[go: up one dir, main page]

CN108566240B - Inter-satellite networking authentication system and method suitable for double-layer satellite network - Google Patents

Inter-satellite networking authentication system and method suitable for double-layer satellite network Download PDF

Info

Publication number
CN108566240B
CN108566240B CN201810262750.4A CN201810262750A CN108566240B CN 108566240 B CN108566240 B CN 108566240B CN 201810262750 A CN201810262750 A CN 201810262750A CN 108566240 B CN108566240 B CN 108566240B
Authority
CN
China
Prior art keywords
authentication
satellite
leo
geo
token
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810262750.4A
Other languages
Chinese (zh)
Other versions
CN108566240A (en
Inventor
朱辉
武衡
张之义
李晖
赵海强
王宇辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
CETC 54 Research Institute
Original Assignee
Xidian University
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University, CETC 54 Research Institute filed Critical Xidian University
Priority to CN201810262750.4A priority Critical patent/CN108566240B/en
Publication of CN108566240A publication Critical patent/CN108566240A/en
Application granted granted Critical
Publication of CN108566240B publication Critical patent/CN108566240B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18521Systems of inter linked satellites, i.e. inter satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/083Network architectures or network communication protocols for network security for authentication of entities using passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0863Generation of secret information including derivation or calculation of cryptographic keys or passwords involving passwords or one-time passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/321Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority
    • H04L9/3213Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority using tickets or tokens, e.g. Kerberos
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3297Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving time stamps, e.g. generation of time stamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明属于信息安全技术领域,公开了一种适用于双层卫星网络的星间组网认证系统及方法,系统包括地面认证服务器、高轨卫星认证客户端和低轨卫星认证客户端;地面认证服务器,负责完成卫星认证系统的初始化,即生成与分发卫星间认证所需要的身份信息、密钥、轨道参数;高轨卫星认证客户端和低轨卫星认证客户端是星间组网认证的主体,通过交互认证参数实现星间身份认证与密钥协商。利用卫星网络时钟高度同步、节点运行轨迹可预测的特点,本发明设计了认证预计算机制,有效提升了卫星间的认证效率。本发明能够实现双层卫星网络中高、低轨卫星在组网阶段安全、高效的身份认证和密钥协商,可用于高、低轨卫星间的组网认证。

Figure 201810262750

The invention belongs to the technical field of information security, and discloses an inter-satellite networking authentication system and method suitable for a double-layer satellite network. The system includes a ground authentication server, a high-orbit satellite authentication client and a low-orbit satellite authentication client; the ground authentication The server is responsible for completing the initialization of the satellite authentication system, that is, generating and distributing the identity information, keys, and orbital parameters required for inter-satellite authentication; high-orbit satellite authentication clients and low-orbit satellite authentication clients are the main bodies of inter-satellite networking authentication , to achieve inter-satellite identity authentication and key negotiation through interactive authentication parameters. Taking advantage of the features of highly synchronized satellite network clocks and predictable node running trajectories, the present invention designs an authentication pre-calculation mechanism, which effectively improves the authentication efficiency between satellites. The invention can realize the safe and efficient identity authentication and key negotiation of the high and low orbit satellites in the double-layer satellite network in the networking stage, and can be used for the networking authentication between the high and low orbit satellites.

Figure 201810262750

Description

一种适用于双层卫星网络的星间组网认证系统及方法An inter-satellite networking authentication system and method suitable for double-layer satellite networks

技术领域technical field

本发明属于信息安全技术领域,尤其涉及一种适用于双层卫星网络的星间组网认证系统及方法。可用于为商业卫星网络在卫星组网时提供卫星身份认证服务,能够在无可信第三方参与的情况下,实现卫星之间的信任建立和安全通信。The invention belongs to the technical field of information security, and in particular relates to an inter-satellite networking authentication system and method suitable for a double-layer satellite network. It can be used to provide satellite identity authentication services for commercial satellite networks during satellite networking, and can realize trust establishment and secure communication between satellites without the participation of a trusted third party.

背景技术Background technique

目前,业内常用的现有技术是这样的:At present, the existing technologies commonly used in the industry are as follows:

由于目前的卫星网络包含卫星数量较少,如铱星(66颗)、GPS(24颗),卫星组网主要由地面站控制完成。卫星组网认证通常采用的方式是由地面站直接为卫星分配认证参数、会话密钥等。在这种控制结构中,卫星通常不具备自主组网能力,致使其组网认证的进行严重依赖地面站。Since the current satellite network contains a small number of satellites, such as Iridium (66) and GPS (24), the satellite network is mainly controlled by the ground station. Satellite networking authentication usually adopts the method that the ground station directly assigns authentication parameters, session keys, etc. to the satellite. In this control structure, satellites usually do not have the ability to form autonomous networks, so that the authentication of their networking relies heavily on ground stations.

然而,随着航天技术的发展,卫星网络趋向复杂化,如卫星节点数量众多、卫星控制模型复杂。在这种趋势下,传统的卫星组网控制方式因为地面站的部署位置、处理能力、管理能力等问题,存在一定的应用局限性。同时,由于卫星通信链路采用无线传输媒介,信道高度开放,通信内容极易被监听、篡改、伪造,卫星组网极有可能因为遭受恶意干扰而无法完成。此外,卫星网络特殊的部署环境,对星间身份认证协议的设计提出了更高的要求。首先,星上资源受限,难以应对较大的计算开销,需要复杂计算的方案会严重影响认证效率。其次,星间距离较远,通信时延不可忽略,通信开销成为方案设计中一个必须要考虑的问题。However, with the development of aerospace technology, the satellite network tends to be complicated, such as the large number of satellite nodes and the complex satellite control model. Under this trend, the traditional satellite networking control method has certain application limitations due to the deployment location, processing capability, and management capability of the ground station. At the same time, because the satellite communication link adopts wireless transmission medium, the channel is highly open, and the communication content is very easy to be monitored, tampered with, and forged. In addition, the special deployment environment of the satellite network puts forward higher requirements for the design of the inter-satellite identity authentication protocol. First of all, onboard resources are limited and it is difficult to cope with the large computational overhead. The scheme that requires complex computation will seriously affect the authentication efficiency. Secondly, the distance between satellites is long, the communication delay cannot be ignored, and the communication overhead becomes a problem that must be considered in the scheme design.

针对卫星网络的组网问题,人们提出了一些解决方案,比如:For the networking problem of satellite networks, some solutions have been proposed, such as:

中国电子科技集团公司第三十研究所申请的专利“一种在轨卫星身份认证方法”(申请号CN 2017101415439申请公布号CN106850674A)公开了一种在轨卫星身份认证方法,其基于卫星轨道的周期性,采用公私钥认证机制,解决了星地之间的身份认证问题。The patent "a method for identifying an on-orbit satellite" (application number CN 2017101415439, application publication number CN106850674A) applied for by the 30th Research Institute of China Electronics Technology Group Corporation discloses a method for identifying an on-orbit satellite, which is based on the period of the satellite orbit. It adopts the public and private key authentication mechanism to solve the problem of identity authentication between the stars and the earth.

然而,随着航天技术的发展,设计中的卫星网络包含节点越来越多,如果卫星组网认证需要地面站的频繁参与,认证效率会因为星地通信时延等问题而受到严重影响。因此,为保证卫星组网的安全、高效,认证协议需要尽量减少地面站等第三方的参与,提高认证节点的自主性与独立性,从而保证卫星网络能够在地面站故障情况下安全运行。However, with the development of aerospace technology, the satellite network under design contains more and more nodes. If the satellite network certification requires frequent participation of ground stations, the certification efficiency will be seriously affected by problems such as satellite-ground communication delay. Therefore, in order to ensure the safety and efficiency of satellite networking, the authentication protocol needs to minimize the participation of third parties such as ground stations, and improve the autonomy and independence of authentication nodes, so as to ensure that the satellite network can operate safely in the event of ground station failures.

综上所述,现有技术存在的问题是:To sum up, the problems existing in the prior art are:

(1)星间身份认证需要地面参与,在无地面站等可信第三方参与的情况下,很难实现卫星之间独立、自主的信任建立和安全通信,不适应拥有海量节点的卫星网络组网场景;(1) Inter-satellite identity authentication requires ground participation. Without the participation of trusted third parties such as ground stations, it is difficult to achieve independent and autonomous trust establishment and secure communication between satellites, which is not suitable for satellite network groups with massive nodes. web scene;

(2)星间身份认证未对自身身份信息进行保护,致使攻击者能够利用截获的明文身份信息伪造接入请求,从而实施拒绝服务等攻击,干扰卫星组网;(2) Inter-satellite identity authentication does not protect its own identity information, so that attackers can use the intercepted plaintext identity information to forge access requests, thereby implementing denial of service attacks and interfering with satellite networking;

(3)星间身份认证的计算开销会影响认证时延,相比于节点数量较少的卫星网络,在拥有海量节点的卫星网络中,由于组网认证更加频繁,星间组网会因为星上计算机的算力问题而产生认证时延。解决上述技术问题的难度和意义:(3) The computational overhead of inter-satellite identity authentication will affect the authentication delay. Compared with a satellite network with a small number of nodes, in a satellite network with a large number of nodes, due to more frequent networking authentication, inter-satellite networking will be affected by the satellite network. The authentication delay is caused by the problem of the computing power of the computer. The difficulty and significance of solving the above technical problems:

(1)设计独立、自主的星间组网认证方法,需要为其设计安全、高效的密钥更新方式,既要减少地面站的参与,还要保证卫星能够准确更新认证密钥;(1) To design an independent and autonomous inter-satellite networking authentication method, it is necessary to design a safe and efficient key update method for it, which not only reduces the participation of the ground station, but also ensures that the satellite can accurately update the authentication key;

(2)设计保护卫星的身份信息的星间组网认证方法,需要考虑因此而带来的额外计算开销,既要保证卫星身份信息的保密性,还要减少因此而产生的计算开销;(2) To design an authentication method for inter-satellite networking to protect the identity information of satellites, it is necessary to consider the additional computational overhead caused by this, not only to ensure the confidentiality of the satellite identity information, but also to reduce the resulting computational overhead;

(3)设计适用于复杂卫星网络的星间组网认证方法,需要考虑认证过程中的计算开销,尽量避免出现多星同时认证时,因为计算资源受限而带来的计算时延。(3) To design an authentication method for inter-satellite networking suitable for complex satellite networks, it is necessary to consider the computational overhead in the authentication process, and try to avoid the computational delay caused by limited computational resources when multiple satellites are authenticated at the same time.

随着航天技术的发展,未来的卫星网络必将包含越来越多的卫星节点,设计无需地面站频繁参与就能够实现独立、自主组网的星间组网认证方法对于保证拥有海量卫星节点的卫星网络能够稳定运行具有重要意义。With the development of aerospace technology, future satellite networks will inevitably contain more and more satellite nodes. Designing an authentication method for inter-satellite networking that can achieve independent and autonomous networking without the frequent participation of ground stations is important for ensuring that there are a large number of satellite nodes. The stable operation of the satellite network is of great significance.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的问题,本发明提供了一种适用于双层卫星网络的星间组网认证系统及方法。In view of the problems existing in the prior art, the present invention provides an inter-satellite networking authentication system and method suitable for a double-layer satellite network.

本发明是这样实现的,The present invention is realized in this way,

本发明的一种适用于双层卫星网络的星间组网认证系统,包括:An inter-satellite networking authentication system suitable for a double-layer satellite network of the present invention includes:

地面认证服务器,负责完成卫星认证系统的初始化,即生成与分发卫星间认证所需要的身份信息、密钥、轨道参数;The ground authentication server is responsible for completing the initialization of the satellite authentication system, that is, generating and distributing the identity information, keys, and orbital parameters required for inter-satellite authentication;

高轨卫星(GEO)认证客户端,负责接收来自LEO的认证请求,计算并返回认证令牌Token,计算预期响应XRES和会话密钥CK,检验认证请求中LEO使用的临时身份TID是否有效,检验LEO返回的响应值RES是否正确,为LEO维护一个认证信息表;The high-orbit satellite (GEO) authentication client is responsible for receiving the authentication request from LEO, calculating and returning the authentication token Token, calculating the expected response XRES and session key CK, and checking whether the temporary identity TID used by LEO in the authentication request is valid. Whether the response value RES returned by LEO is correct, maintain an authentication information table for LEO;

低轨卫星(LEO)认证客户端,负责向GEO提交认证请求,检验GEO返回的认证令牌Token是否有效,计算临时身份TID、响应值RES和会话密钥CK,为GEO维护一个认证信息表。The low-orbit satellite (LEO) authentication client is responsible for submitting an authentication request to GEO, checking whether the authentication token Token returned by GEO is valid, calculating the temporary identity TID, response value RES and session key CK, and maintaining an authentication information table for GEO.

地面认证服务器包括:The ground authentication server includes:

系统初始化模块,用于完成卫星认证系统的初始化,即将身份信息生成模块生成的身份信息、密钥生成模块生成的密钥、轨道分配模块分配的轨道参数写入卫星的认证系统;The system initialization module is used to complete the initialization of the satellite authentication system, that is, the identity information generated by the identity information generation module, the key generated by the key generation module, and the orbit parameters allocated by the orbit allocation module are written into the satellite authentication system;

身份信息生成模块,用于根据卫星的生产序列、发射顺序等,为卫星生成认证所需要的身份信息;The identity information generation module is used to generate the identity information required for the authentication of the satellite according to the production sequence and launch sequence of the satellite;

密钥生成模块,用于为卫星生成认证所需要的密钥;The key generation module is used to generate the key required for authentication for the satellite;

轨道分配模块,用于为卫星分配运行轨道。Orbit allocation module for allocating operating orbits to satellites.

高轨卫星(GEO)认证客户端包括:High-orbit satellite (GEO) certified clients include:

系统初始化模块,用于完成星上认证系统的初始化,即从地面认证服务器获取卫星认证所需要的身份信息、密钥、轨道参数;The system initialization module is used to complete the initialization of the on-board authentication system, that is, to obtain the identity information, key and orbit parameters required for satellite authentication from the ground authentication server;

组网认证模块,包括三个子模块:认证子模块、数据处理子模块,预计算管理子模块。其中,认证子模块,用于和低轨卫星(LEO)认证客户端交互认证所需要的参数;数据处理子模块,用于生成和解析认证参数、检验收到的认证参数是否有效;预计算管理子模块,用于根据认证信息表中数据管理卫星的认证参数预计算,并维护认证信息表;The networking authentication module includes three sub-modules: an authentication sub-module, a data processing sub-module, and a pre-computing management sub-module. Among them, the authentication sub-module is used to interact with the low-orbit satellite (LEO) authentication client for parameters required for authentication; the data processing sub-module is used to generate and parse the authentication parameters, and check whether the received authentication parameters are valid; pre-computing management The sub-module is used to pre-calculate the certification parameters of the satellite according to the data in the certification information table, and maintain the certification information table;

轨道预测模块,用于计算卫星间下次认证的时间节点;The orbit prediction module is used to calculate the time node of the next certification between satellites;

认证信息管理模块,用于管理LEO认证信息的注册、更新。The authentication information management module is used to manage the registration and update of LEO authentication information.

低轨卫星(LEO)认证客户端包括:Low Earth Orbit (LEO) certified clients include:

系统初始化模块,用于完成星上认证系统的初始化,即从地面认证服务器获取卫星认证所需要的身份信息、密钥、轨道参数;The system initialization module is used to complete the initialization of the on-board authentication system, that is, to obtain the identity information, key and orbit parameters required for satellite authentication from the ground authentication server;

组网认证模块,包括三个子模块:认证子模块、数据处理子模块,预计算管理子模块。其中,认证子模块,用于和高轨卫星(GEO)认证客户端交互认证所需要的参数;数据处理子模块,用于生成和解析认证参数、检验收到的认证参数是否有效;预计算管理子模块,用于根据认证信息表中数据管理卫星的认证参数预计算,并维护认证信息表;The networking authentication module includes three sub-modules: an authentication sub-module, a data processing sub-module, and a pre-computing management sub-module. Among them, the authentication sub-module is used to interact with the high-orbit satellite (GEO) authentication client for the parameters required for authentication; the data processing sub-module is used to generate and parse the authentication parameters, and check whether the received authentication parameters are valid; pre-computing management The sub-module is used to pre-calculate the certification parameters of the satellite according to the data in the certification information table, and maintain the certification information table;

轨道预测模块,用于计算卫星间下次认证的时间节点;The orbit prediction module is used to calculate the time node of the next certification between satellites;

认证信息管理模块,用于管理GEO认证信息的注册、更新。The authentication information management module is used to manage the registration and update of GEO authentication information.

本发明的另一目的在于提供一种搭载有所述适用于双层卫星网络的星间组网认证系统的信息数据处理终端。Another object of the present invention is to provide an information data processing terminal equipped with the inter-satellite networking authentication system suitable for a two-layer satellite network.

为实现上述目的,本发明提供一种适用于双层卫星网络的星间组网认证方法,包括:To achieve the above object, the present invention provides an inter-satellite networking authentication method suitable for a double-layer satellite network, including:

1、认证系统初始化1. Initialize the authentication system

(1a)在发射准备阶段,由卫星向地面认证服务器提交系统初始化申请。(1a) In the launch preparation stage, the satellite submits a system initialization application to the ground certification server.

(1b)收到申请后,地面认证服务器为卫星生成和分发身份信息、密钥、轨道参数,包括身份信息ID、群组身份信息SGID、卫星的身份信息的匿名保护密钥IDKey、卫星的认证主密钥MainKey。(1b) After receiving the application, the ground authentication server generates and distributes identity information, keys, and orbital parameters for the satellite, including identity information ID, group identity information SGID, the anonymous protection key IDKey of the satellite's identity information, and the authentication of the satellite. The main key MainKey.

2、卫星认证信息注册2. Satellite certification information registration

(2a)LEO向GEO发送自身的精确轨道数据,如轨道高度、轨道倾角等进行卫星轨位预测所需要的轨道参数。(2a) LEO sends its own precise orbital data to GEO, such as orbital height, orbital inclination and other orbital parameters required for satellite orbital position prediction.

(2b)收到LEO发送的轨道信息后,GEO在认证信息表中添加该LEO的认证信息,即将该LEO的ID连同轨道数据一起存入卫星上的认证信息数据库。注册完成后,GEO向该LEO返回自身的精确轨道数据。(2b) After receiving the orbit information sent by LEO, GEO adds the authentication information of the LEO to the authentication information table, that is, stores the ID of the LEO together with the orbit data into the authentication information database on the satellite. After the registration is completed, GEO returns its precise orbit data to the LEO.

(2c)收到返回的轨道数据后,LEO采用同样的操作,将该数据存入自身的认证数据库。(2c) After receiving the returned orbit data, LEO uses the same operation to store the data in its own authentication database.

3、星间身份认证与密钥协商3. Inter-satellite identity authentication and key negotiation

星间身份认证与密钥协商根据星间组网认证的执行阶段分为两个子协议,分别是卫星认证信息注册之前的认证子协议和卫星认证信息注册之后的认证子协议。Inter-satellite identity authentication and key agreement are divided into two sub-protocols according to the execution stage of inter-satellite networking authentication, namely the authentication sub-protocol before satellite authentication information registration and the authentication sub-protocol after satellite authentication information registration.

3.1)认证信息注册之前的认证子协议3.1) Authentication sub-protocol before authentication information registration

(3.1.a)LEO通过星载时钟获取时间戳TTID。基于获取的TTID和预置的IDKey,LEO计算本次认证应使用的临时身份TID,TID=fTID(IDKey,TTID||RID)。计算完成后,LEO将TID连同认证请求一起发送给GEO。(3.1.a) LEO obtains the timestamp T TID through the onboard clock. Based on the acquired T TID and the preset IDKey, the LEO calculates the temporary identity TID that should be used for this authentication, TID=f TID (IDKey, T TID ||RID). After the calculation is complete, LEO sends the TID to GEO along with the authentication request.

(3.1b)收到TID后,GEO使用预置的IDKey对TID解密,并通过解密得到的TTID和RID对认证请求的新鲜性和有效性进行判定。(3.1b) After receiving the TID, GEO uses the preset IDKey to decrypt the TID, and judges the freshness and validity of the authentication request through the decrypted T TID and RID.

(3.1.c)GEO通过星载时钟获取生成AuthKey所需的时间戳TAuth。基于获取的TAuth和预置的MainKey,AuthKey=fAK(MainKey,TAuth);GEO生成一个一次性随机数RAND;基于生成的RAND和AuthKey,GEO计算时间戳保护序列TK,TK=fTK(AuthKey,RAND);GEO通过星载时钟获取生成Token所需的时间戳TToken。基于生成的RAND、获取的TToken、存储的SGID,GEO计算消息验证码MAC,MAC=fMAC(AuthKey,RAND||TToken||SGID);GEO将RAND、TToken、TK、SGID、MAC合并成一个认证令牌Token,

Figure BDA0001610647000000051
并计算预期响应XRES和会话密钥CK,CK=fCK(AuthKey,RAND),XRES=fRES(CK,RAND)。(3.1.c) GEO obtains the timestamp T Auth required to generate AuthKey through the onboard clock. Based on the acquired T Auth and the preset MainKey, AuthKey=f AK (MainKey, T Auth ); GEO generates a one-time random number RAND; based on the generated RAND and AuthKey, GEO calculates the timestamp protection sequence TK, TK=f TK (AuthKey, RAND); GEO obtains the timestamp T Token required to generate Token through the onboard clock. Based on the generated RAND, the acquired T Token and the stored SGID, GEO calculates the message verification code MAC, MAC=f MAC (AuthKey, RAND||T Token ||SGID); GEO calculates the RAND, T Token , TK, SGID, MAC Combined into an authentication token Token,
Figure BDA0001610647000000051
And calculate the expected response XRES and session key CK, CK=f CK (AuthKey, RAND), XRES=f RES (CK, RAND).

(3.1.d)LEO使用同样的方式生成的AuthKey,并利用生成的AuthKey对Token的新鲜性和有效性进行判定。(3.1.d) LEO uses the AuthKey generated in the same way, and uses the generated AuthKey to determine the freshness and validity of the Token.

(3.1.e)验证通过后,LEO使用同样的方式计算出CK和RES,并将RES返回给GEO。(3.1.e) After the verification is passed, LEO calculates CK and RES in the same way, and returns RES to GEO.

(3.1.f)收到RES后,GEO比较收到的RES和存储的XRES是否相等。如果相等,完成对LEO的认证;否则,认证失败。(3.1.f) After receiving the RES, GEO compares the received RES with the stored XRES for equality. If they are equal, the authentication to LEO is completed; otherwise, the authentication fails.

3.2)认证信息注册之后的认证子协议3.2) Authentication sub-protocol after authentication information registration

(3.2.a)建立通信链路后,LEO首先判断自身轨道参数是否发生改变。如果出现轨道摄动,由于认证预计算得到的认证参数已经失效,需要终止本协议,重新执行认证子协议(3.1)。如果运行轨道正常,LEO将预计算得到的TID和RES连同接入请求一起发送给GEO。(3.2.a) After establishing the communication link, the LEO first determines whether its own orbital parameters have changed. If the orbit perturbation occurs, because the authentication parameters obtained by the authentication pre-calculation have become invalid, this protocol needs to be terminated and the authentication sub-protocol (3.1) needs to be re-executed. If the running track is normal, LEO sends the pre-computed TID and RES to GEO together with the access request.

(3.2.b)收到接入请求后,GEO将收到的TID和RES与存储的XTID和XRES进行比较。如果相等,完成对LEO的认证,并将存储的Token返回给LEO;如果不等,返回错误,重新执行认证子协议(3.1)。(3.2.b) After receiving the access request, GEO compares the received TID and RES with the stored XTID and XRES. If they are equal, complete the authentication to LEO and return the stored Token to LEO; if not, return an error and re-execute the authentication sub-protocol (3.1).

(3.2.c)LEO利用预计算得到的AuthKey对认证令牌进行有效性判定。(3.2.c) LEO uses the pre-computed AuthKey to determine the validity of the authentication token.

(3.2.d)如果验证通过,LEO利用AuthKey计算出会话密钥CK。(3.2.d) If the verification is passed, LEO uses AuthKey to calculate the session key CK.

4、认证预计算4. Authentication pre-calculation

认证预计算根据星间组网认证的执行阶段分为两个子协议,分别是卫星认证信息注册之前的预计算子协议和卫星认证信息注册之后的预计算子协议。The authentication pre-computation is divided into two sub-protocols according to the execution stage of the inter-satellite networking authentication, namely the pre-computation sub-protocol before the registration of the satellite authentication information and the pre-computation sub-protocol after the registration of the satellite authentication information.

4.1)认证信息注册之前的认证预计算子协议4.1) Authentication pre-computation sub-protocol before authentication information registration

(4.1.a)LEO向GEO申请一个空白Token。(4.1.a) LEO applies for a blank Token from GEO.

(4.1.b)GEO计算并返回一个空白Token。(4.1.b) GEO calculates and returns a blank Token.

(4.1.c)LEO通过轨位预测技术计算下次与目标GEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数。接下来,LEO分别通过TTID和TAuth生成下次认证时应该使用的TID和AuthKey。基于GEO返回的空白Token,LEO计算下次认证应使用的RES。计算完毕后,LEO存储TID与RES。(4.1.c) LEO calculates the next time for authentication with the target GEO through orbit prediction technology, and obtains three time parameters T TID , T Auth , and T Token . Next, LEO generates the TID and AuthKey that should be used in the next authentication through T TID and T Auth respectively. Based on the blank Token returned by GEO, LEO calculates the RES that should be used for the next authentication. After the calculation, LEO stores the TID and RES.

(4.1.d)GEO通过轨位预测技术计算下次与目标LEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数。基于获取的时间参数、存储的卫星ID、存储的密钥IDKey和MainKey,GEO计算下次认证时需要用到的XTID、XRES、Token、CK。计算完毕后,GEO存储XTID、XRES、、Token、CK。(4.1.d) GEO calculates the next time for authentication with the target LEO through orbit prediction technology, and obtains three time parameters T TID , T Auth , and T Token . Based on the acquired time parameter, stored satellite ID, stored key IDKey and MainKey, GEO calculates the XTID, XRES, Token, and CK to be used for the next authentication. After the calculation is completed, GEO stores XTID, XRES, , Token, and CK.

4.2)认证信息注册之后的认证预计算子协议4.2) Authentication pre-computation sub-protocol after authentication information registration

(4.1.a)LEO通过轨位预测技术计算下次与目标GEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数。接下来,LEO分别通过TTID和TAuth生成下次认证时应该使用的TID和AuthKey。基于认证子协议(3.2)中GEO返回Token,LEO计算下次认证应使用的RES。计算完毕后,LEO存储TID与RES。(4.1.a) LEO calculates the next time for authentication with the target GEO through orbit prediction technology, and obtains three time parameters T TID , T Auth , and T Token . Next, LEO generates the TID and AuthKey that should be used in the next authentication through T TID and T Auth respectively. Based on the Token returned by GEO in the authentication sub-protocol (3.2), LEO calculates the RES that should be used for the next authentication. After the calculation, LEO stores the TID and RES.

(4.1.b)GEO通过轨位预测技术计算下次与目标LEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数。基于获取的时间参数、存储的卫星ID、存储的密钥IDKey和MainKey,GEO计算下次认证时需要用到的XTID、XRES、Token、CK。计算完毕后,GEO存储XTID、XRES、Token、CK。(4.1.b) GEO calculates the next time for authentication with the target LEO through orbit prediction technology, and obtains three time parameters T TID , T Auth , and T Token . Based on the acquired time parameter, stored satellite ID, stored key IDKey and MainKey, GEO calculates the XTID, XRES, Token, and CK to be used for the next authentication. After the calculation, GEO stores XTID, XRES, Token, and CK.

本发明的另一目的在于提供一种实现所述适用于双层卫星网络的星间组网认证方法的计算机程序。Another object of the present invention is to provide a computer program for realizing the authentication method for inter-satellite networking applicable to a dual-layer satellite network.

本发明的另一目的在于提供一种实现所述适用于双层卫星网络的星间组网认证方法的信息数据处理终端。Another object of the present invention is to provide an information data processing terminal for realizing the authentication method for inter-satellite networking applicable to a two-layer satellite network.

本发明的另一目的在于提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行所述的适用于双层卫星网络的星间组网认证方法。Another object of the present invention is to provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the described method for inter-satellite networking authentication suitable for a two-layer satellite network.

本发明通过在认证参数的生成过程中合理使用时间戳达到抗重放攻击的目的。进行身份认证时,GEO和LEO之间需要传递的认证参数有TID、Token和RES。其中,TID的生成需要时间戳TTID,GEO能够借此判断TID的新鲜性;Token中包含有加密后的时间参数TToken,LEO能够结合MAC值判断收到的Token是否为重放消息;RES和Token存在对应关系,能够通过消息返回速度判断RES是否为重放消息。The invention achieves the purpose of anti-replay attack by rationally using the time stamp in the generation process of the authentication parameter. During identity authentication, the authentication parameters that need to be passed between GEO and LEO are TID, Token and RES. Among them, the generation of TID requires timestamp T TID , GEO can use this to judge the freshness of TID; Token contains the encrypted time parameter T Token , LEO can combine the MAC value to judge whether the received Token is a replay message; RES There is a corresponding relationship with the Token, and whether the RES is a replay message can be judged by the message return speed.

本发明该星间身份认证与密钥协商根据星间组网认证的执行阶段分为两个子协议,分别是卫星认证信息注册之前的认证子协议和卫星认证信息注册之后的认证子协议。卫星完成认证信息注册之后,能够通过交换的卫星精确轨道参数对认证参数进行预计算。通过设计预计算机制,完成认证信息注册之后的星间认证可以执行轻量化的组网认证协议,大大提升了认证效率。In the present invention, the inter-satellite identity authentication and key negotiation are divided into two sub-protocols according to the execution stage of the inter-satellite networking authentication, namely the authentication sub-protocol before satellite authentication information registration and the authentication sub-protocol after satellite authentication information registration. After the satellite completes the registration of the authentication information, the authentication parameters can be pre-calculated through the exchanged satellite precise orbit parameters. By designing a pre-computing mechanism, the inter-satellite authentication after the registration of authentication information can implement a lightweight networking authentication protocol, which greatly improves the authentication efficiency.

本发明临时身份生成方法,生成临时身份时,卫星使用由GEO和LEO群组之间共享的IDKey对时间戳TTID和真实身份RID的合成字符串进行密码运算,使用运算结果表示卫星的临时身份。由于临时身份基于时间生成,能够保证LEO每次发起认证,均使用不同的身份信息。The temporary identity generation method of the present invention, when generating the temporary identity, the satellite uses the IDKey shared between the GEO and LEO groups to perform cryptographic operations on the composite string of the timestamp TID and the real identity RID, and the operation result is used to represent the temporary identity of the satellite. . Since the temporary identity is generated based on time, it can ensure that each time LEO initiates authentication, different identity information is used.

本发明认证密钥AuthKey生成方法,该认证密钥由地面认证服务器分配主密钥MainKey基于时间衍生而来。利用了卫星网络时钟高度同步、运行轨迹可预测的特点,GEO和LEO均可以根据预测时间,完成认证密钥的更新。基于预测时间提前计算认证参数,既保证了协议双方计算的同步性,又提升了卫星间的认证效率。The method for generating the authentication key AuthKey of the present invention, the authentication key is derived from the time-based distribution of the master key MainKey by the ground authentication server. Taking advantage of the features of highly synchronized satellite network clocks and predictable running trajectories, both GEO and LEO can update the authentication key according to the predicted time. The authentication parameters are calculated in advance based on the predicted time, which not only ensures the synchronization of the calculation between the two parties of the agreement, but also improves the authentication efficiency between satellites.

本发明减少星间认证过程中计算开销的方法,利用卫星网络时钟高度同步、运行轨道可预测的特点,设计认证预计算步骤,在星上计算机使用率较低的期间,提前计算下次认证时所需要的各参数。下次认证时,只需要进行参数对比就可以实现身份认证,能够有效避免进行星间组网认证时因星上计算机算力不足而带来的认证时延。The method of the present invention reduces the calculation overhead in the process of inter-satellite authentication, utilizes the characteristics of high synchronization of satellite network clocks and predictable running orbits, designs authentication pre-calculation steps, and calculates the next authentication time in advance during the period when the utilization rate of on-board computers is low. required parameters. In the next authentication, only need to compare the parameters to realize the identity authentication, which can effectively avoid the authentication delay caused by insufficient computing power of the on-board computer during the inter-satellite networking authentication.

综上所述,本发明的优点及积极效果为:To sum up, the advantages and positive effects of the present invention are:

本发明实现了卫星之间的双向身份认证。The invention realizes the two-way identity authentication between satellites.

本发明中,由地面站对卫星的认证系统进行初始化后,LEO和GEO就可以独立、自主的进行组网认证。LEO通过判断由本地计算得到的XMAC与Token中的MAC是否相等实现对GEO的身份认证;GEO通过判断本地存储的XRES与返回的RES是否相等实现对LEO的身份认证。双向身份认证机制能够抵御卫星组网过程中受到假冒、篡改等网络攻击,保证了卫星组网的安全、有序进行。In the present invention, after the authentication system of the satellite is initialized by the ground station, LEO and GEO can independently and autonomously perform network authentication. LEO realizes the identity authentication of GEO by judging whether the locally calculated XMAC is equal to the MAC in the Token; GEO realizes the identity authentication of LEO by judging whether the locally stored XRES is equal to the returned RES. The two-way identity authentication mechanism can resist network attacks such as counterfeiting and tampering in the process of satellite networking, ensuring the security and orderly progress of satellite networking.

本发明实现了卫星身份信息的匿名保护。The invention realizes the anonymous protection of satellite identity information.

本发明中,LEO发送认证请求时,使用临时身份,该临时身份由真实身份信息基于时间戳加密生成,能够做到每次认证使用的身份信息各不相同;同时,由于认证预计算机制的设置,认证过程中身份信息的验证主要采用字符比较的方式,并不会使卫星增加额外的计算开销。In the present invention, when LEO sends an authentication request, a temporary identity is used, and the temporary identity is encrypted and generated by real identity information based on timestamp, so that the identity information used for each authentication is different; at the same time, due to the setting of the authentication pre-computing mechanism , the verification of identity information in the authentication process mainly adopts the method of character comparison, which will not increase the extra computational cost of the satellite.

本发明减少了卫星在认证过程中的计算开销。The invention reduces the computational cost of the satellite in the authentication process.

本发明结合卫星网络时钟高度统一、运行轨迹可预测的场景特点,设计了认证预计算步骤,使得卫星能够利用由轨道预测得到的时间参数,提前计算下次认证所需各参数,再次组网时只需要进行简单的参数比较运算即可完成认证。本发明通过设计认证预计算机制,将认证过程中所需的大量计算安排在了卫星处理器的低使用率阶段,从而避免了在多星同时认证的情况下因卫星算力不足而带来的认证时延。Combining the scene characteristics of highly uniform satellite network clocks and predictable running trajectories, the invention designs authentication pre-calculation steps, so that the satellite can use the time parameters obtained from orbit prediction to calculate in advance the parameters required for the next authentication, and when the network is re-established Only need to perform a simple parameter comparison operation to complete the authentication. By designing the authentication pre-computing mechanism, the present invention arranges a large amount of calculation required in the authentication process in the low utilization rate stage of the satellite processor, thereby avoiding the problem of insufficient satellite computing power in the case of simultaneous authentication of multiple satellites. Authentication delay.

附图说明Description of drawings

图1是本发明实施例提供的适用于双层卫星网络的星间组网认证系统图。FIG. 1 is a diagram of an inter-satellite networking authentication system suitable for a two-layer satellite network provided by an embodiment of the present invention.

图2是本发明实施例提供的适用于双层卫星网络的星间组网认证方法流程图。FIG. 2 is a flowchart of an authentication method for inter-satellite networking applicable to a two-layer satellite network provided by an embodiment of the present invention.

图3是本发明实施例提供的低轨卫星的认证流程图。FIG. 3 is a flowchart of authentication of a low-orbit satellite provided by an embodiment of the present invention.

图4是本发明实施例提供的高轨卫星的认证流程图。FIG. 4 is a flowchart of authentication of a high-orbit satellite provided by an embodiment of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

现有技术在无可信第三方参与的情况下,不能实现卫星之间的信任建立和安全通信。本发明提供了一种适用于双层卫星网络的星间组网认证方法,包括:The existing technology cannot realize trust establishment and secure communication between satellites without the participation of a trusted third party. The invention provides an inter-satellite networking authentication method suitable for a double-layer satellite network, including:

LEO通过判断由本地计算得到的XMAC与Token中的MAC是否相等完成对GEO的身份认证;GEO通过判断本地存储的XRES与返回的RES是否相等完成对LEO的身份认证;进行身份认证时,GEO和LEO之间传递的认证参数有TID、Token和RES;其中,TID的生成需要时间戳TTID,GEO借此判断TID的新鲜性;Token中包含加密后的时间参数TToken,LEO结合MAC值判断收到的Token是否为重放消息;RES和Token存在对应关系,GEO能够通过消息返回速度判断RES是否为重放消息;LEO completes the identity authentication of GEO by judging whether the locally calculated XMAC is equal to the MAC in the Token; GEO completes the identity authentication of LEO by judging whether the locally stored XRES is equal to the returned RES; during identity authentication, GEO and The authentication parameters passed between LEOs are TID, Token, and RES; among them, the generation of TID requires timestamp TTID, and GEO uses this to judge the freshness of TID; Token contains the encrypted time parameter T Token , and LEO combines the MAC value to judge the receipt. Whether the received Token is a replay message; there is a corresponding relationship between RES and Token, and GEO can judge whether RES is a replay message through the speed of message return;

LEO发送认证请求时,使用基于时间生成的临时身份,每次认证使用的身份信息各不相同;认证过程中身份信息的验证采用字符比较的方式;生成临时身份时,卫星使用由GEO和LEO群组之间共享的IDKey对时间戳TTID和真实身份RID的合成字符串进行密码运算,使用运算结果表示卫星的临时身份;When LEO sends an authentication request, it uses a temporary identity generated based on time, and the identity information used for each authentication is different; the verification of identity information during the authentication process adopts the method of character comparison; when generating a temporary identity, the satellite uses a group of GEO and LEO groups. The IDKey shared between the groups performs cryptographic operations on the composite string of the timestamp TID and the real identity RID, and uses the operation result to represent the temporary identity of the satellite;

利用卫星网络时钟高度同步、运行轨迹可预测的特点,GEO和LEO均根据预测时间进行认证密钥AuthKey的更新并提前计算认证参数。Taking advantage of the characteristics of highly synchronized satellite network clocks and predictable running trajectories, both GEO and LEO update the authentication key AuthKey according to the predicted time and calculate the authentication parameters in advance.

图1,本发明实施例提供的适用于双层卫星网络的星间组网认证系统包括地面认证服务器、高轨卫星(GEO)认证客户端和低轨卫星(LEO)认证客户端三大模块。1, an inter-satellite networking authentication system suitable for a two-layer satellite network provided by an embodiment of the present invention includes three modules: a ground authentication server, a high-orbit satellite (GEO) authentication client, and a low-orbit satellite (LEO) authentication client.

其中:in:

地面认证服务器,用于负责完成卫星认证系统的初始化,即生成与分发卫星间认证所需要的身份信息、密钥、轨道参数;The ground authentication server is responsible for completing the initialization of the satellite authentication system, that is, generating and distributing the identity information, keys, and orbital parameters required for inter-satellite authentication;

高轨卫星(GEO)认证客户端,用于负责接收来自LEO的认证请求,计算并返回认证令牌Token,计算预期响应XRES和会话密钥CK,检验认证请求中LEO使用的临时身份TID是否有效,检验LEO返回的响应值RES是否正确,为LEO维护一个认证信息表;The high-orbit satellite (GEO) authentication client is responsible for receiving the authentication request from LEO, calculating and returning the authentication token Token, calculating the expected response XRES and session key CK, and checking whether the temporary identity TID used by LEO in the authentication request is valid. , check whether the response value RES returned by LEO is correct, and maintain an authentication information table for LEO;

低轨卫星(LEO)认证客户端,用于负责向GEO提交认证请求,检验GEO返回的认证令牌Token是否有效,计算临时身份TID、响应值RES和会话密钥CK,为GEO维护一个认证信息表。The low-orbit satellite (LEO) authentication client is responsible for submitting an authentication request to GEO, checking whether the authentication token Token returned by GEO is valid, calculating the temporary identity TID, response value RES and session key CK, and maintaining an authentication information for GEO surface.

所述地面认证服务器包括:系统初始化模块、身份信息生成模块、密钥生成模块、轨道分配模块。The ground authentication server includes: a system initialization module, an identity information generation module, a key generation module, and a track distribution module.

该系统初始化模块,用于完成卫星认证系统的初始化,即将身份信息生成模块生成的身份信息、密钥生成模块生成的密钥、轨道分配模块分配的轨道参数写入卫星的认证系统;The system initialization module is used to complete the initialization of the satellite authentication system, that is, the identity information generated by the identity information generation module, the key generated by the key generation module, and the orbit parameters allocated by the orbit allocation module are written into the satellite authentication system;

该身份信息生成模块,用于根据卫星的生产序列、发射顺序等,为卫星生成认证所需要的身份信息;The identity information generation module is used to generate the identity information required for the authentication of the satellite according to the production sequence and launch sequence of the satellite;

该密钥生成模块,用于为卫星生成认证所需要的密钥;The key generation module is used to generate the key required for authentication for the satellite;

该轨道分配模块,用于为卫星分配运行轨道。The orbit allocation module is used for allocating operating orbits for satellites.

所述高轨卫星(GEO)认证客户端包括:系统初始化模块、组网认证模块、轨道预测模块、认证信息管理模块。The high-orbit satellite (GEO) authentication client includes: a system initialization module, a network authentication module, an orbit prediction module, and an authentication information management module.

该系统初始化模块,用于完成星上认证系统的初始化,即从地面认证服务器获取卫星认证所需要的身份信息、密钥、轨道参数;The system initialization module is used to complete the initialization of the on-board authentication system, that is, to obtain the identity information, key and orbital parameters required for satellite authentication from the ground authentication server;

该组网认证模块,包括三个子模块:认证子模块、数据处理子模块,预计算管理子模块。其中,认证子模块,用于和低轨卫星(LEO)认证客户端交互认证所需要的参数;数据处理子模块,用于生成和解析认证参数、检验收到的认证参数是否有效;预计算管理子模块,用于根据认证信息表中数据管理卫星的认证参数预计算,并维护认证信息表;The networking authentication module includes three sub-modules: an authentication sub-module, a data processing sub-module, and a pre-computing management sub-module. Among them, the authentication sub-module is used to interact with the low-orbit satellite (LEO) authentication client for parameters required for authentication; the data processing sub-module is used to generate and parse the authentication parameters, and check whether the received authentication parameters are valid; pre-computing management The sub-module is used to pre-calculate the certification parameters of the satellite according to the data in the certification information table, and maintain the certification information table;

该轨道预测模块,用于计算卫星间下次认证的时间节点;The orbit prediction module is used to calculate the time node of the next certification between satellites;

该认证信息管理模块,用于管理LEO认证信息的注册、更新。The authentication information management module is used to manage the registration and update of LEO authentication information.

所述低轨卫星(LEO)认证客户端包括:系统初始化模块、组网认证模块、轨道预测模块、认证信息管理模块。The low-orbit satellite (LEO) authentication client includes: a system initialization module, a network authentication module, an orbit prediction module, and an authentication information management module.

该系统初始化模块,用于完成星上认证系统的初始化,即从地面认证服务器获取卫星认证所需要的身份信息、密钥、轨道参数;The system initialization module is used to complete the initialization of the on-board authentication system, that is, to obtain the identity information, key and orbital parameters required for satellite authentication from the ground authentication server;

该组网认证模块,包括三个子模块:认证子模块、数据处理子模块,预计算管理子模块。其中,认证子模块,用于和高轨卫星(GEO)认证客户端交互认证所需要的参数;数据处理子模块,用于生成和解析认证参数、检验收到的认证参数是否有效;预计算管理子模块,用于根据认证信息表中数据管理卫星的认证参数预计算,并维护认证信息表;The networking authentication module includes three sub-modules: an authentication sub-module, a data processing sub-module, and a pre-computing management sub-module. Among them, the authentication sub-module is used to interact with the high-orbit satellite (GEO) authentication client for parameters required for authentication; the data processing sub-module is used to generate and parse the authentication parameters, and check whether the received authentication parameters are valid; pre-computing management The sub-module is used to pre-calculate the certification parameters of the satellite according to the data in the certification information table, and maintain the certification information table;

该轨道预测模块,用于计算卫星间下次认证的时间节点;The orbit prediction module is used to calculate the time node of the next certification between satellites;

该认证信息管理模块,用于管理GEO认证信息的注册、更新。The authentication information management module is used to manage the registration and update of GEO authentication information.

如图2-图4所示,本发明实施例提供的适用于双层卫星网络的星间组网认证方法包括认证系统初始化、卫星认证信息注册、星间身份认证与密钥协商、认证预计算四部分。As shown in FIG. 2 to FIG. 4 , an inter-satellite networking authentication method applicable to a two-layer satellite network provided by an embodiment of the present invention includes authentication system initialization, satellite authentication information registration, inter-satellite identity authentication and key negotiation, and authentication pre-calculation Four parts.

下面结合认证系统初始化对本发明作进一步描述。The present invention will be further described below in conjunction with the initialization of the authentication system.

1、认证系统初始化:1. Initialize the authentication system:

步骤1:在发射准备阶段,由卫星向地面认证服务器提交系统初始化申请;Step 1: In the launch preparation stage, the satellite submits a system initialization application to the ground certification server;

步骤2:收到申请后,地面认证服务器根据该卫星的生产编号、发射序列等信息,为卫星生成ID、SGID、IDKey、MainKey和轨道参数。参数生成完成后,将各参数存入卫星的认证数据库,其中:Step 2: After receiving the application, the ground authentication server generates ID, SGID, IDKey, MainKey and orbit parameters for the satellite according to the satellite's production number, launch sequence and other information. After the parameters are generated, each parameter is stored in the satellite's certification database, where:

(1)所述ID是卫星的身份信息,用于星间身份认证协议执行时对卫星节点进行唯一标识;(1) the ID is the identity information of the satellite, and is used to uniquely identify the satellite node when the inter-satellite identity authentication protocol is executed;

(2)所述SGID是卫星的群组身份信息,用于标识该卫星所属群组,属于卫星的辅助身份标识,可结合实际进行配置;(2) The SGID is the group identity information of the satellite, which is used to identify the group to which the satellite belongs, and belongs to the auxiliary identity of the satellite, which can be configured in combination with the actual situation;

(3)所述IDKey是卫星的身份信息的匿名保护密钥,属于GEO与LEO群组之间的共享密钥,用于认证过程中LEO临时身份的生成;(3) the IDKey is the anonymous protection key of the identity information of the satellite, which belongs to the shared key between GEO and the LEO group, and is used for the generation of the LEO temporary identity in the authentication process;

(4)所述MainKey是卫星进行星间认证时的主密钥,属于GEO和LEO卫星之间的共享秘密,用于生成认证密钥AuthKey。(4) The MainKey is the master key when the satellite performs inter-satellite authentication, which belongs to the shared secret between the GEO and LEO satellites, and is used to generate the authentication key AuthKey.

下面结合卫星认证信息注册对本发明作进一步描述。The present invention will be further described below in conjunction with registration of satellite authentication information.

2、卫星认证信息注册2. Satellite certification information registration

卫星认证信息注册在GEO和LEO之间完成首次星间身份认证之后进行,包括以下步骤:The registration of satellite authentication information is carried out after the first inter-satellite identity authentication between GEO and LEO is completed, including the following steps:

步骤1:LEO向GEO发送自身的精确轨道数据,如轨道高度、轨道倾角等进行卫星轨位预测所需要的轨道参数;Step 1: LEO sends its own precise orbit data to GEO, such as orbit height, orbit inclination and other orbit parameters required for satellite orbit position prediction;

步骤2:收到LEO发送的轨道信息后,GEO在认证信息表中添加该LEO的认证信息,即将该LEO的ID连同轨道数据一起存入卫星上的认证信息数据库。注册完成后,GEO向该LEO返回自身的精确轨道数据;Step 2: After receiving the orbit information sent by LEO, GEO adds the authentication information of the LEO to the authentication information table, that is, the ID of the LEO is stored in the authentication information database on the satellite together with the orbit data. After the registration is completed, GEO returns its own precise orbit data to the LEO;

步骤3:收到返回的轨道数据后,LEO采用同样的操作,将该数据存入自身的认证数据库。Step 3: After receiving the returned orbit data, LEO uses the same operation to store the data in its own authentication database.

下面结合星间身份认证与密钥协商对本发明作进一步描述。The present invention will be further described below in conjunction with inter-satellite identity authentication and key agreement.

3、星间身份认证与密钥协商3. Inter-satellite identity authentication and key negotiation

本发明认证方法的星间身份认证与密钥协商根据星间组网认证的执行阶段分为两个子协议,分别是卫星认证信息注册之前的认证子协议和卫星认证信息注册之后的认证子协议。The inter-satellite identity authentication and key negotiation of the authentication method of the present invention is divided into two sub-protocols according to the execution stage of the inter-satellite networking authentication, namely the authentication sub-protocol before satellite authentication information registration and the authentication sub-protocol after satellite authentication information registration.

(1)认证信息注册之前的认证子协议(1) Authentication sub-protocol before authentication information registration

发生在卫星认证信息注册之前的星间身份认证与密钥协商子协议需要执行以下步骤:The inter-satellite identity authentication and key agreement sub-protocol that occurs before the registration of satellite authentication information needs to perform the following steps:

步骤1:LEO生成并发送临时身份。Step 1: LEO generates and sends a temporary identity.

LEO通过星载时钟获取时间戳TTID。基于获取的TTID和预置的IDKey,LEO计算本次认证应使用的临时身份TID,TID=fTID(IDKey,TTID||RID)。其中,fTID是临时身份生成算法,可以参考HMAC-SM3(基于国密SM3算法的哈希消息认证码)实现;RID是卫星的真实身份信息。计算完成后,LEO将TID连同认证请求一起发送给GEO。The LEO obtains the timestamp T TID from the onboard clock. Based on the acquired T TID and the preset IDKey, the LEO calculates the temporary identity TID that should be used for this authentication, TID=f TID (IDKey, T TID ||RID). Among them, f TID is a temporary identity generation algorithm, which can be implemented with reference to HMAC-SM3 (Hash message authentication code based on the national secret SM3 algorithm); RID is the real identity information of the satellite. After the calculation is complete, LEO sends the TID to GEO along with the authentication request.

步骤2:GEO对认证请求的有效性进行判定。Step 2: GEO determines the validity of the authentication request.

2.1)新鲜性验证2.1) Freshness verification

收到TID后,GEO使用预置的IDKey对TID解密。如果得到的TTID满足TTID-T0<ΔTTID,则该请求满足新鲜性要求,继续进行步骤2.2),否则终止认证,释放该连接;After receiving the TID, GEO uses the preset IDKey to decrypt the TID. If the obtained T TID satisfies T TID -T 0 <ΔT TID , then the request meets the freshness requirement, and proceeds to step 2.2), otherwise the authentication is terminated and the connection is released;

2.2)有效性验证2.2) Validity verification

如果解密得到的RID符合预定命名规范,则身份验证通过,执行步骤3,否则终止认证,释放该连接。If the RID obtained by decryption conforms to the predetermined naming specification, the identity verification is passed, and step 3 is performed; otherwise, the authentication is terminated and the connection is released.

步骤3:GEO生成并返回认证令牌。Step 3: GEO generates and returns an authentication token.

3.1)生成认证密钥3.1) Generate authentication key

GEO通过星载时钟获取生成AuthKey所需的时间戳TAuth。基于获取的TAuth和预置的MainKey,GEO计算本次认证使用的认证密钥AuthKey,AuthKey=fAK(MainKey,TAuth)。其中fAK是认证密钥生成算法,用于AuthKey的生成,可以参考ECB-SM4(国密SM4算法电码本模式)实现。GEO obtains the timestamp T Auth required to generate the AuthKey through the onboard clock. Based on the acquired T Auth and the preset MainKey, GEO calculates the authentication key AuthKey used for this authentication, AuthKey=f AK (MainKey, T Auth ). Among them, f AK is the authentication key generation algorithm, which is used for the generation of AuthKey, which can be realized by referring to ECB-SM4 (National Secret SM4 Algorithm Code Book Mode).

3.2)生成时间戳保护序列3.2) Generate timestamp protection sequence

GEO生成一个一次性随机数RAND。基于生成的RAND和AuthKey,GEO计算时间戳保护序列TK,TK=fTK(AuthKey,RAND)。其中,fTK是时间戳保护序列生成算法,可以参考ECB-SM4实现。GEO generates a one-time random number RAND. Based on the generated RAND and AuthKey, GEO calculates the timestamp protection sequence TK, TK =fTK(AuthKey, RAND). Among them, f TK is a timestamp protection sequence generation algorithm, which can be implemented with reference to ECB-SM4.

3.3)生成消息验证码3.3) Generate message verification code

GEO通过星载时钟获取生成认证令牌Token所需的时间戳TToken。基于生成的RAND、获取的TToken、存储的SGID,GEO计算消息验证码MAC,MAC=fMAC(AuthKey,RAND||TToken||SGID)。其中fMAC是消息验证码生成算法,可以参考MAC-SM4实现。GEO obtains the timestamp T Token required to generate the authentication token Token through the onboard clock. Based on the generated RAND, the acquired T Token and the stored SGID, GEO calculates the message authentication code MAC, MAC=f MAC (AuthKey, RAND||T Token ||SGID). Where f MAC is the message verification code generation algorithm, which can be implemented by referring to MAC-SM4.

3.4)生成认证令牌3.4) Generate authentication token

GEO将RAND、TToken、TK、SGID、MAC合并成一个Token,

Figure BDA0001610647000000141
GEO combines RAND, T Token , TK, S GID and MAC into one Token,
Figure BDA0001610647000000141

3.5)生成预期响应和会话密钥3.5) Generate expected response and session key

GEO计算预期响应XRES和会话密钥CK,CK=fCK(AuthKey,RAND),XRES=fRES(CK,RAND)。其中,fCK是认证密钥生成算法,fRES是认证响应值生成算法,可以参考HMAC-SM3实现。GEO computes the expected response XRES and session key CK, CK=f CK (AuthKey, RAND), XRES=f RES (CK, RAND). Among them, f CK is an authentication key generation algorithm, and f RES is an authentication response value generation algorithm, which can be implemented with reference to HMAC-SM3.

认证参数计算完成后,GEO存储XRES和CK,并将Token返回给LEO。After the authentication parameters are calculated, GEO stores XRES and CK, and returns Token to LEO.

步骤4:LEO对认证令牌进行有效性判定。Step 4: LEO determines the validity of the authentication token.

4.1)新鲜性验证4.1) Freshness verification

LEO利用生成的AuthKey和Token中的RAND计算TK。使用TK解密Token得到TToken后,判断TToken-T0<ΔT是否成立。如果TToken满足消息新鲜性要求,执行步骤4.2),否则,认证失败,释放该连接。LEO uses the generated AuthKey and RAND in the Token to calculate TK. After decrypting the Token with TK to obtain the T Token , determine whether T Token -T 0 <ΔT holds. If the T Token meets the message freshness requirement, go to step 4.2), otherwise, the authentication fails and the connection is released.

4.2)身份信息验证4.2) Authentication of identity information

LEO利用生成的AuthKey和Token中的RAND、TToken和SGID,采用相同的方式计算消息验证码XMAC。计算完毕后,判断计算得到的XMAC与Token中的MAC是否相等,如果相等,完成对GEO的认证,如果不等,认证失败,释放该连接。LEO uses the generated AuthKey and RAND, T Token and SGID in the Token to calculate the message verification code XMAC in the same way. After the calculation is completed, it is judged whether the calculated XMAC is equal to the MAC in the Token. If they are equal, the GEO authentication is completed. If they are not equal, the authentication fails and the connection is released.

步骤5:LEO生成认证响应值和会话密钥。Step 5: LEO generates authentication response value and session key.

验证通过后,LEO利用RAND和AuthKey使用fCK和fRES计算出CK和RES,并将RES返回给GEO。After the verification is passed, LEO uses RAND and AuthKey to calculate CK and RES using f CK and f RES , and returns RES to GEO.

步骤6:GEO验证响应值。Step 6: GEO validates the response value.

收到RES后,GEO比较收到的RES和存储的XRES是否相等。如果相等,完成对LEO的认证;否则,认证失败。After receiving the RES, GEO compares the received RES with the stored XRES for equality. If they are equal, the authentication to LEO is completed; otherwise, the authentication fails.

认证信息注册之后的认证子协议Authentication sub-protocol after authentication information registration

发生在认证信息注册之后的身份认证需要使用认证预计算中得到的认证参数,该认证子协议的执行需要进行以下步骤:The identity authentication that occurs after the authentication information is registered needs to use the authentication parameters obtained in the authentication pre-calculation. The execution of the authentication sub-protocol requires the following steps:

步骤1:LEO发送认证请求。Step 1: LEO sends an authentication request.

建立通信链路后,LEO首先判断自身轨道参数是否发生改变。如果出现轨道摄动,由于认证预计算得到的认证参数已经失效,需要终止本协议,并重新执行认证子协议(1)。如果运行轨道正常,LEO将预计算得到的TID和RES连同接入请求一起发送给GEO。After establishing the communication link, LEO first determines whether its own orbital parameters have changed. If orbital perturbation occurs, because the authentication parameters obtained by authentication pre-calculation are invalid, this protocol needs to be terminated, and the authentication sub-protocol (1) needs to be re-executed. If the running track is normal, LEO sends the pre-computed TID and RES to GEO together with the access request.

步骤2:GEO对接入请求进行有效性判定。Step 2: GEO determines the validity of the access request.

收到接入请求后,GEO将收到的TID和RES与存储的XTID和XRES进行比较。如果相等,完成对LEO的认证,并将存储的Token返回给LEO;如果不等,返回错误,重新执行认证子协议(1)。Upon receiving an access request, GEO compares the received TID and RES with the stored XTID and XRES. If they are equal, complete the authentication for LEO and return the stored Token to LEO; if not, return an error and re-execute the authentication sub-protocol (1).

步骤3:LEO对认证令牌进行有效性判定。Step 3: LEO determines the validity of the authentication token.

3.1)新鲜性验证3.1) Freshness verification

LEO利用预计算得到的AuthKey和Token中的RAND计算TK。使用TK解密Token得到TToken后,判断TToken-T0<ΔT是否成立。如果TToken满足消息新鲜性要求,执行步骤3.2),否则,认证失败,释放该连接。LEO uses the pre-calculated AuthKey and RAND in the Token to calculate TK. After decrypting the Token with TK to obtain the T Token , determine whether T Token -T 0 <ΔT holds. If the T Token meets the message freshness requirement, go to step 3.2), otherwise, the authentication fails and the connection is released.

3.2)身份信息验证3.2) Authentication of identity information

LEO利用生成的AuthKey和Token中的RAND、TToken和SGID,采用相同的方式计算消息验证码XMAC。计算完毕后,判断计算得到的XMAC与Token中的MAC是否相等,如果相等,完成对GEO的认证,如果不等,认证失败,释放该连接。LEO uses the generated AuthKey and RAND, T Token and SGID in the Token to calculate the message verification code XMAC in the same way. After the calculation is completed, it is judged whether the calculated XMAC is equal to the MAC in the Token. If they are equal, the GEO authentication is completed. If they are not equal, the authentication fails and the connection is released.

步骤4:LEO生成会话密钥。Step 4: LEO generates a session key.

如果验证通过,LEO利用预计算得到的AuthKey和Token中的RAND使用fCK计算出CK。If the verification is passed, LEO uses the pre-calculated AuthKey and RAND in the Token to calculate the CK using f CK .

下面结合认证预计算对本发明作进一步描述。The present invention will be further described below in conjunction with authentication pre-computation.

4、认证预计算4. Authentication pre-calculation

本发明认证方法的认证预计算根据星间组网认证的执行阶段分为两个子协议,分别是卫星认证信息注册之前的预计算子协议和卫星认证信息注册之后的预计算子协议。The authentication pre-calculation of the authentication method of the present invention is divided into two sub-protocols according to the execution stage of the inter-satellite networking authentication, namely the pre-calculation sub-protocol before satellite authentication information registration and the pre-calculation sub-protocol after satellite authentication information registration.

(1)认证信息注册之前的认证预计算子协议(1) Authentication pre-computation sub-protocol before authentication information registration

发生在卫星认证信息注册之前的认证预计算子协议需要执行以下步骤:The authentication pre-computation sub-protocol that occurs prior to registration of satellite authentication information requires the following steps:

步骤1:LEO向GEO申请一个空白Token。Step 1: LEO applies for a blank Token from GEO.

步骤2:GEO计算并返回一个空白Token。Step 2: GEO calculates and returns a blank Token.

步骤3:LEO进行认证预计算Step 3: LEO performs authentication pre-computation

LEO通过轨位预测技术计算下次与目标GEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数。接下来,LEO分别通过TTID和TAuth生成下次认证时应该使用的TID和AuthKey。基于GEO返回的空白Token,LEO计算下次认证应使用的RES。计算完毕后,LEO存储TID与RES。LEO calculates the next time for authentication with the target GEO through the orbit prediction technology, and obtains three time parameters: T TID , T Auth , and T Token . Next, LEO generates the TID and AuthKey that should be used in the next authentication through T TID and T Auth respectively. Based on the blank Token returned by GEO, LEO calculates the RES that should be used for the next authentication. After the calculation, LEO stores the TID and RES.

步骤4:GEO进行认证预计算Step 4: GEO performs certification precomputing

GEO通过轨位预测技术计算下次与目标LEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数。基于获取的时间参数、存储的卫星ID、存储的密钥IDKey和MainKey,GEO计算下次认证时需要用到的XTID、XRES、Token、CK。计算完毕后,GEO存储XTID、XRES、、Token、CK。GEO calculates the next time for authentication with the target LEO through orbit prediction technology, and obtains three time parameters: T TID , T Auth , and T Token . Based on the acquired time parameter, stored satellite ID, stored key IDKey and MainKey, GEO calculates the XTID, XRES, Token, and CK to be used for the next authentication. After the calculation is completed, GEO stores XTID, XRES, , Token, and CK.

(2)认证信息注册之后的认证预计算子协议(2) Authentication pre-computation sub-protocol after authentication information registration

发生在卫星认证信息注册之后的认证预计算子协议需要执行以下步骤:步骤1:LEO进行认证预计算The authentication pre-computation sub-protocol that occurs after the registration of satellite authentication information needs to perform the following steps: Step 1: LEO performs authentication pre-computation

LEO通过轨位预测技术计算下次与目标GEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数。接下来,LEO分别通过TTID和TAuth生成下次认证时应该使用的TID和AuthKey。基于认证子协议(2)中GEO返回Token,LEO calculates the next time for authentication with the target GEO through the orbit prediction technology, and obtains three time parameters: T TID , T Auth , and T Token . Next, LEO generates the TID and AuthKey that should be used in the next authentication through T TID and T Auth respectively. Based on the GEO return Token in the authentication sub-protocol (2),

LEO计算下次认证应使用的RES。计算完毕后,LEO存储TID与RES。LEO calculates the RES that should be used for the next certification. After the calculation, LEO stores the TID and RES.

步骤2:GEO进行认证预计算Step 2: GEO performs authentication precomputing

GEO通过轨位预测技术计算下次与目标LEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数。基于获取的时间参数、存储的卫星ID、存储的密钥IDKey和MainKey,GEO计算下次认证时需要用到的XTID、XRES、Token、CK。计算完毕后,GEO存储XTID、XRES、Token、CK。GEO calculates the next time for authentication with the target LEO through orbit prediction technology, and obtains three time parameters: T TID , T Auth , and T Token . Based on the acquired time parameter, stored satellite ID, stored key IDKey and MainKey, GEO calculates the XTID, XRES, Token, and CK to be used for the next authentication. After the calculation, GEO stores XTID, XRES, Token, and CK.

上述步骤1和步骤2分别由LEO和GEO在处理器空闲时间独立计算,无需考虑执行的先后顺序。The above steps 1 and 2 are independently calculated by LEO and GEO during the idle time of the processor, without considering the sequence of execution.

下面结合仿真实验对本发明作进一步描述。The present invention will be further described below in conjunction with simulation experiments.

在上述认证方法中,如果不考虑星间组网认证过程中认证预计算带来的通信和计算开销(因为本发明认证方法的核心思想就是通过设计认证预计算机制,减少卫星进行认证交互时的开销),本发明认证方法的认证开销如下:In the above authentication method, if the communication and calculation overhead brought by authentication pre-computation during the inter-satellite networking authentication process is not considered (because the core idea of the authentication method of the present invention is to design the authentication pre-computation mechanism to reduce the time when the satellite performs authentication interaction overhead), the authentication overhead of the authentication method of the present invention is as follows:

(1)交互次数,发生在卫星认证信息注册之前的身份认证需要3次会话交互,发生在卫星认证信息注册之后的身份认证需要2次会话交互;(1) Number of interactions, identity authentication that occurs before satellite authentication information registration requires 3 session interactions, and identity authentication that occurs after satellite authentication information registration requires 2 session interactions;

(2)核心运算次数,发生在卫星认证信息注册之前的身份认证需要2B+2H+2M+2C次运算,发生在卫星认证信息注册之后的身份认证需要1M+2C次运算,其中B代表进行一次分组加密,H代表进行一次哈希运算,M代表一次消息验证码运算,C代表一次比较运算;(2) Number of core operations, identity authentication that occurs before satellite authentication information registration requires 2B+2H+2M+2C operations, and identity authentication that occurs after satellite authentication information registration requires 1M+2C operations, where B represents one operation Block encryption, H represents a hash operation, M represents a message verification code operation, and C represents a comparison operation;

(3)计算时间,发生在卫星认证信息注册之前的身份认证需要20.3微秒,发生在卫星认证信息注册之后的身份认证需要5.9微秒,上述实验环境为i5 4590+8G RAM的计算机,采用SM3-256bit进行Hash计算,SM3-HMAC-256bit进行MAC计算,SM4-128bit进行分组加密,采用长度为128bits的随机数,长度为48bits的时间戳。(3) Computing time, the identity authentication that occurs before the registration of satellite authentication information takes 20.3 microseconds, and the identity authentication that occurs after the registration of satellite authentication information takes 5.9 microseconds. The above experimental environment is a computer with i5 4590+8G RAM, using SM3 -256bit for Hash calculation, SM3-HMAC-256bit for MAC calculation, SM4-128bit for block encryption, using a random number with a length of 128bits and a timestamp with a length of 48bits.

由上述实验结果可得,使用本认证方法时,由于认证预计算机制的设置,卫星之间只要完成认证信息的注册,就可以通过较少的开销完成星间组网认证,同时以较低的开销实现LEO身份信息的匿名保护。It can be seen from the above experimental results that when using this authentication method, due to the setting of the authentication pre-computation mechanism, as long as the registration of the authentication information is completed between the satellites, the inter-satellite networking authentication can be completed with less overhead, and at the same time, the satellite network authentication can be completed at a lower cost. Overhead to achieve anonymity protection of LEO identity information.

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输)。所述计算机可读取存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘SolidState Disk(SSD))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in whole or in part in the form of a computer program product, the computer program product includes one or more computer instructions. When the computer program instructions are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.)). The computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media. The usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.

Claims (7)

1.一种适用于双层卫星网络的星间组网认证方法,其特征在于,所述适用于双层卫星网络的星间组网认证方法具体包括:1. an inter-satellite networking authentication method applicable to a double-layer satellite network, is characterized in that, the described inter-satellite networking authentication method applicable to a double-layer satellite network specifically comprises: 第一步,认证系统初始化,生成与分发卫星间认证所需要的身份信息、密钥、轨道参数;The first step is to initialize the authentication system to generate and distribute the identity information, keys, and orbital parameters required for inter-satellite authentication; 第二步,卫星认证信息注册,收到LEO发送的轨道信息后,GEO在认证信息表中添加该LEO的认证信息,将LEO的ID连同轨道数据一起存入卫星上的认证信息数据库;注册完成后,GEO向LEO返回自身的精确轨道数据;The second step is to register the satellite certification information. After receiving the orbit information sent by LEO, GEO adds the certification information of the LEO to the certification information table, and stores the LEO ID together with the orbit data into the certification information database on the satellite; the registration is completed After that, GEO returns its own precise orbit data to LEO; 卫星认证信息注册具体包括:The registration of satellite certification information specifically includes: (2a)LEO向GEO发送自身的精确轨道数据,包括进行卫星轨位预测的轨道高度、轨道倾角道参数;(2a) LEO sends its own precise orbit data to GEO, including orbital height and orbital inclination parameters for satellite orbital position prediction; (2b)收到LEO发送的轨道信息后,GEO在认证信息表中添加LEO的认证信息,将LEO的ID连同轨道数据一起存入卫星上的认证信息数据库;注册完成后,GEO向LEO返回自身的精确轨道数据;(2b) After receiving the orbit information sent by LEO, GEO adds the authentication information of LEO to the authentication information table, and stores the LEO ID together with the orbit data in the authentication information database on the satellite; after the registration is completed, GEO returns itself to LEO accurate orbital data; (2c)收到返回的轨道数据后,LEO将数据存入自身的认证数据库;(2c) After receiving the returned orbit data, LEO stores the data in its own authentication database; 第三步,星间身份认证与密钥协商,根据认证阶段选择执行卫星认证信息注册之前的认证子协议和卫星认证信息注册之后的认证子协议;The third step, inter-satellite identity authentication and key negotiation, according to the authentication stage, select the authentication sub-protocol before the satellite authentication information registration and the authentication sub-protocol after the satellite authentication information registration; 第三步,星间身份认证与密钥协商具体包括:The third step, inter-satellite identity authentication and key negotiation specifically includes: 执行卫星认证信息注册之前的认证子协议和卫星认证信息注册之后的认证子协议;Execute the authentication sub-protocol before satellite authentication information registration and the authentication sub-protocol after satellite authentication information registration; 所述认证信息注册之前的认证子协议包括:The authentication sub-protocol before the authentication information registration includes: (3a)LEO通过星载时钟获取时间戳TTID;基于获取的TTID和预置的IDKey,LEO计算本次认证应使用的临时身份TID,TID=fTID(IDKey,TTID||RID);计算完成后,LEO将TID连同认证请求一起发送给GEO;(3a) LEO obtains the time stamp T TID through the onboard clock; based on the obtained T TID and the preset IDKey, LEO calculates the temporary identity TID that should be used in this authentication, TID=f TID (IDKey, T TID ||RID) ; After the calculation is completed, LEO sends the TID together with the authentication request to GEO; (3b)收到TID后,GEO使用预置的IDKey对TID解密,并通过解密得到的TTID和RID对认证请求的新鲜性和有效性进行判定;(3b) After receiving the TID, GEO uses the preset IDKey to decrypt the TID, and judges the freshness and validity of the authentication request through the decrypted TID and RID; (3c)GEO通过星载时钟获取生成AuthKey所需的时间戳TAuth;基于获取的TAuth和预置的MainKey,AuthKey=fAK(MainKey,TAuth);GEO生成一个一次性随机数RAND;基于生成的RAND和AuthKey,GEO计算时间戳保护序列TK,TK=fTK(AuthKey,RAND);GEO通过星载时钟获取生成Token时间戳TToken;基于生成的RAND、获取的TToken、存储的SGID,GEO计算消息验证码MAC,MAC=fMAC(AuthKey,RAND||TToken||SGID);GEO将RAND、TToken、TK、SGID、MAC合并成一个认证令牌Token,
Figure FDA0002613313720000021
并计算预期响应XRES和会话密钥CK,CK=fCK(AuthKey,RAND),XRES=fRES(CK,RAND);
(3c) GEO obtains the timestamp T Auth required to generate the AuthKey through the onboard clock; based on the acquired T Auth and the preset MainKey, AuthKey=f AK (MainKey, T Auth ); GEO generates a one-time random number RAND; Based on the generated RAND and AuthKey, GEO calculates the timestamp protection sequence TK, TK=f TK (AuthKey, RAND); GEO obtains and generates a Token timestamp T Token through the onboard clock; based on the generated RAND, the acquired T Token , the stored SGID, GEO calculates the message verification code MAC, MAC=f MAC (AuthKey, RAND||T Token ||SGID); GEO combines RAND, T Token , TK, SGID, and MAC into an authentication token Token,
Figure FDA0002613313720000021
And calculate the expected response XRES and session key CK, CK=f CK (AuthKey, RAND), XRES=f RES (CK, RAND);
(3d)LEO使用(3b)-(3c)的方式生成的AuthKey,并利用生成的AuthKey对Token的新鲜性和有效性进行判定;(3d) LEO uses the AuthKey generated by (3b)-(3c), and uses the generated AuthKey to determine the freshness and validity of the Token; (3e)验证后,LEO计算出CK和RES,并将RES返回给GEO;(3e) After verification, LEO calculates CK and RES, and returns RES to GEO; (3f)收到RES后,GEO比较收到的RES和存储的XRES是否相等;完成对LEO的认证;否则,认证失败;(3f) After receiving the RES, GEO compares whether the received RES and the stored XRES are equal; completes the authentication of the LEO; otherwise, the authentication fails; 所述认证信息注册之后的认证子协议包括:The authentication sub-protocol after the authentication information is registered includes: 建立通信链路后,LEO首先判断自身轨道参数是否发生改变;如果出现轨道摄动,认证预计算得到的认证参数失效,终止本协议,重新执行认证信息注册之前的认证子协议;如果运行轨道正常,LEO将预计算得到的TID和RES连同接入请求一起发送给GEO;After the communication link is established, LEO first determines whether its own orbital parameters have changed; if orbital perturbation occurs, the authentication parameters obtained by the authentication pre-calculation are invalid, terminate this protocol, and re-execute the authentication sub-protocol before the authentication information registration; if the running orbit is normal , LEO sends the pre-computed TID and RES together with the access request to GEO; 收到接入请求后,GEO将收到的TID和RES与存储的XTID和XRES进行比较;若相等,完成对LEO的认证,并将存储的Token返回给LEO;若不等,返回错误,重新执行认证子协议;After receiving the access request, GEO compares the received TID and RES with the stored XTID and XRES; if they are equal, completes the authentication of LEO, and returns the stored Token to LEO; if not, returns an error, and restarts Execute the authentication sub-protocol; LEO利用预计算得到的AuthKey对认证令牌进行有效性判定;LEO uses the pre-calculated AuthKey to determine the validity of the authentication token; 验证通过,LEO利用AuthKey计算出会话密钥CK;If the verification is passed, LEO uses AuthKey to calculate the session key CK; 第四步,认证预计算具体包括:The fourth step, the authentication pre-calculation specifically includes: 执行卫星认证信息注册之前的预计算子协议和卫星认证信息注册之后的预计算子协议;Execute the pre-computing sub-protocol before satellite certification information registration and the pre-computing sub-protocol after satellite certification information registration; 所述认证信息注册之前的认证预计算子协议,具体包括:The authentication pre-calculation sub-protocol before the authentication information is registered, specifically includes: (4a)LEO向GEO申请一个空白Token;(4a) LEO applies to GEO for a blank Token; (4b)GEO计算并返回一个空白Token;(4b) GEO calculates and returns a blank Token; (4c)LEO通过轨位预测技术计算下次与目标GEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数;接着,LEO分别通过TTID和TAuth生成下次认证的TID和AuthKey;基于GEO返回的空白Token,LEO计算下次认证的RES;计算完毕后,LEO存储TID与RES;(4c) LEO calculates the time point for the next authentication with the target GEO through the orbit prediction technology, and obtains three time parameters T TID , T Auth , and T Token ; then, LEO generates the next authentication through T TID and T Auth respectively. TID and AuthKey; based on the blank Token returned by GEO, LEO calculates the RES for the next authentication; after the calculation, LEO stores the TID and RES; (4d)GEO通过轨位预测技术计算下次与目标LEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数;基于获取的时间参数、存储的卫星ID、存储的密钥IDKey和MainKey,GEO计算下次认证的XTID、XRES、Token、CK;计算完毕后,GEO存储XTID、XRES、Token、CK;(4d) GEO calculates the next time for authentication with the target LEO through the orbit position prediction technology, and obtains three time parameters T TID , T Auth , and T Token ; based on the obtained time parameters, stored satellite ID, stored key IDKey and MainKey, GEO calculates the XTID, XRES, Token, and CK for the next authentication; after the calculation, GEO stores the XTID, XRES, Token, and CK; 所述认证信息注册之后的认证预计算子协议具体包括:The authentication pre-computing sub-protocol after the authentication information is registered specifically includes: LEO通过轨位预测技术计算下次与目标GEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数;接着,LEO分别通过TTID和TAuth生成下次认证的TID和AuthKey;基于认证子协议中GEO返回Token,LEO计算下次认证的RES;计算完毕后,LEO存储TID与RES;LEO calculates the time point for the next authentication with the target GEO through orbit prediction technology, and obtains three time parameters T TID , T Auth , and T Token ; then, LEO generates TID and AuthKey for the next authentication through T TID and T Auth respectively ;Based on the Token returned by GEO in the authentication sub-protocol, LEO calculates the RES for the next authentication; after the calculation, LEO stores the TID and RES; GEO通过轨位预测技术计算下次与目标LEO进行认证的时间点,得到TTID、TAuth、TToken三个时间参数;基于获取的时间参数、存储的卫星ID、存储的密钥IDKey和MainKey,GEO计算下次认证的XTID、XRES、Token、CK;计算完毕后,GEO存储XTID、XRES、Token、CK;GEO calculates the next time for authentication with the target LEO through orbit prediction technology, and obtains three time parameters T TID , T Auth , and T Token ; based on the acquired time parameters, stored satellite ID, stored key IDKey and MainKey , GEO calculates the XTID, XRES, Token, and CK for the next authentication; after the calculation, GEO stores the XTID, XRES, Token, and CK; 第四步,认证预计算,根据认证阶段选择执行卫星认证信息注册之前的预计算子协议和卫星认证信息注册之后的预计算子协议。The fourth step is authentication pre-computation, and the pre-computing sub-protocol before satellite authentication information registration and the pre-computation sub-protocol after satellite authentication information registration are selected according to the authentication stage.
2.如权利要求1所述的适用于双层卫星网络的星间组网认证方法,其特征在于,第一步,认证系统初始化具体包括:2. the inter-satellite networking authentication method applicable to double-layer satellite network as claimed in claim 1, is characterized in that, the first step, authentication system initialization specifically comprises: (1a)在发射准备阶段,由卫星向地面认证服务器提交系统初始化申请;(1a) During the launch preparation stage, the satellite submits a system initialization application to the ground certification server; (1b)收到申请后,地面认证服务器为卫星生成和分发身份信息、密钥、轨道参数,包括身份信息ID、群组身份信息SGID、卫星的身份信息的匿名保护密钥IDKey、卫星的认证主密钥MainKey。(1b) After receiving the application, the ground authentication server generates and distributes identity information, keys, and orbital parameters for the satellite, including identity information ID, group identity information SGID, the anonymous protection key IDKey of the satellite's identity information, and the authentication of the satellite. MainKey MainKey. 3.一种实现权利要求1~2任意一项所述适用于双层卫星网络的星间组网认证方法的信息数据处理终端。3. An information data processing terminal that implements the authentication method for inter-satellite networking applicable to a two-layer satellite network according to any one of claims 1 to 2. 4.一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1~2任意一项所述的适用于双层卫星网络的星间组网认证方法。4. A computer-readable storage medium, comprising instructions that, when executed on a computer, cause the computer to execute the inter-satellite networking authentication method applicable to a two-layer satellite network according to any one of claims 1 to 2. 5.一种适用于如权利要求1所述的双层卫星网络的星间组网认证方法的适用于双层卫星网络的星间组网认证系统,其特征在于,所述适用于双层卫星网络的星间组网认证系统包括:5. An inter-satellite networking authentication system applicable to a double-layer satellite network for the method for inter-satellite networking authentication of a double-layer satellite network as claimed in claim 1, wherein the described method is applicable to a double-layer satellite network. The inter-satellite networking authentication system of the network includes: 地面认证服务器,用于完成卫星认证系统的初始化,生成与分发卫星间认证的身份信息、密钥、轨道参数;The ground authentication server is used to complete the initialization of the satellite authentication system, and to generate and distribute the identity information, keys, and orbit parameters for inter-satellite authentication; 高轨卫星GEO认证客户端,用于接收来自LEO的认证请求,计算并返回认证令牌Token,计算预期响应XRES和会话密钥CK,检验认证请求中LEO使用的临时身份TID是否有效,检验LEO返回的响应值RES是否正确,为LEO维护一个认证信息表;The high-orbit satellite GEO authentication client is used to receive the authentication request from LEO, calculate and return the authentication token Token, calculate the expected response XRES and session key CK, verify whether the temporary identity TID used by LEO in the authentication request is valid, and verify the LEO Whether the returned response value RES is correct, maintain an authentication information table for LEO; 低轨卫星(LEO)认证客户端,用于向GEO提交认证请求,检验GEO返回的认证令牌Token是否有效,计算临时身份TID、响应值RES和会话密钥CK,为GEO维护一个认证信息表。The low-orbit satellite (LEO) authentication client is used to submit an authentication request to GEO, check whether the authentication token Token returned by GEO is valid, calculate the temporary identity TID, response value RES and session key CK, and maintain an authentication information table for GEO . 6.如权利要求5所述的适用于双层卫星网络的星间组网认证系统,其特征在于,地面认证服务器包括:6. The inter-satellite networking authentication system applicable to a double-layer satellite network as claimed in claim 5, wherein the ground authentication server comprises: 系统初始化模块,用于完成卫星认证系统的初始化,将身份信息生成模块生成的身份信息、密钥生成模块生成的密钥、轨道分配模块分配的轨道参数写入卫星的认证系统;The system initialization module is used to complete the initialization of the satellite authentication system, and write the identity information generated by the identity information generation module, the key generated by the key generation module, and the orbit parameters allocated by the orbit allocation module into the satellite authentication system; 身份信息生成模块,用于根据卫星的生产序列、发射顺序,为卫星生成认证所需要的身份信息;The identity information generation module is used to generate the identity information required for the authentication of the satellite according to the production sequence and launch sequence of the satellite; 密钥生成模块,用于为卫星生成认证所需要的密钥;The key generation module is used to generate the key required for authentication for the satellite; 轨道分配模块,用于为卫星分配运行轨道;Orbit allocation module for allocating operating orbits to satellites; 高轨卫星GEO认证客户端包括:High-orbit satellite GEO certified clients include: 系统初始化模块,用于完成星上认证系统的初始化,从地面认证服务器获取卫星认证所需要的身份信息、密钥、轨道参数;The system initialization module is used to complete the initialization of the on-board authentication system, and obtain the identity information, key and orbit parameters required for satellite authentication from the ground authentication server; 组网认证模块,包括认证子模块、数据处理子模块及预计算管理子模块;Network authentication module, including authentication sub-module, data processing sub-module and pre-computing management sub-module; 认证子模块,用于和低轨卫星LEO认证客户端交互认证需要的参数;The authentication sub-module is used to interact with the LEO satellite LEO authentication client to authenticate the required parameters; 数据处理子模块,用于生成和解析认证参数、检验收到的认证参数是否有效;The data processing sub-module is used to generate and parse authentication parameters and check whether the received authentication parameters are valid; 预计算管理子模块,用于根据认证信息表中数据管理卫星的认证参数预计算,并维护认证信息表;The pre-calculation management sub-module is used to pre-calculate the authentication parameters of the data management satellites in the authentication information table, and maintain the authentication information table; 轨道预测模块,用于计算卫星间下次认证的时间节点;The orbit prediction module is used to calculate the time node of the next certification between satellites; 认证信息管理模块,用于管理LEO认证信息的注册、更新;The authentication information management module is used to manage the registration and update of LEO authentication information; 低轨卫星LEO认证客户端包括:Low-orbit satellite LEO certified clients include: 系统初始化模块,用于完成星上认证系统的初始化,从地面认证服务器获取卫星认证所需要的身份信息、密钥、轨道参数;The system initialization module is used to complete the initialization of the on-board authentication system, and obtain the identity information, key and orbit parameters required for satellite authentication from the ground authentication server; 组网认证模块,包括认证子模块、数据处理子模块及预计算管理子模块;Network authentication module, including authentication sub-module, data processing sub-module and pre-computing management sub-module; 认证子模块,用于和高轨卫星GEO认证客户端交互认证所需要的参数;Authentication sub-module, used for the parameters required for interactive authentication with the high-orbit satellite GEO authentication client; 数据处理子模块,用于生成和解析认证参数、检验收到的认证参数是否有效;The data processing sub-module is used to generate and parse authentication parameters and check whether the received authentication parameters are valid; 预计算管理子模块,用于根据认证信息表中数据管理卫星的认证参数预计算,并维护认证信息表;The pre-calculation management sub-module is used to pre-calculate the authentication parameters of the data management satellites in the authentication information table, and maintain the authentication information table; 轨道预测模块,用于计算卫星间下次认证的时间节点;The orbit prediction module is used to calculate the time node of the next certification between satellites; 认证信息管理模块,用于管理GEO认证信息的注册、更新。The authentication information management module is used to manage the registration and update of GEO authentication information. 7.一种搭载有权利要求5~6任意一项所述适用于双层卫星网络的星间组网认证系统的信息数据处理终端。7. An information data processing terminal equipped with the inter-satellite networking authentication system applicable to a two-layer satellite network according to any one of claims 5 to 6.
CN201810262750.4A 2018-03-28 2018-03-28 Inter-satellite networking authentication system and method suitable for double-layer satellite network Active CN108566240B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810262750.4A CN108566240B (en) 2018-03-28 2018-03-28 Inter-satellite networking authentication system and method suitable for double-layer satellite network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810262750.4A CN108566240B (en) 2018-03-28 2018-03-28 Inter-satellite networking authentication system and method suitable for double-layer satellite network

Publications (2)

Publication Number Publication Date
CN108566240A CN108566240A (en) 2018-09-21
CN108566240B true CN108566240B (en) 2020-10-27

Family

ID=63533118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810262750.4A Active CN108566240B (en) 2018-03-28 2018-03-28 Inter-satellite networking authentication system and method suitable for double-layer satellite network

Country Status (1)

Country Link
CN (1) CN108566240B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039436B (en) * 2018-10-23 2020-09-15 中国科学院信息工程研究所 A method and system for satellite security access authentication
CN109547213B (en) * 2018-12-14 2021-08-10 西安电子科技大学 Inter-satellite networking authentication system and method suitable for low-earth-orbit satellite network
CN113965925B (en) * 2020-07-01 2023-08-25 大唐移动通信设备有限公司 Dynamic authentication method, device, equipment and readable storage medium
CN111897816B (en) * 2020-07-16 2024-04-02 中国科学院上海微系统与信息技术研究所 Interaction method of calculation information between satellites and generation method of information table applied by same
CN112019258B (en) * 2020-09-04 2022-03-22 中国电子科技集团公司第五十四研究所 GEO and LEO mixed constellation and design method thereof
CN112291783B (en) * 2020-10-28 2024-05-31 中国科学院空天信息创新研究院 Text authentication method and system, transmitting end and receiving end
CN112671452B (en) * 2020-12-17 2023-03-14 西安电子科技大学 Heterogeneous satellite network management method, system, medium, equipment, terminal and application
CN112953726B (en) * 2021-03-01 2022-09-06 西安电子科技大学 Authentication method, system and application for satellite-to-ground and inter-satellite networking in a fusion double-layer satellite network
CN114007219B (en) * 2021-10-25 2024-03-26 北京计算机技术及应用研究所 Invisible identification access authentication method for low-orbit satellite communication
CN114466359B (en) * 2022-01-07 2024-03-01 中国电子科技集团公司电子科学研究院 Distributed user authentication system and authentication method suitable for low orbit satellite network
CN114584975B (en) * 2022-02-23 2023-09-15 重庆邮电大学 An SDN-based anti-quantum satellite network access authentication method
CN114828005A (en) * 2022-05-24 2022-07-29 西安电子科技大学 Enhanced inter-satellite networking authentication method based on location key
CN115334505B (en) * 2022-06-21 2024-05-14 西安电子科技大学 Multi-mode intelligent terminal secure communication method and system for 5G+Beidou
CN117156433B (en) * 2023-10-31 2024-02-06 航天宏图信息技术股份有限公司 Satellite internet key management distribution method, device and deployment architecture
CN117278109B (en) * 2023-11-20 2024-03-01 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Satellite in-orbit security anomaly identification method, system and computer readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222329A (en) * 2006-08-17 2008-07-16 上海航天计算机系统工程有限公司 Mixed type distributed authentication system
CN102379141A (en) * 2009-02-05 2012-03-14 北方电讯网络有限公司 Method and system for user equipment location determination on a wireless transmission system
CN106059650A (en) * 2016-05-24 2016-10-26 北京交通大学 Air-ground integrated network architecture and data transmission method based on SDN and NFV technology
CN107094047A (en) * 2017-06-09 2017-08-25 西安电子科技大学 Based on pre-stored and segment transmissions the double layer minipellet method for routing of grouped data
CN107409051A (en) * 2015-03-31 2017-11-28 深圳市大疆创新科技有限公司 Authentication system and method for generating flight controls
CN107615358A (en) * 2015-03-31 2018-01-19 深圳市大疆创新科技有限公司 Authentication system and method for identifying authorized participants

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040059939A1 (en) * 2002-09-13 2004-03-25 Sun Microsystems, Inc., A Delaware Corporation Controlled delivery of digital content in a system for digital content access control
US7602908B2 (en) * 2003-12-22 2009-10-13 Aol Llc System and method for using a streaming protocol
US9515826B2 (en) * 2010-11-18 2016-12-06 The Boeing Company Network topology aided by smart agent download

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222329A (en) * 2006-08-17 2008-07-16 上海航天计算机系统工程有限公司 Mixed type distributed authentication system
CN102379141A (en) * 2009-02-05 2012-03-14 北方电讯网络有限公司 Method and system for user equipment location determination on a wireless transmission system
CN107409051A (en) * 2015-03-31 2017-11-28 深圳市大疆创新科技有限公司 Authentication system and method for generating flight controls
CN107615358A (en) * 2015-03-31 2018-01-19 深圳市大疆创新科技有限公司 Authentication system and method for identifying authorized participants
CN106059650A (en) * 2016-05-24 2016-10-26 北京交通大学 Air-ground integrated network architecture and data transmission method based on SDN and NFV technology
CN107094047A (en) * 2017-06-09 2017-08-25 西安电子科技大学 Based on pre-stored and segment transmissions the double layer minipellet method for routing of grouped data

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A Highly Secure Identity-Based Authenticated;Zhong Yantao;《Exchange Protocol for Satellite Communication》;20101231;全文 *
A Lightweight Certificate-based Source Authentication Protocol for Group Communication in Hybrid Wireless_Satellite Networks;Ayan Roy-Chowdhury;《 2008 IEEE Global Telecommunications Conference》;20081208;全文 *
Satellite over Satellite (SOS) Network_ A Novel Concept of Hierarchical Architecture and Routing in Satellite Network;Jae-Wook Lee;《Proceedings 25th Annual IEEE Conference on Local Computer Networks》;20020806;全文 *
Security analysis of an authentication and key agreement protocol;Yuanyuan Zhang;《INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS》;20130808;全文 *
开放网络环境下敏感信息传输安全模型研究;刘宇新;《中国优秀硕士学位论文全文库》;20150415;全文 *
空间信息网基于证书的混合式公钥基础设施;任方;《吉林大学学报(工学版)》;20120315;全文 *
面向多级安全的网络安全通信模型及其关键技术研究;曹利峰;《中国博士学位论文全文数据库》;20140131;全文 *

Also Published As

Publication number Publication date
CN108566240A (en) 2018-09-21

Similar Documents

Publication Publication Date Title
CN108566240B (en) Inter-satellite networking authentication system and method suitable for double-layer satellite network
CN109547213B (en) Inter-satellite networking authentication system and method suitable for low-earth-orbit satellite network
CN109218018B (en) Identity-based unmanned aerial vehicle key management and networking authentication system and method
US10243742B2 (en) Method and system for accessing a device by a user
CN101981890B (en) Systems and methods for secure workgroup management and communication
CN101902476B (en) Method for authenticating identity of mobile peer-to-peer user
US8527762B2 (en) Method for realizing an authentication center and an authentication system thereof
US11044082B2 (en) Authenticating secure channel establishment messages based on shared-secret
CN112953726B (en) Authentication method, system and application for satellite-to-ground and inter-satellite networking in a fusion double-layer satellite network
US12132839B2 (en) Decentralised authentication
CN109688583B (en) A data encryption method in a satellite-to-earth communication system
CN108809636B (en) Communication system for realizing message authentication between members based on group type quantum key card
CN105516980A (en) Token authentication method for wireless sensor network based on Restful architecture
CN105491076A (en) Heterogeneous network end-to-end authentication secret key exchange method based on space-sky information network
JP2016514913A (en) Method and apparatus for establishing a session key
US20240113885A1 (en) Hub-based token generation and endpoint selection for secure channel establishment
Pippal et al. CTES based Secure approach for Authentication and Authorization of Resource and Service in Clouds
CN111682936B (en) Kerberos authentication method based on physical unclonable function
CN112187451B (en) Quantum computation resistant communication method, device, equipment and storage medium
CN114584975B (en) An SDN-based anti-quantum satellite network access authentication method
Fan et al. A New Password‐and Position‐Based Authenticated Key Exchange
Zhao et al. Design of emergency UAV network identity authentication protocol based on Beidou
Xu et al. An Energy Efficient Access and Handover Authentication Scheme for 6G Satellite-Terrestrial Integrated Network
KR20240136961A (en) Emergency recovery transaction of funds in cryptocurrency wallet
Telsang et al. Edge Computing Devices Authentication using Quantum Computing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant