[go: up one dir, main page]

CN108603770A - 传感器 - Google Patents

传感器 Download PDF

Info

Publication number
CN108603770A
CN108603770A CN201780008032.8A CN201780008032A CN108603770A CN 108603770 A CN108603770 A CN 108603770A CN 201780008032 A CN201780008032 A CN 201780008032A CN 108603770 A CN108603770 A CN 108603770A
Authority
CN
China
Prior art keywords
inductance
measurement
sensor
ontology
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780008032.8A
Other languages
English (en)
Inventor
H.安克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Technologies GmbH
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Publication of CN108603770A publication Critical patent/CN108603770A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
    • G01D5/2216Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2258Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable ferromagnetic element, e.g. core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/243Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the phase or frequency of AC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明涉及一种传感器,所述传感器包括电路载体、在所述电路载体上的多个测量电感器、以及耦合至所述测量电感器的参考电感器。

Description

传感器
本发明涉及一种传感器,所述传感器可以例如用于检测测量变量。具体地,这种传感器可以在汽车中用于检测踏板或控制器的位置。
已知的传感器通常具有复杂的设计并且难以评估。
因此,本发明的目的是提供一种传感器,所述传感器以可替代的方式(例如,以结构上更简单的方式或者以接线更简单的方式)被实施。
根据本发明,这是通过如权利要求1所述的传感器来实现的。例如,有利的配置可以从从属权利要求中获得。权利要求书的内容通过明确的引用而并入说明书的内容中。
本发明涉及一种传感器。所述传感器具有电路载体。所述传感器还具有施加到所述电路载体的多个测量电感。所述传感器还具有耦合至所述测量电感的参考电感。在这种情况下,所述耦合可以具体为磁耦合、电耦合、或经组合的电和磁耦合。
借助于电路载体上的测量电感的安排可以实现特别简单的生产和简单的设计。具体地,所述参考电感可以产生磁场,所述磁场由测量电感来检测并且取决于外部变量和/或取决于测量本体的位置或方位。这将在下文进一步更详细地讨论。
所述测量电感有利地与所述参考电感电绝缘。例如,它们可以间隔开一定的气隙。然而,它们还可以例如通过适当的电绝缘材料来间隔开。这防止短路和故障。
所述传感器可以具体地被配置为线性位置传感器。所述传感器还可以被配置为力传感器。已经发现这种应用在实践中是有利的。
测量电感可以具体地沿着路径而被施加到电路载体。具体地,所述路径可以是直线路径、线性路径、或者弧或圆弧。这种安排具体在变量旨在沿着这种路径而被测量时是有利的,其中,例如,测量本体可以沿着这种路径进行移位。
根据一个优选实施例,所述传感器还具有测量本体,所述测量本体可以相对于电路载体而移动。这种测量本体可以例如耦合至外部装置以便记录有待测量的变量,其中,所述测量本体通常根据所述变量进行移位。所述测量本体还可以相对于电路载体而改变其方位或位置。
所述测量本体可以有利地能够与测量电感的路径平行地、具体是排他地平行地移动。这允许例如对一维或二维变量进行有利且精确的测量。然而,所述测量本体还可以例如能够横向于电路载体而移动。
所述电路载体可以具体为印刷电路板。这种类型的电路载体通常具有相对于像“平行”或“横向”等术语可以更容易地被识别的平面表面。
所述测量本体优选地为铁磁的和/或导电的。所述测量本体因此可以例如是铁磁的,例如采用永磁体的形式。所述测量本体还可以是导电的并且是非铁磁。所述测量本体还可以是铁磁且导电的。例如,其还可以是本文所涉及的铁氧体,所述铁氧体是软磁性的,也就是说是高度可渗透非导电的、但又不是永磁体。这种实施例已经证明对于影响参考电感与测量电感之间的耦合而言是成功的。
所述测量本体可以与测量电感和/或与参考电感间隔开对应的气隙。这使得测量本体的电绝缘和有利自由移动性成为可能。
根据一个实施例,测量电感位于参考电感内。具体地,这允许特别好的磁耦合。
根据一个实施例,参考电感围绕电路载体。这允许到位于电路载体上的测量电感的有利耦合。
参考电感优选地在电流流过时产生磁场,所述磁场穿透测量电感并且优选地通过测量本体根据所述测量本体的位置而发生改变。这允许用于对测量变量进行测量的有利测量方法。在这种情况下,测量本体的位置通常连接至测量变量,以使得当测量变量发生改变时测量本体的位置也发生改变。
然而,原则上,例如也可以检测测量本体的方位。
测量电感使用SMD技术优选地被施加到电路载体。这允许简单、有利且紧凑的设计。
根据一个实施例,测量电感中的至少一些串联和/或并联地电互连。例如,通过这种互连,可以实现特定的特性,其结果是电路可以与特定应用相适配。具体地,通过并联或串联互连,特定的测量电感可以以适当的方式一起进行评估。在这种情况下,任何测量电感可以串联和/或并联地互连。
根据一个发展,所述传感器还具有电容,所述电容与参考电感互连以形成并联谐振电路。根据此发展,所述传感器还具有电子控制单元。例如,所述电子控制单元直接连接至所述并联谐振电路,其中,这可以包含借助于电线或导体轨道的直接连接以及借助于电阻器的连接这两者。
所述电子控制单元被配置用于以从所述电子控制单元的时钟推导出的激发频率将所述并联谐振电路激发至振荡。
此外,所述电子控制单元直接连接至所述测量电感中的每一个,并且被配置用于在所述对应测量电感处测量指示测量变量的值。
刚刚所描述的实施例使得可以有利地将具体适当的接线与电子控制单元一起使用,其中,这种接线尤其使得简单评估以及特别好的可扩展性成为可能。具体地,对于使用多个测量电感,仅需要非常低的附加费用。
在指示测量变量的情况下,还可以具体地讨论值受测量变量的影响。在这种情况下,例如,所述测量变量可以是外部测量变量,诸如汽车中踏板的位置或控制器的位置。
根据一个发展,所述电子控制单元被配置用于确定受测量本体影响的测量电感,并且随后基于所述测量电感处的测量结果来确定测量本体的位置。
应理解的是,术语测量电感在本文中指代通常也可以被称为电感器的部件。这特别注意到,关于与作为这种电感器的电特性的术语电感存在混淆的风险。
通过刚刚所描述的过程以及电子控制单元的相应配置,例如,可以从多个测量电感中识别一个、两个或三个测量电感,所述多个测量电感在特定时间受测量本体的影响。随后,可以在所述测量电感处测量指示测量本体的位置的相应值。在当前未受测量本体影响的其他测量电感处,例如,在此时然后可以不实施任何测量或者不实施进一步处理。这可以减少费用和/或必要的计算能力。
刚刚所描述的实施例具体地使得可以有利地使用测量原理,所述测量原理可以实际上以任何期望的方式进行缩放而没有相当大的费用。具体地,这意味着可以使用多个测量电感,并且因此在不需要复杂接线的情况下可以实现非常高的分辨率和/或特别长的测量范围。对于所使用的每一个测量电感来说,基本上需要电子控制单元的仅一个输入以及一个相应的电连接。激励频率可以与并联谐振电路的谐振频率优选地相差不超过25%,优选地不超过20%、特别优选地不超过15%、甚至更优选地不超过10%。已经发现这在实践中是有利的。
具体地,激励频率可以能够被设置,其中,所述激励频率尤其可以通过具有可变频率的元件来控制。
锁定放大器可以有利地用于测量。
第一电感、测量电感和/或电容可以是例如具有在1%与10%之间、优选地为1%或者小于1%的对应容差的部件。已经发现这种容差是有利的。
测量电感可以例如电流地或磁性地耦合至参考电感。
根据一个发展,并联谐振电路可以具有通过使Vt*Vt/V0的值最大化而获得的最大Q因数。在此,Vt表示在给定电容和参考电感与其在并联谐振电路的谐振频率处的对应值的最大偏差的情况下线圈电流与供应线电流之比。V0表示针对电容和参考电感在并联谐振电路的谐振频率处的对应值的线圈电流与供应线电流之比。已经证明这种程序对于典型应用而言是特别有利的。
可以具体通过并联谐振电路中的电阻器的互连来限制最大Q因数。
电子控制装置可以具体地被配置用于使用测量电感来测量以下特征值中的一或多项:
–自电感或电感,
–电阻损耗,
–复阻抗,
–角度损耗,
–与第一电感有关的互感。
所述传感器可以有利地具有两个、三个或多于三个测量电感。例如,所述传感器也可以具有四个、五个或多于五个测量电感。具体地,在刚刚提及的电路中,测量电感的数量可以以特别简单的方式进行缩放。
根据另一发展,所述传感器具有多个测量电感,其中,每一个测量电感具有与其相关联的磁芯。测量电感在这种情况下沿着路径被安排。此外,测量电感串联地电连接。测量电感具有沿着所述路径在一个方向上增大的对应电感。在此被称为电感的特征是作为电感器的电特性的电感。
这使得可以使用对应电感的不同值来共同评估所有的测量电感。这也使得可以简单地缩放成多个电感。
根据一个实施例,测量电感在这种情况下沿着路径串联地连接。这使得简单评估成为可能。然而,应理解的是,在路径上未被定向的其他互连也是可能的。
具体地,在这种实施例中,测量本体可以能够沿着路径进行移动,其结果是对所述测量本体的位置进行的有利测量是可能的。
在这种情况下,所述传感器优选地被配置用于根据测量本体沿着路径的位置来生成公共输出信号,具体为总电感。
测量本体可以例如是铁磁高渗透性本体、导电体、或其他永磁体。所述测量本体还可以由例如钢制成,其是软磁性的,也就是说是高度渗透且导电的。
对应磁芯优选地不具有剩磁。
电路载体具体地可以是印刷电路板、引线架、或模制互连装置(MID)载体。
测量电感优选地如此彼此靠近地间隔开以使得当测量本体沿着路径移动时产生总电感的特征曲线,所述特征曲线至少在路径的一半上、优选地在路径的至少四分之三上或在整个路径上单调地递增或递减。这允许有利的评估并防止模糊性。
所述传感器可以具有例如引导测量本体的引导件。这种引导件具体地可以沿着所提及的路径来引导测量本体。
所述传感器可以具有致动元件,借助于所述致动元件,可以从外部、例如沿着路径移动测量本体。
从现有技术中已知的许多测量电路具多通道同时测量较昂贵的问题,因为对于每一个通道而言,操作必须以高水平的电路复杂性进行。因此,可以有利地的是,例如组合了常规地将非常便宜的SMD电感成批地填充在电路载体上并使用一组这种电感的安排作为具有电感的串联或并联电路的感应式系统的一般方法。这形成了可以以成本有效的方式使用测量通道来测量的总电感。
在以上进一步所描述的测量电路的进一步发展中,与现有技术相比,优点具体地在于通道相关成本极其低,因为通过附加测量通道扩展现有电路不需要附加的部件。例如,通过互连,可以实现信息的减少。两个复杂的参数可以从两个单独的电感中获得;通常只有一个可以从其串联或并联电路中获得。
通常不会组合以互补方式对测量变量起反应的电感。当单独的元件递送计量信息时,串联电路通常产生恒定电感;并联电路产生对测量变量的仅轻微的依赖性。
对于许多测量对象,有利的是,使用多个电感(具体为测量电感),以便分配有待由感应式系统覆盖的区域。在电路载体上的这种类型的填充是成本有效的。电感的紧邻附近有利地用于基于传感器的功能。具体地,通过以上所描述的接线方式,可以有效地省去串联或并联电路,其中,仍然获得计量有效的系统。
在这种情况下,并非严格必需完全省去串联或并联电路。例如,可能的是,有利地使用以相同的方式对测量变量起反应的电感的串联或并联电路,因为然后不会出现典型的缺点。因此通常确定单独电感的实现测量对象的安排。随后,使用信息减少、根据测量变量进行的参数修改以及对信噪比的影响的准则,可以检查哪些电感在没有损害的情况下可以进行组合。对其不适用的所述组仍然未组合。
对于每一个测量通道,测量电路通常要求测量时间的一部分可用于每一个测量周期。在许多基于传感器的应用中,例如在汽车中的诸如制动器和方向盘等底盘部件的控制,测量周期如此短以至于在此周期中只能实施有限数量、通常恰好足够数量的单独测量。在这种情况下对测量通道进行的测量的过度减少同样导致信噪比的减小。其中不会出现或仅在微不足道的程度上出现的已知缺点和/或以上所展示的缺点的所有组合(即,串联或并联电路)因此应当优选地被实施。
在许多应用中,对于具有特别大的特征值的电感没有空间,这具体是由于对传感器的期望小型化。所产生的对常常从计量视角产生的可以感知到的感应式系统的总电感的缺乏通常在将电感进行组合时使串联电路在许多情况下优于并联电路,因为所述总电感然后大于单独电感。
本领域技术人员将从下面参照附图描述的示例性实施例中收集进一步的特征和优点,在所述附图中:
图1:示出测量电路,并且
图2:示出传感器。
图1示出了测量电路的示例性实施例,所述测量电路可以有利地与根据本发明的传感器一起使用。在这种情况下,电子控制单元以控制器μC的形式被提供。所述微控制器总共有由P1、P2、P3、P4、P5和P6表示的六个端口。
并联谐振电路连接在端口P1和P2处,该并联谐振电路在当前情况下由参考电感LP和与其并联连接的电容器CP组成。
电阻器R1连接在端口P3处,平滑电容器C1进而连接至所述电阻器。平滑电容器C1在相反侧连接至地。
以这种方式,可以在电阻器R1的与端口P3相对的极点处并且具体地特别地通过端口P3处的适当的脉宽调制来设置限定电压。连接到所述极点的是直接电连接至端口P4、P5和P6的三个测量电感LS1、LS2、LS3。测量电感LS1、LS2、LS3磁性地耦合至参考电感LP。当这种耦合受到测量本体(未展示)的影响时,所述测量本体的位置和/或方位可以通过评估测量电感LS1、LS2、LS3的相应信号来识别。
图2示出了根据本发明的一个示例性实施例的传感器1,所述传感器在当前情况下被实施为线性位置传感器。测量电路未被展示;在这方面参考图1。
在传感器1中,总共有五个测量电感20、21、22、23、24以线性安排被施加到电路载体10。SMD技术用于此目的。
测量电感20、21、22、23、24以图1的方式经由电路载体10上的导电连接(未展示)而连接至测量电路。
线绕参考电感12在测量电感20、21、22、23、24的高度处缠绕在电路载体10周围,该参考电感连接至测量电路但不直接导电地连接至其他电感,即,测量电感20、21、22、23、24。铁磁或导电测量本体11被安排成接近电感20、21、22、23、24的高度或者安排在所述电感的高度处,该测量本体与测量电感20、21、22、23、24的整个安排间隔开对应气隙。这也确保了测量本体11的电绝缘以及还有自由移动性。
测量本体11被安装成使得其可以移动,其中,结果是,其可以经由测量电感20、21、22、23、24的线性安排进行移位。这在图2中由双头箭头示出。
所示出的实施例的功能在于参考电感12产生磁场,所述磁场穿透测量电感20、21、22、23、24并在所述测量电感中感应到电压。测量电感20、21、22、23、24作为电感是测量电路的一部分,为此所述测量电路从三个测量通道扩展到五个测量通道。所述测量电路确定五个感应电压。所述感应电压不是全部相等,因为参考电感12的磁场被测量本体11局部地改变。
对每一个测量电感20、21、22、23、24的感应电压进行的测量允许测量本体11的位置借助于首先在其影响下确定的一个到两个测量电感20、21、22、23、24来计算,并且然后根据所述测量电感的信号计算出位置值。所述位置值可以具有比根据测量电感20、21、22、23、24的栅格尺寸显著高的空间分辨率。在图2所示的状态下,测量本体11位于测量电感21和22上方。
与串联电路相比,评估单独电感的信号的优点具体地在于所计算的空间分辨率与电感数量无关。
所述优点进一步参考以下方面:当使用图1所示出的测量电路和/或图2所示的传感器时,具体有利且简单的缩放成多个测量电感是可能的,因为最终仅需要一个对应的附加测量电感、一个附加端口以及一个相应连接。
作为本申请的部分的权利要求书并不代表省去更多的保护的实现。
如果在这些程序的过程中显现出一个特征或一组特征不是绝对必要的,则申请人现在就渴求用于至少一项不再具有所述特征或所述组特征的独立权利要求的措辞。通过举例,这可以是在提交之日存在的权利要求的子组合或者可以是在提交之日存在的权利要求的、受另外的特征限制的子组合。权利要求书或需要重述的这种类型的特征的组合可以被理解为被本申请的披露内容同样覆盖。
此外应指出的是,在不同的实施例或示例性实施例中描述的和/或在附图中示出的本发明的配置、特征、和变体可以任何方式相互组合。单个或多个特征能够以任何方式相互交换。由此产生的特征的组合也可以理解为由本申请的披露内容涵盖。
在从属权利要求中的往回引用不旨在被理解为放弃实现对往回引用从属权利要求的特征的独立的、实质的保护。这些特征还可以以任何方式与其他特征组合。
仅在说明书中披露的特征、或仅在说明书或权利要求中披露的特征结合其他特征,基本上可以具有对本发明而言必不可少的自主意义。因此,为了区别于现有技术,它们也可以单独地包括在权利要求中。

Claims (15)

1.一种传感器(1),具有:
-电路载体(10);
-多个测量电感(20,21,22,23,24),被施加到所述电路载体(10);以及
-参考电感(12),耦合至所述测量电感(20,21,22,23,24)。
2.如权利要求1所述的传感器(1),
-其中,所述测量电感(20,21,22,23,24)与所述参考电感(12)电绝缘。
3.如前述权利要求中任一项所述的传感器(1),
-所述传感器被配置为线性位置传感器。
4.如前述权利要求之一所述的传感器(1),
-其中,所述测量电感(20,21,22,23,24)沿路径、具体地为直线路径或者弧或圆弧而被施加到所述电路载体(10)。
5.如前述权利要求之一所述的传感器(1),
-所述传感器还具有测量本体(11),所述测量本体可以相对于所述电路载体(10)而移动。
6.如权利要求4和权利要求5所述的传感器(1),
-其中,所述测量本体(11)可以与所述测量电感(20,21,22,23,24)的所述路径平行地、具体是排他地平行地移动。
7.如权利要求5和6中任一项所述的传感器(1),
-其中,所述测量本体(11)是铁磁的和/或导电的。
8.如权利要求5至7之一所述的传感器(1),
-其中,所述测量本体(11)与所述测量电感(20,21,22,23,24)和/或与所述参考电感(12)间隔开对应的气隙。
9.如前述权利要求之一所述的传感器(1),
-其中,所述测量电感(20,21,22,23,24)位于所述参考电感(12)内,和/或其中,所述参考电感(12)围绕所述电路载体(10)。
10.如前述权利要求之一所述的传感器(1),
-其中,所述参考电感(12)在电流流过时产生磁场,所述磁场穿透所述测量电感(20,21,22,23,24)并且优选地通过所述测量本体(11)根据所述测量本体(11)的位置而发生改变。
11.如前述权利要求之一所述的传感器(1),
-其中,所述测量电感(20,21,22,23,24)使用SMD技术而被施加到所述电路载体(10)。
12.如前述权利要求之一所述的传感器(1),
-其中,所述测量电感(20,21,22,23,24)中的至少一些串联和/或并联地电互连。
13.如前述权利要求之一所述的传感器(1),所述传感器还具有:
-电容(CP),所述电容与所述参考电感(12,LP)互连以形成并联谐振电路,以及
-电子控制单元(mC),
-其中,所述电子控制单元(mC)直接连接至所述并联谐振电路,并且被配置用于以从所述电子控制单元的时钟推导出的激发频率将所述并联谐振电路激发至振荡,并且
-其中,所述电子控制单元(mC)直接连接至所述测量电感(20,21,22,23,24,LS)中的每一个,并且被配置用于在所述对应测量电感(20,21,22,23,24,LS)处测量指示测量变量的值。
14.如权利要求13所述的传感器(1),
-其中,所述电子控制单元(mC)被配置:
-用于确定受测量本体(11)影响的测量电感(20,21,22,23,24,LS),并且随后
-用于基于在所述测量电感(20,21,22,23,24,LS)处的测量结果来确定所述测量本体(11)的位置。
15.如权利要求1至12之一所述的传感器(1),
-所述传感器具有多个测量电感(20,21,22,23,24),
-其中,每一个测量电感具有与其相关联的磁芯,
-其中,所述测量电感(20,21,22,23,24)沿着路径被安排,
-其中,所述测量电感(20,21,22,23,24)串联地电连接,并且
-其中,所述测量电感(20,21,22,23,24)具有沿着所述路径在一个方向上增大的对应电感。
CN201780008032.8A 2016-02-17 2017-02-14 传感器 Pending CN108603770A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016202403.5A DE102016202403A1 (de) 2016-02-17 2016-02-17 Sensor
DE102016202403.5 2016-02-17
PCT/EP2017/053295 WO2017140678A1 (de) 2016-02-17 2017-02-14 Sensor

Publications (1)

Publication Number Publication Date
CN108603770A true CN108603770A (zh) 2018-09-28

Family

ID=58054119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780008032.8A Pending CN108603770A (zh) 2016-02-17 2017-02-14 传感器

Country Status (6)

Country Link
US (1) US11169006B2 (zh)
EP (1) EP3417244B1 (zh)
KR (1) KR20180109069A (zh)
CN (1) CN108603770A (zh)
DE (1) DE102016202403A1 (zh)
WO (1) WO2017140678A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202403A1 (de) 2016-02-17 2017-08-17 Continental Teves Ag & Co. Ohg Sensor
DE102016202402A1 (de) * 2016-02-17 2017-08-17 Continental Teves Ag & Co. Ohg Sensor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337939A2 (de) * 1988-03-28 1989-10-18 C.A. Weidmüller GmbH & Co. Induktive Sensoranordnung und Messanordnung zur Ermittlung der Relativlage einer Sensoranordnung
DE4311973A1 (de) * 1993-04-14 1997-02-13 Pepperl & Fuchs Magneto-induktive Sensorzeile für eine magnetische Positions- und/oder Wegbestimmung und Verfahren hierzu
US5712563A (en) * 1994-06-13 1998-01-27 Honda Giken Kogyo Kabushiki Kaisha Steering torque sensor utilizing a displacement detector having a pulse power supply
DE19812965A1 (de) * 1998-03-24 1999-10-07 Elmeg Vorrichtung zum induktiven Messen der Lage eines Metallbandes
GB2340242B (en) * 1998-07-28 2002-09-25 Newall Measurement Syst Ltd Improvements relating to position detectors
DE102005007731A1 (de) * 2005-02-19 2006-08-24 Festo Ag & Co. Positionssensoranordnung
CN1928581A (zh) * 2006-10-20 2007-03-14 北京赛迪机电新技术开发公司 一种硅钢磁性能在线检测方法、线圈及系统
CN101545754A (zh) * 2008-03-27 2009-09-30 约翰尼斯海登海恩博士股份有限公司 位置测量仪及其工作方法
CN102003973A (zh) * 2010-10-19 2011-04-06 首都医科大学 一种无线无源的测量方法与电路
CN103837901A (zh) * 2012-11-19 2014-06-04 法国大陆汽车公司 用于机动车的电感式传感器
CN203706814U (zh) * 2014-01-24 2014-07-09 广西电网公司电力科学研究院 屏蔽型电磁线圈
WO2015129229A1 (ja) * 2014-02-26 2015-09-03 パナソニックIpマネジメント株式会社 位置検出装置
US20150369631A1 (en) * 2014-06-19 2015-12-24 Texas Instruments Incorporated Position sensing by asymmetric electric coil sensor

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1465476A (fr) * 1965-10-26 1967-01-13 M E C I Materiel Electr De Con Dispositif convertisseur de mesure produisant une tension électrique proportionnelle à un déplacement et ses applications
JP2568620B2 (ja) 1988-03-29 1997-01-08 愛知時計電機株式会社 電磁流量計
DE3903278C2 (de) 1989-02-03 1995-09-28 Rexroth Mannesmann Gmbh Induktive Wegaufnehmeranordnung
DE4006885C2 (de) * 1989-04-05 1995-04-13 Siemens Ag Auswerteverfahren für einen Sensor zur Messung der Temperatur eines bewegten, vorzugsweise rotierenden Körpers, insbesondere einer rotierenden Bremsscheibe
US5515041A (en) 1993-06-14 1996-05-07 Simmonds Precision Products Inc. Composite shaft monitoring system
DE4330140C2 (de) 1993-09-07 1997-07-17 Ifm Electronic Gmbh Induktiver Näherungsschalter
SE517185C2 (sv) * 1993-12-28 2002-05-07 Ericsson Telefon Ab L M Komponentmodulanpassad oscillerande kretsanordning
US5952822A (en) 1996-10-24 1999-09-14 Allen-Bradley Company, Llc Method and apparatus for proximity sensing in the presence of an external field
DE19725806C2 (de) 1997-06-18 2000-09-28 Texas Instruments Deutschland Umdrehungsdetektor
DE19738836A1 (de) 1997-09-05 1999-03-11 Hella Kg Hueck & Co Induktiver Winkelsensor
DE19738834A1 (de) * 1997-09-05 1999-03-11 Hella Kg Hueck & Co Induktiver Winkelsensor für ein Kraftfahrzeug
US5936399A (en) 1997-09-16 1999-08-10 Mitutoyo Corporation Inductive position transducer having a multi-tap receiver winding
DE19745236C2 (de) 1997-10-13 2000-12-21 Texas Instruments Deutschland Detektor zur Bestimmung der Drehgeschwindigkeit und Drehrichtung
TW534999B (en) 1998-12-15 2003-06-01 Tdk Corp Magnetic sensor apparatus and current sensor apparatus
WO2001024366A1 (en) 1999-09-30 2001-04-05 Honeywell Inc. An interference-tolerant proximity sensor system having a resonance-tracking impedance analyzer
EP1164358B1 (de) * 2000-06-16 2005-08-24 AMO Automatisierung Messtechnik Optik GmbH Induktives Längenmesssystem
US6828780B2 (en) * 2001-05-01 2004-12-07 Balluff Gmbh Position measuring system having an inductive element arranged on a flexible support
DE10128010A1 (de) 2001-06-08 2003-01-02 Vogt Electronic Ag Drucksensor
EP1306649A1 (de) * 2001-10-24 2003-05-02 Senstronic (Société Anonyme) Induktive Sensoranordnung zur Erfassung einer Dreh- oder Translationsposition
DE10157770C1 (de) 2001-11-27 2002-11-07 Mustafa Uzman Metallsuchgerät
FR2841990B1 (fr) * 2002-07-02 2005-07-29 Skf Ab Dispositif de palier a roulement instrumente et moteur electrique ainsi equipe
DE10238405B4 (de) 2002-08-22 2005-12-22 Techem Development Gmbh Auswerteschaltung für Schwingkreissensoren
US7114368B2 (en) 2003-04-08 2006-10-03 Abbott Laboratories Apparatus and method for verifying the volume of liquid dispensed by a liquid-dispensing mechanism
US7489225B2 (en) * 2003-11-17 2009-02-10 Pulse Engineering, Inc. Precision inductive devices and methods
US8730011B2 (en) 2005-07-14 2014-05-20 Biosense Webster, Inc. Wireless position transducer with digital signaling
CN101317267B (zh) 2005-09-30 2010-09-08 Nxp股份有限公司 基于引线框架中的精密间距布线的系统封装(sip)器件
DE102006026543B4 (de) 2006-06-07 2010-02-04 Vogt Electronic Components Gmbh Lagegeber und zugehöriges Verfahren zum Erfassen einer Position eines Läufers einer Maschine
DE102006046531A1 (de) 2006-09-29 2008-04-03 Dr. Johannes Heidenhain Gmbh Drehgeber und Verfahren zu dessen Betrieb
US8450997B2 (en) * 2009-04-28 2013-05-28 Brown University Electromagnetic position and orientation sensing system
DE102009027997A1 (de) 2009-07-24 2011-01-27 Robert Bosch Gmbh Messeinrichtung zur telemetrischen Auswertung eines Sensors und Messsystem
DE102011004348A1 (de) 2011-02-17 2012-08-23 Beckhoff Automation Gmbh Verfahren und Positionserfassungsvorrichtung zum Erfassen einer Position eines beweglichen Elements einer Antriebsvorrichtung
US8531194B2 (en) 2011-03-24 2013-09-10 Freescale Semiconductor, Inc. Selectable threshold reset circuit
FR2976675B1 (fr) 2011-06-16 2013-07-12 Nanotec Solution Circuit integre de mesure capacitive a pont flottant.
DE102011083007B4 (de) 2011-09-20 2022-12-01 Zf Friedrichshafen Ag Verfahren und Ansteuervorrichtung zum Ansteuern eines elektromagnetischen Aktuators
US8841902B2 (en) 2012-01-20 2014-09-23 Prüftechnik Dieter Busch AG Testing device and testing method for non destructive detection of a defect in a test piece by means of an eddy current
JP2013169057A (ja) 2012-02-15 2013-08-29 Sanken Electric Co Ltd スイッチング電源回路
EP2805376B1 (de) 2012-03-21 2016-12-14 Siemens Aktiengesellschaft Resonatoranordnung und verfahren zum anregen eines resonators
DE102013204494A1 (de) 2013-03-14 2014-10-02 Carl Zeiss Smt Gmbh Positionssensor, sensoranordnung und lithographieanlage mit positionssensor
CN103278181B (zh) 2013-05-03 2016-03-16 东南大学 一种无源lc谐振式传感器的无线读出电路
CN105308418B (zh) 2013-06-13 2018-05-08 株式会社阿米泰克 感应型位置检测装置
DE102014201975A1 (de) 2013-08-28 2015-03-05 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor mit einem Sensorelement und Verfahren zur Herstellung des Sensorelements
WO2015092636A1 (de) * 2013-12-17 2015-06-25 BSH Hausgeräte GmbH Gargerätevorrichtung
US9888577B2 (en) 2014-03-28 2018-02-06 Intel Corporation Passive electrical devices with a polymer carrier
US9397670B2 (en) 2014-07-02 2016-07-19 Teradyne, Inc. Edge generator-based phase locked loop reference clock generator for automated test system
DE102014218754A1 (de) * 2014-09-18 2016-03-24 Continental Teves Ag & Co. Ohg Magnetischer Sensor, Sensoranordnung und Verfahren zur Bestimmung der Position eines magnetisch wirksamen Elements
US9634653B2 (en) 2014-12-11 2017-04-25 Texas Instruments Incorporated Method and apparatus for a brown out detector
DE102015212810B4 (de) 2015-07-08 2023-10-19 Sauer Gmbh Vorrichtung zur Erzeugung einer Ultraschallschwingung eines Werkzeugs und zur Messung von Schwingungsparametern
DE102015215331A1 (de) * 2015-08-11 2017-02-16 Continental Teves Ag & Co. Ohg Elektronische Steuerungseinheit
EP3335013B1 (de) 2015-08-11 2020-04-01 Continental Teves AG & Co. OHG Vorrichtung zum messen einer messgrösse
DE102016202402A1 (de) * 2016-02-17 2017-08-17 Continental Teves Ag & Co. Ohg Sensor
DE102016202403A1 (de) 2016-02-17 2017-08-17 Continental Teves Ag & Co. Ohg Sensor
FR3049750B1 (fr) * 2016-03-31 2018-04-27 Eco Compteur Systeme de detection de passage d'un velo
US10666300B2 (en) * 2016-09-09 2020-05-26 Skyworks Solutions, Inc. Switchable impedance phase shifter for switched multiplexing applications
US10746720B2 (en) * 2017-01-13 2020-08-18 FarmX Inc. Soil moisture monitoring systems and methods for measuring mutual inductance of area of influence using radio frequency stimulus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337939A2 (de) * 1988-03-28 1989-10-18 C.A. Weidmüller GmbH & Co. Induktive Sensoranordnung und Messanordnung zur Ermittlung der Relativlage einer Sensoranordnung
DE4311973A1 (de) * 1993-04-14 1997-02-13 Pepperl & Fuchs Magneto-induktive Sensorzeile für eine magnetische Positions- und/oder Wegbestimmung und Verfahren hierzu
US5712563A (en) * 1994-06-13 1998-01-27 Honda Giken Kogyo Kabushiki Kaisha Steering torque sensor utilizing a displacement detector having a pulse power supply
DE19812965A1 (de) * 1998-03-24 1999-10-07 Elmeg Vorrichtung zum induktiven Messen der Lage eines Metallbandes
GB2340242B (en) * 1998-07-28 2002-09-25 Newall Measurement Syst Ltd Improvements relating to position detectors
DE102005007731A1 (de) * 2005-02-19 2006-08-24 Festo Ag & Co. Positionssensoranordnung
CN1928581A (zh) * 2006-10-20 2007-03-14 北京赛迪机电新技术开发公司 一种硅钢磁性能在线检测方法、线圈及系统
CN101545754A (zh) * 2008-03-27 2009-09-30 约翰尼斯海登海恩博士股份有限公司 位置测量仪及其工作方法
CN102003973A (zh) * 2010-10-19 2011-04-06 首都医科大学 一种无线无源的测量方法与电路
CN103837901A (zh) * 2012-11-19 2014-06-04 法国大陆汽车公司 用于机动车的电感式传感器
CN203706814U (zh) * 2014-01-24 2014-07-09 广西电网公司电力科学研究院 屏蔽型电磁线圈
WO2015129229A1 (ja) * 2014-02-26 2015-09-03 パナソニックIpマネジメント株式会社 位置検出装置
US20150369631A1 (en) * 2014-06-19 2015-12-24 Texas Instruments Incorporated Position sensing by asymmetric electric coil sensor

Also Published As

Publication number Publication date
KR20180109069A (ko) 2018-10-05
EP3417244A1 (de) 2018-12-26
US20180372512A1 (en) 2018-12-27
DE102016202403A1 (de) 2017-08-17
WO2017140678A1 (de) 2017-08-24
US11169006B2 (en) 2021-11-09
EP3417244B1 (de) 2020-09-09

Similar Documents

Publication Publication Date Title
US8089276B2 (en) Magnetic field sensor assembly
EP2174152B1 (en) Current sensor having sandwiched magnetic permeability layer
US10274507B2 (en) Stray-field robust, twist-insensitive magnetic speed sensors
CN102859393A (zh) 金属对象或者磁性对象的检测
CN101241147B (zh) 用于测量流过导电线的电流的设备
US6989666B2 (en) Current sensor and current detection unit using the same
US9091565B2 (en) Magnetic position detection apparatus
US20160061863A1 (en) Magnetic current sensor and current measurement method
US11016124B2 (en) Integrated current sensor
CN109752586B (zh) 基于pcb的电流检测装置
CN113495183B (zh) 电流传感器及其制造方法、电控制装置、以及电流传感器的设计方法
JP6270323B2 (ja) 計測モジュール、電子機器、電源タップ及び電源ユニット、並びに組込型計測モジュール
JP6384677B2 (ja) 電流センサ
CN108603770A (zh) 传感器
JP6835882B2 (ja) コイル装置及び付属の測定装置
CN109328307B (zh) 磁传感器以及具备该磁传感器的电流传感器
US10866120B2 (en) Sensor
US10684385B2 (en) Sensor having rotationally offset coil pairs and differently formed receiving coils for locating metal or magnetic objects
JP2014055791A (ja) 電流センサ
US20150241249A1 (en) Sensor system for detecting position of target member
CN111308403B (zh) 磁传感器装置
US20110156798A1 (en) Alps green devices co., ltd.
CN106796253B (zh) 电流检测装置及电流检测方法
CN209927922U (zh) 基于pcb的电流检测装置
CN113791263A (zh) 电流检测装置和电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230228

Address after: Hannover

Applicant after: Continental Automotive Technology Co.,Ltd.

Address before: Frankfurt, Germany

Applicant before: CONTINENTAL TEVES AG & Co. OHG

TA01 Transfer of patent application right