Description

AtAGM2与AtAGM3编码基因及酶的制备与应用Preparation and Application of AtAGM2 and AtAGM3 Encoding Genes and Enzymes

技术领域technical field

本发明涉及两种乙酰葡萄糖胺磷酸变位酶AtAGM2与AtAGM3的基因序列及其制备方法,尤其涉及这两种酶在核苷酸糖及磷酸己糖异构体生产中的应用。本发明还提供了这两种乙酰葡萄糖胺磷酸变位酶的重组质粒和重组基因工程菌株,以及两种酶的酶学性质。The invention relates to gene sequences of two acetylglucosamine phosphate mutases AtAGM2 and AtAGM3 and a preparation method thereof, in particular to the application of these two enzymes in the production of nucleotide sugar and hexose phosphate isomers. The invention also provides the recombinant plasmids and recombinant genetic engineering strains of the two acetylglucosamine phosphate mutases, as well as the enzymatic properties of the two enzymes.

背景技术Background technique

乙酰葡萄糖胺(GlcNAc,N-乙酰-β-D-氨基葡萄糖)是葡萄糖的一种氨基糖衍生物。在生物体内,是仅次于葡萄糖的一种具有重要生理生化功能的单糖。常以UDP-GlcNAc形式参与主要包括神经系统和免疫系统在内的诸多生物反应过程和生物体内多种糖缀合物的结构组成。在生物体内,生成UDP-GlcNAc的主要途径是氨基己糖途径(Hexosaminebiosynthesis pathway)。这一途径是糖酵解的分支,都以己糖代谢途径的中间产物果糖-6-磷酸(Fructose-6-P)为起始底物,在多种酶的协同催化作用下,最终合成UDP-GlcNAc。根据合成过程中催化反应的顺序及合成途径所涉及酶的来源不同,分为真核,原核以及拟菌病毒的UDP-GlcNAc合成途径。目前,氨基己糖途径已经被广泛的研究,但是植物中的氨基己糖途径中的第三个酶乙酰葡萄糖胺磷酸变位酶至今尚未研究和应用,所以植物中的氨基己糖途径仍未被打通。Acetylglucosamine (GlcNAc, N-acetyl-β-D-glucosamine) is an amino sugar derivative of glucose. In organisms, it is a monosaccharide with important physiological and biochemical functions after glucose. Often in the form of UDP-GlcNAc, it participates in many biological reaction processes including the nervous system and immune system and the structural composition of various glycoconjugates in organisms. In organisms, the main pathway for generating UDP-GlcNAc is the Hexosamine biosynthesis pathway. This pathway is a branch of glycolysis, which uses the intermediate product of hexose metabolism pathway, fructose-6-phosphate (Fructose-6-P) as the initial substrate, and finally synthesizes UDP under the synergistic catalysis of various enzymes. -GlcNAc. According to the sequence of catalytic reactions in the synthesis process and the sources of enzymes involved in the synthesis pathway, it can be divided into eukaryotic, prokaryotic and mimivirus UDP-GlcNAc synthesis pathways. At present, the hexosamine pathway has been extensively studied, but the third enzyme acetylglucosamine phosphate mutase in the plant hexosamine pathway has not been studied and applied so far, so the hexosamine pathway in plants has not yet been studied. get through.

另外UDP-GlcNAc作为生物体内重要的活性核苷糖,可被大量用于寡糖的生产,进而被开发成医药品或功能性材料。但由于其生产方法的限制,目前其供应量仍较小,价格也很高。目前已经有研究使用无细胞催化的多步酶催化反应体系,偶联了葡萄糖激酶,AGM与GlcNAc-1-P尿苷转移酶(GlmU)三个酶,以GlcNAc作为底物生产UDP-GlcNAc。无论是体内表达体系还是体外表达体系,来自酵母的AGM l的可溶表达水平均很低,影响了产物合成的效率和成本。所以提供一种高活性、高表达的AGM具有十分重要的意义。In addition, UDP-GlcNAc, as an important active nucleoside sugar in the body, can be used in large quantities for the production of oligosaccharides, and then be developed into pharmaceuticals or functional materials. However, due to the limitations of its production methods, its supply is still small and its price is high. At present, there have been studies using a cell-free catalyzed multi-step enzyme-catalyzed reaction system, coupled with three enzymes, glucokinase, AGM and GlcNAc-1-P uridine transferase (GlmU), to produce UDP-GlcNAc with GlcNAc as a substrate. Regardless of the expression system in vivo or in vitro, the soluble expression level of AGM 1 from yeast is very low, which affects the efficiency and cost of product synthesis. Therefore, it is of great significance to provide a highly active and highly expressed AGM.

磷酸己糖的价格十分的昂贵,目前主要是化学方法合成,生产步骤繁琐。Sigma以及Santa Cruz等公司的储量很少甚至断货。由于合成方法的限制,导致磷酸己糖不同的异构体之间价格差异巨大(几十甚至上百倍);如GlcN-6-P的价格29元/mg,而GlcN-1-P的价格则是460/mg。所以探索新的磷酸己糖的制备方法,特别是价格昂贵的磷酸己糖的制备方法势在必行。The price of hexose phosphate is very expensive. At present, it is mainly synthesized by chemical methods, and the production steps are cumbersome. Companies such as Sigma and Santa Cruz have little or no stock. Due to the limitation of the synthesis method, the price difference between the different isomers of hexose phosphate is huge (tens or even hundreds of times); for example, the price of GlcN-6-P is 29 yuan/mg, while the price of GlcN-1-P is 29 yuan/mg. It is 460/mg. Therefore, it is imperative to explore new preparation methods of hexose phosphates, especially expensive hexose phosphates.

针对上述乙酰葡萄糖胺磷酸变位酶的研究现状及其在应用中存在的问题,本发明公开了两个来源于拟南芥(Arabidopsis thaliana)的乙酰葡萄糖胺磷酸变位酶(Arabidopsis thaliana N-acetylpHospHoglucosamine mutase,AtAGM)的基因序列及其制备方法。这两种酶均具有催化不同己糖磷酸异构体的活性,与另外一个来与拟南芥中的乙酰葡萄糖胺磷酸变位酶AtAGM1相比,三者催化反应的效率相差不大,并且具有类似的酶学性质,均可以应用于无细胞酶法催化合成UDP-GlcNAc,或己糖磷酸异构体的生产中。In view of the research status of the above-mentioned acetylglucosamine phosphate mutase and the problems existing in its application, the present invention discloses two acetylglucosamine phosphate mutases (Arabidopsis thaliana N-acetylpHospHoglucosamine) derived from Arabidopsis thaliana (Arabidopsis thaliana) mutase, AtAGM) gene sequence and preparation method thereof. These two enzymes both have the activity of catalyzing different hexose phosphate isomers. Compared with the other one and the acetylglucosamine phosphate mutase AtAGM1 in Arabidopsis thaliana, the efficiency of the three catalytic reactions is not much different, and they have Similar enzymatic properties can be applied to the cell-free enzymatic synthesis of UDP-GlcNAc, or the production of hexose phosphate isomers.

发明内容Contents of the invention

本发明的第一个目的是提供两个植物来源的乙酰葡萄糖胺磷酸变位酶AtAGM2与AtAGM3及其编码基因。The first object of the present invention is to provide two plant-derived acetylglucosamine phosphate mutases AtAGM2 and AtAGM3 and their coding genes.

本发明的第二个目的是提供一种制备乙酰葡萄糖胺磷酸变位酶AtAGM2与AtAGM3的方法。The second object of the present invention is to provide a method for preparing acetylglucosamine phosphomutases AtAGM2 and AtAGM3.

本发明的第三个目的是提供含有所述的乙酰葡萄糖胺磷酸变位酶AtAGM2与AtAGM3的重组表达质粒和重组基因工程菌株。The third object of the present invention is to provide recombinant expression plasmids and recombinant genetic engineering strains containing the acetylglucosamine phosphate mutases AtAGM2 and AtAGM3.

本发明所提供的乙酰葡萄糖胺磷酸变位酶AtAGM2,来源于拟南芥(Arabidopsisthaliana),其氨基酸序列具有如下特征中的一种或二种:The acetylglucosamine phosphate mutase AtAGM2 provided by the present invention is derived from Arabidopsis thaliana (Arabidopsisthaliana), and its amino acid sequence has one or both of the following characteristics:

1)序列表中的SEQ ID NO.2从氨基端开始的第1-625氨基酸残基序列,为有活性的乙酰葡萄糖胺磷酸变位酶AtAGM的氨基酸序列,620-625为His-Tag的氨基酸序列。1) The 1-625th amino acid residue sequence of SEQ ID NO.2 in the sequence listing starting from the amino terminal is the amino acid sequence of the active acetylglucosamine phosphomutase AtAGM, and 620-625 is the amino acid residue of His-Tag sequence.

2)将序列表中的SEQ ID NO.2从氨基端开始的第1-625位氨基酸残基进行一个或两个以上氨基酸取代、缺失或添加而形成具有乙酰葡萄糖胺磷酸变位酶活性不变的氨基酸序列。2) Substituting, deleting or adding one or more amino acids to amino acid residues 1-625 of SEQ ID NO.2 starting from the amino terminal of SEQ ID NO.2 in the sequence listing to form an acetylglucosamine phosphomutase activity unchanged amino acid sequence.

本发明还提供了上述乙酰葡萄糖胺磷酸变位酶AtAGM2的编码基因,来源于拟南芥(Arabidopsis thaliana),其核苷酸序列具有如下特征中的一种或二种以上:The present invention also provides a gene encoding the above-mentioned acetylglucosamine phosphate mutase AtAGM2, which is derived from Arabidopsis thaliana, and its nucleotide sequence has one or more than two of the following characteristics:

1)序列表中SEQ ID NO.1的脱氧核糖核酸(DNA)序列;1) the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.1 in the sequence listing;

2)编码序列表中SEQ ID NO.2氨基酸序列的脱氧核糖核酸(DNA)序列;2) the deoxyribonucleic acid (DNA) sequence encoding the amino acid sequence of SEQ ID NO.2 in the sequence listing;

3)对序列表中SEQ ID NO.1的脱氧核糖核酸(DNA)序列进行一个或两个以上核苷酸取代、缺失或添加而得到的编码具有乙酰葡萄糖胺磷酸变位酶活性的核苷酸序列。3) A nucleotide encoding acetylglucosamine phosphate mutase activity obtained by performing one or more than two nucleotide substitutions, deletions or additions to the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.1 in the sequence listing sequence.

发明所提供的乙酰葡萄糖胺磷酸变位酶AtAGM3,来源于拟南芥(Arabidopsisthaliana),其氨基酸序列具有如下特征中的一种或二种:The acetylglucosamine phosphate mutase AtAGM3 provided by the invention is derived from Arabidopsis thaliana (Arabidopsisthaliana), and its amino acid sequence has one or both of the following characteristics:

1)序列表中的SEQ ID NO.4从氨基端开始的第1-623氨基酸残基序列,为有活性的乙酰葡萄糖胺磷酸变位酶AtAGM的氨基酸序列,518-623为His-Tag的氨基酸序列。1) The sequence of amino acid residues 1-623 from the amino terminal of SEQ ID NO.4 in the sequence listing is the amino acid sequence of the active acetylglucosamine phosphomutase AtAGM, and 518-623 is the amino acid of His-Tag sequence.

2)将序列表中的SEQ ID NO.4从氨基端开始的第1-623位氨基酸残基进行一个或两个以上氨基酸取代、缺失或添加而形成具有乙酰葡萄糖胺磷酸变位酶活性不变的氨基酸序列。2) Substituting, deleting or adding one or more amino acids to amino acid residues 1-623 of SEQ ID NO.4 starting from the amino terminus in the sequence listing to form an acetylglucosamine phosphomutase activity unchanged amino acid sequence.

本发明还提供了上述乙酰葡萄糖胺磷酸变位酶AtAGM3的编码基因,来源于拟南芥(Arabidopsis thaliana),其核苷酸序列具有如下特征中的一种或二种以上:The present invention also provides a gene encoding the above-mentioned acetylglucosamine phosphate mutase AtAGM3, which is derived from Arabidopsis thaliana, and its nucleotide sequence has one or more than two of the following characteristics:

1)序列表中SEQ ID NO.3的脱氧核糖核酸(DNA)序列;1) the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.3 in the sequence listing;

2)编码序列表中SEQ ID NO.4氨基酸序列的脱氧核糖核酸(DNA)序列;2) the deoxyribonucleic acid (DNA) sequence encoding the amino acid sequence of SEQ ID NO.4 in the sequence listing;

3)对序列表中SEQ ID NO.3的脱氧核糖核酸(DNA)序列进行一个或两个以上核苷酸取代、缺失或添加而得到的编码具有乙酰葡萄糖胺磷酸变位酶活性的核苷酸序列。3) The nucleotide encoding the acetylglucosamine phosphate mutase activity obtained by performing one or more than two nucleotide substitutions, deletions or additions to the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.3 in the sequence listing sequence.

本发明的乙酰葡萄糖胺磷酸变位酶AtAGM2与AtAGM3的氨基酸序列及其核苷酸编码序列也可以根据预测的AtAGM2与AtAGM3的氨基酸序列及其核苷酸编码序列人工合成获得。The amino acid sequences and nucleotide coding sequences of the acetylglucosamine phosphate mutases AtAGM2 and AtAGM3 of the present invention can also be artificially synthesized according to the predicted amino acid sequences and nucleotide coding sequences of AtAGM2 and AtAGM3.

制备重组酶AtAGM2与AtAGM3的方法,是将乙酰葡萄糖胺磷酸变位酶AtAGM2或AtAGM3的编码基因克隆入重组表达载体,导入宿主细胞,获得重组表达的乙酰葡萄糖胺磷酸变位酶The method for preparing recombinant enzymes AtAGM2 and AtAGM3 is to clone the coding gene of acetylglucosamine phosphate mutase AtAGM2 or AtAGM3 into a recombinant expression vector, introduce it into host cells, and obtain recombinantly expressed acetylglucosamine phosphate mutase

上述乙酰葡萄糖胺磷酸变位酶AtAGM2或AtAGM3的编码基因,其核苷酸序列具有如下特征中的一种或二种以上:The nucleotide sequence of the gene encoding the above-mentioned acetylglucosamine phosphate mutase AtAGM2 or AtAGM3 has one or more than two of the following characteristics:

1)具有序列表中SEQ ID NO.1或SEQ ID NO.3的脱氧核糖核酸(DNA)序列,2)编码SEQ ID NO.2或SEQ ID NO.4氨基酸序列的脱氧核糖核酸(DNA)序列,1) have the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.1 or SEQ ID NO.3 in the sequence listing, 2) the deoxyribonucleic acid (DNA) sequence of encoding SEQ ID NO.2 or SEQ ID NO.4 aminoacid sequence ,

3)对序列表中SEQ ID NO.1或SEQ ID NO.3的脱氧核糖核酸(DNA)序列进行一个或两个以上核苷酸取代、缺失或添加而得到的编码具有乙酰葡萄糖胺磷酸变位酶活性的核苷酸序列。3) The code obtained by performing one or more than two nucleotide substitutions, deletions or additions to the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.1 or SEQ ID NO.3 in the sequence listing has acetylglucosamine phosphate shift Nucleotide sequence for enzymatic activity.

所述的重组表达乙酰葡萄糖胺磷酸变位酶或AtAGM2或AtAGM3的表达载体可以是大肠杆菌表达载体、酵母表达载体、枯草杆菌表达载体、乳酸菌表达载体、链霉菌表达载体、噬菌体载体、丝状真菌表达载体、植物表达载体、昆虫表达载体、或哺乳动物细胞表达载体等。The expression vector for the recombinant expression of acetylglucosamine phosphate mutase or AtAGM2 or AtAGM3 can be Escherichia coli expression vector, yeast expression vector, Bacillus subtilis expression vector, lactic acid bacteria expression vector, streptomyces expression vector, phage vector, filamentous fungus Expression vectors, plant expression vectors, insect expression vectors, or mammalian cell expression vectors, etc.

用于重组表达乙酰葡萄糖胺磷酸变位酶AtAGM2或AtAGM3的重组菌或转基因细胞系,可以是大肠杆菌宿主细胞(如Escherichia coli BL21、Escherichia coli JM109、Escherichia coli DH5α等)、酵母菌宿主细胞(如Saccharomyces cerevisiae、Pichiapastoris、Kluyveromyces lactis等)、枯草杆菌宿主细胞(如Bacillus subtilis R25、Bacillus subtilis 9920等)、乳酸菌宿主细胞(如Lactic acid bacteria COCC101等)、放线菌宿主细胞(如Streptomyces spp.等)、丝状真菌宿主细胞(如Trichoderma viride,Trichoderma reesei,Aspergillus niger、Aspergillus nidulans等)、昆虫细胞(如Bombyx mori,Antharaea eucalypti等)或哺乳动物细胞(如中国仓鼠卵巢细胞CHO,幼小仓鼠肾脏细胞BHK、中国仓鼠肺细胞CHL等)。Recombinant bacteria or transgenic cell lines for recombinant expression of acetylglucosamine phosphate mutase AtAGM2 or AtAGM3 can be Escherichia coli host cells (such as Escherichia coli BL21, Escherichia coli JM109, Escherichia coli DH5α, etc.), yeast host cells (such as Saccharomyces cerevisiae, Pichiapastoris, Kluyveromyces lactis, etc.), Bacillus subtilis host cells (such as Bacillus subtilis R25, Bacillus subtilis 9920, etc.), lactic acid bacteria host cells (such as Lactic acid bacteria COCC101, etc.), actinomyces host cells (such as Streptomyces spp., etc.) , filamentous fungal host cells (such as Trichoderma viride, Trichoderma reesei, Aspergillus niger, Aspergillus nidulans, etc.), insect cells (such as Bombyx mori, Antharaea eucalypti, etc.) or mammalian cells (such as Chinese hamster ovary cells CHO, young hamster kidney cells BHK , Chinese hamster lung cells CHL, etc.).

上述的乙酰葡萄糖胺磷酸变位酶在磷酸己糖与核苷酸糖生产中可以应用,包括以下应用中的一或二种以上:The above-mentioned acetylglucosamine phosphate mutase can be applied in the production of hexose phosphate and nucleotide sugar, including one or more of the following applications:

1)在实现磷酸己糖1,6位异构体的转变,生产相应同分异构体中的应用;1) Application in realizing the transformation of the 1,6-position isomer of hexose phosphate and producing the corresponding isomer;

2)在UDP-GlcNAc(UDP-GlcN;UDP-Glc)等核苷酸糖的生产中的应用;2) Application in the production of nucleotide sugars such as UDP-GlcNAc (UDP-GlcN; UDP-Glc);

附图说明Description of drawings

图1:N-乙酰葡萄糖胺磷酸变位酶基因Atagm2与Atagm3琼脂糖凝胶电泳检测图。Figure 1: Agarose gel electrophoresis detection map of N-acetylglucosamine phosphate mutase gene Atagm2 and Atagm3.

图2:乙酰葡萄糖胺磷酸变位酶AtAGM2表达及纯化的SDS-PAGE图。各加入的样品分别是:1-E.coli BL21(DE3)/pET28a-AtAGM2诱导菌体;2-E.coli BL21(DE3)/pET28a-AtAGM2未诱导菌体;M-预染蛋白分子量标准;其余为不同浓度的咪唑洗脱液。箭头所指的条带为AtAGM2蛋白条带。Figure 2: SDS-PAGE diagram of the expression and purification of acetylglucosamine phosphate mutase AtAGM2. The added samples are: 1-E.coli BL21(DE3)/pET28a-AtAGM2 induced bacteria; 2-E.coli BL21(DE3)/pET28a-AtAGM2 uninduced bacteria; M-pre-stained protein molecular weight standard; The rest are eluents of different concentrations of imidazole. The band indicated by the arrow is the AtAGM2 protein band.

图3:乙酰葡萄糖胺磷酸变位酶AtAGM3表达及纯化的SDS-PAGE图。各加入的样品分别是:1-E.coli BL21(DE3)/pET28a-AtAGM3未诱导菌体;2,3-E.coli BL21(DE3)/pET28a-AtAGM3诱导后菌体;M-预染蛋白分子量标准;其余为不同浓度的咪唑洗脱液。箭头所指的条带为AtAGM3蛋白条带。Figure 3: SDS-PAGE diagram of the expression and purification of acetylglucosamine phosphomutase AtAGM3. The added samples are: 1-E.coli BL21(DE3)/pET28a-AtAGM3 uninduced cells; 2,3-E.coli BL21(DE3)/pET28a-AtAGM3 induced cells; M-prestained protein Molecular weight standards; the rest are different concentrations of imidazole eluents. The band indicated by the arrow is the AtAGM3 protein band.

图4:AtAGM2酶在不同反应体系pH下的相对活性图。Figure 4: The relative activity of AtAGM2 enzyme at different reaction system pH.

图5:AtAGM2酶在不同反应温度下的相对活性折线图。Figure 5: Line graph of relative activity of AtAGM2 enzyme at different reaction temperatures.

图6:AtAGM3酶在不同反应体系pH下的相对活性图。Figure 6: The relative activity of AtAGM3 enzyme at different reaction system pH.

图7:AtAGM3酶在不同反应温度下的相对活性折线图。Figure 7: Line graph of relative activity of AtAGM3 enzyme at different reaction temperatures.

图8:AtAGM2酶在不同金属离子催化下的相对活性图。Figure 8: Relative activity diagram of AtAGM2 enzyme under the catalysis of different metal ions.

图9:AtAGM3酶在不同金属离子催化下的相对活性图。Figure 9: Relative activity diagram of AtAGM3 enzyme under the catalysis of different metal ions.

具体实施方式Detailed ways

SEQ ID NO.1的信息Information on SEQ ID NO.1

(a)序列特征(a) Sequential features

长度:1878个核苷酸Length: 1878 nucleotides

类型:核苷酸Type: Nucleotide

链型:单链Chain type: single chain

(b)分子类型:DNA(b) Molecule type: DNA

序列描述:SEQ ID NO.1Sequence description: SEQ ID NO.1

ATGGAAGGAAAGGTTTTCCAAAACTTTAATGTAGTACAGAGCTGCTACCGACAAAATAAGCAGTTTAAGACACGATACCAAAGAGAACCTGACCTGTTCATGTCTACTTTACTTCCCTGTCCAAGAGAGAAGATGGCATTTAACCTCAACTCTTCCATGCGTGCCCACACTTTGTCTAAATACCAGTTTGTTCTTTCAAAGCAAAGAACTTTTTACTGCAATGCTACTTCGTCAAGTGCTACTGTGCCATCTCTTGACAAAAATGATTTTCTGAAGCTCCAAAACGGCAGTGATATTCGGGGTGTAGCGGTCACTGGGGTTGAGGGGGAACCTGTAAGCCTTCCTGAACCAGTGACTGAAGCCATAGCTGCTGCTTTTGGGCAATGGCTGTTACACAAGAAGAAGGCTGAATCCCGGCGTTTGAGAGTATCTGTTGGCCATGACTCTCGCATCTCTGCACAAACTTTGCTGGAGGCGGTTTCTCGAGGTCTTGGTGTTTCTGGATTAGATGTTGTTCAGTTTGGATTAGCATCAACACCAGCAATGTTTAATAGCACATTGACTGAAGATGAGTCATTCTTGTGCCCAGCTGATGGGGCTATTATGATAACAGCAAGCCATCTTCCTTACAACAGGAACGGTTTCAAGTTCTTTACCAGTGATGGAGGACTTGGGAAGGTTGATATCAAGAACATTTTGGAGCGAGCTGCAGATATTTACAAGAAGCTTTCTGATGAAAATTTGAGGAAATCACAAAGAGAAAGTTCTTCTATTACAAAGGTTGACTACATGTCAGTATACACCTCTGGTCTTGTAAAGGCAGTCCGGAAAGCAGCAGGAGATTTGGAGAAGCCTCTAGAGGGATTTCATATAGTTGTTGATGCTGGAAATGGAGCTGGAGGATTTTTTGCTGCCAAGGTGCTTGAGCCTTTAGGAGCAATTACTTCTGGCAGTCAATTTCTGGAACCAGATGGTATGTTCCCAAATCATATCCCTAATCCGGAAGATAAGGCGGCAATGGAAGCTATAACCAAGGCTGTTCTTGATAATAAGGCTGATTTGGGTATCATCTTTGATACTGATGTTGATAGGTCTGCTGCTGTGGATTCATCTGGCCGTGAATTCAACCGTAATCGTCTTATTGCCTTGCTATCAGCCATTGTTCTAGAGGAACACCCTGGCACAACTATAGTTACGGATAGTGTCACTTCGGACGGTCTGACCTCATTTATTGAGAAGAAGCTTGGCGGAAAGCATCACAGGTTCAAAAGAGGTTACAAGAATGTCATTGACGAAGCTATTCGCTTGAACTCGGTTGGGGAAGAATCACATCTGGCTATAGAAACCAGTGGTCATGGAGCTCTAAAGGAAAACCATTGGCTCGACGATGGGGCCTATCTCATGGTAAAAATCCTGAACAAACTAGCTGCGGCCCGAGCTGCTGGTCAAGGGAGTGGCAGCAAAGTTTTAACAGATCTTGTTGAAGGTCTGGAAGAGCCCAAAGTGGCTTTAGAACTGAGGCTTAAAATCGACAAGAATCACCCTGACCTTGAAGGAAGTGATTTCCGGGAGTATGGAGAGAAGGTCCTGCAACACGTGTCGAACTCAATAGAAACAAATCCAAATCTTATAATAGCTCCAGTTAACTACGAAGGGATCCGCGTTTCGGGCTTTGGTGGATGGTTTCTTCTCAGACTTTCTCTCCATGATCCTGTTCTTCCCCTTAACATCGAGGCACAGAGTGAGGATGATGCTGTGAAATTAGGCCTTGTGGTTGCTACGACAGTGAAGGAGTTCAATGCTTTGGACACCTGTGCCTTGTCCAACCTCACTCACTCCTCCGCGGCCGCACTCGAGCACCACCACCACCACCACTGAATGGAAGGAAAGGTTTTCCAAAACTTTAATGTAGTACAGAGCTGCTACCGACAAAATAAGCAGTTTAAGACACGATACCAAAGAGAACCTGACCTGTTCATGTCTACTTTACTTCCCTGTCCAAGAGAGAAGATGGCATTTAACCTCAACTCTTCCATGCGTGCCCACACTTTGTCTAAATACCAGTTTGTTCTTTCAAAGCAAAGAACTTTTTACTGCAATGCTACTTCGTCAAGTGCTACTGTGCCATCTCTTGACAAAAATGATTTTCTGAAGCTCCAAAACGGCAGTGATATTCGGGGTGTAGCGGTCACTGGGGTTGAGGGGGAACCTGTAAGCCTTCCTGAACCAGTGACTGAAGCCATAGCTGCTGCTTTTGGGCAATGGCTGTTACACAAGAAGAAGGCTGAATCCCGGCGTTTGAGAGTATCTGTTGGCCATGACTCTCGCATCTCTGCACAAACTTTGCTGGAGGCGGTTTCTCGAGGTCTTGGTGTTTCTGGATTAGATGTTGTTCAGTTTGGATTAGCATCAACACCAGCAATGTTTAATAGCACATTGACTGAAGATGAGTCATTCTTGTGCCCAGCTGATGGGGCTATTATGATAACAGCAAGCCATCTTCCTTACAACAGGAACGGTTTCAAGTTCTTTACCAGTGATGGAGGACTTGGGAAGGTTGATATCAAGAACATTTTGGAGCGAGCTGCAGATATTTACAAGAAGCTTTCTGATGAAAATTTGAGGAAATCACAAAGAGAAAGTTCTTCTATTACAAAGGTTGACTACATGTCAGTATACACCTCTGGTCTTGTAAAGGCAGTCCGGAAAGCAGCAGGAGATTTGGAGAAGCCTCTAGAGGGATTTCATATAGTTGTTGATGCTGGAAATGGAGCTGGAGGATTTTTTGCTGCCAAGGTGCTTGAGCCTTTAGGAGCAATTACTTCTGGCAGTCAATTTCTGGAACCAGATGGTATGTTCCCAAATCATATCCCTAATC CGGAAGATAAGGCGGCAATGGAAGCTATAACCAAGGCTGTTCTTGATAATAAGGCTGATTTGGGTATCATCTTTGATACTGATGTTGATAGGTCTGCTGCTGTGGATTCATCTGGCCGTGAATTCAACCGTAATCGTCTTATTGCCTTGCTATCAGCCATTGTTCTAGAGGAACACCCTGGCACAACTATAGTTACGGATAGTGTCACTTCGGACGGTCTGACCTCATTTATTGAGAAGAAGCTTGGCGGAAAGCATCACAGGTTCAAAAGAGGTTACAAGAATGTCATTGACGAAGCTATTCGCTTGAACTCGGTTGGGGAAGAATCACATCTGGCTATAGAAACCAGTGGTCATGGAGCTCTAAAGGAAAACCATTGGCTCGACGATGGGGCCTATCTCATGGTAAAAATCCTGAACAAACTAGCTGCGGCCCGAGCTGCTGGTCAAGGGAGTGGCAGCAAAGTTTTAACAGATCTTGTTGAAGGTCTGGAAGAGCCCAAAGTGGCTTTAGAACTGAGGCTTAAAATCGACAAGAATCACCCTGACCTTGAAGGAAGTGATTTCCGGGAGTATGGAGAGAAGGTCCTGCAACACGTGTCGAACTCAATAGAAACAAATCCAAATCTTATAATAGCTCCAGTTAACTACGAAGGGATCCGCGTTTCGGGCTTTGGTGGATGGTTTCTTCTCAGACTTTCTCTCCATGATCCTGTTCTTCCCCTTAACATCGAGGCACAGAGTGAGGATGATGCTGTGAAATTAGGCCTTGTGGTTGCTACGACAGTGAAGGAGTTCAATGCTTTGGACACCTGTGCCTTGTCCAACCTCACTCACTCCTCCGCGGCCGCACTCGAGCACCACCACCACCACCACTGA

SEQ ID NO.2的信息Information on SEQ ID NO.2

(a)序列特征(a) Sequential features

长度:625个氨基酸Length: 625 amino acids

类型:氨基酸Type: amino acid

链型:单链Chain type: single chain

(b)分子类型:蛋白(b) Molecule type: protein

序列描述:SEQ ID NO.2Sequence description: SEQ ID NO.2

MEGKVFQNFNVVQSCYRQNKQFKTRYQREPDLFMSTLLPCPREKMAFNLNSSMRAHTLSKYQFVLSKQRTFYCNATSSSATVPSLDKNDFLKLQNGSDIRGVAVTGVEGEPVSLPEPVTEAIAAAFGQWLLHKKKAESRRLRVSVGHDSRISAQTLLEAVSRGLGVSGLDVVQFGLASTPAMFNSTLTEDESFLCPADGAIMITASHLPYNRNGFKFFTSDGGLGKVDIKNILERAADIYKKLSDENLRKSQRESSSITKVDYMSVYTSGLVKAVRKAAGDLEKPLEGFHIVVDAGNGAGGFFAAKVLEPLGAITSGSQFLEPDGMFPNHIPNPEDKAAMEAITKAVLDNKADLGIIFDTDVDRSAAVDSSGREFNRNRLIALLSAIVLEEHPGTTIVTDSVTSDGLTSFIEKKLGGKHHRFKRGYKNVIDEAIRLNSVGEESHLAIETSGHGALKENHWLDDGAYLMVKILNKLAAARAAGQGSGSKVLTDLVEGLEEPKVALELRLKIDKNHPDLEGSDFREYGEKVLQHVSNSIETNPNLIIAPVNYEGIRVSGFGGWFLLRLSLHDPVLPLNIEAQSEDDAVKLGLVVATTVKEFNALDTCALSNLTHSSAAALEHHHHHH-MEGKVFQNFNVVQSCYRQNKQFKTRYQREPDLFMSTLLPCPREKMAFNLNSSMRAHTLSKYQFVLSKQRTFYCNATSSSATVPSLDKNDFLKLQNGSDIRGVAVTGVEGEPVSLPEPVTEAIAAAFGQWLLHKKKAESRRLRVSVGHDSRISAQTLLEAVSRGLGVSGLDVVQFGLASTPAMFNSTLTEDESFLCPADGAIMITASHLPYNRNGFKFFTSDGGLGKVDIKNILERAADIYKKLSDENLRKSQRESSSITKVDYMSVYTSGLVKAVRKAAGDLEKPLEGFHIVVDAGNGAGGFFAAKVLEPLGAITSGSQFLEPDGMFPNHIPNPEDKAAMEAITKAVLDNKADLGIIFDTDVDRSAAVDSSGREFNRNRLIALLSAIVLEEHPGTTIVTDSVTSDGLTSFIEKKLGGKHHRFKRGYKNVIDEAIRLNSVGEESHLAIETSGHGALKENHWLDDGAYLMVKILNKLAAARAAGQGSGSKVLTDLVEGLEEPKVALELRLKIDKNHPDLEGSDFREYGEKVLQHVSNSIETNPNLIIAPVNYEGIRVSGFGGWFLLRLSLHDPVLPLNIEAQSEDDAVKLGLVVATTVKEFNALDTCALSNLTHSSAAALEHHHHHH-

SEQ ID NO.3的信息Information on SEQ ID NO.3

(a)序列特征(a) Sequential features

长度:1872个核苷酸Length: 1872 nucleotides

类型:核苷酸Type: Nucleotide

链型:单链Chain type: single chain

(b)分子类型:DNA(b) Molecule type: DNA

序列描述:SEQ ID NO.3Sequence description: SEQ ID NO.3

ATGGCGTCGACTTCAACATCATCTTTAATGGCTTCTAAAACTGTAATCTCCAAAACAGCTCTGTTTTCTTCCTTACCGGGAATAGTCAGCCGGAGTTTTTTAACATTCGCACCGGCTTCTCCTTCCGTTAAACCCCTTAGGATAAGATCTTCAAATGTTACTAAGTTCGACGAAGTAACCAACAGTCTTGACGAAGACATGGACCAGATTCGACGGTTACAAAACGGTTCTGACGTGAGAGGAGTCGCATTGGAAGGAGAGAAAGGTCGAACAGTTGACCTAACGCCTGCAGCTGTTGAAGCAATCGCAGAGAGCTTTGGAGAATGGGTTGCAGCAACGGAGAGTAACGGAAACGGCGTCATTAAGATTTCTCTCGGACGGGATCCACGTGTTTCCGGTGGGAAGCTAAGCACGGCAGTGTTTGCCGGCTTAGCTCGTGCAGGCTGTTTAGCTTTTGACATGGGTTTAGCTACAGCGCCAGCTTGCTTCATGAGCACGTTACTCTCTCCATTCGAATACGACGCTTCAATTATGATGACAGCTTCTCATTTACCGTATACAAGAAACGGACTCAAGTTCTTTACCAAGAGAGGAGGATTAACGTCTCCTGAAGTGGAGAAGATATGCGATTTAGCTGCGCGAAAGTACGCTACTAGGCAGACTAAAGTCTCTACATTGATCAGAACGCGACCGCAGCAAGTTGATTTTATGAGCGCTTACTCTAAGCACCTTAGAGAAATCATTAAAGAGAGAATCAATCACCCTGAACACTATGACACTCCTCTCAAAGGATTTCAGATAGTTGTGAATGCGGGTAATGGGTCAGGAGGCTTCTTTACGTGGGACGTTCTAGACAAGTTAGGAGCCGATACATTCGGTTCGCTCTATCTAAACCCTGACGGGATGTTCCCTAATCACATTCCTAATCCGGAAAACAAAATCGCAATGCAACACACCCGAGCCGCGGTTCTTGAGAACTCAGCAGATCTCGGGGTTGTGTTTGATACGGATGTTGACAGGAGTGGAGTGGTGGATAACAAAGGAAATCCTATCAACGGAGATAAGCTTATTGCGCTTATGTCAGCTATAGTGCTTAAAGAACATCCAGGAAGTACAGTAGTGACTGACGCAAGAACGAGTATGGGGCTAACTAGGTTTATAACGGAGCGAGGAGGGAGGCATTGTTTGTATAGAGTAGGGTATAGAAACGTGATTGACAAGGGAGTAGAGCTGAACAAAGACGGCATCGAGACTCATCTCATGATGGAAACTTCAGGACATGGTGCGGTTAAGGAGAATCACTTCTTGGATGATGGTGCATACATGGTGGTGAAGATCATAATTGAAATGGTGAGAATGAGACTCGCGGGATCAAATGAAGGTATCGGTAGTTTGATCGAAGATCTTGAGGAGCCGTTAGAAGCGGTTGAGCTTCGGTTGAATATTTTATCAGAGCCAAGAGATGCCAAAGCAAAAGGCATTGAAGCCATTGAGACTTTCAGGCAATACATTGAGGAAGGAAAACTGAAAGGGTGGGAATTGGGCACGTGTGGGGATTGTTGGGTTACTGAAGGTTGCTTGGTGGACTCAAATGATCATCCATCTGCTATTGATGCTCACATGTACAGGGCAAGAGTGAGTGATGAAGAGAGTGGGGAAGAGTATGGTTGGGTGCATATGAGGCAGAGTATTCATAACCCTAACATCGCACTTAATATGCAATCAATGCTTCCTGGTGGATGTCTCTCCATGACAAGAATCTTCAGAGACCAGTTTCTTGAAGCTAGTGGGGTGGCTAGATTCCTGGATATAAGTGACTTCGACAATTACATCGGAGGTCAATCTCTCGAGCACCACCACCACCACCACTGAATGGCGTCGACTTCAACATCATCTTTAATGGCTTCTAAAACTGTAATCTCCAAAACAGCTCTGTTTTCTTCCTTACCGGGAATAGTCAGCCGGAGTTTTTTAACATTCGCACCGGCTTCTCCTTCCGTTAAACCCCTTAGGATAAGATCTTCAAATGTTACTAAGTTCGACGAAGTAACCAACAGTCTTGACGAAGACATGGACCAGATTCGACGGTTACAAAACGGTTCTGACGTGAGAGGAGTCGCATTGGAAGGAGAGAAAGGTCGAACAGTTGACCTAACGCCTGCAGCTGTTGAAGCAATCGCAGAGAGCTTTGGAGAATGGGTTGCAGCAACGGAGAGTAACGGAAACGGCGTCATTAAGATTTCTCTCGGACGGGATCCACGTGTTTCCGGTGGGAAGCTAAGCACGGCAGTGTTTGCCGGCTTAGCTCGTGCAGGCTGTTTAGCTTTTGACATGGGTTTAGCTACAGCGCCAGCTTGCTTCATGAGCACGTTACTCTCTCCATTCGAATACGACGCTTCAATTATGATGACAGCTTCTCATTTACCGTATACAAGAAACGGACTCAAGTTCTTTACCAAGAGAGGAGGATTAACGTCTCCTGAAGTGGAGAAGATATGCGATTTAGCTGCGCGAAAGTACGCTACTAGGCAGACTAAAGTCTCTACATTGATCAGAACGCGACCGCAGCAAGTTGATTTTATGAGCGCTTACTCTAAGCACCTTAGAGAAATCATTAAAGAGAGAATCAATCACCCTGAACACTATGACACTCCTCTCAAAGGATTTCAGATAGTTGTGAATGCGGGTAATGGGTCAGGAGGCTTCTTTACGTGGGACGTTCTAGACAAGTTAGGAGCCGATACATTCGGTTCGCTCTATCTAAACCCTGACGGGATGTTCCCTAATCACATTCCTAATCCGGAAAACAAAATCGCAATGCAACACACCCGAGCCGCGGTTCTTGAGAACTCAGCAGATCTCGGGGTTGTGT TTGATACGGATGTTGACAGGAGTGGAGTGGTGGATAACAAAGGAAATCCTATCAACGGAGATAAGCTTATTGCGCTTATGTCAGCTATAGTGCTTAAAGAACATCCAGGAAGTACAGTAGTGACTGACGCAAGAACGAGTATGGGGCTAACTAGGTTTATAACGGAGCGAGGAGGGAGGCATTGTTTGTATAGAGTAGGGTATAGAAACGTGATTGACAAGGGAGTAGAGCTGAACAAAGACGGCATCGAGACTCATCTCATGATGGAAACTTCAGGACATGGTGCGGTTAAGGAGAATCACTTCTTGGATGATGGTGCATACATGGTGGTGAAGATCATAATTGAAATGGTGAGAATGAGACTCGCGGGATCAAATGAAGGTATCGGTAGTTTGATCGAAGATCTTGAGGAGCCGTTAGAAGCGGTTGAGCTTCGGTTGAATATTTTATCAGAGCCAAGAGATGCCAAAGCAAAAGGCATTGAAGCCATTGAGACTTTCAGGCAATACATTGAGGAAGGAAAACTGAAAGGGTGGGAATTGGGCACGTGTGGGGATTGTTGGGTTACTGAAGGTTGCTTGGTGGACTCAAATGATCATCCATCTGCTATTGATGCTCACATGTACAGGGCAAGAGTGAGTGATGAAGAGAGTGGGGAAGAGTATGGTTGGGTGCATATGAGGCAGAGTATTCATAACCCTAACATCGCACTTAATATGCAATCAATGCTTCCTGGTGGATGTCTCTCCATGACAAGAATCTTCAGAGACCAGTTTCTTGAAGCTAGTGGGGTGGCTAGATTCCTGGATATAAGTGACTTCGACAATTACATCGGAGGTCAATCTCTCGAGCACCACCACCACCACCACTGA

SEQ ID NO.4的信息Information on SEQ ID NO.4

(a)序列特征(a) Sequential features

长度:623个氨基酸Length: 623 amino acids

类型:氨基酸Type: amino acid

链型:单链Chain type: single chain

(b)分子类型:蛋白(b) Molecule type: protein

序列描述:SEQ ID NO.4Sequence description: SEQ ID NO.4

MASTSTSSLMASKTVISKTALFSSLPGIVSRSFLTFAPASPSVKPLRIRSSNVTKFDEVTNSLDEDMDQIRRLQNGSDVRGVALEGEKGRTVDLTPAAVEAIAESFGEWVAATESNGNGVIKISLGRDPRVSGGKLSTAVFAGLARAGCLAFDMGLATAPMASTSTSSLMASKTVISKTALFSSLPGIVSRSFLTFAPASSPVKPLRIRSSNVTKFDEVTNSLDEDMDQIRRLQNGSDVRGVALEGEKGRTVDLTPAAVEAIAESFGEWVAATESNGNGVIKISLGRDPRVSGGKLSTAVFAGLARAGCLAFDMGLATAP

ACFMSTLLSPFEYDASIMMTASHLPYTRNGLKFFTKRGGLTSPEVEKICDLAARKYATRQTKVSTLIRTRPQQVDFMSAYSKHLREIIKERINHPEHYDTPLKGFQIVVNAGNGSGGFFTWDVLDKLGADTFGSLYLNPDGMFPNHIPNPENKIAMQHTRAAVLENSADLGVVFDTDVDRSGVVDNKGNPINGDKLIALMSAIVLKEHPGSTVVTDARTSMGLTRFITERGGRHCLYRVGYRNVIDKGVELNKDGIETHLMMETSGHGAVKENHFLDDGAYMVVKIIIEMVRMRLAGSNEGIGSLIEDLEEPLEAVELRLNILSEPRDAKAKGIEAIETFRQYIEEGKLKGWELGTCGDCWVTEGCLVDSNDHPSAIDAHMYRARVSDEESGEEYGWVHMRQSIHNPNIALNMQSMLPGGCLSMTRIFRDQFLEASGVARFLDISDFDNYIGGQSLEHHHHHH-ACFMSTLLSPFEYDASIMMTASHLPYTRNGLKFFTKRGGLTSPEVEKICDLAARKYATRQTKVSTLIRTRPQQVDFMSAYSKHLREIIKERINHPEHYDTPLKGFQIVVNAGNGSGGFFTWDVLDKLGADTFGSLYLNPDGMFPNHIPNPENKIAMQHTRAAVLENSADLGVVFDTDVDRSGVVDNKGNPINGDKLIALMSAIVLKEHPGSTVVTDARTSMGLTRFITERGGRHCLYRVGYRNVIDKGVELNKDGIETHLMMETSGHGAVKENHFLDDGAYMVVKIIIEMVRMRLAGSNEGIGSLIEDLEEPLEAVELRLNILSEPRDAKAKGIEAIETFRQYIEEGKLKGWELGTCGDCWVTEGCLVDSNDHPSAIDAHMYRARVSDEESGEEYGWVHMRQSIHNPNIALNMQSMLPGGCLSMTRIFRDQFLEASGVARFLDISDFDNYIGGQSLEHHHHHH-

实施例1 乙酰葡萄糖胺磷酸变位酶AtAGM2与AtAGM3全长基因的克隆Example 1 Cloning of full-length genes of acetylglucosamine phosphate mutase AtAGM2 and AtAGM3

对The National Center for Biotechnology Information(NCBI)数据库中拟南芥的己糖磷酸变位酶基因进行分析后,选定了己糖变位酶家族中两个尚未明确功能的基因。经过序列分析后,设计引物如下:After analyzing the hexose phosphate mutase genes of Arabidopsis in The National Center for Biotechnology Information (NCBI) database, two genes in the hexose mutase family whose functions have not been clarified were selected. After sequence analysis, the primers were designed as follows:

Agm2-F:5’-GCGTCCATGGAAGGAAAGGTTTTCCAAAAC-3’;Agm2-R:5’-ATATATGCGGCCGCGGAGGAGTGAGTG-3’来扩增Atagm2的基因序列。Agm3-F:5’-AACTCCATGGCGTCGACTTCAACATCATC-3’;Agm3-R:5’-ACTGCTCGAGAGATTGACCTCCGATGTAA-3’来扩增Atagm3的基因序列。Agm2-F: 5'-GCGTCCATGGAAGGAAAGGTTTTCCAAAAAC-3'; Agm2-R: 5'-ATATATGCGGCCGCGGAGGAGTGAGTG-3' to amplify the gene sequence of Atagm2. Agm3-F: 5'-AACTCCATGGCGTCGACTTCAACATCATC-3'; Agm3-R: 5'-ACTGCTCGAGAGATTGACCTCCGATGTAA-3' to amplify the gene sequence of Atagm3.

参照RNA提取试剂盒(博迈德生物,货号RN0112)操作步骤提取拟南芥叶片的mRNA。以提取的拟南芥的RNA反转的cDNA为模板进行PCR扩增。PCR反应条件为:94℃2min,1个循环;94℃30s,55℃30s,72℃2min,30个循环;72℃5min,1个循环。PCR产物进行琼脂糖凝胶电泳分析后,对目的片段进行切胶回收(如图1所示),经双酶切后连接到原核表达载体pET28a上后测序。The mRNA of Arabidopsis leaves was extracted according to the operation steps of the RNA extraction kit (Bomad Biotechnology, Cat. No. RN0112). PCR amplification was carried out using the reversed cDNA of the extracted Arabidopsis RNA as a template. The PCR reaction conditions were: 94°C for 2 min, 1 cycle; 94°C for 30 s, 55°C for 30 s, 72°C for 2 min, 30 cycles; 72°C for 5 min, 1 cycle. After the PCR product was analyzed by agarose gel electrophoresis, the target fragment was recovered by gel cutting (as shown in Figure 1), and after double enzyme digestion, it was connected to the prokaryotic expression vector pET28a and then sequenced.

实施例2 乙酰葡萄糖胺磷酸变位酶AtAGM2与AtAGM3基因序列分析Example 2 Gene sequence analysis of acetylglucosamine phosphate mutase AtAGM2 and AtAGM3

测序的结果采用GenBank数据库中的Basic Local Alignment Search Tool(BLAST)分析,Vector NTI Suite 8.0软件进行多序列比对,分析序列信息。The results of the sequencing were analyzed using the Basic Local Alignment Search Tool (BLAST) in the GenBank database, and the Vector NTI Suite 8.0 software was used for multiple sequence alignment and sequence information analysis.

获得的乙酰葡萄糖胺磷酸变位酶基因2(命名为AtAGM2)编码区长1878bp,其核苷酸序列如SEQ ID NO 1所示。AtAGM2编码625个氨基酸和一个终止密码子,其氨基酸序列如SEQ ID NO 3所示,蛋白质理论分子量为67.0kDa,预测等电点为6.1。AtAGM2的核苷酸序列在拟南芥的基因组中位于拟南芥的五号染色体上(locus-tag=″AT5G17530″)。The coding region of the obtained acetylglucosamine phosphate mutase gene 2 (named AtAGM2) is 1878 bp long, and its nucleotide sequence is shown in SEQ ID NO 1. AtAGM2 encodes 625 amino acids and a stop codon, its amino acid sequence is shown in SEQ ID NO 3, the theoretical protein molecular weight is 67.0kDa, and the predicted isoelectric point is 6.1. The nucleotide sequence of AtAGM2 is located on chromosome 5 of Arabidopsis thaliana (locus-tag="AT5G17530") in the Arabidopsis genome.

获得的乙酰葡萄糖胺磷酸变位酶基因3(命名为AtAGM3)编码区长1872bp,其核苷酸序列如SEQ ID NO 2所示。AtAGM编码623个氨基酸和一个终止密码子,其氨基酸序列如SEQ ID NO 4所示,蛋白质理论分子量为67.3kDa,预测等电点为5.62。AtAGM3的核苷酸序列在拟南芥的基因组中位于拟南芥的一号染色体上(locus-tag=″AT1G70820″)。The coding region of the obtained acetylglucosamine phosphate mutase gene 3 (named AtAGM3) is 1872 bp long, and its nucleotide sequence is shown in SEQ ID NO 2. AtAGM encodes 623 amino acids and a stop codon, its amino acid sequence is shown in SEQ ID NO 4, the theoretical protein molecular weight is 67.3kDa, and the predicted isoelectric point is 5.62. The nucleotide sequence of AtAGM3 is located on chromosome 1 of Arabidopsis thaliana (locus-tag="AT1G70820") in the Arabidopsis genome.

AtAGM2与AtAGM3均是假定的己糖磷酸变位酶基因,属于己糖磷酸变位酶(α-D-phosphohexomutases)家族的成员。Both AtAGM2 and AtAGM3 are putative hexose phosphate mutase genes, which belong to the family of α-D-phosphohexomutases.

拟南芥还存在另外一个乙酰葡萄糖胺磷酸变位酶AtAGM1,该酶的编码基因(AT5G18070)的编码区长1710bp,编码556个氨基酸,大肠杆菌重组表达获得的AtAGM1,蛋白分子量在61.5KDa,预测等电点为5.35.AtAGM1的核苷酸序列位于拟南芥的五号染色体上(locus-tag=″AT5G18070″),其活性已经被鉴定。There is another acetylglucosamine phosphate mutase AtAGM1 in Arabidopsis thaliana. The coding region of the coding gene (AT5G18070) of this enzyme is 1710bp long and encodes 556 amino acids. The isoelectric point is 5.35. The nucleotide sequence of AtAGM1 is located on chromosome 5 of Arabidopsis (locus-tag="AT5G18070"), and its activity has been identified.

AtAGM2与AtAGM3的基因相似性高达36.39%,而它们与AtAGM1的序列相似性较低,仅为15.45%和12.28%,但是一些序列是高度保守的。并且三者的蛋白分子量及等电点相差不大。The gene similarity between AtAGM2 and AtAGM3 is as high as 36.39%, while their sequence similarity with AtAGM1 is lower, only 15.45% and 12.28%, but some sequences are highly conserved. And the protein molecular weight and isoelectric point of the three are not much different.

实施例3 AtAGM2与AtAGM3基因在大肠杆菌中的重组表达及纯化Example 3 Recombinant expression and purification of AtAGM2 and AtAGM3 genes in Escherichia coli

测序结果表明,在pET28a上插入SEQ ID NO 1所示的AtAGM2基因,且插入方向正确,证明了构建的重组质粒正确,将该重组质粒命名为pET28a-AtAGM2。Sequencing results showed that the AtAGM2 gene shown in SEQ ID NO 1 was inserted into pET28a, and the insertion direction was correct, which proved that the constructed recombinant plasmid was correct, and the recombinant plasmid was named pET28a-AtAGM2.

同时,AtAGM3的重组质粒也构建成功,pET28a上插入了SEQ ID NO 3所示的AtAGM3基因,且插入方向正确,将该重组质粒命名为pET28a-AtAGM3。At the same time, the recombinant plasmid of AtAGM3 was also constructed successfully. The AtAGM3 gene shown in SEQ ID NO 3 was inserted into pET28a, and the insertion direction was correct. The recombinant plasmid was named pET28a-AtAGM3.

将pET28a-AtAGM2(或者pET28a-AtAGM3)转化大肠杆菌菌株BL21(DE3)进行诱导表达。以1%的接种量将过夜培养的种子液加入新鲜的LB培养基中于37℃进行扩大培养,当菌液的OD600nm=0.6-0.8时加入IPTG,使其终浓度为0.5mM,16℃进行过夜诱导。菌体破碎后高速离心取上清进行镍柱纯化,梯度咪唑洗脱(20-500mM咪唑,20mM Tris-HCl,PH7.6)。用聚丙烯酰胺凝胶电泳检测乙酰葡萄糖胺磷酸变位酶AtAGM2(或AtAGM3)的表达及纯化情况,电泳使用12%的分离胶,80V电压压平后,换120V电压跑完分离胶。结果如图2(或3)所示,纯化后的乙酰葡萄糖胺磷酸变位酶AtAGM2(或AtAGM3)在电泳胶上的位置与预测的分子量相吻合。Transform pET28a-AtAGM2 (or pET28a-AtAGM3) into Escherichia coli strain BL21(DE3) for induced expression. Add the overnight cultured seed solution to fresh LB medium with 1% inoculum size for expansion at 37°C, add IPTG when the OD600nm of the bacterial solution is 0.6-0.8, make the final concentration 0.5mM, and carry out at 16°C Induce overnight. After the cells were broken, the supernatant was collected by high-speed centrifugation for nickel column purification, and gradient imidazole elution (20-500mM imidazole, 20mM Tris-HCl, pH7.6). Polyacrylamide gel electrophoresis was used to detect the expression and purification of acetylglucosamine phosphate mutase AtAGM2 (or AtAGM3). The electrophoresis used 12% separation gel, and after the 80V voltage was flattened, the separation gel was run with 120V voltage. The results are shown in Figure 2 (or 3), the position of the purified acetylglucosamine phosphate mutase AtAGM2 (or AtAGM3) on the electrophoresis gel coincides with the predicted molecular weight.

实施例4 乙酰葡萄糖胺磷酸变位酶AtAGM2与AtAGM3的酶学性质Example 4 Enzymatic properties of acetylglucosamine phosphate mutases AtAGM2 and AtAGM3

(1)乙酰葡萄糖胺磷酸变位酶AtAGM的活力测定(1) Activity determination of acetylglucosamine phosphate mutase AtAGM

测定AtAGM酶活的通用体系如下:不同的磷酸己糖底物(GlcNAc-1-P,GlcNAc-6-P,GlcN-1-P,GlcN-6-P,Glc-1-P,Glc-6-P)作为底物,每组底物加入反应体系(300μL):20mMPBS,pH 7.6,5mM MgSO4,10μM Glc-1,6-2P,加入适量的重组酶AtAGM,反应10min。将反应体系立即煮沸后,除蛋白,每组底物加入200μL 200mM NaOH。用HAPEC-PAD方法检测体系中底物的消耗与产物的生成情况。由于AtAGM催化的反应是可逆反应,并且还有中间产物己糖-1,6-2P的产生,所以酶活(nmol/min/mg)用1mg蛋白每分钟消耗的底物量(nmol)来表示。蛋白浓度使用碧云天BCA蛋白浓度测定试剂盒进行测定。The general system for the determination of AtAGM enzyme activity is as follows: different hexose phosphate substrates (GlcNAc-1-P, GlcNAc-6-P, GlcN-1-P, GlcN-6-P, Glc-1-P, Glc-6 -P) As substrates, each group of substrates was added to the reaction system (300 μL): 20 mMPBS, pH 7.6, 5 mM MgSO 4 , 10 μM Glc-1,6-2P, an appropriate amount of recombinant enzyme AtAGM was added, and reacted for 10 min. After the reaction system was boiled immediately, protein was removed, and 200 μL of 200 mM NaOH was added to each group of substrates. The consumption of substrate and the formation of product in the system were detected by HAPEC-PAD method. Since the reaction catalyzed by AtAGM is a reversible reaction, and there is also the production of the intermediate product hexose-1,6-2P, the enzyme activity (nmol/min/mg) is expressed by the amount of substrate consumed by 1 mg protein per minute (nmol) . Protein concentration was determined using Beyontian BCA Protein Concentration Assay Kit.

HAPEC-PAD法酶活检测所用的离子交换色谱系统包括戴安Bio-LC梯度混匀泵,GM-3(4mm)梯度混匀器,离子交换色谱柱CarboPac PA-100column(4×250mm),AgCl参比电极与电化学检测器。用于检测的脉冲电位变化为:t=0s,E=0.10v;t=0.20s,E=0.10v;t=0.40s,E=0.10v;t=0.41s,E=-2.00v;t=0.42s,E=-2.00v;t=0.43s,E=0.60v;t=0.44s,E=-0.10v;t=0.50s,E=-0.10v.所用的流动相:A,100mM NaOH水溶液;B,800mM乙酸钠与100mM NaOH水溶液。流动相洗脱条件是0-5min,90%A+10%B;6-15min,10%-90%B;16-18min,10%A+90%B;19-20min,90%A+10%B.总流速是0.5ml/min,检测柱温是30℃,进样体积是20μLThe ion exchange chromatographic system used in HAPEC-PAD enzyme activity detection includes Diane Bio-LC gradient mixing pump, GM-3 (4mm) gradient mixer, ion exchange column CarboPac PA-100column (4×250mm), AgCl Reference electrode and electrochemical detector. The pulse potential change used for detection is: t=0s, E=0.10v; t=0.20s, E=0.10v; t=0.40s, E=0.10v; t=0.41s, E=-2.00v; t =0.42s, E=-2.00v; t=0.43s, E=0.60v; t=0.44s, E=-0.10v; t=0.50s, E=-0.10v. Mobile phase used: A, 100mM NaOH in water; B, 800 mM sodium acetate with 100 mM NaOH in water. The mobile phase elution conditions are 0-5min, 90%A+10%B; 6-15min, 10%-90%B; 16-18min, 10%A+90%B; 19-20min, 90%A+10 %B. The total flow rate is 0.5ml/min, the detection column temperature is 30°C, and the injection volume is 20μL

(2)乙酰葡萄糖胺磷酸变位酶AtAGM底物特异性(2) Substrate specificity of acetylglucosamine phosphomutase AtAGM

由于AtAGM底物选择性较广,可以催化GlcNAc-6-P与GlcNAc-1-P;GlcN-6-P与GlcN-1-P;Glc-6-P与Glc-1-P几对异构体之间的转换。并且AtAGM催化的是可逆反应,所以采用以上六种底物来检测AtAGM的底物特异性。采用实施例4(1)中提到的通用体系,以0.1mM不同的磷酸己糖底物(GlcNAc-1-P,GlcNAc-6-P,GlcN-1-P,GlcN-6-P,Glc-1-P,Glc-6-P)作为底物,每组底物反应加入0.5μg AtAGM2(或AtAGM3或AtAGM1),于30℃水浴中反应10min。蛋白浓度使用碧云天BCA蛋白浓度测定试剂盒进行测定。Due to the wide substrate selectivity of AtAGM, it can catalyze several pairs of isomerization of GlcNAc-6-P and GlcNAc-1-P; GlcN-6-P and GlcN-1-P; Glc-6-P and Glc-1-P conversion between entities. And AtAGM catalyzed a reversible reaction, so the above six substrates were used to test the substrate specificity of AtAGM. Using the general system mentioned in Example 4(1), different hexose phosphate substrates (GlcNAc-1-P, GlcNAc-6-P, GlcN-1-P, GlcN-6-P, Glc -1-P, Glc-6-P) as substrates, add 0.5 μg AtAGM2 (or AtAGM3 or AtAGM1) to each group of substrates, and react in a water bath at 30°C for 10 minutes. Protein concentration was determined using Beyontian BCA Protein Concentration Assay Kit.

结果如表1所示,在如上的反应条件下,相同的底物浓度,AtAGM对不同底物的活力不同。AtAGM2与AtAGM3与之前鉴定出来的AtAGM1相比,虽然三种AGM酶对六种底物表现出不同的催化速率,但是仍然存在一定的共性。一般规律是正反应的活力大于逆反应(己糖-6-P的活性高于相应的己糖-1-P)。但是总的来说AtAGM2与AtAGM3的活性要低于AtAGM1,尤其是在其主要的作用底物GlcNAc-1-P与GlcNAc-6-P上面。并且AtAGM1与AtAGM3对Glc-1-P的催化速率要高于Glc-6-P,这与AtAGM2并不相同。The results are shown in Table 1. Under the above reaction conditions and the same substrate concentration, AtAGM has different activities to different substrates. Compared with the previously identified AtAGM1, AtAGM2 and AtAGM3, although the three AGM enzymes showed different catalytic rates for the six substrates, there were still some commonalities. The general rule is that the activity of the forward reaction is greater than that of the reverse reaction (hexose-6-P is more active than the corresponding hexose-1-P). But in general, the activity of AtAGM2 and AtAGM3 is lower than that of AtAGM1, especially on its main substrates GlcNAc-1-P and GlcNAc-6-P. And the catalytic rate of AtAGM1 and AtAGM3 to Glc-1-P is higher than that of Glc-6-P, which is different from AtAGM2.

表1:乙酰葡萄糖胺磷酸变位酶AtAGM2与AtAGM3的底物特异性。Table 1: Substrate specificity of acetylglucosamine phosphomutases AtAGM2 and AtAGM3.

(3)pH对重组酶AtAGM的影响(3) Effect of pH on the recombinant enzyme AtAGM

采用实施例4(1)中提到的通用体系,在30℃的条件下,分别以30μM的GlcNAc-6-P为底物,在pH 3.6-10.6(pH 3.6-5.6HAc-NaAc,Ph 6.6-7.6Na2HPO4-NaH2PO4,pH 8.6Tris-HCl,pH 9.6-10.6Gly-NaOH)反应体系中,5μg酶按照标准检测方法测定其活性。根据酶在不同pH下的相对活性绘制柱状图,以及折线图确定酶的最适反应pH。以灭活的酶作为对照,以活性最高的值为100%,测定在各个反应pH下酶的相对活性。Using the general system mentioned in Example 4(1), under the condition of 30°C, 30 μM GlcNAc-6-P was used as the substrate respectively, at pH 3.6-10.6 (pH 3.6-5.6 HAc-NaAc, Ph 6.6 -7.6Na 2 HPO 4 -NaH 2 PO 4 , pH 8.6 Tris-HCl, pH 9.6-10.6 Gly-NaOH) reaction system, the activity of 5 μg enzyme was determined according to the standard detection method. According to the relative activity of the enzyme at different pH, the histogram and the line graph were drawn to determine the optimum reaction pH of the enzyme. The relative activity of the enzyme at each reaction pH was measured with the inactivated enzyme as a control, with the highest activity being 100%.

结果如图4所示,AtAGM2以GlcNAc-6-P为底物时的最适pH范围在中性偏酸性范围内,最适pH为5.6。如图6所示,AtAGM3以GlcNAc-6-P为底物时的最适pH范围在中性内,最适pH为7.0。与AtAGM1的最适pH为7.6相比,三者最适pH相差不大,均处于中性范围内。The results are shown in Figure 4. When AtAGM2 uses GlcNAc-6-P as the substrate, the optimum pH range is in the neutral to acidic range, and the optimum pH is 5.6. As shown in Figure 6, when AtAGM3 uses GlcNAc-6-P as a substrate, the optimum pH range is within neutral, and the optimum pH is 7.0. Compared with the optimum pH of AtAGM1 which was 7.6, the optimum pH of the three were not much different, and they were all in the neutral range.

(4)温度对重组酶AtAGM的影响(4) The influence of temperature on the recombinant enzyme AtAGM

采用实施例4(1)中提到的通用体系,以30μM的GlcNAc-1-P或GlcNAc-6-P为底物,分别在4-80℃下按照标准方法测定重组酶的活性,5μg酶在不同温度下的相对活性如图5,7所示。以灭活的酶为对照,以反应最高酶活力为100%计算相对酶活。AtAGM2以GlcNAc-6-P作为底物的最适反应温度为30℃(图5),AtAGM2以以GlcNAc-6-P作为底物的最适反应温度是20℃(图7)。与AtAGM1的最适温度范围为25-30℃相比,三者对反应温度的要求也大致相同。Using the general system mentioned in Example 4(1), using 30 μM GlcNAc-1-P or GlcNAc-6-P as a substrate, the activity of the recombinant enzyme was determined according to the standard method at 4-80° C., 5 μg enzyme The relative activities at different temperatures are shown in Figures 5 and 7. Taking the inactivated enzyme as a control, the relative enzyme activity was calculated with the highest enzyme activity as 100%. The optimum reaction temperature of AtAGM2 with GlcNAc-6-P as substrate is 30°C (Figure 5), and the optimum reaction temperature of AtAGM2 with GlcNAc-6-P as substrate is 20°C (Figure 7). Compared with AtAGM1, which has an optimum temperature range of 25-30°C, the requirements for the reaction temperature of the three are roughly the same.

(5)EDTA、SDS及金属离子等对AtAGM活性的影响(5) Effects of EDTA, SDS and metal ions on the activity of AtAGM

采用实施例4(1)中提到的通用体系,以30μM的GlcNAc-6-P作为底物,反应体系中设定各种金属离子浓度在10mM,按照标准方法检测酶活力。以灭活的酶作为对照,以活性最高的值为100%。结果如图8所示,Mg2+对AtAGM2的酶活具有明显的提高作用,一些离子如Ca2 +,Zn2+等对反应有明显的抑制作用。如图9所示,Mg2+对AtAGM3的酶活也具有明显的提高作用,一些离子如Fe2+,等对反应有明显的抑制作用。对于AtAGM1来说,Mg2+的存在也可以促进反应的进行。说明Mg2+激活反应的现象,是所有的AtAGM的共性。The general system mentioned in Example 4 (1) was adopted, 30 μM GlcNAc-6-P was used as the substrate, the concentration of various metal ions was set at 10 mM in the reaction system, and the enzyme activity was detected according to standard methods. The inactivated enzyme was used as a control, and the value with the highest activity was 100%. The results are shown in Figure 8, Mg 2+ can obviously improve the enzyme activity of AtAGM2, and some ions such as Ca 2 + and Zn 2+ can obviously inhibit the reaction. As shown in Figure 9, Mg 2+ can also significantly improve the enzyme activity of AtAGM3, and some ions such as Fe 2+ can obviously inhibit the reaction. For AtAGM1, the presence of Mg 2+ can also promote the reaction. It shows that the phenomenon of Mg 2+ activation reaction is common to all AtAGMs.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 中国科学院大连化学物理研究所<110> Dalian Institute of Chemical Physics, Chinese Academy of Sciences

<120> AtAGM2与AtAGM3编码基因及酶的制备与应用<120> Preparation and application of AtAGM2 and AtAGM3 coding genes and enzymes

<130><130>

<160> 8<160> 8

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 1878<211> 1878

<212> DNA<212>DNA

<213> 拟南芥(Arabidopsis thaliana)<213> Arabidopsis thaliana

<220><220>

<221> DNA<221> DNA

<222> (1)..(1878)<222> (1)..(1878)

<400> 1<400> 1

atggaaggaa aggttttcca aaactttaat gtagtacaga gctgctaccg acaaaataag 60atggaaggaa aggttttcca aaactttaat gtagtacaga gctgctaccg acaaaataag 60

cagtttaaga cacgatacca aagagaacct gacctgttca tgtctacttt acttccctgt 120cagtttaaga cacgatacca aagagaacct gacctgttca tgtctacttt acttccctgt 120

ccaagagaga agatggcatt taacctcaac tcttccatgc gtgcccacac tttgtctaaa 180ccaagagaga agatggcatt taacctcaac tcttccatgc gtgccccacac tttgtctaaa 180

taccagtttg ttctttcaaa gcaaagaact ttttactgca atgctacttc gtcaagtgct 240taccagtttg ttctttcaaa gcaaagaact ttttactgca atgctacttc gtcaagtgct 240

actgtgccat ctcttgacaa aaatgatttt ctgaagctcc aaaacggcag tgatattcgg 300actgtgccat ctcttgacaa aaatgatttt ctgaagctcc aaaacggcag tgatattcgg 300

ggtgtagcgg tcactggggt tgagggggaa cctgtaagcc ttcctgaacc agtgactgaa 360ggtgtagcgg tcactggggt tgagggggaa cctgtaagcc ttcctgaacc agtgactgaa 360

gccatagctg ctgcttttgg gcaatggctg ttacacaaga agaaggctga atcccggcgt 420gccatagctg ctgcttttgg gcaatggctg ttacacaaga agaaggctga atcccggcgt 420

ttgagagtat ctgttggcca tgactctcgc atctctgcac aaactttgct ggaggcggtt 480ttgagagtat ctgttggcca tgactctcgc atctctgcac aaactttgct ggaggcggtt 480

tctcgaggtc ttggtgtttc tggattagat gttgttcagt ttggattagc atcaacacca 540tctcgaggtc ttggtgtttc tggattagat gttgttcagt ttggattagc atcaacacca 540

gcaatgttta atagcacatt gactgaagat gagtcattct tgtgcccagc tgatggggct 600gcaatgttta atagcacatt gactgaagat gagtcattct tgtgcccagc tgatggggct 600

attatgataa cagcaagcca tcttccttac aacaggaacg gtttcaagtt ctttaccagt 660attatgataa cagcaagcca tcttccttac aacaggaacg gtttcaagtt ctttaccagt 660

gatggaggac ttgggaaggt tgatatcaag aacattttgg agcgagctgc agatatttac 720gatggaggac ttgggaaggt tgatatcaag aacattttgg agcgagctgc agatattac 720

aagaagcttt ctgatgaaaa tttgaggaaa tcacaaagag aaagttcttc tattacaaag 780aagaagcttt ctgatgaaaa tttgaggaaa tcacaaagag aaagttcttc tattacaaag 780

gttgactaca tgtcagtata cacctctggt cttgtaaagg cagtccggaa agcagcagga 840gttgactaca tgtcagtata cacctctggt cttgtaaagg cagtccggaa agcagcagga 840

gatttggaga agcctctaga gggatttcat atagttgttg atgctggaaa tggagctgga 900gatttggaga agcctctaga gggatttcat atagttgttg atgctggaaa tggagctgga 900

ggattttttg ctgccaaggt gcttgagcct ttaggagcaa ttacttctgg cagtcaattt 960ggattttttg ctgccaaggt gcttgagcct ttaggagcaa ttacttctgg cagtcaattt 960

ctggaaccag atggtatgtt cccaaatcat atccctaatc cggaagataa ggcggcaatg 1020ctggaaccag atggtatgtt cccaaatcat atccctaatc cggaagataa ggcggcaatg 1020

gaagctataa ccaaggctgt tcttgataat aaggctgatt tgggtatcat ctttgatact 1080gaagctataa ccaaggctgt tcttgataat aaggctgatt tgggtatcat ctttgatact 1080

gatgttgata ggtctgctgc tgtggattca tctggccgtg aattcaaccg taatcgtctt 1140gatgttgata ggtctgctgc tgtggattca tctggccgtg aattcaaccg taatcgtctt 1140

attgccttgc tatcagccat tgttctagag gaacaccctg gcacaactat agttacggat 1200attgccttgc tatcagccat tgttctagag gaacaccctg gcacaactat agttacggat 1200

agtgtcactt cggacggtct gacctcattt attgagaaga agcttggcgg aaagcatcac 1260agtgtcactt cggacggtct gacctcattt attgagaaga agcttggcgg aaagcatcac 1260

aggttcaaaa gaggttacaa gaatgtcatt gacgaagcta ttcgcttgaa ctcggttggg 1320aggttcaaaa gaggttacaa gaatgtcatt gacgaagcta ttcgcttgaa ctcggttggg 1320

gaagaatcac atctggctat agaaaccagt ggtcatggag ctctaaagga aaaccattgg 1380gaagaatcac atctggctat agaaaccagt ggtcatggag ctctaaagga aaaccattgg 1380

ctcgacgatg gggcctatct catggtaaaa atcctgaaca aactagctgc ggcccgagct 1440ctcgacgatg gggcctatct catggtaaaa atcctgaaca aactagctgc ggcccgagct 1440

gctggtcaag ggagtggcag caaagtttta acagatcttg ttgaaggtct ggaagagccc 1500gctggtcaag ggagtggcag caaagtttta acagatcttg ttgaaggtct ggaagagccc 1500

aaagtggctt tagaactgag gcttaaaatc gacaagaatc accctgacct tgaaggaagt 1560aaagtggctt tagaactgag gcttaaaatc gacaagaatc accctgacct tgaaggaagt 1560

gatttccggg agtatggaga gaaggtcctg caacacgtgt cgaactcaat agaaacaaat 1620gatttccggg agtatggaga gaaggtcctg caacacgtgt cgaactcaat agaaacaaat 1620

ccaaatctta taatagctcc agttaactac gaagggatcc gcgtttcggg ctttggtgga 1680ccaaatctta taatagctcc agttaactac gaagggatcc gcgtttcggg ctttggtgga 1680

tggtttcttc tcagactttc tctccatgat cctgttcttc cccttaacat cgaggcacag 1740tggtttcttc tcagactttc tctccatgat cctgttcttc cccttaacat cgaggcacag 1740

agtgaggatg atgctgtgaa attaggcctt gtggttgcta cgacagtgaa ggagttcaat 1800agtgaggatg atgctgtgaa attaggcctt gtggttgcta cgacagtgaa ggagttcaat 1800

gctttggaca cctgtgcctt gtccaacctc actcactcct ccgcggccgc actcgagcac 1860gctttggaca cctgtgcctt gtccaacctc actcactcct ccgcggccgc actcgagcac 1860

caccaccacc accactga 1878caccaccacc accactga 1878

<210> 2<210> 2

<211> 625<211> 625

<212> PRT<212> PRT

<213> 拟南芥(Arabidopsis thaliana)<213> Arabidopsis thaliana

<220><220>

<221> PRT<221> PRT

<222> (1)..(625)<222> (1)..(625)

<400> 2<400> 2

Met Glu Gly Lys Val Phe Gln Asn Phe Asn Val Val Gln Ser Cys TyrMet Glu Gly Lys Val Phe Gln Asn Phe Asn Val Val Gln Ser Cys Tyr

1 5 10 151 5 10 15

Arg Gln Asn Lys Gln Phe Lys Thr Arg Tyr Gln Arg Glu Pro Asp LeuArg Gln Asn Lys Gln Phe Lys Thr Arg Tyr Gln Arg Glu Pro Asp Leu

20 25 30 20 25 30

Phe Met Ser Thr Leu Leu Pro Cys Pro Arg Glu Lys Met Ala Phe AsnPhe Met Ser Thr Leu Leu Pro Cys Pro Arg Glu Lys Met Ala Phe Asn

35 40 45 35 40 45

Leu Asn Ser Ser Met Arg Ala His Thr Leu Ser Lys Tyr Gln Phe ValLeu Asn Ser Ser Met Arg Ala His Thr Leu Ser Lys Tyr Gln Phe Val

50 55 60 50 55 60

Leu Ser Lys Gln Arg Thr Phe Tyr Cys Asn Ala Thr Ser Ser Ser AlaLeu Ser Lys Gln Arg Thr Phe Tyr Cys Asn Ala Thr Ser Ser Ser Ser Ala

65 70 75 8065 70 75 80

Thr Val Pro Ser Leu Asp Lys Asn Asp Phe Leu Lys Leu Gln Asn GlyThr Val Pro Ser Leu Asp Lys Asn Asp Phe Leu Lys Leu Gln Asn Gly

85 90 95 85 90 95

Ser Asp Ile Arg Gly Val Ala Val Thr Gly Val Glu Gly Glu Pro ValSer Asp Ile Arg Gly Val Ala Val Thr Gly Val Glu Gly Glu Pro Val

100 105 110 100 105 110

Ser Leu Pro Glu Pro Val Thr Glu Ala Ile Ala Ala Ala Phe Gly GlnSer Leu Pro Glu Pro Val Thr Glu Ala Ile Ala Ala Ala Phe Gly Gln

115 120 125 115 120 125

Trp Leu Leu His Lys Lys Lys Ala Glu Ser Arg Arg Leu Arg Val SerTrp Leu Leu His Lys Lys Lys Ala Glu Ser Arg Arg Leu Arg Val Ser

130 135 140 130 135 140

Val Gly His Asp Ser Arg Ile Ser Ala Gln Thr Leu Leu Glu Ala ValVal Gly His Asp Ser Arg Ile Ser Ala Gln Thr Leu Leu Glu Ala Val

145 150 155 160145 150 155 160

Ser Arg Gly Leu Gly Val Ser Gly Leu Asp Val Val Gln Phe Gly LeuSer Arg Gly Leu Gly Val Ser Gly Leu Asp Val Val Gln Phe Gly Leu

165 170 175 165 170 175

Ala Ser Thr Pro Ala Met Phe Asn Ser Thr Leu Thr Glu Asp Glu SerAla Ser Thr Pro Ala Met Phe Asn Ser Thr Leu Thr Glu Asp Glu Ser

180 185 190 180 185 190

Phe Leu Cys Pro Ala Asp Gly Ala Ile Met Ile Thr Ala Ser His LeuPhe Leu Cys Pro Ala Asp Gly Ala Ile Met Ile Thr Ala Ser His Leu

195 200 205 195 200 205

Pro Tyr Asn Arg Asn Gly Phe Lys Phe Phe Thr Ser Asp Gly Gly LeuPro Tyr Asn Arg Asn Gly Phe Lys Phe Phe Thr Ser Asp Gly Gly Leu

210 215 220 210 215 220

Gly Lys Val Asp Ile Lys Asn Ile Leu Glu Arg Ala Ala Asp Ile TyrGly Lys Val Asp Ile Lys Asn Ile Leu Glu Arg Ala Ala Asp Ile Tyr

225 230 235 240225 230 235 240

Lys Lys Leu Ser Asp Glu Asn Leu Arg Lys Ser Gln Arg Glu Ser SerLys Lys Leu Ser Asp Glu Asn Leu Arg Lys Ser Gln Arg Glu Ser Ser

245 250 255 245 250 255

Ser Ile Thr Lys Val Asp Tyr Met Ser Val Tyr Thr Ser Gly Leu ValSer Ile Thr Lys Val Asp Tyr Met Ser Val Tyr Thr Ser Gly Leu Val

260 265 270 260 265 270

Lys Ala Val Arg Lys Ala Ala Gly Asp Leu Glu Lys Pro Leu Glu GlyLys Ala Val Arg Lys Ala Ala Gly Asp Leu Glu Lys Pro Leu Glu Gly

275 280 285 275 280 285

Phe His Ile Val Val Asp Ala Gly Asn Gly Ala Gly Gly Phe Phe AlaPhe His Ile Val Val Asp Ala Gly Asn Gly Ala Gly Gly Phe Phe Ala

290 295 300 290 295 300

Ala Lys Val Leu Glu Pro Leu Gly Ala Ile Thr Ser Gly Ser Gln PheAla Lys Val Leu Glu Pro Leu Gly Ala Ile Thr Ser Gly Ser Gln Phe

305 310 315 320305 310 315 320

Leu Glu Pro Asp Gly Met Phe Pro Asn His Ile Pro Asn Pro Glu AspLeu Glu Pro Asp Gly Met Phe Pro Asn His Ile Pro Asn Pro Glu Asp

325 330 335 325 330 335

Lys Ala Ala Met Glu Ala Ile Thr Lys Ala Val Leu Asp Asn Lys AlaLys Ala Ala Met Glu Ala Ile Thr Lys Ala Val Leu Asp Asn Lys Ala

340 345 350 340 345 350

Asp Leu Gly Ile Ile Phe Asp Thr Asp Val Asp Arg Ser Ala Ala ValAsp Leu Gly Ile Ile Phe Asp Thr Asp Val Asp Arg Ser Ala Ala Val

355 360 365 355 360 365

Asp Ser Ser Gly Arg Glu Phe Asn Arg Asn Arg Leu Ile Ala Leu LeuAsp Ser Ser Gly Arg Glu Phe Asn Arg Asn Arg Leu Ile Ala Leu Leu

370 375 380 370 375 380

Ser Ala Ile Val Leu Glu Glu His Pro Gly Thr Thr Ile Val Thr AspSer Ala Ile Val Leu Glu Glu His Pro Gly Thr Thr Ile Val Thr Asp

385 390 395 400385 390 395 400

Ser Val Thr Ser Asp Gly Leu Thr Ser Phe Ile Glu Lys Lys Leu GlySer Val Thr Ser Asp Gly Leu Thr Ser Phe Ile Glu Lys Lys Leu Gly

405 410 415 405 410 415

Gly Lys His His Arg Phe Lys Arg Gly Tyr Lys Asn Val Ile Asp GluGly Lys His His Arg Phe Lys Arg Gly Tyr Lys Asn Val Ile Asp Glu

420 425 430 420 425 430

Ala Ile Arg Leu Asn Ser Val Gly Glu Glu Ser His Leu Ala Ile GluAla Ile Arg Leu Asn Ser Val Gly Glu Glu Ser His Leu Ala Ile Glu

435 440 445 435 440 445

Thr Ser Gly His Gly Ala Leu Lys Glu Asn His Trp Leu Asp Asp GlyThr Ser Gly His Gly Ala Leu Lys Glu Asn His Trp Leu Asp Asp Gly

450 455 460 450 455 460

Ala Tyr Leu Met Val Lys Ile Leu Asn Lys Leu Ala Ala Ala Arg AlaAla Tyr Leu Met Val Lys Ile Leu Asn Lys Leu Ala Ala Ala Arg Ala

465 470 475 480465 470 475 480

Ala Gly Gln Gly Ser Gly Ser Lys Val Leu Thr Asp Leu Val Glu GlyAla Gly Gln Gly Ser Gly Ser Lys Val Leu Thr Asp Leu Val Glu Gly

485 490 495 485 490 495

Leu Glu Glu Pro Lys Val Ala Leu Glu Leu Arg Leu Lys Ile Asp LysLeu Glu Glu Pro Lys Val Ala Leu Glu Leu Arg Leu Lys Ile Asp Lys

500 505 510 500 505 510

Asn His Pro Asp Leu Glu Gly Ser Asp Phe Arg Glu Tyr Gly Glu LysAsn His Pro Asp Leu Glu Gly Ser Asp Phe Arg Glu Tyr Gly Glu Lys

515 520 525 515 520 525

Val Leu Gln His Val Ser Asn Ser Ile Glu Thr Asn Pro Asn Leu IleVal Leu Gln His Val Ser Asn Ser Ile Glu Thr Asn Pro Asn Leu Ile

530 535 540 530 535 540

Ile Ala Pro Val Asn Tyr Glu Gly Ile Arg Val Ser Gly Phe Gly GlyIle Ala Pro Val Asn Tyr Glu Gly Ile Arg Val Ser Gly Phe Gly Gly

545 550 555 560545 550 555 560

Trp Phe Leu Leu Arg Leu Ser Leu His Asp Pro Val Leu Pro Leu AsnTrp Phe Leu Leu Arg Leu Ser Leu His Asp Pro Val Leu Pro Leu Asn

565 570 575 565 570 575

Ile Glu Ala Gln Ser Glu Asp Asp Ala Val Lys Leu Gly Leu Val ValIle Glu Ala Gln Ser Glu Asp Asp Ala Val Lys Leu Gly Leu Val Val

580 585 590 580 585 590

Ala Thr Thr Val Lys Glu Phe Asn Ala Leu Asp Thr Cys Ala Leu SerAla Thr Thr Val Lys Glu Phe Asn Ala Leu Asp Thr Cys Ala Leu Ser

595 600 605 595 600 605

Asn Leu Thr His Ser Ser Ala Ala Ala Leu Glu His His His His HisAsn Leu Thr His Ser Ser Ala Ala Ala Leu Glu His His His His His His His

610 615 620 610 615 620

HisHis

625625

<210> 3<210> 3

<211> 1872<211> 1872

<212> DNA<212>DNA

<213> 拟南芥(Arabidopsis thaliana)<213> Arabidopsis thaliana

<220><220>

<221> DNA<221> DNA

<222> (1)..(1872)<222> (1)..(1872)

<400> 3<400> 3

atggcgtcga cttcaacatc atctttaatg gcttctaaaa ctgtaatctc caaaacagct 60atggcgtcga cttcaacatc atctttaatg gcttctaaaa ctgtaatctc caaaacagct 60

ctgttttctt ccttaccggg aatagtcagc cggagttttt taacattcgc accggcttct 120ctgttttctt ccttaccgggg aatagtcagc cggagttttt taacattcgc accggcttct 120

ccttccgtta aaccccttag gataagatct tcaaatgtta ctaagttcga cgaagtaacc 180ccttccgtta aaccccttag gataagatct tcaaatgtta ctaagttcga cgaagtaacc 180

aacagtcttg acgaagacat ggaccagatt cgacggttac aaaacggttc tgacgtgaga 240aacagtcttg acgaagacat ggaccagatt cgacggttac aaaacggttc tgacgtgaga 240

ggagtcgcat tggaaggaga gaaaggtcga acagttgacc taacgcctgc agctgttgaa 300ggagtcgcat tggaaggaga gaaaggtcga acagttgacc taacgcctgc agctgttgaa 300

gcaatcgcag agagctttgg agaatgggtt gcagcaacgg agagtaacgg aaacggcgtc 360gcaatcgcag agagctttgg agaatgggtt gcagcaacgg agagtaacgg aaacggcgtc 360

attaagattt ctctcggacg ggatccacgt gtttccggtg ggaagctaag cacggcagtg 420attaagattt ctctcggacg ggatccacgt gtttccggtg ggaagctaag cacggcagtg 420

tttgccggct tagctcgtgc aggctgttta gcttttgaca tgggtttagc tacagcgcca 480tttgccggct tagctcgtgc aggctgttta gcttttgaca tgggtttagc tacagcgcca 480

gcttgcttca tgagcacgtt actctctcca ttcgaatacg acgcttcaat tatgatgaca 540gcttgcttca tgagcacgtt actctctcca ttcgaatacg acgcttcaat tatgatgaca 540

gcttctcatt taccgtatac aagaaacgga ctcaagttct ttaccaagag aggaggatta 600gcttctcatt taccgtatac aagaaacgga ctcaagttct ttaccaagag aggaggatta 600

acgtctcctg aagtggagaa gatatgcgat ttagctgcgc gaaagtacgc tactaggcag 660acgtctcctg aagtggagaa gatatgcgat ttagctgcgc gaaagtacgc tactaggcag 660

actaaagtct ctacattgat cagaacgcga ccgcagcaag ttgattttat gagcgcttac 720actaaagtct ctacattgat cagaacgcga ccgcagcaag ttgattttat gagcgcttac 720

tctaagcacc ttagagaaat cattaaagag agaatcaatc accctgaaca ctatgacact 780tctaagcacc ttagagaaat cattaaagag agaatcaatc accctgaaca ctatgacact 780

cctctcaaag gatttcagat agttgtgaat gcgggtaatg ggtcaggagg cttctttacg 840cctctcaaag gatttcagat agttgtgaat gcgggtaatg ggtcaggagg cttctttacg 840

tgggacgttc tagacaagtt aggagccgat acattcggtt cgctctatct aaaccctgac 900tgggacgttc tagacaagtt aggagccgat acattcggtt cgctctatct aaaccctgac 900

gggatgttcc ctaatcacat tcctaatccg gaaaacaaaa tcgcaatgca acacacccga 960gggatgttcc ctaatcacat tcctaatccg gaaaacaaaa tcgcaatgca acacacccga 960

gccgcggttc ttgagaactc agcagatctc ggggttgtgt ttgatacgga tgttgacagg 1020gccgcggttc ttgagaactc agcagatctc ggggttgtgt ttgatacgga tgttgacagg 1020

agtggagtgg tggataacaa aggaaatcct atcaacggag ataagcttat tgcgcttatg 1080agtggagtgg tggataacaa aggaaatcct atcaacggag ataagcttat tgcgcttatg 1080

tcagctatag tgcttaaaga acatccagga agtacagtag tgactgacgc aagaacgagt 1140tcagctatag tgcttaaaga acatccagga agtacagtag tgactgacgc aagaacgagt 1140

atggggctaa ctaggtttat aacggagcga ggagggaggc attgtttgta tagagtaggg 1200atggggctaa ctaggtttat aacggagcga ggagggaggc attgtttgta tagagtaggg 1200

tatagaaacg tgattgacaa gggagtagag ctgaacaaag acggcatcga gactcatctc 1260tatagaaacg tgattgacaa gggagtagag ctgaacaaag acggcatcga gactcatctc 1260

atgatggaaa cttcaggaca tggtgcggtt aaggagaatc acttcttgga tgatggtgca 1320atgatggaaa cttcaggaca tggtgcggtt aaggagaatc acttcttgga tgatggtgca 1320

tacatggtgg tgaagatcat aattgaaatg gtgagaatga gactcgcggg atcaaatgaa 1380tacatggtgg tgaagatcat aattgaaatg gtgagaatga gactcgcggg atcaaatgaa 1380

ggtatcggta gtttgatcga agatcttgag gagccgttag aagcggttga gcttcggttg 1440ggtatcggta gtttgatcga agatcttgag gagccgttag aagcggttga gcttcggttg 1440

aatattttat cagagccaag agatgccaaa gcaaaaggca ttgaagccat tgagactttc 1500aatattttat cagagccaag agatgccaaa gcaaaaggca ttgaagccat tgagactttc 1500

aggcaataca ttgaggaagg aaaactgaaa gggtgggaat tgggcacgtg tggggattgt 1560aggcaataca ttgaggaagg aaaactgaaa gggtgggaat tgggcacgtg tggggattgt 1560

tgggttactg aaggttgctt ggtggactca aatgatcatc catctgctat tgatgctcac 1620tgggttactg aaggttgctt ggtggactca aatgatcatc catctgctat tgatgctcac 1620

atgtacaggg caagagtgag tgatgaagag agtggggaag agtatggttg ggtgcatatg 1680atgtacaggg caagagtgag tgatgaagag agtggggaag agtatggttg ggtgcatatg 1680

aggcagagta ttcataaccc taacatcgca cttaatatgc aatcaatgct tcctggtgga 1740aggcagagta ttcataaccc taacatcgca cttaatatgc aatcaatgct tcctggtgga 1740

tgtctctcca tgacaagaat cttcagagac cagtttcttg aagctagtgg ggtggctaga 1800tgtctctcca tgacaagaat cttcagagac cagtttcttg aagctagtgg ggtggctaga 1800

ttcctggata taagtgactt cgacaattac atcggaggtc aatctctcga gcaccaccac 1860ttcctggata taagtgactt cgacaattac atcggaggtc aatctctcga gcaccaccac 1860

caccaccact ga 1872caccaccact ga 1872

<210> 4<210> 4

<211> 623<211>623

<212> PRT<212> PRT

<213> MASTSTSSLMASKTVISKTALFSSLPGIVSRSFLTFAPASPSVKPLRIRSSNVTKFDEVTNSLDEDMDQIRRLQNGSDVRGVALEGEKGRTVDLTPAAVEAIAESFGEWVAATESNGNGVIKISLGRDPRVSGGKLSTAVFAGLARAGCLAFDMGLATAP<213> MASTSTSSLMASKTVISKTALFSSLPGIVSRSFLTFAPASSPVKPLRIRSSNVTKFDEVTNSLDEDMDQIRRLQNGSDVRGVALEGEKGRTVDLTPAAVEAIAESFGEWVAATESNGNGVIKISLGRDPRVSGGKLSTAVFAGLARAGCLAFDMGLATAP

<220><220>

<221> PRT<221> PRT

<222> (1)..(623)<222> (1)..(623)

<400> 4<400> 4

Met Ala Ser Thr Ser Thr Ser Ser Leu Met Ala Ser Lys Thr Val IleMet Ala Ser Thr Ser Thr Ser Ser Leu Met Ala Ser Lys Thr Val Ile

1 5 10 151 5 10 15

Ser Lys Thr Ala Leu Phe Ser Ser Leu Pro Gly Ile Val Ser Arg SerSer Lys Thr Ala Leu Phe Ser Ser Leu Pro Gly Ile Val Ser Arg Ser

20 25 30 20 25 30

Phe Leu Thr Phe Ala Pro Ala Ser Pro Ser Val Lys Pro Leu Arg IlePhe Leu Thr Phe Ala Pro Ala Ser Pro Ser Val Lys Pro Leu Arg Ile

35 40 45 35 40 45

Arg Ser Ser Asn Val Thr Lys Phe Asp Glu Val Thr Asn Ser Leu AspArg Ser Ser Asn Val Thr Lys Phe Asp Glu Val Thr Asn Ser Leu Asp

50 55 60 50 55 60

Glu Asp Met Asp Gln Ile Arg Arg Leu Gln Asn Gly Ser Asp Val ArgGlu Asp Met Asp Gln Ile Arg Arg Leu Gln Asn Gly Ser Asp Val Arg

65 70 75 8065 70 75 80

Gly Val Ala Leu Glu Gly Glu Lys Gly Arg Thr Val Asp Leu Thr ProGly Val Ala Leu Glu Gly Glu Lys Gly Arg Thr Val Asp Leu Thr Pro

85 90 95 85 90 95

Ala Ala Val Glu Ala Ile Ala Glu Ser Phe Gly Glu Trp Val Ala AlaAla Ala Val Glu Ala Ile Ala Glu Ser Phe Gly Glu Trp Val Ala Ala

100 105 110 100 105 110

Thr Glu Ser Asn Gly Asn Gly Val Ile Lys Ile Ser Leu Gly Arg AspThr Glu Ser Asn Gly Asn Gly Val Ile Lys Ile Ser Leu Gly Arg Asp

115 120 125 115 120 125

Pro Arg Val Ser Gly Gly Lys Leu Ser Thr Ala Val Phe Ala Gly LeuPro Arg Val Ser Gly Gly Lys Leu Ser Thr Ala Val Phe Ala Gly Leu

130 135 140 130 135 140

Ala Arg Ala Gly Cys Leu Ala Phe Asp Met Gly Leu Ala Thr Ala ProAla Arg Ala Gly Cys Leu Ala Phe Asp Met Gly Leu Ala Thr Ala Pro

145 150 155 160145 150 155 160

Ala Cys Phe Met Ser Thr Leu Leu Ser Pro Phe Glu Tyr Asp Ala SerAla Cys Phe Met Ser Thr Leu Leu Ser Pro Phe Glu Tyr Asp Ala Ser

165 170 175 165 170 175

Ile Met Met Thr Ala Ser His Leu Pro Tyr Thr Arg Asn Gly Leu LysIle Met Met Thr Ala Ser His Leu Pro Tyr Thr Arg Asn Gly Leu Lys

180 185 190 180 185 190

Phe Phe Thr Lys Arg Gly Gly Leu Thr Ser Pro Glu Val Glu Lys IlePhe Phe Thr Lys Arg Gly Gly Leu Thr Ser Pro Glu Val Glu Lys Ile

195 200 205 195 200 205

Cys Asp Leu Ala Ala Arg Lys Tyr Ala Thr Arg Gln Thr Lys Val SerCys Asp Leu Ala Ala Arg Lys Tyr Ala Thr Arg Gln Thr Lys Val Ser

210 215 220 210 215 220

Thr Leu Ile Arg Thr Arg Pro Gln Gln Val Asp Phe Met Ser Ala TyrThr Leu Ile Arg Thr Arg Pro Gln Gln Val Asp Phe Met Ser Ala Tyr

225 230 235 240225 230 235 240

Ser Lys His Leu Arg Glu Ile Ile Lys Glu Arg Ile Asn His Pro GluSer Lys His Leu Arg Glu Ile Ile Lys Glu Arg Ile Asn His Pro Glu

245 250 255 245 250 255

His Tyr Asp Thr Pro Leu Lys Gly Phe Gln Ile Val Val Asn Ala GlyHis Tyr Asp Thr Pro Leu Lys Gly Phe Gln Ile Val Val Asn Ala Gly

260 265 270 260 265 270

Asn Gly Ser Gly Gly Phe Phe Thr Trp Asp Val Leu Asp Lys Leu GlyAsn Gly Ser Gly Gly Phe Phe Thr Trp Asp Val Leu Asp Lys Leu Gly

275 280 285 275 280 285

Ala Asp Thr Phe Gly Ser Leu Tyr Leu Asn Pro Asp Gly Met Phe ProAla Asp Thr Phe Gly Ser Leu Tyr Leu Asn Pro Asp Gly Met Phe Pro

290 295 300 290 295 300

Asn His Ile Pro Asn Pro Glu Asn Lys Ile Ala Met Gln His Thr ArgAsn His Ile Pro Asn Pro Glu Asn Lys Ile Ala Met Gln His Thr Arg

305 310 315 320305 310 315 320

Ala Ala Val Leu Glu Asn Ser Ala Asp Leu Gly Val Val Phe Asp ThrAla Ala Val Leu Glu Asn Ser Ala Asp Leu Gly Val Val Phe Asp Thr

325 330 335 325 330 335

Asp Val Asp Arg Ser Gly Val Val Asp Asn Lys Gly Asn Pro Ile AsnAsp Val Asp Arg Ser Gly Val Val Asp Asn Lys Gly Asn Pro Ile Asn

340 345 350 340 345 350

Gly Asp Lys Leu Ile Ala Leu Met Ser Ala Ile Val Leu Lys Glu HisGly Asp Lys Leu Ile Ala Leu Met Ser Ala Ile Val Leu Lys Glu His

355 360 365 355 360 365

Pro Gly Ser Thr Val Val Thr Asp Ala Arg Thr Ser Met Gly Leu ThrPro Gly Ser Thr Val Val Thr Asp Ala Arg Thr Ser Met Gly Leu Thr

370 375 380 370 375 380

Arg Phe Ile Thr Glu Arg Gly Gly Arg His Cys Leu Tyr Arg Val GlyArg Phe Ile Thr Glu Arg Gly Gly Arg His Cys Leu Tyr Arg Val Gly

385 390 395 400385 390 395 400

Tyr Arg Asn Val Ile Asp Lys Gly Val Glu Leu Asn Lys Asp Gly IleTyr Arg Asn Val Ile Asp Lys Gly Val Glu Leu Asn Lys Asp Gly Ile

405 410 415 405 410 415

Glu Thr His Leu Met Met Glu Thr Ser Gly His Gly Ala Val Lys GluGlu Thr His Leu Met Met Glu Thr Ser Gly His Gly Ala Val Lys Glu

420 425 430 420 425 430

Asn His Phe Leu Asp Asp Gly Ala Tyr Met Val Val Lys Ile Ile IleAsn His Phe Leu Asp Asp Gly Ala Tyr Met Val Val Lys Ile Ile Ile

435 440 445 435 440 445

Glu Met Val Arg Met Arg Leu Ala Gly Ser Asn Glu Gly Ile Gly SerGlu Met Val Arg Met Arg Leu Ala Gly Ser Asn Glu Gly Ile Gly Ser

450 455 460 450 455 460

Leu Ile Glu Asp Leu Glu Glu Pro Leu Glu Ala Val Glu Leu Arg LeuLeu Ile Glu Asp Leu Glu Glu Pro Leu Glu Ala Val Glu Leu Arg Leu

465 470 475 480465 470 475 480

Asn Ile Leu Ser Glu Pro Arg Asp Ala Lys Ala Lys Gly Ile Glu AlaAsn Ile Leu Ser Glu Pro Arg Asp Ala Lys Ala Lys Gly Ile Glu Ala

485 490 495 485 490 495

Ile Glu Thr Phe Arg Gln Tyr Ile Glu Glu Gly Lys Leu Lys Gly TrpIle Glu Thr Phe Arg Gln Tyr Ile Glu Glu Gly Lys Leu Lys Gly Trp

500 505 510 500 505 510

Glu Leu Gly Thr Cys Gly Asp Cys Trp Val Thr Glu Gly Cys Leu ValGlu Leu Gly Thr Cys Gly Asp Cys Trp Val Thr Glu Gly Cys Leu Val

515 520 525 515 520 525

Asp Ser Asn Asp His Pro Ser Ala Ile Asp Ala His Met Tyr Arg AlaAsp Ser Asn Asp His Pro Ser Ala Ile Asp Ala His Met Tyr Arg Ala

530 535 540 530 535 540

Arg Val Ser Asp Glu Glu Ser Gly Glu Glu Tyr Gly Trp Val His MetArg Val Ser Asp Glu Glu Ser Gly Glu Glu Tyr Gly Trp Val His Met

545 550 555 560545 550 555 560

Arg Gln Ser Ile His Asn Pro Asn Ile Ala Leu Asn Met Gln Ser MetArg Gln Ser Ile His Asn Pro Asn Ile Ala Leu Asn Met Gln Ser Met

565 570 575 565 570 575

Leu Pro Gly Gly Cys Leu Ser Met Thr Arg Ile Phe Arg Asp Gln PheLeu Pro Gly Gly Cys Leu Ser Met Thr Arg Ile Phe Arg Asp Gln Phe

580 585 590 580 585 590

Leu Glu Ala Ser Gly Val Ala Arg Phe Leu Asp Ile Ser Asp Phe AspLeu Glu Ala Ser Gly Val Ala Arg Phe Leu Asp Ile Ser Asp Phe Asp

595 600 605 595 600 605

Asn Tyr Ile Gly Gly Gln Ser Leu Glu His His His His His HisAsn Tyr Ile Gly Gly Gln Ser Leu Glu His His His His His His His His

610 615 620 610 615 620

<210> 5<210> 5

<211> 30<211> 30

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<220><220>

<221> DNA<221> DNA

<222> (1)..(30)<222> (1)..(30)

<400> 5<400> 5

gcgtccatgg aaggaaaggt tttccaaaac 30gcgtccatgg aaggaaaggt tttccaaaac 30

<210> 6<210> 6

<211> 27<211> 27

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<220><220>

<221> DNA<221> DNA

<222> (1)..(27)<222> (1)..(27)

<400> 6<400> 6

atatatgcgg ccgcggagga gtgagtg 27atatatgcgg ccgcggagga gtgagtg 27

<210> 7<210> 7

<211> 29<211> 29

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<220><220>

<221> DNA<221>DNA

<222> (1)..(29)<222> (1)..(29)

<400> 7<400> 7

aactccatgg cgtcgacttc aacatcatc 29aactccatgg cgtcgacttc aacatcatc 29

<210> 8<210> 8

<211> 29<211> 29

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<220><220>

<221> DNA<221> DNA

<222> (1)..(29)<222> (1)..(29)

<400> 8<400> 8

actgctcgag agattgacct ccgatgtaa 29actgctcgag agattgacct ccgatgtaa 29

Claims (8)

1.一种乙酰葡萄糖胺磷酸变位酶AtAGM2的编码基因,其核苷酸序列具有如下特征中的一种或二种以上:1. A gene encoding acetylglucosamine phosphate mutase AtAGM2, its nucleotide sequence has one or more than two of the following characteristics: 1)具有序列表中SEQ ID NO.1的脱氧核糖核酸(DNA)序列;1) have the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.1 in the sequence listing; 2)编码SEQ ID NO.2氨基酸序列的脱氧核糖核酸(DNA)序列;2) a deoxyribonucleic acid (DNA) sequence encoding the amino acid sequence of SEQ ID NO.2; 3)对序列表中SEQ ID NO.1的脱氧核糖核酸(DNA)序列进行一个或两个以上核苷酸取代、缺失或添加而得到的编码具有乙酰葡萄糖胺磷酸变位酶活性的核苷酸序列。3) A nucleotide encoding acetylglucosamine phosphate mutase activity obtained by performing one or more than two nucleotide substitutions, deletions or additions to the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.1 in the sequence listing sequence. 2.一种乙酰葡萄糖胺磷酸变位酶AtAGM3的编码基因,其核苷酸序列具有如下特征中的一种或二种以上:2. A gene encoding acetylglucosamine phosphate mutase AtAGM3, the nucleotide sequence of which has one or more than two of the following characteristics: 1)具有序列表中SEQ ID NO.3的脱氧核糖核酸(DNA)序列;1) have the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.3 in the sequence listing; 2)编码SEQ ID NO.4氨基酸序列的脱氧核糖核酸(DNA)序列;2) a deoxyribonucleic acid (DNA) sequence encoding the amino acid sequence of SEQ ID NO.4; 3)对序列表中SEQ ID NO.3的脱氧核糖核酸(DNA)序列进行一个或两个以上核苷酸取代、缺失或添加而得到的编码具有乙酰葡萄糖胺磷酸变位酶活性的核苷酸序列。3) The nucleotide encoding the acetylglucosamine phosphate mutase activity obtained by performing one or more than two nucleotide substitutions, deletions or additions to the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.3 in the sequence listing sequence. 3.一种权利要求1所述的乙酰葡萄糖胺磷酸变位酶AtAGM2的编码基因编码的乙酰葡萄糖胺磷酸变位酶,其特征在于:其氨基酸序列具有如下特征中的一种或二种:3. the acetylglucosamine phosphate mutase of the coding gene coding of a kind of acetylglucosamine phosphate mutase AtAGM2 described in claim 1, it is characterized in that: its amino acid sequence has one or two kinds in the following characteristics: 1)序列表中SEQ ID NO.2从氨基端开始的第1-625位氨基酸残基序列;1) The sequence of amino acid residues 1-625 starting from the amino terminal of SEQ ID NO.2 in the sequence listing; 2)对序列表中SEQ ID NO.2所示的氨基酸序列进行一个或两个以上氨基酸取代、缺失或添加而形成的具有乙酰葡萄糖胺磷酸变位酶活性的氨基酸序列。2) An amino acid sequence having acetylglucosamine phosphomutase activity formed by performing one or more than two amino acid substitutions, deletions or additions to the amino acid sequence shown in SEQ ID NO.2 in the sequence listing. 4.一种权利要求2所述的乙酰葡萄糖胺磷酸变位酶AtAGM3的编码基因编码的乙酰葡萄糖胺磷酸变位酶,其特征在于:其氨基酸序列具有如下特征中的一种或二种:4. the acetylglucosamine phosphate mutase of the coding gene coded of a kind of acetylglucosamine phosphate mutase AtAGM3 described in claim 2, it is characterized in that: its amino acid sequence has one or two kinds in the following characteristics: 1)序列表中SEQ ID NO.4从氨基端开始的第1-623位氨基酸残基序列;1) The amino acid residue sequence at positions 1-623 of SEQ ID NO.4 starting from the amino terminus in the sequence listing; 2)对序列表中SEQ ID NO.4所示的氨基酸序列进行一个或两个以上氨基酸取代、缺失或添加而形成的具有乙酰葡萄糖胺磷酸变位酶活性的氨基酸序列。2) An amino acid sequence having acetylglucosamine phosphomutase activity formed by performing one or more than two amino acid substitutions, deletions or additions to the amino acid sequence shown in SEQ ID NO.4 in the sequence listing. 5.一种权利要求3或4所述的乙酰葡萄糖胺磷酸变位酶的应用,其特征在于:该酶可以对乙酰葡萄糖胺-6-磷酸(GlcNAc-6-P),乙酰葡萄糖胺-1-磷酸(GlcNAc-1-P),葡萄糖胺-6-磷酸(GlcN-6-P),葡萄糖胺-1-磷酸(GlcN-1-P)与葡萄糖-6-磷酸(Glc-6-P),葡萄糖-1-磷酸(Glc-1-P)等中的一种或二种以上己糖磷酸具有变位活性。5. an application of the acetylglucosamine phosphate mutase described in claim 3 or 4, is characterized in that: this enzyme can be to acetylglucosamine-6-phosphate (GlcNAc-6-P), acetylglucosamine-1 -phosphate (GlcNAc-1-P), glucosamine-6-phosphate (GlcN-6-P), glucosamine-1-phosphate (GlcN-1-P) and glucose-6-phosphate (Glc-6-P) , Glucose-1-phosphate (Glc-1-P) and one or more hexose phosphates have mutagenic activity. 6.一种权利要求3与4所述的乙酰葡萄糖胺磷酸变位酶的制备方法,其特征在于:是将乙酰葡萄糖胺磷酸变位酶AtAGM2或者AtAGM3的编码基因克隆入重组表达载体,导入宿主细胞,获得重组表达的乙酰葡萄糖胺磷酸变位酶;6. A preparation method of acetylglucosamine phosphate mutase described in claims 3 and 4, characterized in that: the coding gene of acetylglucosamine phosphate mutase AtAGM2 or AtAGM3 is cloned into a recombinant expression vector, and introduced into the host cells, obtaining recombinantly expressed acetylglucosamine phosphomutase; 上述乙酰葡萄糖胺磷酸变位酶AtAGM的编码基因,其核苷酸序列具有如下特征中的一种或二种以上:The nucleotide sequence of the gene encoding the above-mentioned acetylglucosamine phosphate mutase AtAGM has one or more than two of the following characteristics: 1)具有序列表中SEQ ID NO.1或SEQ ID NO.3的脱氧核糖核酸(DNA)序列,1) have the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.1 or SEQ ID NO.3 in the sequence listing, 2)编码SEQ ID NO.2或SEQ ID NO.4氨基酸序列的脱氧核糖核酸(DNA)序列,2) a deoxyribonucleic acid (DNA) sequence encoding the amino acid sequence of SEQ ID NO.2 or SEQ ID NO.4, 3)对序列表中SEQ ID NO.1或SEQ ID NO.3的脱氧核糖核酸(DNA)序列进行一个或两个以上核苷酸取代、缺失或添加而得到的编码具有乙酰葡萄糖胺磷酸变位酶活性的核苷酸序列;3) The code obtained by performing one or more than two nucleotide substitutions, deletions or additions to the deoxyribonucleic acid (DNA) sequence of SEQ ID NO.1 or SEQ ID NO.3 in the sequence listing has acetylglucosamine phosphate shift Enzymatically active nucleotide sequence; 所述的重组表达乙酰葡萄糖胺磷酸变位酶的表达载体,是指大肠杆菌表达载体、酵母表达载体、枯草杆菌表达载体、乳酸菌表达载体、链霉菌表达载体、噬菌体载体、丝状真菌表达载体、植物表达载体、昆虫表达载体或哺乳动物细胞表达载体中的一种或二种以上。The expression vector for the recombinant expression of acetylglucosamine phosphate mutase refers to an E. coli expression vector, a yeast expression vector, a Bacillus subtilis expression vector, a lactic acid bacteria expression vector, a streptomyces expression vector, a phage vector, a filamentous fungus expression vector, One or more of plant expression vectors, insect expression vectors or mammalian cell expression vectors. 7.按照权利要求6所述方法,其特征在于:用于重组表达乙酰葡萄糖胺磷酸变位酶的重组菌或转基因细胞系,是指大肠杆菌宿主细胞Escherichia coli BL21、Escherichia coliJM109、Escherichia coli DH5α,酵母菌宿主细胞Saccharomyces cerevisiae、Pichiapastoris、Kluyveromyces lactis,枯草杆菌宿主细胞Bacillus subtilis R25、Bacillussubtilis 9920,乳酸菌宿主细胞Lactic acid bacteria COCC101,放线菌宿主细胞Streptomyces spp,丝状真菌宿主细胞Trichoderma viride、Trichoderma reesei、Aspergillus niger、Aspergillus nidulans,昆虫细胞Bombyx mori、Antharaeaeucalypti,哺乳动物细胞中国仓鼠卵巢细胞CHO、幼小仓鼠肾脏细胞BHK、中国仓鼠肺细胞CHL中的一种或二种以上。7. according to the described method of claim 6, it is characterized in that: the recombinant bacterium or transgenic cell line that is used for recombinant expression acetylglucosamine phosphate mutase refers to Escherichia coli host cell Escherichia coli BL21, Escherichia coliJM109, Escherichia coli DH5α, Yeast host cells Saccharomyces cerevisiae, Pichiapastoris, Kluyveromyces lactis, Bacillus subtilis host cells Bacillus subtilis R25, Bacillus subtilis 9920, lactic acid bacteria host cells Lactic acid bacteria COCC101, actinomycete host cells Streptomyces spp, filamentous fungal host cells Trichoderma viride, Trichoderma rees Aspergillus niger, Aspergillus nidulans, insect cells Bombyx mori, Antharaeaeucalypti, mammalian cells Chinese hamster ovary cells CHO, young hamster kidney cells BHK, Chinese hamster lung cells CHL one or more. 8.一种权利要求3或4所述的乙酰葡萄糖胺磷酸变位酶在磷酸己糖与核苷酸糖生产中的应用,其特征在于:包括以下应用中的一或二种以上:8. An application of the acetylglucosamine phosphate mutase described in claim 3 or 4 in the production of hexose phosphate and nucleotide sugar, characterized in that it includes one or more than two of the following applications: 1)在实现磷酸己糖1,6位异构体的转变,生产相应同分异构体中的应用;1) Application in realizing the transformation of the 1,6-position isomer of hexose phosphate and producing the corresponding isomer; 2)在UDP-GlcNAc(UDP-GlcN;UDP-Glc)等核苷酸糖的生产中的应用。2) Application in the production of nucleotide sugars such as UDP-GlcNAc (UDP-GlcN; UDP-Glc).
CN201611133399.6A 2016-12-10 2016-12-10 The preparation and application of AtAGM2 and AtAGM3 encoding genes and enzyme Pending CN108611344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611133399.6A CN108611344A (en) 2016-12-10 2016-12-10 The preparation and application of AtAGM2 and AtAGM3 encoding genes and enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611133399.6A CN108611344A (en) 2016-12-10 2016-12-10 The preparation and application of AtAGM2 and AtAGM3 encoding genes and enzyme

Publications (1)

Publication Number Publication Date
CN108611344A true CN108611344A (en) 2018-10-02

Family

ID=63657478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611133399.6A Pending CN108611344A (en) 2016-12-10 2016-12-10 The preparation and application of AtAGM2 and AtAGM3 encoding genes and enzyme

Country Status (1)

Country Link
CN (1) CN108611344A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314950A (en) * 1998-06-08 2001-09-26 以生物技术资源的名义经营的Dcv公司 Vitamin C production in microorganisms and plants
WO2003025007A2 (en) * 2001-09-21 2003-03-27 Affinium Pharmaceuticals, Inc. Purified polypeptides involved in membrane biosynthesis
CN1533439A (en) * 2001-07-18 2004-09-29 �������¹ɷ����޹�˾ Process for preparing L-amino acids using strains of enterobascteriaceae family which contain an atteuated aspa gene
US20050214773A1 (en) * 2001-09-21 2005-09-29 Affinium Pharmaceuticals, Inc. Novel purified polypeptides from bacteria
WO2014068238A1 (en) * 2012-10-30 2014-05-08 Ghislaine Tissot-Lecuelle Production of hyaluronic acid in algae
EP2927316A1 (en) * 2014-03-31 2015-10-07 Jennewein Biotechnologie GmbH Total fermentation of oligosaccharides
CN105821063A (en) * 2015-01-05 2016-08-03 中国科学院大连化学物理研究所 Incision alginate lyase Alg2B and coding gene, preparation and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314950A (en) * 1998-06-08 2001-09-26 以生物技术资源的名义经营的Dcv公司 Vitamin C production in microorganisms and plants
CN1533439A (en) * 2001-07-18 2004-09-29 �������¹ɷ����޹�˾ Process for preparing L-amino acids using strains of enterobascteriaceae family which contain an atteuated aspa gene
WO2003025007A2 (en) * 2001-09-21 2003-03-27 Affinium Pharmaceuticals, Inc. Purified polypeptides involved in membrane biosynthesis
US20050214773A1 (en) * 2001-09-21 2005-09-29 Affinium Pharmaceuticals, Inc. Novel purified polypeptides from bacteria
WO2014068238A1 (en) * 2012-10-30 2014-05-08 Ghislaine Tissot-Lecuelle Production of hyaluronic acid in algae
EP2927316A1 (en) * 2014-03-31 2015-10-07 Jennewein Biotechnologie GmbH Total fermentation of oligosaccharides
CN105821063A (en) * 2015-01-05 2016-08-03 中国科学院大连化学物理研究所 Incision alginate lyase Alg2B and coding gene, preparation and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TABATA,S.ET AL.,: "Arabidopsis thaliana phosphoglucosamine mutase family protein mRNA", 《GENBANK》 *
THEOLOGIS A. ET AL.,: "Arabidopsis thaliana phosphoglucomutase, putative / glucose phosphomutase (AT1G70820), mRNA", 《GENBANK》 *
王伟继等: "五种海洋生物葡萄糖磷酸变位酶和磷酸葡萄糖异构酶的同工酶分析", 《水产学报》 *

Similar Documents

Publication Publication Date Title
US10501813B2 (en) Enzyme preparation containing thermostable DNA polymerase, method for producing same, and method for detecting subject organism to be detected
Girod et al. Homologs of the essential ubiquitin conjugating enzymes UBC1, 4, and 5 in yeast are encoded by a multigene family in Arabidopsis thaliana
CN113302299B (en) Psicose epimerase variants, methods of producing the same, and methods of producing psicose using the same
CN113736763B (en) Myrosinase Rmmr and application thereof in preparation of sulforaphane and sulforaphane
CN113316636B (en) DNA polymerase with improved enzymatic activity and use thereof
KR20170074120A (en) Allose producing-strain using the fructose and method for producing allose using the same
Ooi et al. RNA lariat debranching enzyme
CN105087516B (en) ADP-glucose pyrophosphorylase mutant and screening method and application thereof
CN108531470B (en) A kind of sulfate fucoidan lyase TFLFM and its preparation method and application
CN112852774A (en) Phosphofructosyl aminotransferase encoding gene and preparation and application of enzyme
CN106755022B (en) Acetylglucosamine phosphoglucomutase AtAGM coding gene, enzyme, preparation and application thereof, and enzyme activity detection method
CN108611344A (en) The preparation and application of AtAGM2 and AtAGM3 encoding genes and enzyme
CN110144340B (en) Chitosanase CsnQ and application thereof
GB2620254A (en) Method for preparing multisubunit SCF E3 ligase with fusion protein through in vitro reconstitution, and use of multisubunit SCF E3 ligase
CN110195047B (en) Chitosanase CsnT and application thereof
CN108374002B (en) A kind of Gracilaria gracilis phosphoglucomutase protein and its encoding gene and application
WO2017070164A2 (en) A thermostable haloarchaeal inorganic pyrophosphatase
CN105039281A (en) UDPG pyrophosphatase produced from aureobasidium pullulans, coding gene, carrier and application
KR101895914B1 (en) Preparation method of D-allose using a novel L-rhamnose isomerase
CN110272888B (en) Novel chondrosulphatase CslF and application thereof
CN107164354A (en) A kind of UDP xylose epimerase from Ornithogalum caudatum, its nucleotide sequence and application
WO2023082266A1 (en) Chimeric dna polymerase and use thereof
JP4346449B2 (en) Production of UPPase
KR20180007725A (en) Mass production method of beta agarase
CN106191019B (en) A kind of truncated uridine-5&#39;-xylose diphosphate synthase, its nucleotide sequence and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181002

WD01 Invention patent application deemed withdrawn after publication