CN108599775B - Construction method of hybrid check LDPC code - Google Patents
Construction method of hybrid check LDPC code Download PDFInfo
- Publication number
- CN108599775B CN108599775B CN201810440838.0A CN201810440838A CN108599775B CN 108599775 B CN108599775 B CN 108599775B CN 201810440838 A CN201810440838 A CN 201810440838A CN 108599775 B CN108599775 B CN 108599775B
- Authority
- CN
- China
- Prior art keywords
- check
- ldpc code
- code
- nodes
- node
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title claims description 5
- 239000011159 matrix material Substances 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 15
- 125000004122 cyclic group Chemical group 0.000 claims description 26
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 claims 2
- 238000004891 communication Methods 0.000 abstract description 20
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
- H03M13/116—Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/29—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
Landscapes
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Error Detection And Correction (AREA)
Abstract
本发明提出一种混合校验LDPC码的构造方法,属于通信信道编码技术领域。本方法首先构造准循环LDPC码作为基础LDPC码;然后确定基础LDPC码中待替换的校验节点。根据基础LDPC码校验矩阵的分层结构,只选取其中一层校验节点进行替换;根据EXIT函数选取最优子码;最后将基础LDPC码中选定的一层待替换的校验节点替换为最优子码约束的校验节点,混合校验LDPC码构造完毕。本发明构造了一种适用于复杂干扰信道的、实用性强的混合校验LDPC码,可有效降低数据在复杂干扰信道上传输的误码率,提高通信可靠性。
The invention provides a method for constructing a hybrid check LDPC code, which belongs to the technical field of communication channel coding. The method first constructs a quasi-cyclic LDPC code as a basic LDPC code; then determines the check nodes to be replaced in the basic LDPC code. According to the hierarchical structure of the check matrix of the basic LDPC code, only one layer of check nodes is selected for replacement; the optimal sub-code is selected according to the EXIT function; finally, the selected layer of check nodes in the basic LDPC code to be replaced is replaced As the check node constrained by the optimal subcode, the hybrid check LDPC code is constructed. The invention constructs a hybrid check LDPC code with strong practicability suitable for complex interference channels, which can effectively reduce the bit error rate of data transmission on complex interference channels and improve communication reliability.
Description
技术领域technical field
本发明属于通信信道编码技术领域,特别涉及一种混合校验LDPC码的构造方法。The invention belongs to the technical field of communication channel coding, and particularly relates to a method for constructing a hybrid check LDPC code.
背景技术Background technique
随着传输数据的增长、传输终端的增加、传输距离的延长,有限的频谱资源日益拥挤,未来无线通信系统需要在复杂干扰信道下实现可靠的信息传输。复杂的应用环境和层出不穷的干扰手段构成了复杂干扰信道的主要干扰来源:由于山区密林等复杂地形、密集建筑物等造成的多径干扰,造成传输信号的大幅衰减;由于通信设备数量的不断增加,存在着大量异系统干扰和其他设备的同频干扰;通信系统种类日益繁多,部分通信系统由于自身特征引入干扰,如直升机卫星通信系统中由于旋翼遮挡造成信号周期性衰减;在特种通信中,对方的恶意干扰更可能直接中断己方通信。With the growth of transmission data, the increase of transmission terminals, and the extension of transmission distance, limited spectrum resources are increasingly crowded, and future wireless communication systems need to achieve reliable information transmission under complex interference channels. The complex application environment and endless interference methods constitute the main interference source of complex interference channels: due to the multipath interference caused by complex terrain such as mountain forests and dense buildings, the transmission signal is greatly attenuated; due to the continuous increase in the number of communication devices , there are a large number of different system interference and co-frequency interference of other equipment; there are more and more types of communication systems, and some communication systems introduce interference due to their own characteristics, such as the periodic attenuation of signals due to rotor occlusion in helicopter satellite communication systems; in special communication, The malicious interference of the other party is more likely to directly interrupt the communication of the other party.
在复杂干扰信道中,要恢复原始信息,必须使用信道编码技术。低密度奇偶校验(LDPC)码是一种近年来受到广泛关注的具有优异性能的信道编码。一个LDPC码可以由一个稀疏校验矩阵定义,校验矩阵中“1”的个数远少于“0”的个数。一个LDPC码还可以由Tanner图表示,Tanner图上所有节点分为校验节点和变量节点。不同类型的节点由图中的边按如下规律连接起来:当LDPC码校验矩阵中第i行第j列取值为1时,校验节点ci与变量节点vj相连。在LDPC码中,每个校验节点可以看作一个单奇偶校验码约束,每个变量节点可以看作一个重复码约束。In complex interference channels, channel coding techniques must be used to recover the original information. Low Density Parity Check (LDPC) code is a channel coding with excellent performance that has received extensive attention in recent years. An LDPC code can be defined by a sparse check matrix, and the number of "1" in the check matrix is far less than the number of "0". An LDPC code can also be represented by a Tanner graph, and all nodes on the Tanner graph are divided into check nodes and variable nodes. Different types of nodes are connected by the edges in the graph according to the following rules: when the i-th row and the j-th column of the LDPC code check matrix is 1, the check node c i is connected to the variable node v j . In LDPC codes, each check node can be regarded as a single parity check code constraint, and each variable node can be regarded as a repetition code constraint.
准循环LDPC码是一类利用代数结构构造的LDPC码,是实用型LDPC码的一个重要分支。准循环LDPC码的校验矩阵由一系列小的方阵组成,每个小方阵都是零矩阵或者单位阵的循环移位阵。准循环LDPC码的准循环特性使其具有高效编解码的优点,从而在实际通信系统中获得了广泛的应用。新一代数字卫星广播标准DVB-S2、国际空间数据系统咨询委员会标准CCSDS和无线局域网标准802.11ac等都将准循环LDPC码纳入信道编码方案。然而,大多数准循环LDPC码针对传统的加性高斯白噪声信道优化设计,无法应对复杂干扰信道中的大量误码,直接用于复杂干扰信道会导致性能恶化。Quasi-cyclic LDPC codes are a class of LDPC codes constructed using algebraic structures, and are an important branch of practical LDPC codes. The parity check matrix of the quasi-cyclic LDPC code consists of a series of small square matrices, each of which is a cyclic shift matrix of a zero matrix or an identity matrix. The quasi-cyclic characteristics of quasi-cyclic LDPC codes make them have the advantages of efficient encoding and decoding, so they have been widely used in practical communication systems. The new generation digital satellite broadcasting standard DVB-S2, the International Space Data System Advisory Committee standard CCSDS and the wireless local area network standard 802.11ac all incorporate the quasi-cyclic LDPC code into the channel coding scheme. However, most quasi-cyclic LDPC codes are optimized for the traditional additive white Gaussian noise channel and cannot cope with a large number of bit errors in complex interference channels, and their direct use in complex interference channels will lead to performance degradation.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为克服已有技术的不足之处,提出一种混合校验LDPC码的构造方法。本发明将基础LDPC码中的部分单奇偶校验码约束的校验节点替换为具有更强纠错能力的Simplex码等子码约束的校验节点,并设计了一种去除准循环LDPC码短环的算法,以及一种基于EXIT函数的子码优化选取算法,构造了一种适用于复杂干扰信道的、实用性强的混合校验LDPC码,可有效降低数据在复杂干扰信道上传输的误码率,提高通信可靠性。The purpose of the present invention is to propose a method for constructing a hybrid check LDPC code in order to overcome the deficiencies of the prior art. The present invention replaces part of the check nodes constrained by a single parity check code in the basic LDPC code with check nodes constrained by sub-codes such as Simplex code with stronger error correction capability, and designs a method to remove the short quasi-cyclic LDPC code. Loop algorithm, and a subcode optimization selection algorithm based on EXIT function, construct a hybrid check LDPC code with strong practicability suitable for complex interference channels, which can effectively reduce the error of data transmission on complex interference channels. code rate and improve communication reliability.
本发明提出一种混合校验LDPC码的构造方法,其特征在于,该方法包括以下步骤:The present invention proposes a method for constructing a hybrid check LDPC code, which is characterized in that the method comprises the following steps:
1)构造准循环LDPC码作为基础LDPC码;具体步骤如下:1) construct quasi-cyclic LDPC code as basic LDPC code; Concrete steps are as follows:
1-1)在GF(p)域上,构造列重为a、行重为b的准循环LDPC码,其中p是素数,b>a>0;1-1) On the GF(p) field, construct a quasi-cyclic LDPC code with column weight a and row weight b, where p is a prime number, and b>a>0;
1-2)去除步骤1-1)构造的准循环LDPC码短环,具体步骤如下:1-2) remove the quasi-cyclic LDPC code short loop constructed in step 1-1), and the specific steps are as follows:
1-2-1)设目标围长为g,设优化后的基础LDPC码校验矩阵为初始化条件下令 1-2-1) Set the target girth as g, and set the optimized basic LDPC code check matrix as initialization condition command
1-2-2)检查中是否存在长度为2l的环:若存在,则转入步骤1-2-3);若不存在,则转入步骤1-2-8);1-2-2) Inspection Whether there is a ring with a length of 21 in: if there is, then go to step 1-2-3); if not, then go to step 1-2-8);
1-2-3)计算每个循环移位阵参与长为2l的环的数值,并将计算结果更新到计数矩阵n中;其中,n={n0,0,n0,1,...n0,b-1;n1,0,n1,1,...n1,b-1;...;na-1,0,na-1,1,...na-1,b-1},ns,t表示第s行、第t列循环移位阵参与长为2l的环的数值,0≤s≤a-1,0≤t≤b-1;1-2-3) Calculate the value of each cyclic shift matrix with a ring length of 2l, and update the calculation result to the count matrix n; where, n={n 0,0 ,n 0,1 , .. .n 0,b-1 ;n 1,0 ,n 1,1 ,...n 1,b-1 ;...;n a-1,0 ,n a-1,1 ,...n a-1,b-1 }, n s, t represents the value of the ring with the s-th row and t-th column cyclic shift matrix participation length 2l, 0≤s≤a-1, 0≤t≤b-1;
1-2-4)统计计数矩阵n中的数值个数,设计数矩阵n中共有M个不同的数值,将M个数值由大到小排列为n0,n1,...,nM-1;令nk的下标指示值k=0;1-2-4) Count the number of values in the count matrix n, there are M different values in the design number matrix n, and arrange the M values from large to small as n 0 , n 1 ,...,n M -1 ; let the subscript value of n k =0;
1-2-5)查找计数矩阵n中数值等于nk对应的全部循环移位阵,并将所述循环移位阵组成的集合作为待选集Ψ;1-2-5) find all the cyclic shift matrices corresponding to n k in the count matrix n, and use the set formed by the cyclic shift matrices as the set to be selected Ψ;
1-2-6)检查Ψ中是否存在满足度数约束条件的循环移位阵,其中度数约束条件指将选定的循环移位阵替换为零矩阵后中所有约束节点的度数不低于2:若存在,则在Ψ中随机选取一个满足度数约束条件的循环移位阵,并转入步骤1-2-7);若不存在,则令nk的下标指示值k=k+1,重新返回步骤1-2-5);1-2-6) Check whether there is a cyclic shift matrix that satisfies the degree constraint in Ψ, where the degree constraint refers to replacing the selected cyclic shift matrix with a zero matrix. The degree of all constrained nodes in is not less than 2: if it exists, randomly select a cyclic shift matrix that satisfies the degree constraint in Ψ, and go to step 1-2-7); if it does not exist, let n k The subscript indicated value of k=k+1, return to step 1-2-5);
1-2-7)将步骤1-2-6)选取的循环移位阵替换为零矩阵;1-2-7) replace the cyclic shift matrix selected in step 1-2-6) with a zero matrix;
1-2-8)判断l=g/2-1是否成立:若成立,则准循环LDPC码短环去除完毕,得到优化后的基础LDPC码校验矩阵和构造完毕的基础LDPC码,进入步骤2);若不成立,则令l=l+1,重新返回步骤1-2-2);1-2-8) Determine whether l=g/2-1 is established: if so, the short loop of the quasi-cyclic LDPC code is removed, and the optimized basic LDPC code check matrix is obtained and the constructed basic LDPC code, enter step 2); if not established, then make l=l+1, and return to step 1-2-2);
2)确定步骤1)构造的基础LDPC码中待替换的校验节点;2) determine the check node to be replaced in the basic LDPC code constructed in step 1);
设计划选定的校验节点度数为dC,2≤dC≤b,从中选取校验节点度数为dC的一层校验节点作为待替换的校验节点;若中存在多层校验节点度数为dC,则优先选取靠中间的一层的校验节点作为待替换的校验节点;The degree of check node selected by the design plan is d C , 2≤d C ≤b, from Select a layer of check nodes with a check node degree of d C as the check node to be replaced; if If there are multiple layers of check nodes, the degree of which is d C , then the check node of the middle layer is preferentially selected as the check node to be replaced;
3)根据EXIT函数选取最优子码;具体步骤如下:3) Select the optimal subcode according to the EXIT function; the specific steps are as follows:
3-1)确定待选子码集合Ω;3-1) Determine the set of subcodes to be selected Ω;
从满足单奇偶校验约束条件的RM码、BCH码和Simplex码中将信息序列长为dC-1的合法子码作为待选子码纳入待选子码集合Ω;From the RM codes, BCH codes and Simplex codes that satisfy the single parity check constraint, the legal subcodes with the information sequence length of d C -1 are included as the candidate subcodes into the candidate subcode set Ω;
3-2)固定步骤1)构造的基础LDPC码,根据EXIT函数计算Ω中每个待选子码与基础LDPC码组合的译码阈值;3-2) the basic LDPC code that the fixed step 1) constructs, calculates the decoding threshold value that each candidate sub-code and basic LDPC code combination in Ω is calculated according to EXIT function;
变量节点的EXIT函数表达式如下:The EXIT function expression of the variable node is as follows:
式中,IE,VND表示变量节点输出的外信息,IA,V表示输入变量节点的平均先验互信息,λi表示与度数为dvi的变量节点相连的边所占的比例,IE,REP表示复杂干扰信道下变量节点EXIT函数,Eb/N0表示信噪比;In the formula, I E, VND represent the external information output by the variable node, I A, V represent the average prior mutual information of the input variable node, λ i represents the proportion of the edge connected to the variable node of degree dvi , I E, REP represents the variable node EXIT function under complex interference channel, E b /N 0 represents the signal-to-noise ratio;
校验节点的EXIT函数由单奇偶校验码约束的校验节点EXIT函数和子码约束的校验节点EXIT函数两部分组成,表达式如下:The EXIT function of the check node consists of two parts: the check node EXIT function constrained by the single parity check code and the check node EXIT function constrained by the subcode, and the expression is as follows:
式中,IE,CND表示校验节点输出的外信息,IA,C表示输入校验节点的平均先验信息,ρi表示与度数为dci的单奇偶校验码约束的校验节点相连的边所占的比例,IE,SPC表示复杂干扰信道下单奇偶校验码约束的校验节点EXIT函数,ρC表示与子码约束的校验节点相连的边所占的比例,IE,Cmpt表示复杂干扰信道下子码约束的校验节点EXIT函数;In the formula, I E, CND represent the external information output by the check node, I A, C represent the average prior information of the input check node, ρ i represents the check node constrained by the single parity check code with degree dc i The proportion of connected edges, I E, SPC represents the check node EXIT function constrained by a single parity check code in a complex interference channel, ρ C represents the proportion of edges connected to the check node constrained by the subcode, I E, Cmpt represents the check node EXIT function of subcode constraints under complex interference channels;
3-3)根据步骤3-2)的结果,将Ω中译码阈值最低的待选子码确定为最优子码;3-3) According to the result of step 3-2), the sub-code to be selected with the lowest decoding threshold in Ω is determined as the optimal sub-code;
4)将基础LDPC码中根据步骤2)确定的待替换的校验节点替换为根据步骤3)选取的最优子码约束的校验节点,混合校验LDPC码构造完毕。4) Replace the check node to be replaced determined according to step 2) in the basic LDPC code with the check node constrained by the optimal subcode selected according to step 3), and the hybrid check LDPC code is constructed.
本发明的特点及有益效果在于:The characteristics and beneficial effects of the present invention are:
本发明首先通过设计计算机搜索算法去除了准循环LDPC码中的短环,增大了准循环LDPC码的围长,提升了基础LDPC码的译码性能,其次对子码选取进行了优化,并通过将基础LDPC码中的一层单奇偶校验码约束的校验节点替换为具有更强纠错能力的子码约束的校验节点,在降低码率损失的同时引入子码冗余,从而能够有效应对复杂干扰信道中的大量误码,提高通信可靠性,有很强的实用价值。The invention first removes the short loop in the quasi-cyclic LDPC code by designing a computer search algorithm, increases the girth of the quasi-cyclic LDPC code, and improves the decoding performance of the basic LDPC code. By replacing the check nodes constrained by a layer of single parity check codes in the basic LDPC code with check nodes constrained by sub-codes with stronger error correction capabilities, the sub-code redundancy is introduced while reducing the code rate loss, so that It can effectively deal with a large number of errors in complex interference channels, improve communication reliability, and has strong practical value.
附图说明Description of drawings
图1是本发明中去除准循环LDPC码短环算法的流程图。FIG. 1 is a flowchart of an algorithm for removing short loops of quasi-cyclic LDPC codes in the present invention.
图2是本发明中混合校验LDPC码的双向Tanner图。FIG. 2 is a bidirectional Tanner diagram of the hybrid check LDPC code in the present invention.
图3是本发明实施例的周期性遮挡信道模型图。FIG. 3 is a diagram of a periodic occlusion channel model according to an embodiment of the present invention.
图4是本发明实施例的混合校验LDPC码与两种准循环LDPC码的性能仿真比较示意图。FIG. 4 is a schematic diagram of performance simulation comparison between a hybrid check LDPC code and two quasi-cyclic LDPC codes according to an embodiment of the present invention.
具体实施方式Detailed ways
本发明提出一种混合校验LDPC码的构造方法,下面结合附图和具体实施例对本发明作进一步的详细描述。The present invention proposes a method for constructing a hybrid check LDPC code. The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
本发明提出的一种混合校验LDPC码的构造方法,该方法包括以下步骤:A construction method of a hybrid check LDPC code proposed by the present invention, the method comprises the following steps:
1)构造准循环LDPC码作为基础LDPC码;具体步骤如下:1) construct quasi-cyclic LDPC code as basic LDPC code; Concrete steps are as follows:
1-1)在GF(p)域上,构造列重为a、行重为b的准循环LDPC码,其中p是素数,b>a>0。准循环LDPC码的校验矩阵Hb可以表示为:1-1) On the GF(p) field, construct a quasi-cyclic LDPC code with column weight a and row weight b, where p is a prime number and b>a>0. The check matrix H b of the quasi-cyclic LDPC code can be expressed as:
其中,I(pi,j)(i=0,1,...,a-1,j=0,1,...,b-1)表示由p阶单位矩阵每行向右循环移动pi,j位产生的循环移位阵。移位因子pi,j=mod(αiβj,p),其中α和β是GF(p)域上两个不同的元素,且满足α的阶数等于a,β的阶数等于b。Among them, I(p i,j ) (i=0,1,...,a-1, j=0,1,...,b-1) means that each row of the p-order identity matrix is cyclically moved to the right Circular shift matrix generated by p i,j bits. Shift factor p i,j =mod(α i β j ,p), where α and β are two different elements on the GF(p) field, and the order of α is equal to a, and the order of β is equal to b .
1-2)去除步骤1-1)构造的准循环LDPC码短环,流程如图1所示,具体步骤如下:1-2) Remove the short loop of the quasi-cyclic LDPC code constructed in step 1-1), the flow is as shown in Figure 1, and the specific steps are as follows:
1-2-1)设目标围长为g,设优化后的基础LDPC码校验矩阵为初始化条件下令l=2。1-2-1) Set the target girth as g, and set the optimized basic LDPC code check matrix as initialization condition command l=2.
1-2-2)检查中是否存在长度为2l的环:若存在,则转入步骤1-2-3);若不存在,则转入步骤1-2-8)。1-2-2) Inspection Whether there is a ring of length 2l in : if it exists, go to step 1-2-3); if not, go to step 1-2-8).
1-2-3)计算每个循环移位阵参与长为2l的环的数值,并将计算结果更新到计数矩阵n中。其中,n={n0,0,n0,1,...n0,b-1;n1,0,n1,1,...n1,b-1;...;na-1,0,na-1,1,...na-1,b-1},ns,t表示第s行、第t列循环移位阵参与长为2l的环的数值,0≤s≤a-1,0≤t≤b-1。1-2-3) Calculate the value of each cyclic shift matrix with a ring length of 2l, and update the calculation result into the count matrix n. where, n={n 0,0 ,n 0,1 ,...n 0,b-1 ;n 1,0 ,n 1,1 ,...n 1,b-1 ;...;n a-1,0 ,n a-1,1 ,...n a-1,b-1 }, n s,t represents the value of the s-th row, t-th column cyclic shift matrix participation length of the ring of 2l , 0≤s≤a-1, 0≤t≤b-1.
1-2-4)统计计数矩阵n中的数值个数,设计数矩阵n中共有M个不同的数值,将M个数值由大到小排列为n0,n1,...,nM-1。令nk的下标指示值k=0。1-2-4) Count the number of values in the count matrix n, there are M different values in the design number matrix n, and arrange the M values from large to small as n 0 , n 1 ,...,n M -1 . Let the subscript of n k indicate the value k=0.
1-2-5)查找计数矩阵n中数值等于nk对应的全部循环移位阵,并将所述循环移位阵组成的集合作为待选集Ψ。1-2-5) Find all the cyclic shift matrices corresponding to the numerical value equal to n k in the counting matrix n, and use the set formed by the cyclic shift matrices as the set to be selected Ψ.
1-2-6)检查Ψ中是否存在满足度数约束条件的循环移位阵,其中度数约束条件指将选定的循环移位阵替换为零矩阵后中所有约束节点的度数不低于2:若存在,则在Ψ中随机选取一个满足度数约束条件的循环移位阵,并转入步骤1-2-7);若不存在,则令nk的下标指示值k=k+1,重新返回步骤1-2-5)。1-2-6) Check whether there is a cyclic shift matrix that satisfies the degree constraint in Ψ, where the degree constraint refers to replacing the selected cyclic shift matrix with a zero matrix. The degree of all constrained nodes in is not less than 2: if it exists, randomly select a cyclic shift matrix that satisfies the degree constraint in Ψ, and go to step 1-2-7); if it does not exist, let n k The subscript indicates the value k=k+1, and returns to step 1-2-5).
1-2-7)将步骤1-2-6)选取的循环移位阵替换为零矩阵。1-2-7) Replace the cyclic shift matrix selected in step 1-2-6) with a zero matrix.
1-2-8)判断l=g/2-1是否成立:若成立,则准循环LDPC码短环去除完毕,得到优化后的基础LDPC码校验矩阵和构造完毕的基础LDPC码,进入步骤2);若不成立,则令l=l+1,重新返回步骤1-2-2)。1-2-8) Determine whether l=g/2-1 is established: if so, the short loop of the quasi-cyclic LDPC code is removed, and the optimized basic LDPC code check matrix is obtained and the constructed basic LDPC code, go to step 2); if not, set l=l+1, and return to step 1-2-2).
2)确定步骤1)构造的基础LDPC码中待替换的校验节点;2) determine the check node to be replaced in the basic LDPC code constructed in step 1);
通过步骤1)优化后的基础LDPC码校验矩阵具有分层结构,即可分为a层。同一层内,变量节点的度数都相同,校验节点的度数也都相同;由于步骤1)的去除短环操作,位于不同层的校验节点度数则不完全相同。根据的分层结构,只选取其中一层校验节点以待在步骤4)中完成节点替换,从而保证在引入子码的同时降低码率损失。设计划选定的校验节点度数为dC(2≤dC≤b),若有多层校验节点度数为dC,优先选取靠中间的一层,使得子码参与基础码Tanner图中环的数目达到最大,从而最大限度地纠正环上的错误。Step 1) Optimized basic LDPC code check matrix has a hierarchical structure, i.e. Can be divided into a layer. In the same layer, the degrees of variable nodes are the same, and the degrees of check nodes are also the same; due to the short-loop removal operation in step 1), the degrees of check nodes located in different layers are not exactly the same. according to In the hierarchical structure of , only one layer of check nodes is selected to complete node replacement in step 4), thereby ensuring that the code rate loss is reduced while introducing subcodes. The degree of the selected check node is d C (2≤d C ≤ b) in the design plan. If there are multiple layers of check node degree of d C , the middle layer is preferentially selected, so that the subcode participates in the cycle in the Tanner graph of the basic code. to maximize the number of errors in the ring.
3)根据EXIT函数选取最优子码;具体步骤如下:3) Select the optimal subcode according to the EXIT function; the specific steps are as follows:
3-1)确定待选子码集合Ω。3-1) Determine the set of subcodes to be selected Ω.
所有的合法子码组成待选子码集合。合法子码首先需满足单奇偶校验约束条件,即系统形式的生成矩阵中有一列值全为“1”。除已知的一阶RM码和BCH码外,所有的Simplex码也满足上述约束条件。在GF(2)上,(2r-1,r)的Simplex码是(2r-1,2r-r-1)汉明码的对偶码。由对偶码的特性知,Simplex码的生成矩阵就是相应对偶汉明码的校验矩阵。(2r-1,2r-r-1)系统汉明码的校验矩阵ΗHam由所有不全为0的r维列向量构成,那么ΗHam中必然包含1列全1列。因此根据对偶特性,所有Simplex码的生成矩阵都含有全1列,也就是说所有Simplex码都符合单奇偶校验约束。合法子码其次需满足信息序列长为dC-1。将满足上述条件的合法子码作为待选子码纳入待选子码集合Ω。All legal subcodes form a set of candidate subcodes. The legal subcode must first satisfy the single parity check constraint, that is, there is a column of values in the generator matrix in the systematic form that are all "1". Except for the known first-order RM codes and BCH codes, all Simplex codes also satisfy the above constraints. On GF(2), the Simplex code of ( 2r -1,r) is the dual code of the ( 2r -1,2r- r -1) Hamming code. From the characteristics of the dual code, the generator matrix of the Simplex code is the parity check matrix of the corresponding dual Hamming code. The check matrix H Ham of the (2 r -1, 2 r -r-1) system Hamming code is composed of all r-dimensional column vectors that are not all 0, so H Ham must contain 1 column and all 1 column. Therefore, according to the duality property, the generator matrix of all Simplex codes contains all 1 columns, that is to say, all Simplex codes conform to the single-parity check constraint. Second, the legal subcode must satisfy the information sequence length of d C -1. The legal subcodes that meet the above conditions are included as candidate subcodes into the candidate subcode set Ω.
3-2)固定步骤1)构造的基础LDPC码,根据EXIT函数计算Ω中每个待选子码与基础LDPC码组合的译码阈值。3-2) Fix the basic LDPC code constructed in step 1), and calculate the decoding threshold of each candidate subcode in Ω combined with the basic LDPC code according to the EXIT function.
变量节点的EXIT函数可以表示为:The EXIT function of a variable node can be expressed as:
式中,IE,VND表示变量节点输出的外信息,IA,V表示输入变量节点的平均先验互信息,λi表示与度数为dvi的变量节点相连的边所占的比例,IE,REP表示复杂干扰信道下变量节点EXIT函数,Eb/N0表示信噪比。In the formula, I E, VND represent the external information output by the variable node, I A, V represent the average prior mutual information of the input variable node, λ i represents the proportion of the edge connected to the variable node of degree dvi , I E, REP represents the variable node EXIT function under complex interference channel, and E b /N 0 represents the signal-to-noise ratio.
校验节点的EXIT函数由单奇偶校验码约束的校验节点EXIT函数和子码约束的校验节点EXIT函数两部分组成,可以表示为:The EXIT function of the check node consists of two parts: the check node EXIT function constrained by the single parity check code and the check node EXIT function constrained by the subcode, which can be expressed as:
式中,IE,CND表示校验节点输出的外信息,IA,C表示输入校验节点的平均先验信息,ρi表示与度数为dci的单奇偶校验码约束的校验节点相连的边所占的比例,IE,SPC表示复杂干扰信道下单奇偶校验码约束的校验节点EXIT函数,ρC表示与子码约束的校验节点相连的边所占的比例,IE,Cmpt表示复杂干扰信道下子码约束的校验节点EXIT函数。In the formula, I E, CND represent the external information output by the check node, I A, C represent the average prior information of the input check node, ρ i represents the check node constrained by the single parity check code with degree dc i The proportion of connected edges, I E, SPC represents the check node EXIT function constrained by a single parity check code in a complex interference channel, ρ C represents the proportion of edges connected to the check node constrained by the subcode, I E, Cmpt represents the check node EXIT function constrained by subcodes under complex interference channels.
3-3)根据步骤3-2)的结果,将Ω中译码阈值最低的待选子码确定为最优子码,设最优子码的码长为nC比特。3-3) According to the result of step 3-2), determine the sub-code to be selected with the lowest decoding threshold in Ω as the optimal sub-code, and set the code length of the optimal sub-code to be n C bits.
4)将基础LDPC码中根据步骤2)选定的一层校验节点替换为根据步骤3)选定的最优子码约束的校验节点,混合校验LDPC码构造完毕。4) Replace the one-layer check node selected according to step 2) in the basic LDPC code with the check node constrained by the optimal subcode selected according to step 3), and the hybrid check LDPC code is constructed.
具体替换过程可通过混合校验LDPC码的双向Tanner图结构表现。混合校验LDPC码的双向Tanner图如图2所示,图中有变量节点和校验节点两类节点:The specific replacement process can be represented by the bidirectional Tanner graph structure of the hybrid check LDPC code. The bidirectional Tanner graph of the hybrid check LDPC code is shown in Figure 2. There are two types of nodes: variable nodes and check nodes:
混合校验LDPC码的变量节点与基础LDPC码变量节点相同,变量节点个数为(b-a)·p,所有的变量节点与基础LDPC码编码序列一一对应。The variable nodes of the hybrid check LDPC code are the same as the variable nodes of the basic LDPC code, the number of variable nodes is (b-a)·p, and all the variable nodes correspond to the basic LDPC code encoding sequence one-to-one.
混合校验LDPC码的校验节点与基础LDPC码不同,除包含(a-1)·p个单奇偶校验码约束的校验节点外,还包含p个子码约束的校验节点。p个子码约束的校验节点由根据步骤3)选定的码长为nC比特、信息序列长为dC-1比特的最优子码对基础LDPC码中根据步骤2)选定的一层度数为dC的校验节点替换得到。替换后,校验节点在满足子码约束的同时暗含基础LDPC码中已有的单奇偶校验码约束。子码约束是指,与每个子码约束的校验节点相连的变量节点对应的基础LDPC码编码序列有dC比特,选取前dC-1比特作为子码信息序列进行子码编码,生成长度为nC-dC+1比特的校验序列。单奇偶校验码约束是指,子码生成矩阵中全1列位置对应的校验比特与dC-1位的信息序列满足已有的基础LDPC码单奇偶校验等式,因此该校验比特不在通信信道传输。若有pC比特打孔,则子码编码后校验序列剩余nC-dC-pC比特在通信信道传输,组成nC-dC-pC个度数为1的子码变量节点。混合校验LDPC码中所有单奇偶校验码约束的校验节点只参与奇偶校验,无直接对应的编码序列;每个子码约束的校验节点与长为nC-dC-pC比特的子码编码序列相对应。The check node of the hybrid check LDPC code is different from the basic LDPC code. In addition to the check nodes constrained by (a-1)·p single parity check codes, it also includes check nodes constrained by p subcodes. The check node constrained by the p subcodes is composed of the optimal subcode with a code length of n C bits and an information sequence length of d C -1 bits selected according to step 3) and a selected one of the basic LDPC codes according to step 2). It is obtained by replacing the check node with the layer degree d C. After replacement, the check node implies the existing single parity check code constraint in the basic LDPC code while satisfying the subcode constraint. The sub-code constraint means that the basic LDPC code encoding sequence corresponding to the variable node connected to the check node of each sub-code constraint has d C bits, and the first d C -1 bits are selected as the sub-code information sequence for sub-code encoding to generate a length of It is a check sequence of n C -d C +1 bits. The single-parity check code constraint means that the check bits corresponding to all 1-column positions in the subcode generation matrix and the information sequence of d C -1 bits satisfy the existing basic LDPC code single-parity check equation, so this check Bits are not transmitted over the communication channel. If p C bits are punctured, the remaining n C -d C -p C bits of the check sequence after subcode encoding are transmitted in the communication channel, forming n C -d C -p C subcode variable nodes with
至此,混合校验LDPC码构造完毕。由(a,b,p)基础LDPC码和(nC,dC-1)子码构造得到的混合校验LDPC码信息序列长为(b-a)·p比特,设每个子码校验序列中有pC比特打孔,则码长为(b+nC-dC-pC)·p比特。那么,混合校验LDPC码的码率可以表示为:So far, the construction of the hybrid check LDPC code is completed. The length of the information sequence of the hybrid check LDPC code constructed from the (a, b, p) basic LDPC code and the (n C , d C -1) subcode is (ba)·p bits. If p C bits are punctured, the code length is (b+n C -d C -p C )·p bits. Then, the code rate of the hybrid check LDPC code can be expressed as:
实施例Example
作为复杂干扰信道的一个例子,本发明实施例考虑周期性遮挡信道下的传输应用,其信道模型如图3所示。该模型中,通信信号呈矩形窗衰减:在一个遮挡周期内,信号在无遮挡期间只受加性高斯白噪声干扰,相对幅度为0;信号在有遮挡期间呈大幅衰减,衰减幅度和遮挡比例视具体应用场景而定。该模型可用于直升机卫星通信以及多旋翼无人机通信等实际通信场景的信道建模。As an example of a complex interference channel, the embodiment of the present invention considers a transmission application under a periodic occlusion channel, and the channel model is shown in FIG. 3 . In this model, the communication signal is attenuated by a rectangular window: in a blocking period, the signal is only interfered by additive white Gaussian noise during the unblocked period, and the relative amplitude is 0; the signal is greatly attenuated during the blocking period, and the attenuation amplitude and blocking ratio are It depends on the specific application scenario. This model can be used for channel modeling in practical communication scenarios such as helicopter satellite communication and multi-rotor UAV communication.
构造准循环LDPC码,参数p=61,a=3,b=5,α=13,β=9,则准循环LDPC信息序列长为122比特,码长为305比特。设目标围长g=14,对准循环LDPC码去除短环(环长小于等于12的环)后,得到的基础LDPC码校验矩阵如下所示:A quasi-cyclic LDPC code is constructed, with parameters p=61, a=3, b=5, α=13, β=9, then the quasi-cyclic LDPC information sequence length is 122 bits, and the code length is 305 bits. Set the target girth g=14, and align the cyclic LDPC code to remove short loops (loops with a loop length less than or equal to 12), the obtained basic LDPC code check matrix is as follows:
选定基础LDPC码校验矩阵的中间层进行扩展,选定的单奇偶校验节点度数为5。子码从一阶RM码、BCH码和Simplex码中进行优化选取。根据EXIT图的优化结果,若采用一阶RM码或BCH码进行扩展,译码收敛门限为2.101dB,若采用Simplex码进行扩展,译码收敛门限为1.995dB。因此,对于(122,305)基础LDPC码,Simplex码是最优子码。每个子码约束的校验节点在通信信道上传输2个校验比特,可构造得到信息序列长为122比特、码长为427比特、码率为2/7的混合校验LDPC码。The middle layer of the basic LDPC code check matrix is selected for expansion, and the selected single parity check node has a degree of 5. The subcodes are optimally selected from first-order RM codes, BCH codes and Simplex codes. According to the optimization result of EXIT diagram, if first-order RM code or BCH code is used for extension, the decoding convergence threshold is 2.101dB, and if Simplex code is used for extension, the decoding convergence threshold is 1.995dB. Therefore, for the (122, 305) basic LDPC code, the Simplex code is the optimal subcode. The check node constrained by each subcode transmits 2 check bits on the communication channel, and a hybrid check LDPC code with an information sequence length of 122 bits, a code length of 427 bits and a code rate of 2/7 can be constructed.
图4给出了设计的(122,427)混合校验LDPC码在周期性遮挡信道中的译码性能,并与(142,497)准循环LDPC码和(200,900)准循环LDPC码的译码性能进行了对比。图4表明,在信道遮挡比例为10%和25%的情况下,误帧率为10-4时,混合校验LDPC码的译码性能均优于同码率的准循环LDPC码1.2dB。图4还表明,码率为2/7的混合校验LDPC码译码性能优于码率为2/9的(200,900)准循环LDPC码,从工程应用角度上,在周期性遮挡信道上采用混合校验LDPC码,比采用准循环LDPC码带宽效率提升28.6%。Figure 4 shows the decoding performance of the designed (122, 427) hybrid-check LDPC code in a periodically occluded channel, and compares it with the (142, 497) quasi-cyclic LDPC code and the (200, 900) quasi-cyclic LDPC code. The decoding performance was compared. Figure 4 shows that when the channel occlusion ratio is 10% and 25%, and the frame error rate is 10-4 , the decoding performance of the hybrid-check LDPC code is better than that of the quasi-cyclic LDPC code with the same code rate by 1.2dB. Figure 4 also shows that the decoding performance of the hybrid check LDPC code with a code rate of 2/7 is better than that of the (200, 900) quasi-cyclic LDPC code with a code rate of 2/9. The hybrid check LDPC code is used in the above, and the bandwidth efficiency is improved by 28.6% compared with the use of the quasi-cyclic LDPC code.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810440838.0A CN108599775B (en) | 2018-05-10 | 2018-05-10 | Construction method of hybrid check LDPC code |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810440838.0A CN108599775B (en) | 2018-05-10 | 2018-05-10 | Construction method of hybrid check LDPC code |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108599775A CN108599775A (en) | 2018-09-28 |
CN108599775B true CN108599775B (en) | 2020-09-01 |
Family
ID=63636292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810440838.0A Active CN108599775B (en) | 2018-05-10 | 2018-05-10 | Construction method of hybrid check LDPC code |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108599775B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112448724B (en) * | 2019-08-29 | 2023-07-07 | 华为技术有限公司 | Data coding method and device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1691522A (en) * | 2004-04-05 | 2005-11-02 | 美国博通公司 | Method and device of ldpc (low density parity check) code signal and checkout decode using parallel and simultaneous |
CN107251439A (en) * | 2015-02-11 | 2017-10-13 | 三菱电机株式会社 | Method and AMC controllers for adaptive modulation and coding AMC |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI415396B (en) * | 2009-11-23 | 2013-11-11 | Nat Univ Tsing Hua | Decoder and decoding method for low-density parity check codes constructed based on reed-solomon codes |
-
2018
- 2018-05-10 CN CN201810440838.0A patent/CN108599775B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1691522A (en) * | 2004-04-05 | 2005-11-02 | 美国博通公司 | Method and device of ldpc (low density parity check) code signal and checkout decode using parallel and simultaneous |
CN107251439A (en) * | 2015-02-11 | 2017-10-13 | 三菱电机株式会社 | Method and AMC controllers for adaptive modulation and coding AMC |
Non-Patent Citations (2)
Title |
---|
Design of Check-Hybrid LDPC Codes for Data Communications over Helicopter-Satellite Channels;Ping Wang等;《2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)》;20170927;1-5 * |
可快速编码的大围长 QC - LDPC 码构造方法;彭海英等;《计算机工程》;20180131;第44卷(第1期);128-133 * |
Also Published As
Publication number | Publication date |
---|---|
CN108599775A (en) | 2018-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11057049B2 (en) | Generalized low-density parity check codes in digital communication system | |
US8196012B2 (en) | Method and system for encoding and decoding low-density-parity-check (LDPC) codes | |
EP1460766A1 (en) | Ldpc code inspection matrix generation method | |
CN109891753A (en) | Method and apparatus for encoding and decoding LDPC code | |
CN107919874B (en) | Syndrome calculation basic check node processing unit, method and computer program thereof | |
WO2017194013A1 (en) | Error correction coding method and device | |
CN102843145A (en) | Construction method of low bit-rate quasi-cyclic accumulative repeat accumulate codes | |
CN107888331A (en) | Data transmission method for uplink, device and information source | |
WO2021063217A1 (en) | Decoding method and apparatus | |
CN113810062B (en) | GEL coding method and device facing next generation Ethernet | |
CN107528596B (en) | Fibonacci-Lucas sequence-based Type-II QC-L DPC code construction method | |
CN110233628B (en) | Adaptive Belief Propagation List Decoding Method for Polar Codes | |
Trofimiuk et al. | Fast block sequential decoding of polar codes | |
CN106656210B (en) | type-II QC-LDPC code construction method capable of rapidly coding based on complete cycle difference set | |
CN108599775B (en) | Construction method of hybrid check LDPC code | |
CN106656211A (en) | Method for constructing irregular Type-II QC-LDPC code based on Hoey sequence | |
CN118093257B (en) | Cascade coding method, device, system and medium | |
CN108206722B (en) | High-bit-rate data sending method and device | |
CN111034055A (en) | Simplified check node processing in non-binary LDPC decoders | |
EP3829088B1 (en) | Decoder, decoding method, and computer storage medium | |
CN108768408B (en) | Large girth II type quasi-cyclic LDPC code design method based on Sidon sequence | |
Jiang et al. | Toward lower repair bandwidth of piggybacking codes via jointly design for both data and parity nodes | |
CN102723956B (en) | Method for generating low density parity check (LDPC) code | |
CN113193874B (en) | Encoding method, device, electronic equipment and storage medium of LDPC code | |
CN115694516A (en) | Quick continuous offset decoding method and device for special node of polarization code |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |