CN108573816B - Organic electrolyte for super capacitor and super capacitor - Google Patents
Organic electrolyte for super capacitor and super capacitor Download PDFInfo
- Publication number
- CN108573816B CN108573816B CN201710150772.7A CN201710150772A CN108573816B CN 108573816 B CN108573816 B CN 108573816B CN 201710150772 A CN201710150772 A CN 201710150772A CN 108573816 B CN108573816 B CN 108573816B
- Authority
- CN
- China
- Prior art keywords
- organic electrolyte
- supercapacitor
- structural formula
- electrolyte
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/60—Liquid electrolytes characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
技术领域technical field
本发明属于电化学领域,尤其涉及一种用于超级电容器的有机电解液及超级电容器。The invention belongs to the field of electrochemistry, and in particular relates to an organic electrolyte for supercapacitors and a supercapacitor.
背景技术Background technique
超级电容器,也叫金电容、电化学电容器,其通过离子吸附(双电层电容器)或者表面快速氧化还原反应(赝电容器)来存储能量。超级电容器是一种介于电池与传统静电电容器之间的新型储能器件。超级电容器存储的电荷是传统固态电解电容的成百甚至上千倍,能在数秒内完全充放电,具有比电池更高的功率输入或输出,且能在更短的时间内达到。同时,超级电容器具有充放电时间短、储存寿命长、稳定性高、工作温度范围宽(-40℃~70℃)等优点,因而广泛应用于消费类电子产品领域、新能源发电系统领域、分布式储能系统领域、智能分布式电网系统、新能源汽车等交通、节能电梯吊车等负载、电磁炸弹等军用设备和运动控制等领域,涉及新能源发电、智能电网、新能源汽车、节能建筑、工业节能减排等各个行业,属于标准的全系列低碳经济核心产品。Supercapacitors, also known as gold capacitors, electrochemical capacitors, store energy through ion adsorption (electric double-layer capacitors) or surface fast redox reactions (pseudocapacitors). Supercapacitors are a new type of energy storage device between batteries and traditional electrostatic capacitors. Supercapacitors can store hundreds or even thousands of times the charge of traditional solid-state electrolytic capacitors, can be fully charged and discharged in seconds, have higher power input or output than batteries, and can be achieved in less time. At the same time, supercapacitors have the advantages of short charging and discharging time, long storage life, high stability, and wide operating temperature range (-40 °C ~ 70 °C), so they are widely used in the field of consumer electronics, new energy power generation systems, distribution energy storage systems, intelligent distributed grid systems, transportation such as new energy vehicles, loads such as energy-saving elevator cranes, military equipment such as electromagnetic bombs, and motion control, involving new energy power generation, smart grids, new energy vehicles, energy-saving buildings, Industrial energy conservation and emission reduction and other industries belong to the standard full range of low-carbon economy core products.
超级电容器作为新能源领域中最具有前景的储能装置之一,目前已成为美国、日本、韩国和俄罗斯等国家在材料、电力、物理、化学等多学科交叉领域研究的热点之一。主要研究方向是制备性能优良、低成本的电极材料,和电导率高、化学和热稳定性好、工作电压高(电化学稳定窗口宽)的电解液体系材料,并在此基础上制备高能量密度、高功率密度和使用寿命长的可用于各种电动混合汽车混合动力系统和电子设备的后备电源等方面的超级电容器储能器件。As one of the most promising energy storage devices in the field of new energy, supercapacitors have become one of the research hotspots in the United States, Japan, South Korea, and Russia in the fields of materials, electricity, physics, and chemistry. The main research direction is to prepare electrode materials with excellent performance and low cost, and electrolyte system materials with high electrical conductivity, good chemical and thermal stability, and high working voltage (wide electrochemical stability window), and on this basis, prepare high-energy Supercapacitor energy storage devices with high density, high power density and long service life, which can be used in various electric hybrid vehicle hybrid power systems and backup power supply of electronic equipment.
由于碳酸丙烯酯(PC)和乙腈(AN)具有较好的电化学和化学稳定性以及对有机季铵盐类较好的溶解性,被广泛应用于超级电容器的电解液体系中。目前商业化的超级电容器电解液主要采用四乙基四氟硼酸铵(Et4NBF4)或甲基三乙基四氟硼酸铵(Et3MeNBF4)的AN或PC的溶液。AN体系超级电容器的电压上限仅为2.7V;PC体系超级电容器的电压上限仅为2.5V。随着超容市场的发展,为了安全起见和增加市场竞争能力,目前的常规电解液体系已经不能满足客户对超级电容器的耐高温、耐高压性能的要求。常规电解液在高电压、高温下工作会引起电解液的电化学分解,导致电容器内压力显著增大,电化学性能明显降低,最终导致电容器失效。Because propylene carbonate (PC) and acetonitrile (AN) have good electrochemical and chemical stability and good solubility for organic quaternary ammonium salts, they are widely used in the electrolyte system of supercapacitors. The current commercialized supercapacitor electrolytes mainly use solutions of tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) or methyltriethylammonium tetrafluoroborate (Et 3 MeNBF 4 ) in AN or PC. The upper limit of the voltage of the AN system supercapacitor is only 2.7V; the upper limit of the voltage of the PC system supercapacitor is only 2.5V. With the development of the supercapacitor market, for the sake of safety and to increase market competitiveness, the current conventional electrolyte system can no longer meet customers' requirements for high temperature and high pressure resistance of supercapacitors. Working under high voltage and high temperature of conventional electrolyte will cause electrochemical decomposition of the electrolyte, resulting in a significant increase in the pressure inside the capacitor, a significant decrease in the electrochemical performance, and ultimately lead to the failure of the capacitor.
综上所述,为了满足日益发展的使用需求,亟需研究一种电导率高、化学和热稳定性好、工作温度范围宽、工作电压高(电化学稳定窗口宽)的有机电解液,及应用该电解液的超级电容器更要实现耐高电压、宽工作温度范围与长寿命的良好平衡。To sum up, in order to meet the growing demand for use, it is urgent to develop an organic electrolyte with high electrical conductivity, good chemical and thermal stability, wide operating temperature range, high operating voltage (wide electrochemical stability window), and Supercapacitors using this electrolyte should achieve a good balance of high voltage resistance, wide operating temperature range and long life.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种用于超级电容器的有机电解液,旨在解决现有的用于超级电容器的有机电解液工作温度范围窄、充电截止电压低的问题。The purpose of the present invention is to provide an organic electrolyte for supercapacitors, which aims to solve the problems of narrow working temperature range and low charge cut-off voltage of the existing organic electrolytes for supercapacitors.
本发明的另一目的在于提供一种含有上述机电解液的超级电容器。Another object of the present invention is to provide a supercapacitor containing the above-mentioned organic electrolyte.
本发明是这样实现的,一种用于超级电容器的有机电解液,包括极性非质子溶剂和如下结构式1所示的有机电解质,其中,以所述有机电解液的总重量为100%计,所述有机电解液中,铵根离子和/或如下结构式2所示的吡咯烷氨基甲酸甲酯的重量百分含量≤1%,The present invention is achieved by an organic electrolyte for supercapacitors, comprising a polar aprotic solvent and an organic electrolyte represented by the following structural formula 1, wherein, based on the total weight of the organic electrolyte as 100%, In the organic electrolyte, the weight percentage of ammonium ions and/or methyl pyrrolidine carbamate shown in the following structural formula 2 is ≤ 1%,
所述式1中,R1为C1-C3的烷基,A-为阴离子。In the formula 1, R 1 is a C1-C3 alkyl group, and A - is an anion.
进一步优选的,以所述有机电解液的总重量为100%计,所述铵根离子和/或所述吡咯烷氨基甲酸甲酯的重量百分含量之和≤1%。Further preferably, based on the total weight of the organic electrolyte as 100%, the sum of the weight percentages of the ammonium ions and/or the methyl pyrrolidine carbamate is ≤1%.
优选的,所述式1中,A-为四氟硼酸根离子、六氟磷酸根离子、双(三氟甲基磺酰)根离子、双(氟磺酰)根离子、全氟烷基磺酸根中的至少一种。Preferably, in the formula 1, A - is tetrafluoroborate ion, hexafluorophosphate ion, bis(trifluoromethylsulfonyl) ion, bis(fluorosulfonyl) ion, perfluoroalkylsulfonic acid at least one of acid radicals.
优选的,所述极性非质子溶剂为乙腈、碳酸丙烯酯、环丁砜、二甲基砜或二甲基亚砜、γ-丁内酯、丙腈、甲氧基丙腈、γ-戊内酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的至少一种。Preferably, the polar aprotic solvent is acetonitrile, propylene carbonate, sulfolane, dimethyl sulfone or dimethyl sulfoxide, γ-butyrolactone, propionitrile, methoxypropionitrile, γ-valerolactone , at least one of ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.
优选的,所述有机电解液中,所述有机电解质的浓度为0.5-3.0mol/L。Preferably, in the organic electrolyte, the concentration of the organic electrolyte is 0.5-3.0 mol/L.
进一步优选的,所述有机电解液中,所述有机电解质的浓度为0.8-2.0mol/L。Further preferably, in the organic electrolyte, the concentration of the organic electrolyte is 0.8-2.0 mol/L.
以及,一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,其中,所述有机电解液为上述的有机电解液。And, a supercapacitor, comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, wherein the organic electrolyte is the above-mentioned organic electrolyte.
进一步的,所述极性非质子溶剂为乙腈,所述超级电容器的充电截止电压为2.85-3.2V,所述超级电容器的工作温度为-50~65℃。Further, the polar aprotic solvent is acetonitrile, the charging cut-off voltage of the supercapacitor is 2.85-3.2V, and the working temperature of the supercapacitor is -50-65°C.
进一步的,所述极性非质子溶剂为碳酸丙烯酯,所述超级电容器的充电截止电压为2.7-3.0V,所述超级电容器的工作温度为-40~70℃。Further, the polar aprotic solvent is propylene carbonate, the charge cut-off voltage of the supercapacitor is 2.7-3.0V, and the working temperature of the supercapacitor is -40-70°C.
优选的,所述正极和所述负极均为碳材料电极,所述隔膜为纤维布隔膜。Preferably, the positive electrode and the negative electrode are both carbon material electrodes, and the separator is a fiber cloth separator.
本发明提供的用于超级电容器的有机电解液,通过控制来源于所述有机电解质的铵根离子、吡咯烷氨基甲酸甲酯的含量,可以提高有机电解液的电导率和稳定性(包括化学稳定性和热稳定性),减少电容器的自放电,从而使得使用所述有机电解液的超级电容器能在高电压、宽工作温度范围下使用,并具有高的功率密度、能量密度,良好的循环寿命和高低温性能。The organic electrolyte for supercapacitors provided by the present invention can improve the electrical conductivity and stability (including chemical stability) of the organic electrolyte by controlling the content of ammonium ions and methyl pyrrolidine carbamate derived from the organic electrolyte. properties and thermal stability), reducing the self-discharge of the capacitor, so that the supercapacitor using the organic electrolyte can be used under high voltage, wide operating temperature range, and has high power density, energy density, and good cycle life. and high and low temperature performance.
本发明提供的超级电容器,含有上述有机电解液,因此,具有电导率高、化学稳定性和热稳定性好的特点,更重要的是,所述有机电解液的使用,使得所述超级电容器能在高电压、宽工作温度范围下使用,并具有高的功率密度、能量密度,良好的循环寿命和高低温性能。The supercapacitor provided by the present invention contains the above-mentioned organic electrolyte. Therefore, it has the characteristics of high electrical conductivity, good chemical stability and thermal stability. More importantly, the use of the organic electrolyte enables the supercapacitor to It is used under high voltage, wide operating temperature range, and has high power density, energy density, good cycle life and high and low temperature performance.
具体实施方式Detailed ways
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
本发明实施例提供了一种用于超级电容器的有机电解液,包括极性非质子溶剂和如下结构式1所示的有机电解质,其中,以所述有机电解液的总重量为100%计,所述有机电解液中铵根离子和/或如下结构式2所示的吡咯烷氨基甲酸甲酯的重量百分含量≤1%,An embodiment of the present invention provides an organic electrolyte for a supercapacitor, comprising a polar aprotic solvent and an organic electrolyte represented by the following structural formula 1, wherein, based on the total weight of the organic electrolyte as 100%, the The weight percentage of ammonium ion and/or methyl pyrrolidine carbamate shown in the following structural formula 2 in the organic electrolyte is less than or equal to 1%,
所述式1中,R1为C1-C3的烷基,A-为阴离子。In the formula 1, R 1 is a C1-C3 alkyl group, and A - is an anion.
具体的,所述有机电解质中,优选的,所述阴离子A-为四氟硼酸根离子、六氟磷酸根离子、双(三氟甲基磺酰)根离子、双(氟磺酰)根离子、全氟烷基磺酸根中的至少一种。进一步优选的,所述阴离子A-为四氟硼酸根离子、六氟磷酸根离子。Specifically, in the organic electrolyte, preferably, the anion A - is tetrafluoroborate ion, hexafluorophosphate ion, bis(trifluoromethylsulfonyl) ion, bis(fluorosulfonyl) ion , at least one of perfluoroalkyl sulfonate. Further preferably, the anion A - is tetrafluoroborate ion, hexafluorophosphate ion.
正如本申请的申请人已申请的CN104979102号中国发明专利所记载的,采用式1所示的有机电解质的有机电解液能在一定程度上扩大超级电容器的工作温度范围以及延长使用寿命,但是发明人发现通过该方案实现的对性能的提成程度有限。As recorded in the CN104979102 Chinese invention patent filed by the applicant of the present application, the organic electrolyte using the organic electrolyte shown in formula 1 can expand the operating temperature range and prolong the service life of the supercapacitor to a certain extent, but the inventors The performance gains achieved by this scheme were found to be limited.
本发明的发明人进行了大量实验进行分析。上述有机电解液中,所述有机电解质通常通过两个步骤合成,具体的,The inventors of the present invention conducted extensive experiments for analysis. In the above-mentioned organic electrolyte, the organic electrolyte is usually synthesized by two steps, specifically,
S01.如下结构式3所示的吡咯烷或N-取代烷基吡咯烷与碳酸二甲酯(DMC)经甲基化反应合成如下结构式4所示的中间体,反应式如下所示:S01. The pyrrolidine shown in the following structural formula 3 or the N-substituted alkyl pyrrolidine and dimethyl carbonate (DMC) synthesize the intermediate shown in the following structural formula 4 through methylation reaction, and the reaction formula is as follows:
S02.所述中间体与铵盐NH4A反应,得到含有如下结构式1所示的有机电解质的粗品,反应式如下所示:S02. the intermediate is reacted with ammonium salt NH 4 A to obtain a crude product containing the organic electrolyte shown in the following structural formula 1, and the reaction formula is as follows:
具体的,上述步骤S01中,所述式3中,R1为C1-C3的烷基(碳原子数量为1-3的烷基),所述R2为H或C1-C3的烷基(碳原子数量为1-3的烷基)。Specifically, in the above step S01, in the formula 3, R 1 is a C1-C3 alkyl group (an alkyl group with 1-3 carbon atoms), and the R 2 is H or a C1-C3 alkyl group ( Alkyl having 1-3 carbon atoms).
由于所述DMC分子中有两个活性位,即烷基碳原子和羰基碳原子,所述吡咯烷或N-取代烷基吡咯烷与所述碳酸二甲酯反应时,在弱碱性物质存在时,亲核试剂被活化,形成的亲核阴离子可以进攻DMC中两个活性位中的一个,可能产生两种不同的反应途径,且两种途径之间存在竞争。因此,在所述有机电解质的第一步合成过程中,不可避免有副产物吡咯烷氨基甲酸甲酯生成,反应式如下所示:Since there are two active sites in the DMC molecule, namely the alkyl carbon atom and the carbonyl carbon atom, when the pyrrolidine or N-substituted alkyl pyrrolidine reacts with the dimethyl carbonate, in the presence of a weak basic substance When the nucleophile is activated, the formed nucleophilic anion can attack one of the two active sites in DMC, possibly resulting in two different reaction pathways, and there is competition between the two pathways. Therefore, in the first-step synthesis process of the organic electrolyte, the by-product methyl pyrrolidine carbamate is inevitably generated, and the reaction formula is as follows:
本发明发明人经过深入研究发现,当采用上述工艺合成的结构式1所示的有机电解质时,得到的有机电解质中不可避免的存在铵根离子以及如结构式2所示的吡咯烷氨基甲酸甲酯、吡咯烷、N-取代烷基吡咯烷等物质,而通过大量实验对比发现,上述铵根离子以及如结构式2所示的吡咯烷氨基甲酸甲酯对有机电解液的充电截止电压和工作温度范围有明显影响。所述吡咯烷氨基甲酸甲酯、所述铵根离子的含量较高时,有机电解液的充电截止电压低,工作温度范围窄。有鉴于此,本发明发明人通过控制有机电解液中的吡咯烷氨基甲酸甲酯、铵根离子含量,来提高有机电解液及应用该电解液的超级电容器的充电截止电压、扩大其工作温度范围、延长其使用寿命。The inventors of the present invention have found through in-depth research that when the organic electrolyte shown in structural formula 1 is synthesized by the above process, ammonium ions and methyl pyrrolidine carbamate as shown in structural formula 2 are inevitably present in the organic electrolyte obtained. Pyrrolidine, N-substituted alkyl pyrrolidine and other substances, and through a large number of experimental comparisons, it is found that the above-mentioned ammonium ions and the methyl pyrrolidine carbamate shown in structural formula 2 have a charge cut-off voltage and working temperature range of the organic electrolyte. obvious impact. When the content of the methyl pyrrolidine carbamate and the ammonium ion is relatively high, the charge cut-off voltage of the organic electrolyte is low, and the working temperature range is narrow. In view of this, the inventor of the present invention improves the charge cut-off voltage of the organic electrolyte and the supercapacitor applying the electrolyte, and expands its operating temperature range by controlling the content of methyl pyrrolidine carbamate and ammonium ions in the organic electrolyte. , prolong its service life.
具体的,控制有机电解液中的铵根离子和结构式2所示的吡咯烷氨基甲酸甲酯含量的方法为:采用有机溶剂对有机电解质进行重结晶,使有机电解液中吡咯烷氨基甲酸甲酯和/或铵根离子的重量百分含量≤1%。其中,所述有机溶剂包括但不限于甲醇、乙醇、乙腈和/或水。优选的,通过上述方法使有机电解液中吡咯烷氨基甲酸甲酯和/或铵根离子的重量百分含量≤1%,进一步优选为以所述有机电解液的总重量为100%计,所述铵根离子和/或所述吡咯烷氨基甲酸甲酯的重量百分含量≤1%。Specifically, the method for controlling the content of the ammonium ion in the organic electrolyte and the methyl pyrrolidine carbamate shown in structural formula 2 is: using an organic solvent to recrystallize the organic electrolyte, so that the methyl pyrrolidine carbamate in the organic electrolyte is recrystallized. and/or the weight percentage of ammonium ions≤1%. Wherein, the organic solvent includes but is not limited to methanol, ethanol, acetonitrile and/or water. Preferably, the weight percentage content of methyl pyrrolidine carbamate and/or ammonium ions in the organic electrolyte is made to be ≤1% by the above method, more preferably based on the total weight of the organic electrolyte as 100%, so The weight percentage content of the ammonium ion and/or the methyl pyrrolidine carbamate is less than or equal to 1%.
优选的,所述极性非质子溶剂为乙腈、碳酸丙烯酯、环丁砜、二甲基砜或二甲基亚砜、γ-丁内酯、丙腈、甲氧基丙腈、γ-戊内酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的至少一种,更优选为乙腈、碳酸丙烯酯中的一种。当所述极性非质子溶剂为乙腈时,采用该有机电解液制得的超级电容器(AN体系),其充电截止电压可达2.85-3.2V,工作温度范围可至-50~65℃,且能保持长时间稳定工作;当所述极性非质子溶剂为碳酸丙烯酯时,采用该有机电解液制得的超级电容器(PC体系),其充电截止电压可达2.7-3.0V,工作温度范围可至-40~70℃,且能保持长时间稳定工作。Preferably, the polar aprotic solvent is acetonitrile, propylene carbonate, sulfolane, dimethyl sulfone or dimethyl sulfoxide, γ-butyrolactone, propionitrile, methoxypropionitrile, γ-valerolactone , at least one of ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, more preferably one of acetonitrile and propylene carbonate. When the polar aprotic solvent is acetonitrile, the supercapacitor (AN system) prepared by using the organic electrolyte has a charging cut-off voltage of 2.85-3.2V, an operating temperature range of -50-65°C, and It can maintain stable operation for a long time; when the polar aprotic solvent is propylene carbonate, the supercapacitor (PC system) prepared by using this organic electrolyte has a charging cut-off voltage of up to 2.7-3.0V and a working temperature range. It can reach -40~70℃, and can maintain stable work for a long time.
优选的,所述有机电解液中,所述有机电解质的浓度为0.5-3.0mol/L。若所述有机电解质的浓度过高,则会降低其低温使用性能,甚至在低温条件下凝固而失去使用性能。进一步优选的,所述有机电解液中,所述有机电解质的浓度为0.8-2.0mol/L。Preferably, in the organic electrolyte, the concentration of the organic electrolyte is 0.5-3.0 mol/L. If the concentration of the organic electrolyte is too high, its low-temperature performance will be reduced, or even solidified under low-temperature conditions to lose its performance. Further preferably, in the organic electrolyte, the concentration of the organic electrolyte is 0.8-2.0 mol/L.
本发明实施例提供的用于超级电容器的有机电解液,通过控制来源于所述有机电解质的铵根离子、吡咯烷氨基甲酸甲酯的含量,可以提高有机电解液的电导率和稳定性(包括化学稳定性和热稳定性),减少电容器的自放电,从而使得使用所述有机电解液的超级电容器具有高的充电截止电压,工作温度范围宽,并具有高的功率密度、能量密度,良好的循环寿命和高低温性能。The organic electrolyte for supercapacitors provided by the embodiments of the present invention can improve the conductivity and stability of the organic electrolyte by controlling the content of ammonium ions and methyl pyrrolidine carbamate derived from the organic electrolyte (including chemical stability and thermal stability), reducing the self-discharge of the capacitor, so that the supercapacitor using the organic electrolyte has a high charge cut-off voltage, a wide operating temperature range, and high power density, energy density, good Cycle life and high and low temperature performance.
以及,本发明实施例还提供了一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,其中,所述有机电解液为上述的有机电解液。And, an embodiment of the present invention also provides a supercapacitor, comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, wherein the organic electrolyte is the above-mentioned organic electrolyte liquid.
本发明实施例中,所述有机电解液为上文所述的有机电解液。具体的,所述有机电解液,包括极性非质子溶剂和如下结构式1所示的有机电解质,其中,以所述有机电解液的总重量为100%计,所述铵根离子和/或所述吡咯烷氨基甲酸甲酯的重量百分含量≤1%,In the embodiment of the present invention, the organic electrolyte is the above-mentioned organic electrolyte. Specifically, the organic electrolyte includes a polar aprotic solvent and an organic electrolyte represented by the following structural formula 1, wherein, based on the total weight of the organic electrolyte as 100%, the ammonium ions and/or all The weight percentage of the methyl pyrrolidine carbamate is less than or equal to 1%,
所述式1中,R1为C1-C3的烷基,A-为阴离子。In the formula 1, R 1 is a C1-C3 alkyl group, and A - is an anion.
具体的,所述有机电解质中,优选的,所述阴离子A-为四氟硼酸根离子、六氟磷酸根离子、双(三氟甲基磺酰)根离子、双(氟磺酰)根离子、全氟烷基磺酸根中的至少一种。进一步优选的,所述阴离子A-为四氟硼酸根离子、六氟磷酸根离子。Specifically, in the organic electrolyte, preferably, the anion A - is tetrafluoroborate ion, hexafluorophosphate ion, bis(trifluoromethylsulfonyl) ion, bis(fluorosulfonyl) ion , at least one of perfluoroalkyl sulfonate. Further preferably, the anion A - is tetrafluoroborate ion, hexafluorophosphate ion.
进一步优选的,以所述有机电解液的总重量为100%计,所述铵根离子和/或所述吡咯烷氨基甲酸甲酯的重量百分含量之和≤1%。Further preferably, based on the total weight of the organic electrolyte as 100%, the sum of the weight percentages of the ammonium ions and/or the methyl pyrrolidine carbamate is ≤1%.
优选的,所述极性非质子溶剂为乙腈、碳酸丙烯酯、环丁砜、二甲基砜或二甲基亚砜、γ-丁内酯、丙腈、甲氧基丙腈、γ-戊内酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的至少一种,更优选为乙腈、碳酸丙烯酯中的一种。当所述极性非质子溶剂为乙腈时,采用该有机电解液制得的超级电容器(AN体系),其充电截止电压可达2.85-3.2V,工作温度范围可至-50~65℃,且能保持长时间稳定工作;当所述极性非质子溶剂为碳酸丙烯酯时,采用该有机电解液制得的超级电容器(PC体系),其充电截止电压可达2.7-3.0V,工作温度范围可至-40~70℃,且能保持长时间稳定工作。Preferably, the polar aprotic solvent is acetonitrile, propylene carbonate, sulfolane, dimethyl sulfone or dimethyl sulfoxide, γ-butyrolactone, propionitrile, methoxypropionitrile, γ-valerolactone , at least one of ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, more preferably one of acetonitrile and propylene carbonate. When the polar aprotic solvent is acetonitrile, the supercapacitor (AN system) prepared by using the organic electrolyte has a charging cut-off voltage of 2.85-3.2V, an operating temperature range of -50-65°C, and It can maintain stable operation for a long time; when the polar aprotic solvent is propylene carbonate, the supercapacitor (PC system) prepared by using this organic electrolyte has a charging cut-off voltage of up to 2.7-3.0V and a working temperature range. It can reach -40~70℃, and can maintain stable work for a long time.
优选的,所述有机电解液中,所述有机电解质的浓度为0.5-3.0mol/L。进一步优选的,所述有机电解液中,所述有机电解质的浓度为0.8-2.0mol/L。Preferably, in the organic electrolyte, the concentration of the organic electrolyte is 0.5-3.0 mol/L. Further preferably, in the organic electrolyte, the concentration of the organic electrolyte is 0.8-2.0 mol/L.
本发明实施例中,所述正极、负极、设置在所述正极和所述负极之间的隔膜可采用超级电容器常规的正极、负极、隔膜。优选的,所述正极和所述负极均为碳材料电极,所述隔膜为纤维布隔膜。In the embodiment of the present invention, the positive electrode, the negative electrode, and the separator disposed between the positive electrode and the negative electrode can adopt the conventional positive electrode, negative electrode, and separator of a supercapacitor. Preferably, the positive electrode and the negative electrode are both carbon material electrodes, and the separator is a fiber cloth separator.
本发明实施例提供的超级电容器,含有上述有机电解液,因此,具有电导率高、化学稳定性和热稳定性好的特点,更重要的是,所述有机电解液的使用,使得所述超级电容器能在高电压、宽工作温度范围下使用,并具有高的功率密度、能量密度,良好的循环寿命和高低温性能。The supercapacitor provided by the embodiment of the present invention contains the above-mentioned organic electrolyte, therefore, has the characteristics of high electrical conductivity, good chemical stability and thermal stability, and more importantly, the use of the organic electrolyte makes the supercapacitor Capacitors can be used in high voltage, wide operating temperature range, and have high power density, energy density, good cycle life and high and low temperature performance.
下面,结合具体实施例进行说明。In the following, description will be given with reference to specific embodiments.
实施例1Example 1
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例1所示。A supercapacitor, comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising an aprotic organic solvent, an organic electrolyte (solute), and an organic electrolyte derived from the Ammonium ions and methyl pyrrolidine carbamate in organic electrolytes. The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 1 of Table 1.
其中,所述有机电解质的制备方法如下:Wherein, the preparation method of the organic electrolyte is as follows:
S11.将35.6g吡咯烷(0.5mol)、100g甲醇、90g碳酸二甲酯(1.0mol)置于1L高压反应釜中,100℃加热反应8h,得中间体反应液200g,其中,如下结构式5所示中间体化合物含量为24.35%(wt),副产物吡咯烷氨基甲酸甲酯的含量为16.07%(wt)。S11. Place 35.6g of pyrrolidine (0.5mol), 100g of methanol, and 90g of dimethyl carbonate (1.0mol) in a 1L autoclave, and heat and react at 100° C. for 8h to obtain 200g of an intermediate reaction solution, wherein the following structural formula 5 The indicated intermediate compound content was 24.35% (wt), and the by-product methyl pyrrolidine carbamate content was 16.07% (wt).
S12.将200g中间体反应液、35g氟硼酸铵(0.33mol)加热回流反应3h,60℃减压旋蒸除去甲醇和碳酸二甲酯,得N,N-二甲基吡咯烷四氟硼酸铵粗品固体90.9g,其中,N,N-二甲基吡咯烷四氟硼酸铵含量为57.26%(wt),吡咯烷氨基甲酸甲酯的含量为35.08%(wt),铵根离子的含量为1.19%(wt)。S12. 200 g of the intermediate reaction solution and 35 g of ammonium fluoroborate (0.33 mol) were heated to reflux for reaction for 3 h, and the methanol and dimethyl carbonate were removed by rotary evaporation under reduced pressure at 60° C. to obtain N,N-dimethylpyrrolidine ammonium tetrafluoroborate Crude product solid 90.9g, wherein, the content of N,N-dimethylpyrrolidine ammonium tetrafluoroborate is 57.26% (wt), the content of methyl pyrrolidine carbamate is 35.08% (wt), and the content of ammonium ion is 1.19% % (wt).
S13.将90g N,N-二甲基吡咯烷四氟硼酸铵粗品固体、60g甲醇于60℃加热搅拌2h,趁热过滤去除不溶物;滤液中加入100g异丙醇,室温下搅拌1h,过滤收集晶体;晶体按上述投料比例和操作步骤再重结晶二次,得到高纯的N,N-二甲基吡咯烷四氟硼酸铵40.5g,其中铵根离子含量为3.26ppm,未检出吡咯烷氨基甲酸甲酯。S13. Heat and stir 90 g of N,N-dimethylpyrrolidine ammonium tetrafluoroborate crude solid and 60 g of methanol at 60°C for 2 h, filter while hot to remove insoluble matter; add 100 g of isopropanol to the filtrate, stir at room temperature for 1 h, and filter The crystals were collected; the crystals were recrystallized twice according to the above-mentioned charging ratio and operation steps to obtain 40.5g of high-purity N,N-dimethylpyrrolidine ammonium tetrafluoroborate, wherein the ammonium ion content was 3.26ppm, and no pyrrole was detected. Methyl alkyl carbamate.
实施例2Example 2
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例2所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific types and contents of each component are shown in Example 2 of Table 1.
实施例3Example 3
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例3所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 3 in Table 1.
实施例4Example 4
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例4所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 4 in Table 1.
实施例5Example 5
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例5所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 5 in Table 1.
实施例6Example 6
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例6所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 6 in Table 1.
实施例7Example 7
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例7所示。A supercapacitor includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte including a polar aprotic organic solvent and an organic electrolyte (solute). The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 7 in Table 1.
实施例8Example 8
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例8所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 8 in Table 1.
实施例9Example 9
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例9所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 9 in Table 1.
实施例10Example 10
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例10所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 10 in Table 1.
实施例11Example 11
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)。所述有机电解液的浓度、各组分的具体类型及含量,如表1实施例11所示。A supercapacitor includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte including a polar aprotic organic solvent and an organic electrolyte (solute). The concentration of the organic electrolyte, the specific type and content of each component are shown in Example 11 in Table 1.
对比例1Comparative Example 1
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1对比例1所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Comparative Example 1 in Table 1.
对比例2Comparative Example 2
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1对比例2所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Comparative Example 2 in Table 1.
对比例3Comparative Example 3
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1对比例3所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Comparative Example 3 in Table 1.
对比例4Comparative Example 4
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)。所述有机电解液的浓度、各组分的具体类型及含量,如表1对比例4所示。A supercapacitor includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte including a polar aprotic organic solvent and an organic electrolyte (solute). The concentration of the organic electrolyte, the specific type and content of each component are shown in Comparative Example 4 in Table 1.
对比例5Comparative Example 5
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度为、各组分的具体类型及含量,如表1对比例5所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component, are shown in Comparative Example 5 in Table 1.
对比例6Comparative Example 6
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)、来源于所述有机电解质中的铵根离子和吡咯烷氨基甲酸甲酯。所述有机电解液的浓度、各组分的具体类型及含量,如表1对比例6所示。A supercapacitor comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte comprising a polar aprotic organic solvent, an organic electrolyte (solute), a Ammonium ions and methyl pyrrolidine carbamate in the organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Comparative Example 6 in Table 1.
对比例7Comparative Example 7
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液包括极性非质子有机溶剂、有机电解质(溶质)。所述有机电解液的浓度、各组分的具体类型及含量,如表1对比例7所示。A supercapacitor includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte including a polar aprotic organic solvent and an organic electrolyte (solute). The concentration of the organic electrolyte, the specific type and content of each component are shown in Comparative Example 7 in Table 1.
对比例8Comparative Example 8
一种超级电容器,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及有机电解液,所述有机电解液以含有铵根离子、吡咯烷氨基甲酸甲酯的N,N-二甲基吡咯烷铵盐为溶质,采用非质子有机溶剂,配制有机电解液。所述有机电解液的浓度、各组分的具体类型及含量,如表1对比例8所示。A supercapacitor, comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an organic electrolyte, the organic electrolyte is N,N containing ammonium ion, methyl pyrrolidine carbamate - Dimethylpyrrolidine ammonium salt is used as a solute, and an aprotic organic solvent is used to prepare an organic electrolyte. The concentration of the organic electrolyte, the specific type and content of each component are shown in Comparative Example 8 in Table 1.
表1Table 1
本发明实施例1-11、对比例1-8的超级电容器,均为手套箱中组立形成超级电容器模型。其中,电芯包括铝箔制作的两集电极、由活性炭制作的两工作电极和在其间插入的纤维布隔膜,但并不局限于此种结构。将电芯浸入以下对比例和实施例中的电解液中,采用铝壳和胶粒组立封口。The supercapacitors of Examples 1-11 and Comparative Examples 1-8 of the present invention are all assembled in a glove box to form a supercapacitor model. Wherein, the cell includes two collector electrodes made of aluminum foil, two working electrodes made of activated carbon, and a fiber cloth separator inserted therebetween, but it is not limited to this structure. Immerse the cell in the electrolyte in the following comparative examples and examples, and use an aluminum shell and colloidal particles to form a seal.
将实施例1-11、对比例1-8的超级电容器进行电化学性能测试,测试指标及测试方法如下,以容量保持率≤80%,和(或)ESR增长率≥100%,作为超容寿命的判断标准。The supercapacitors of Examples 1-11 and Comparative Examples 1-8 were tested for electrochemical performance. The test indicators and test methods were as follows. The capacity retention rate was ≤80%, and (or) the ESR growth rate was ≥100%, as the supercapacitor. criteria for life expectancy.
(1)预循环(10次):25℃,充电截止电压U、恒定电流10mA/F进行充电;然后按下限电压U/2,恒定电流10mA/F进行放电。(1) Pre-cycle (10 times): 25°C, charge cut-off voltage U, constant current 10mA/F; then discharge at lower limit voltage U/2, constant current 10mA/F.
(2)65℃~70℃高温箱中,恒定电流10mA/F充电至上限电压U,恒压(U)一定时间;取出超级电容器并冷却至25℃,再进行充放电测试,测试条件同预循环,并计算超级电容器的容量保持率、ESR增长率。(2) In the high temperature box of 65℃~70℃, charge the constant current 10mA/F to the upper limit voltage U, and keep the constant voltage (U) for a certain period of time; take out the supercapacitor and cool it to 25℃, and then carry out the charge and discharge test, the test conditions are the same as the pre- Cycle, and calculate the capacity retention rate and ESR growth rate of the supercapacitor.
(3)以容量保持率≤80%,和(或)ESR增长率≥100%时,作为超容寿命的判断标准。(3) When the capacity retention rate is less than or equal to 80%, and (or) the ESR growth rate is greater than or equal to 100%, it is used as the judgment standard for overcapacity life.
(4)高低温箱中,在工作温度范围-40℃~20℃下,每间隔10℃恒温一定时间后,进行充放电测试,测试条件同预循环,并计算超级电容器的容量和ESR。(4) In the high and low temperature box, under the working temperature range of -40°C to 20°C, after a constant temperature of 10°C for a certain period of time, the charge and discharge test is carried out. The test conditions are the same as the pre-cycle, and the capacity and ESR of the supercapacitor are calculated.
AN体系测试结果如表2(实施例1-7、对比例1-4)所示,碳酸丙烯酯体系测试结果如表3(实施例8-11、对比例5-8)所示。The test results of the AN system are shown in Table 2 (Examples 1-7, Comparative Examples 1-4), and the test results of the propylene carbonate system are shown in Table 3 (Examples 8-11, Comparative Examples 5-8).
表2Table 2
表3table 3
参见表1、表2,AN体系电解液(实施例1-7、对比例1-4)中:See Table 1, Table 2, in AN system electrolyte (embodiment 1-7, comparative example 1-4):
对比实施例1-7和对比例1-3,实施例1-7中,所述铵根离子和/或吡咯烷氨基甲酸甲酯占有机电解液中的重量百分含量≤0.5%。而对比例1-3中,所述铵根离子和/或吡咯烷氨基甲酸甲酯占有机电解液中的重量百分含量≥2%。实施例1-7得到的超级电容器,在20℃、电压分别为2.85V、3.0V条件,-50℃、电压分别为2.85V、3.0V条件下的电容器容量和电容器ESR,以及65℃、电压分别为2.85V、3.0V、3.2V条件下的电容器寿命优于对比例1-3,其整体性能较好,特别是高压条件(3.0V)下的高低温性能和高温(65℃,2.85V、3.0V、3.2V)条件下的使用寿命优势明显,超级电容器具有更高的充电截止电压以及更宽的工作温度范围。Comparing Examples 1-7 and 1-3, in Examples 1-7, the weight percentage of the ammonium ions and/or methyl pyrrolidine carbamate in the organic electrolyte is ≤0.5%. In Comparative Examples 1-3, the weight percentage of the ammonium ions and/or methyl pyrrolidine carbamate in the organic electrolyte is greater than or equal to 2%. The supercapacitors obtained in Examples 1-7 have the capacitor capacity and capacitor ESR under the conditions of 20°C and voltages of 2.85V and 3.0V, -50°C and voltages of 2.85V and 3.0V, respectively, and at 65°C and voltage. The life of the capacitor under the conditions of 2.85V, 3.0V and 3.2V is better than that of Comparative Examples 1-3, and its overall performance is better, especially the high and low temperature performance under high voltage conditions (3.0V) and high temperature (65℃, 2.85V) , 3.0V, 3.2V), the service life advantage is obvious, and the supercapacitor has a higher charge cut-off voltage and a wider operating temperature range.
对比实施例7和对比例4,实施例7中,有机电解质采用N,N-二甲基吡咯烷四氟硼酸盐,而对比例4中采用四乙基铵四氟硼酸,两者均不含铵根离子、吡咯烷氨基甲酸甲酯。结果显示,以四乙基铵四氟硼酸作为电解质的对比例4,其电导率、20℃电容器容量、20℃电容器ESR与采用N,N-二甲基吡咯烷四氟硼酸盐的实施例7相当,但是,其-50℃电容器容量较差,不能满足超级电容器低温高压环境的使用要求,而其65℃条件下的使用寿命,明显弱于实施例7。可见,本发明实施例采用N,N-二甲基吡咯烷四氟硼酸盐作为有机电解质,有利于提高低温高压性能和高温使用寿命。Comparing Example 7 and Comparative Example 4, in Example 7, N,N-dimethylpyrrolidine tetrafluoroborate was used as the organic electrolyte, while tetraethylammonium tetrafluoroborate was used in Comparative Example 4, neither of which was used. Contains ammonium ions, methyl pyrrolidine carbamate. The results show that the conductivity, 20 ℃ capacitor capacity, 20 ℃ capacitor ESR of Comparative Example 4 using tetraethylammonium tetrafluoroborate as the electrolyte are comparable to those of Example 4 using N,N-dimethylpyrrolidine tetrafluoroborate 7 is equivalent, but its -50 ℃ capacitor capacity is poor, which cannot meet the use requirements of supercapacitors in low-temperature and high-voltage environments, and its service life at 65 ℃ is significantly weaker than that of Example 7. It can be seen that in the embodiment of the present invention, N,N-dimethylpyrrolidine tetrafluoroborate is used as the organic electrolyte, which is beneficial to improve the low temperature and high pressure performance and the high temperature service life.
对比实施例1-7,特别是实施例3、实施例7,当有机电解质浓度升高时,有利于电导率的提高,但低温状态发生凝固,无法使用,即低温性能不行,因此,本发明实施例所述有机电解质的浓度不宜过高,优选控制在2mol/L以内。对比实施例1、2、5、7,整体上,铵根离子和/或吡咯烷氨基甲酸甲酯在有机电解液中的比重越小,其整体性能越好。特别是铵根离子和吡咯烷甲酸甲酯在有机电解液中的含量≤0.1wt%时,应用该电解液的超级电容器表现出良好的低温性能,并具有很好的高温高电压循环寿命。当铵根离子和吡咯烷甲酸甲酯含量超出此范围时,高低温性能下降。Comparative Examples 1-7, especially Example 3 and Example 7, when the organic electrolyte concentration increases, it is beneficial to improve the electrical conductivity, but the low temperature state solidifies and cannot be used, that is, the low temperature performance is not good. Therefore, the present invention The concentration of the organic electrolyte described in the embodiment should not be too high, preferably controlled within 2 mol/L. Comparing Examples 1, 2, 5, and 7, on the whole, the smaller the proportion of ammonium ions and/or methyl pyrrolidine carbamate in the organic electrolyte, the better the overall performance. Especially when the content of ammonium ion and methyl pyrrolidinecarboxylate in the organic electrolyte is less than or equal to 0.1 wt%, the supercapacitor using the electrolyte shows good low temperature performance and has a good high temperature and high voltage cycle life. When the content of ammonium ion and methyl pyrrolidinecarboxylate exceeds this range, the high and low temperature performance decreases.
参见表1、表3,碳酸丙烯酯体系电解液(实施例8-11、对比例5-8)中:See Table 1, Table 3, in propylene carbonate system electrolyte (embodiment 8-11, comparative example 5-8):
对比实施例8-11和对比例5-7,实施例8-11中,所述铵根离子、吡咯烷氨基甲酸甲酯在所述有机电解液中的重量百分含量分别≤1%,铵根离子、吡咯烷氨基甲酸甲酯之和占有机电解液中的重量百分含量≤1%。而对比例5-7中,所述铵根离子或吡咯烷氨基甲酸甲酯在所述有机电解液中的重量百分含量为5%,占有机电解液中的重量百分含量2%。实施例8-11得到的超级电容器,在20℃、电压分别为2.85V、3.0V条件,-40℃、电压分别为2.7V、3.0V条件下的电容器容量和电容器ESR,以及70℃、电压分别为2.7V、3.0V条件下的电容器寿命优于对比例5-8,其整体性能较好,特别是高压条件(3.0V)下的高低温性能和高温(70℃,2.7V、3.0V)条件下的使用寿命优势明显,超级电容器具有更高的充电截止电压以及更宽的工作温度范围。Comparative Example 8-11 and Comparative Example 5-7, in Example 8-11, the weight percentages of the ammonium ion and methyl pyrrolidine carbamate in the organic electrolyte are respectively ≤ 1%, ammonium The weight percentage of the sum of radical ions and methyl pyrrolidine carbamate in the organic electrolyte is less than or equal to 1%. In Comparative Examples 5-7, the weight percentage of the ammonium ion or methyl pyrrolidine carbamate in the organic electrolyte is 5%, accounting for 2% by weight of the organic electrolyte. The supercapacitors obtained in Examples 8-11 have the capacitor capacity and capacitor ESR under the conditions of 20°C and voltages of 2.85V and 3.0V, -40°C and voltages of 2.7V and 3.0V, respectively, and 70°C and voltages of 2.7V and 3.0V. The life of the capacitor under the conditions of 2.7V and 3.0V is better than that of Comparative Examples 5-8, and its overall performance is better, especially the high and low temperature performance under high voltage conditions (3.0V) and high temperature (70℃, 2.7V, 3.0V) ) under the condition of obvious advantages, the supercapacitor has a higher charge cut-off voltage and a wider operating temperature range.
对比实施例11和对比例8,实施例11中,有机电解质采用N,N-二甲基吡咯烷四氟硼酸盐,而对比例8中采用甲基三乙基铵四氟硼酸,两者均不含铵根离子、吡咯烷氨基甲酸甲酯。结果显示,以甲基三乙基铵四氟硼酸作为电解质的对比例8,其除了电导率比采用N,N-二甲基吡咯烷四氟硼酸盐的实施例11略好外,其他性能制备均比实施例11差,且不能满足超级电容器高低温、高压环境的使用要求。可见,本发明实施例采用N,N-二甲基吡咯烷四氟硼酸盐作为有机电解质,有利于提高低温高压性能和高温使用寿命。Comparing Example 11 and Comparative Example 8, in Example 11, N,N-dimethylpyrrolidine tetrafluoroborate was used as the organic electrolyte, while methyltriethylammonium tetrafluoroborate was used in Comparative Example 8, and both were used. All contain no ammonium ions and methyl pyrrolidine carbamate. The results show that the comparative example 8 using methyltriethylammonium tetrafluoroborate as the electrolyte has slightly better electrical conductivity than the example 11 using N,N-dimethylpyrrolidine tetrafluoroborate, and other properties The preparations were all worse than those of Example 11, and could not meet the use requirements of supercapacitors in high and low temperature and high voltage environments. It can be seen that in the embodiment of the present invention, N,N-dimethylpyrrolidine tetrafluoroborate is used as the organic electrolyte, which is beneficial to improve the low temperature and high pressure performance and the high temperature service life.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710150772.7A CN108573816B (en) | 2017-03-14 | 2017-03-14 | Organic electrolyte for super capacitor and super capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710150772.7A CN108573816B (en) | 2017-03-14 | 2017-03-14 | Organic electrolyte for super capacitor and super capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108573816A CN108573816A (en) | 2018-09-25 |
CN108573816B true CN108573816B (en) | 2020-07-10 |
Family
ID=63578486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710150772.7A Active CN108573816B (en) | 2017-03-14 | 2017-03-14 | Organic electrolyte for super capacitor and super capacitor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108573816B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020153791A1 (en) | 2019-01-25 | 2020-07-30 | 주식회사 엘지화학 | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730263A (en) * | 2013-12-27 | 2014-04-16 | 深圳新宙邦科技股份有限公司 | Organic electrolytic solution for super capacitor and super capacitor |
CN104979102A (en) * | 2015-07-08 | 2015-10-14 | 深圳新宙邦科技股份有限公司 | Electrolyte solute, electrolyte and super capacitor |
-
2017
- 2017-03-14 CN CN201710150772.7A patent/CN108573816B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730263A (en) * | 2013-12-27 | 2014-04-16 | 深圳新宙邦科技股份有限公司 | Organic electrolytic solution for super capacitor and super capacitor |
CN104979102A (en) * | 2015-07-08 | 2015-10-14 | 深圳新宙邦科技股份有限公司 | Electrolyte solute, electrolyte and super capacitor |
Non-Patent Citations (2)
Title |
---|
Makoto Ue.Chemical capacitors and quaternary ammonium salts.《ELECTROCHEMISTRY》.2007,第75卷(第8期),第565-572页. * |
Makoto Ue等.ELECTROCHEMICAL PROPERTIES OF ORGANIC LIQUID ELECTROLYTES BASED ON QUATERNARY ONIUM SALTS FOR ELECTRICAL DOUBLE-LAYER CAPACITORS.《J. Electrochem. Soc.》.1994,第141卷(第11期),第2989-2996页. * |
Also Published As
Publication number | Publication date |
---|---|
CN108573816A (en) | 2018-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Balducci et al. | Cycling stability of a hybrid activated carbon//poly (3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide ionic liquid as electrolyte | |
CN103113242B (en) | Functional choline chloride ionic liquid and preparation method and application in electrochemical energy storage device thereof | |
CN103682454B (en) | A kind of preparation method of lithium ion battery adopting lithium titanate negative electrode | |
CN105826543A (en) | Aluminum-polyaniline secondary battery | |
JP6229211B2 (en) | High voltage ultracapacitor | |
KR102495382B1 (en) | Supercapacitor Electrolyte and Supercapacitor | |
CN204243148U (en) | A kind of secondary cell combination electrode and secondary aluminium cell | |
CN107086326A (en) | A kind of electrolyte and double-ion battery | |
CN114843610A (en) | An electrolyte and a lithium ion battery containing the same | |
CN108573816B (en) | Organic electrolyte for super capacitor and super capacitor | |
CN104134551B (en) | A kind of electrolyte solute, electrolyte and high tension super capacitor | |
CN104269540A (en) | Titanium dioxide/conducting polymer/sulfur three-element composite material and secondary cell | |
CN107887176B (en) | An organic electrolyte for supercapacitor and supercapacitor | |
Ebina et al. | Use of tetraethylammonium bis (oxalato) borate as electrolyte for electrical double-layer capacitors | |
WO2017004884A1 (en) | Electrolyte solute, electrolyte, and super-capacitor | |
CN104779075A (en) | High-voltage nonaqueous electrolyte for supercapacitor | |
CN103956268A (en) | Electrolyte solute, electrolyte and high-voltage supercapacitor | |
CN102254691A (en) | Electrolyte of low-temperature super capacitor | |
CN110349759B (en) | Super capacitor electrolyte and super capacitor | |
CN108122686B (en) | The Li of fluoride cladding4Ti5O12/ carbon nanotube composite negative pole material and its preparation and application | |
CN102760575A (en) | Electrolyte for capacitor and capacitor using electrolyte | |
CN102569812B (en) | Preparation method of polymer doped lithium stannate negative electrode material | |
CN105702996B (en) | A kind of flow battery positive pole bromo il electrolyte and preparation method thereof | |
CN105591142B (en) | A kind of flow battery negative pole zinc-base il electrolyte and preparation method thereof | |
CN115331973A (en) | Dication type ionic liquid, preparation method thereof and super capacitor electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |