[go: up one dir, main page]

CN108565315A - Thin film semiconductor's photoelectric device with veining front surface and/or back surface - Google Patents

Thin film semiconductor's photoelectric device with veining front surface and/or back surface Download PDF

Info

Publication number
CN108565315A
CN108565315A CN201810340115.3A CN201810340115A CN108565315A CN 108565315 A CN108565315 A CN 108565315A CN 201810340115 A CN201810340115 A CN 201810340115A CN 108565315 A CN108565315 A CN 108565315A
Authority
CN
China
Prior art keywords
layer
photoelectric device
template
texturizing surfaces
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810340115.3A
Other languages
Chinese (zh)
Inventor
丁逸康
布兰登·M·卡耶斯
罗斯·特威斯特
西尔维亚·斯普尤特
刘峰
雷格·东克
美利莎·J·艾契尔
何甘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zishi Energy Co.,Ltd.
Original Assignee
Awbscqemgk Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/452,393 external-priority patent/US9502594B2/en
Application filed by Awbscqemgk Inc filed Critical Awbscqemgk Inc
Publication of CN108565315A publication Critical patent/CN108565315A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/70Surface textures, e.g. pyramid structures
    • H10F77/703Surface textures, e.g. pyramid structures of the semiconductor bodies, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to thin film semiconductor's photoelectric devices with veining front surface and/or back surface.A kind of method for providing veining layer in the opto-electronic device is disclosed.Method includes depositing template layer on the first layer.Template layer has apparent inhomogeneities on thickness or in composition or in the two, including forms one or more islands to provide the possibility of at least one texturizing surfaces of island nitride layer.Method further includes that template layer and first layer are exposed to etch process to generate or change at least one texturizing surfaces.At least one texturizing surfaces changed cause light scattering in operation.

Description

具有纹理化前表面和/或背表面的薄膜半导体光电器件Thin-film semiconductor optoelectronic devices with textured front and/or back surfaces

本申请为申请日为2015年08月05日,申请号为201510475349.5,发明名称为“具有纹理化前表面和/或背表面的薄膜半导体光电器件”的申请的分案申请。This application is a divisional application of the application dated August 5, 2015, the application number is 201510475349.5, and the title of the invention is "thin-film semiconductor optoelectronic device with textured front surface and/or back surface".

相关申请的交叉引用Cross References to Related Applications

本申请是于2012年1月19日提交的、题为“TEXTURING A LAYER IN ANOPTOELECTRONIC DEVICE FOR IMPROVED ANGLE RANDOMIZATION OF LIGHT”的美国专利申请第13/354,175号的部分继续申请,该美国专利申请通过引用以其整体并入本文。This application is a continuation-in-part of U.S. Patent Application Serial No. 13/354,175, entitled "TEXTURING A LAYER IN ANOPTOELECTRONIC DEVICE FOR IMPROVED ANGLE RANDOMIZATION OF LIGHT," filed January 19, 2012, which is incorporated by reference at It is incorporated herein in its entirety.

技术领域technical field

本发明的实施方案通常涉及光电半导体器件(比如包括太阳能电池的光伏器件),以及用于制造此类器件的方法。Embodiments of the invention generally relate to optoelectronic semiconductor devices, such as photovoltaic devices including solar cells, and methods for fabricating such devices.

背景技术Background technique

光电器件比如光伏器件和发光二极管(LED)的用途变得较广泛,因为能源效率的重要性增加。在光伏器件比如太阳能电池中,太阳能电池的结吸收光子以产生电子空穴对,所述电子空穴对被结的内电场分开以产生电压,从而将光能转换成电能。理想的光伏(PV)器件的吸收体层将吸收撞击在面向光源的PV器件的正面的所有的光子,因为开路电压(Voc)或短路电流(Isc)与光强度成比例。然而,若干损耗机理通常干扰PV器件的吸收体层,所述吸收体层吸收到达器件的正面的所有的光。例如,某些光子可以穿过吸收体层而不产生任何电子空穴对并且因此从不有助于通过器件产生电能。在其他情况下,PV器件的半导体层可以是光滑的并且因此可以反射撞击光子中的大部分,防止这些光子以免到达吸收体层。Optoelectronic devices, such as photovoltaic devices and light emitting diodes (LEDs), are becoming more widely used because of the increased importance of energy efficiency. In a photovoltaic device such as a solar cell, the junction of the solar cell absorbs photons to generate electron-hole pairs that are separated by the junction's internal electric field to generate a voltage, thereby converting light energy into electrical energy. The absorber layer of an ideal photovoltaic (PV) device will absorb all photons impinging on the front side of the PV device facing the light source, since the open circuit voltage (V oc ) or short circuit current (I sc ) is proportional to the light intensity. However, several loss mechanisms typically interfere with the absorber layer of a PV device, which absorbs all the light reaching the front side of the device. For example, some photons can pass through the absorber layer without generating any electron-hole pairs and thus never contribute to the generation of electricity by the device. In other cases, the semiconducting layers of the PV device may be smooth and thus may reflect most of the impinging photons, preventing them from reaching the absorber layer.

因此,存在对具有增加的效率的光电器件和用于与常规的光电器件制造相比以减少的成本和较大的灵活性制造此类光电器件的方法的需求。Accordingly, there is a need for optoelectronic devices with increased efficiency and methods for fabricating such optoelectronic devices at reduced cost and greater flexibility compared to conventional optoelectronic device fabrication.

发明内容Contents of the invention

公开用于提供光电器件中的纹理化层的方法。方法包括将模板层沉积在第一层上。模板层在厚度上或在组成上是明显不均匀的,包括形成一个或多个岛状物以提供岛状物层的至少一个纹理化表面的可能性。方法还包括将模板层和第一层暴露于蚀刻工艺以产生或改变至少一个纹理化表面。至少一个纹理化表面在操作中引起光散射。A method for providing a textured layer in an optoelectronic device is disclosed. The method includes depositing a template layer on the first layer. The template layer is substantially non-uniform in thickness or composition, including the possibility of forming one or more islands to provide at least one textured surface of the island layer. The method also includes exposing the template layer and the first layer to an etching process to create or alter at least one textured surface. The at least one textured surface causes light scattering in operation.

公开用于提供光电器件的方法。方法包括沉积吸收体层和沉积发射体层。方法还包括将第一材料的第一层沉积在发射体层和吸收体层上。此外,方法包括将第二材料的模板层沉积在第一层上。方法还包括将模板层和第一层暴露于蚀刻工艺以产生或改变至少一个纹理化表面。至少一个纹理化表面在操作中引起光散射。最后,方法包括将介电层沉积在岛状物层上和将金属层沉积在介电层上。Methods for providing optoelectronic devices are disclosed. The method includes depositing an absorber layer and depositing an emitter layer. The method also includes depositing a first layer of a first material on the emitter layer and the absorber layer. Additionally, the method includes depositing a template layer of a second material on the first layer. The method also includes exposing the template layer and the first layer to an etching process to create or alter at least one textured surface. The at least one textured surface causes light scattering in operation. Finally, the method includes depositing a dielectric layer on the island layer and depositing a metal layer on the dielectric layer.

公开用于提供光电器件的方法。方法包括沉积发射体层和沉积吸收体层。方法还包括将第一材料的第一层沉积在发射体层和吸收体层上。此外,方法包括将第二材料的模板层沉积在第一层上。方法还包括将模板层和第一层暴露于蚀刻工艺以产生或改变至少一个纹理化表面。至少一个纹理化表面在操作中引起光散射。最后,方法包括将抗反射层沉积在岛状物层上。Methods for providing optoelectronic devices are disclosed. The method includes depositing an emitter layer and depositing an absorber layer. The method also includes depositing a first layer of a first material on the emitter layer and the absorber layer. Additionally, the method includes depositing a template layer of a second material on the first layer. The method also includes exposing the template layer and the first layer to an etching process to create or alter at least one textured surface. The at least one textured surface causes light scattering in operation. Finally, the method includes depositing an anti-reflection layer on the island layer.

附图说明Description of drawings

附图仅仅例证某些实施方案并且因此不被认为限制范围。The drawings merely illustrate certain embodiments and are therefore not to be considered limiting in scope.

图1A-1C示出在第一层之上的模板岛状物层的自顶向下视图;Figures 1A-1C show top-down views of a template island layer above a first layer;

图2描绘根据本文描述的某些实施方案的光伏器件的横截面视图;Figure 2 depicts a cross-sectional view of a photovoltaic device according to certain embodiments described herein;

图3A、3B、3C、3D、3E、3F、3G、和3H描绘图1的光伏器件的横截面视图,其中岛状物层已经被沉积在基底层上;Figures 3A, 3B, 3C, 3D, 3E, 3F, 3G, and 3H depict cross-sectional views of the photovoltaic device of Figure 1, wherein an island layer has been deposited on a base layer;

图4描绘图3的光伏器件的横截面视图,其中半导体接触层和介电层已经被沉积在岛状物层上;Figure 4 depicts a cross-sectional view of the photovoltaic device of Figure 3, wherein a semiconductor contact layer and a dielectric layer have been deposited on the island layer;

图5描绘图4的光伏器件的横截面视图,其中已经在介电层中形成孔;Figure 5 depicts a cross-sectional view of the photovoltaic device of Figure 4 wherein holes have been formed in the dielectric layer;

图6A和6B描绘掩模的不同实施方案的俯视图,所述掩模可以被用于形成在图5中示出的介电层中的孔;6A and 6B depict top views of different embodiments of masks that may be used to form holes in the dielectric layer shown in FIG. 5;

图7描绘图5的光伏器件的横截面视图,其中金属层已经被沉积在介电层上;Figure 7 depicts a cross-sectional view of the photovoltaic device of Figure 5, wherein a metal layer has been deposited on the dielectric layer;

图8描绘在剥离工艺之后由图7的光伏器件产生的光伏电池的一个实施方案的横截面视图;8 depicts a cross-sectional view of one embodiment of a photovoltaic cell produced by the photovoltaic device of FIG. 7 after a lift-off process;

图9描绘由图3A的光伏器件产生的光伏电池的另一个实施方案的横截面视图;Figure 9 depicts a cross-sectional view of another embodiment of a photovoltaic cell produced by the photovoltaic device of Figure 3A;

图10描绘例证通过器件的背面上的纹理化层散射光的光伏电池的横截面视图;Figure 10 depicts a cross-sectional view of a photovoltaic cell illustrating scattering of light by a textured layer on the back of the device;

图11描绘根据本文描述的某些实施方案的、提供正面光捕获纹理化层的光伏器件的横截面视图;11 depicts a cross-sectional view of a photovoltaic device providing a front-side light-harvesting textured layer, according to certain embodiments described herein;

图12描绘图11的光伏器件的横截面视图,其中岛状物层已经被沉积在基底层上;以及FIG. 12 depicts a cross-sectional view of the photovoltaic device of FIG. 11 in which an island layer has been deposited on a substrate layer; and

图13描绘图12的光伏器件的横截面视图,其中层已经被沉积在岛状物层上。Figure 13 depicts a cross-sectional view of the photovoltaic device of Figure 12 where layers have been deposited on the island layer.

具体实施方式Detailed ways

本发明的实施方案通常涉及光电器件和工艺,并且更特别地涉及包括一个或多个纹理化层的光电半导体器件以及用于形成此类光电器件的制造工艺。Embodiments of the present invention relate generally to optoelectronic devices and processes, and more particularly to optoelectronic semiconductor devices including one or more textured layers and fabrication processes for forming such optoelectronic devices.

在本文中,层可以被描述成被沉积在一个或多个其他层上。此术语指示层可以被直接沉积在其他层的顶部,或在某些实施方案中可以指示一个或多个另外的层可以被沉积在层和其他层之间。此外,其他的层可以以任何顺序布置。Herein, a layer may be described as being deposited on one or more other layers. This term indicates that a layer may be deposited directly on top of other layers, or in certain embodiments may indicate that one or more additional layers may be deposited between a layer and other layers. Additionally, other layers may be arranged in any order.

在本文中术语模板层被定义为指示在厚度上或在组成上或在两者上具有明显的不均匀性的层。这包括厚度不均匀性是如此大以致模板层是多个分开的岛状物的可能性。当模板层和在模板层之下的层被暴露于蚀刻剂或蚀刻工艺时,纹理化表面被产生或改变。纹理化表面能够引起光散射,这可以改进光电器件中的光捕获。The term template layer is defined herein to indicate a layer having significant inhomogeneity in thickness or in composition or both. This includes the possibility that the thickness non-uniformity is so great that the template layer is multiple separate islands. A textured surface is created or altered when the template layer and layers below the template layer are exposed to an etchant or etching process. Textured surfaces can induce light scattering, which can improve light trapping in optoelectronic devices.

术语岛状物指的是在平面上不连续的材料层,这允许蚀刻剂潜在地到达在下方的层。岛状物层可以形成多个明显的不连接的区域(图1A),或可以被充分连接但具有间隙(图1B),或可以是两者的组合(图1C)。这些图中的每个示出在第一层112之上的模板岛状物层152的自顶向下视图。这些层在本文中被更详细地描述。The term island refers to a layer of material that is discontinuous in plan, which allows etchant to potentially reach underlying layers. The island layer can form multiple distinct unconnected regions (FIG. 1A), or can be fully connected but with gaps (FIG. 1B), or can be a combination of both (FIG. 1C). Each of these figures shows a top-down view of template island layer 152 over first layer 112 . These layers are described in more detail herein.

本文公开的实施方案涉及出于较大的器件效率使用纹理化层的光捕获。Embodiments disclosed herein relate to light trapping using textured layers for greater device efficiency.

图2例证适合用于与本文描述的实施方案一起使用的光伏器件100的一个实施方案的横截面视图。虽然本文的实施例涉及光伏器件,描述的特征还可以被应用于其他光电半导体器件比如LED,例如以散射器件中的光从而提供增加的或更有效率的光产生。Figure 2 illustrates a cross-sectional view of one embodiment of a photovoltaic device 100 suitable for use with embodiments described herein. Although the embodiments herein relate to photovoltaic devices, the described features may also be applied to other optoelectronic semiconductor devices such as LEDs, for example to scatter light in the device to provide increased or more efficient light production.

器件100包括通过被布置于其间的ELO释放层或牺牲层104与生长晶圆101耦合的电池120。含有不同组成成分的多个外延材料层被沉积在光伏器件100内。多个外延材料层可以被生长或以其他方式通过用于半导体生长的适当的方法形成。电池120可以是例如具有由第III-V族材料制成的层的基于砷化镓的电池。第III-V族材料是外延生长层的薄膜。在某些实施方案中,外延生长层可以通过在例如高生长速率气相沉积工艺期间生长第III-V族材料来形成。高生长速率沉积工艺允许大于5μm/hr的生长速率,比如约10μm/hr或更大,或高达约100μm/hr或更大。高生长速率工艺包括在加工系统内加热晶圆到约550℃或更大的沉积温度、将晶圆暴露于包含化学前体的沉积气体,比如镓前体气体和用于砷化镓沉积工艺的砷化氢、以及将包含砷化镓的层沉积在晶圆上。沉积气体可以包含第V族前体,比如砷化氢、磷化氢、或氨。Device 100 includes a cell 120 coupled to a growth wafer 101 with an ELO release or sacrificial layer 104 disposed therebetween. Multiple layers of epitaxial material having different compositions are deposited within photovoltaic device 100 . Multiple layers of epitaxial material may be grown or otherwise formed by suitable methods for semiconductor growth. Cell 120 may be, for example, a gallium arsenide-based cell having layers made of Group III-V materials. Group III-V materials are thin films of epitaxially grown layers. In certain embodiments, the epitaxially grown layer can be formed by growing a Group III-V material, for example, during a high growth rate vapor deposition process. High growth rate deposition processes allow growth rates greater than 5 μm/hr, such as about 10 μm/hr or greater, or up to about 100 μm/hr or greater. The high growth rate process involves heating the wafer to a deposition temperature of about 550°C or greater within the processing system, exposing the wafer to a deposition gas containing chemical precursors, such as gallium precursor gas and arsine, and a layer containing gallium arsenide is deposited on the wafer. The deposition gas may contain a Group V precursor, such as arsine, phosphine, or ammonia.

如本文所描述,用于沉积或形成第III-V族材料的沉积工艺可以在多种类型的沉积室中进行。例如,可以被用于生长、沉积或以其他方式形成第III-V族材料的一种连续进料沉积室在皆于2009年5月29日提交的共同转让的美国专利申请第12/475,131号和第12/475,169号中描述,它们通过引用以其整体并入本文。As described herein, deposition processes for depositing or forming Group III-V materials can be performed in various types of deposition chambers. For example, one continuous feed deposition chamber that may be used to grow, deposit, or otherwise form Group III-V materials is described in commonly assigned U.S. Patent Application Serial No. 12/475,131, both filed May 29, 2009 and Ser. No. 12/475,169, which are incorporated herein by reference in their entirety.

在器件100中可用的层和用于形成此类层的方法的某些实例在于2010年11月3日提交的共同未决的美国专利申请第12/939,077号中公开,并且其通过引用以其整体并入本文。Some examples of layers useful in device 100 and methods for forming such layers are disclosed in co-pending U.S. Patent Application Serial No. 12/939,077, filed November 3, 2010, and incorporated by reference in its Incorporated into this article as a whole.

在某些实施方案中,一个或多个缓冲层102可以在生长晶圆101上形成以便开始形成光伏器件100。生长晶圆101可以包括例如n型或半绝缘材料,并且可以包括与一种或多种随后沉积的缓冲层相同或类似的材料。在其他实施方案中可以包括p型材料。In certain embodiments, one or more buffer layers 102 may be formed on the growth wafer 101 to initiate formation of the photovoltaic device 100 . Growth wafer 101 may comprise, for example, an n-type or semi-insulating material, and may comprise the same or similar material as one or more subsequently deposited buffer layers. In other embodiments p-type materials may be included.

牺牲层(ELO释放层)104可以被沉积在生长晶圆101或缓冲层102(如果存在)上。牺牲层104可以包含适当的材料,比如砷化铝(AlAs)或砷化铝合金,并且被用于形成用于在电池120内包含的层的晶格结构,并且然后在ELO工艺期间被蚀刻并且被去除。A sacrificial layer (ELO release layer) 104 may be deposited on growth wafer 101 or buffer layer 102 (if present). Sacrificial layer 104 may comprise a suitable material, such as aluminum arsenide (AlAs) or aluminum arsenide, and is used to form a lattice structure for the layers contained within cell 120, and is then etched and be removed.

光伏电池120的层可以被沉积在牺牲层104上,其在某些实施方案中可以包括前接触层105、前窗口106、邻近前窗口106形成的吸收体层108、发射体层110、以及用于纹理化的基底层112。前半导体接触层105、或界面层可以被沉积在牺牲层104上。前接触层105在某些实施方案中可以是n掺杂的层,包含第III-V族材料,比如砷化镓。Layers of a photovoltaic cell 120 can be deposited on the sacrificial layer 104, which in some embodiments can include a front contact layer 105, a front window 106, an absorber layer 108 formed adjacent to the front window 106, an emitter layer 110, and on the textured base layer 112. A front semiconductor contact layer 105 , or an interfacial layer, may be deposited on the sacrificial layer 104 . The front contact layer 105 may in some embodiments be an n-doped layer comprising a Group III-V material, such as gallium arsenide.

前窗口106,也被称为钝化层,可以在衬底101上在牺牲层104上形成,或如果存在,在任选的接触层105上形成。前窗口106可以是透明的以允许入射光子穿过在电池120的正面上的前窗口106至其他下方的层。在某些实施例中,前窗口106可以包含第III-V族材料。A front window 106, also referred to as a passivation layer, may be formed on the substrate 101 on the sacrificial layer 104, or on the optional contact layer 105 if present. The front window 106 may be transparent to allow incident photons to pass through the front window 106 on the front side of the cell 120 to other underlying layers. In some embodiments, the front window 106 may comprise a Group III-V material.

吸收体层108可以在窗口层106上形成。吸收体层108可以包含任何适当的第III-V族化合物半导体,比如砷化镓(GaAs)。在某些实施方案中,吸收体层108可以是单晶并且可以是n掺杂的。不同的实施方案可以提供不同的掺杂浓度,比如范围从约1×1016cm-3至约1×1019cm-3Absorber layer 108 may be formed on window layer 106 . The absorber layer 108 may comprise any suitable Group III-V compound semiconductor, such as gallium arsenide (GaAs). In certain embodiments, the absorber layer 108 can be monocrystalline and can be n-doped. Different embodiments may provide different doping concentrations, such as ranging from about 1×10 16 cm −3 to about 1×10 19 cm −3 .

在某些实施方案中,发射体层110可以在吸收体层108上形成。在某些实施方案中,发射体层110可以是p掺杂的(例如p+掺杂的)。发射体层110可以包含任何适当的第III-V族化合物半导体并且可以是单晶。例如,重度p掺杂的发射体层110的掺杂浓度可以在从约1×1017cm-3至约1×1020cm-3的范围内。在某些实施方案中,发射体层110可以与吸收体层108形成异质结。In certain embodiments, emitter layer 110 may be formed on absorber layer 108 . In certain embodiments, emitter layer 110 may be p-doped (eg, p + doped). Emitter layer 110 may comprise any suitable Group III-V compound semiconductor and may be single crystal. For example, the doping concentration of the heavily p-doped emitter layer 110 may range from about 1×10 17 cm −3 to about 1×10 20 cm −3 . In certain embodiments, emitter layer 110 may form a heterojunction with absorber layer 108 .

在某些实施方案中,n型吸收体层108与p型发射体层110的接触产生用于吸收光子的p-n结。其他的实施方案可以包括在吸收体层108和发射体层110之间的一个或多个中间层。其他的实施方案可以使用p掺杂的基底/吸收体层和n掺杂的背/发射体层、和/或其他的p/n掺杂的层,以代替在本文的描述中的n/p掺杂的层。In certain embodiments, the contact of the n-type absorber layer 108 with the p-type emitter layer 110 creates a p-n junction for absorbing photons. Other embodiments may include one or more intermediate layers between the absorber layer 108 and the emitter layer 110 . Other embodiments may use p-doped substrate/absorber layers and n-doped back/emitter layers, and/or other p/n-doped layers instead of n/p in the description herein doped layer.

用于纹理化的基底层112可以任选地被沉积在发射体层110上。基底层112可以提供第一层,并且可以通过具有不同于模板层的组成组分而有助于岛状物形成,模板层被沉积在所述第一层上用于纹理化目的。在某些实施方案中,基底层112可以是单晶和p掺杂的并且具有在约5×1017cm-3至约2×1019cm-3的范围中的掺杂浓度。基底层112和模板层在下文中被更详细地描述。在某些其他实施方案中,基底层112不被包括在器件100中。例如,模板层(下文描述)可以被沉积在发射体层110上或在吸收体层108上(如果位于发射体层之上)。A base layer 112 for texturing may optionally be deposited on the emitter layer 110 . The base layer 112 may provide a first layer and may facilitate island formation by having a different composition than the template layer on which the template layer is deposited for texturing purposes. In certain embodiments, base layer 112 may be monocrystalline and p-doped and have a doping concentration in the range of about 5×10 17 cm −3 to about 2×10 19 cm −3 . The base layer 112 and the template layer are described in more detail below. In certain other embodiments, base layer 112 is not included in device 100 . For example, a template layer (described below) may be deposited on the emitter layer 110 or on the absorber layer 108 (if located above the emitter layer).

图3A是根据用作背反射器的纹理化表面的一个实施方案的光伏器件100的横截面图,该光伏器件100包括在基底层112上沉积模板层140。模板层140具有不一致的厚度,其可以引起器件中的光反射和光散射,从而增加光捕获。3A is a cross-sectional view of a photovoltaic device 100 comprising depositing a template layer 140 on a substrate layer 112 according to one embodiment of a textured surface for use as a back reflector. Template layer 140 has an inconsistent thickness, which can cause light reflection and light scattering in the device, thereby increasing light trapping.

所使用的模板层在不同实施方案中可以不同。在一个实施方案中,模板层具有显著的厚度不一致性,包括模板材料的多个不同的岛状物的可能性。在另一实施方案中,模板层具有组成的不一致性,但可以具有或可以不具有显著的厚度不一致性。The template layer used can vary in different embodiments. In one embodiment, the template layer has significant thickness inconsistencies, including the possibility of multiple distinct islands of template material. In another embodiment, the template layer has compositional inconsistencies, but may or may not have significant thickness inconsistencies.

当器件中的模板层和其他层暴露于蚀刻剂或蚀刻过程时,模板层可以不被显著地蚀刻,或可以被蚀刻(但是以比模板层沉积在其上的第一层被蚀刻的速率慢的速率),或可以以与模板层沉积在其上的第一层被蚀刻的速率相当或大于模板层沉积在其上的第一层被蚀刻的速率的速率被蚀刻。由此,模板层可以(但不需要)在形成或改变纹理化表面的过程中被完全蚀刻掉。可选择地,模板层可以在蚀刻过程之后仍然部分或整体地呈现,但可以在光电器件的制造完成之前的后续处理步骤中被部分或整体地去除。When the template layer and other layers in the device are exposed to an etchant or etching process, the template layer may not be etched significantly, or may be etched (but at a slower rate than the first layer the template layer is deposited on rate), or may be etched at a rate comparable to or greater than the rate at which the first layer on which the template layer is deposited is etched. Thus, the template layer may (but need not) be completely etched away during the process of forming or altering the textured surface. Alternatively, the template layer may still be partially or entirely present after the etching process, but may be partially or entirely removed in a subsequent processing step before fabrication of the optoelectronic device is complete.

模板层可以具有不一致的组成。具有不同材料组成的模板层的不同部分可以在暴露于蚀刻剂或蚀刻过程时以不同的速率蚀刻。以这种方式,模板层可以在蚀刻的过程期间产生厚度不一致性或增加其厚度不一致性,即使厚度在蚀刻之前是一致的。Template layers can have inconsistent compositions. Different portions of the template layer having different material compositions may etch at different rates when exposed to an etchant or etching process. In this way, the template layer can develop or increase thickness inconsistencies during the etching process, even though the thickness was consistent prior to etching.

在蚀刻之前具有不一致厚度的模板层可以通常被称为岛状物层。岛状生长可以至少部分地由于不同材料之间的应变而产生,该应变由材料之间的晶格失配引起。可选择地,岛状生长可以由于岛状物层是非常薄的且不形成连续的层而产生。可选择地,岛状生长可以由于本身在沉积过程期间的动态蚀刻而产生。A template layer having an inconsistent thickness prior to etching may generally be referred to as an island layer. Island growth can arise, at least in part, from strain between different materials caused by lattice mismatch between the materials. Alternatively, island growth can result from the fact that the island layer is very thin and does not form a continuous layer. Alternatively, the island growth can arise due to dynamic etching itself during the deposition process.

例如,在一些实施方案中,比如在图3A中示出的示例实施方案,Stranski-Krastanov工艺可以用来形成模板层140。该工艺涉及沉积特定材料,该工艺首先形成模板层材料的湿层142(其可以包括一个或多个单独的层),接着在湿层142上形成相同材料的岛状物144。在其他实施方案中,可以使用其他类型的岛状生长工艺。例如,图3B示出了使用Volmer-Weber工艺的岛状物的形成,其可以不提供岛状物生长在其上的模板层材料的湿层,如以下所描述的。For example, in some embodiments, such as the example embodiment shown in FIG. 3A , a Stranski-Krastanov process may be used to form template layer 140 . The process involves depositing a particular material by first forming a wet layer 142 of template layer material (which may include one or more individual layers), followed by forming islands 144 of the same material on the wet layer 142 . In other embodiments, other types of island growth processes may be used. For example, FIG. 3B illustrates the formation of islands using the Volmer-Weber process, which may not provide a wet layer of template layer material on which the islands grow, as described below.

模板层140可以包括半导体材料,并且可以是与模板层140沉积在其上的基底层112的材料不同的材料。在一些实施方案中,模板层140可以是具有比基底层112的材料更大的带隙的材料。在一些示例中,模板层140可以包括磷、镓、铝、铟、砷、锑、氮、其衍生物和/或其组合。例如,在一些实施方案中,基底层112可以包括砷化镓(GaAs)或铝镓砷(AlGaAs),并且模板层140可以包括铟镓砷(InGaAs)或镓砷锑(GaAsSb)。在其他实施方案中,基底层112可以包括铝镓砷(AlGaAs),并且模板层140可以包括磷化镓(GaP)。在其他实施方案中,基底层112可以包括砷化铟(InAs),并且模板层140可以包括铟砷锑(InAsSb)。在另一些其他实施方案中,基底层112可以包括镓铟磷(GaInP),并且模板层140可以包括磷化镓(GaP)或磷化铝(AlP)。在另一些其他实施方案中,基底层112可以包括磷化铟(InP),并且模板层140可以包括铟磷锑(InPSb)。在一些实施方案中,模板层可以包括镓铟氮砷(GaInNAs)、镓氮砷(GaNAs)、镓砷磷(GaAsP)、铝镓砷磷(AlGaAsP)或铝镓磷(AlGaP)。在这些实施方案中的任一个,可以使用这些材料的衍生物和/或组合。一些实施方案可以将被掺杂的材料用于模板层140;例如,材料可以是p掺杂的,并且可以具有在约1×1017cm-3至约2×1019cm-3的范围中(比如约1×1018cm-3)的掺杂浓度。The template layer 140 may include a semiconductor material, and may be a different material than that of the base layer 112 on which the template layer 140 is deposited. In some embodiments, template layer 140 may be a material having a larger bandgap than the material of base layer 112 . In some examples, template layer 140 may include phosphorus, gallium, aluminum, indium, arsenic, antimony, nitrogen, derivatives thereof, and/or combinations thereof. For example, in some embodiments, base layer 112 may include gallium arsenide (GaAs) or aluminum gallium arsenide (AlGaAs), and template layer 140 may include indium gallium arsenide (InGaAs) or gallium arsenide antimony (GaAsSb). In other embodiments, base layer 112 may include aluminum gallium arsenide (AlGaAs), and template layer 140 may include gallium phosphide (GaP). In other embodiments, base layer 112 may include indium arsenide (InAs), and template layer 140 may include indium arsenide antimony (InAsSb). In still other embodiments, base layer 112 may include gallium indium phosphide (GaInP), and template layer 140 may include gallium phosphide (GaP) or aluminum phosphide (AlP). In still other embodiments, base layer 112 may include indium phosphide (InP), and template layer 140 may include indium phosphorus antimony (InPSb). In some embodiments, the template layer may include gallium indium arsenide nitride (GaInNAs), gallium nitrogen arsenide (GaNAs), gallium arsenide phosphide (GaAsP), aluminum gallium arsenide phosphide (AlGaAsP), or aluminum gallium arsenide phosphide (AlGaP). In any of these embodiments, derivatives and/or combinations of these materials may be used. Some embodiments may use doped materials for the template layer 140; for example, the material may be p-doped and may have a (eg about 1×10 18 cm -3 ) doping concentration.

在一些实施方案中,模板层140包括具有增大或最大化散射或反射光的能力的折射率(n)和吸收性(k)的材料。例如,模板层140可以包括允许光穿过模板层的透明材料。如本文所使用的术语“透明”指的是在光电器件操作的波长范围中可以忽略的吸收量。例如,在一些实施方案中,模板层140可以具有在约1至约3.5的范围中的折射率。此外,在一些实施方案中,模板层140的材料可以具有在约0至约1×10-2的范围中、比如约1×10-3或约1×10-4的吸收性(k)。在一些实施方案中,模板层140可以包括多个透明的层。In some embodiments, template layer 140 includes a material having a refractive index (n) and absorptivity (k) that increases or maximizes the ability to scatter or reflect light. For example, template layer 140 may include a transparent material that allows light to pass through the template layer. The term "transparent" as used herein refers to a negligible amount of absorption in the wavelength range in which the optoelectronic device operates. For example, in some embodiments, template layer 140 may have a refractive index in the range of about 1 to about 3.5. Furthermore, in some embodiments, the material of template layer 140 may have an absorbance (k) in the range of about 0 to about 1×10 −2 , such as about 1×10 −3 or about 1×10 −4 . In some embodiments, template layer 140 may include multiple transparent layers.

在一些实施方案中,与先前的层比如基底层112的沉积期间所使用的沉积参数相比,沉积工艺的各种参数可以被改变或调整,以用于模板层140的沉积。例如,沉积工艺的温度、压力、沉积气体和/或生长速率可以被改变,如以下更加详细描述的。In some embodiments, various parameters of the deposition process may be changed or adjusted for the deposition of the template layer 140 as compared to the deposition parameters used during the deposition of previous layers, such as the base layer 112 . For example, the temperature, pressure, deposition gas, and/or growth rate of the deposition process may be varied, as described in more detail below.

在图3A中,湿层142和岛状物144已经使用Stranski-Krastanov工艺被沉积在基底层112上。湿层包括积累在基底上的被吸附物的完整的膜,其中基底是所描述的示例中的基底层112。湿层142可以使用沉积的材料来生长,直到实现特定厚度为止,其后进一步的沉积引起一个或多个岛状物144生长。因此,岛状物144包含与湿层142相同的材料。一旦湿层142在Stranski-Krastanov工艺中已经实现临界厚度(如通过湿层144和基底层112的化学性质和物理性质确定),则被吸附物在基底层112上的继续生长通过岛状物144在湿层142上的累积发生,该累积归因于湿层材料中的应变或拉伸。In FIG. 3A , wet layer 142 and islands 144 have been deposited on base layer 112 using the Stranski-Krastanov process. The wet layer comprises a complete film of adsorbate that accumulates on a substrate, which is the substrate layer 112 in the depicted example. Wet layer 142 may grow using the deposited material until a certain thickness is achieved, after which further deposition causes one or more islands 144 to grow. Accordingly, islands 144 comprise the same material as wet layer 142 . Once the wet layer 142 has achieved a critical thickness in the Stranski-Krastanov process (as determined by the chemical and physical properties of the wet layer 144 and the base layer 112), the growth of the adsorbate on the base layer 112 continues through the islands 144 Buildup on the wet layer 142 occurs due to strain or stretch in the wet layer material.

岛状物144提供岛状物层140的纹理化表面。控制岛状物144的生长以增大或最大化照射在模板层140上或穿过模板层140传播的光的角度随机化。光的这种角度随机化可以通过调整或定制岛状物144的生长条件的不同参数(并且因而导致生长被调整或定制)使得岛状物获得特定特性而增大或最大化。不同参数中的一些包括沉积用于模板层的材料的量、沉积温度、沉积压力、模板层材料的生长速率、在沉积气体中流动的V族元素以及影响基底层和模板层材料之间的晶格失配的模板材料的组成。所沉积的模板层材料的量可以影响岛状物生长。例如,所沉积的材料的较大的量倾向于激励Stranski-Krastanov岛状物生长超过Volmer-Weber岛状物生长(以下将更加详细地描述)。Islands 144 provide a textured surface for island layer 140 . The growth of islands 144 is controlled to increase or maximize angular randomization of light impinging on or propagating through template layer 140 . This angular randomization of light can be augmented or maximized by adjusting or tailoring different parameters of the growth conditions of the islands 144 (and thus causing the growth to be adjusted or tailored) so that the islands acquire specific properties. Some of the different parameters include the amount of material deposited for the template layer, the deposition temperature, the deposition pressure, the growth rate of the template layer material, the group V elements flowing in the deposition gas, and the influence of crystallization between the substrate layer and the template layer material. Composition of lattice mismatched template materials. The amount of template layer material deposited can affect island growth. For example, larger amounts of deposited material tend to encourage Stranski-Krastanov island growth over Volmer-Weber island growth (described in more detail below).

可以被选择来控制岛状物144的生长的另一参数包括在岛状物层140的沉积工艺期间提供的温度。例如,可以使温度更高以产生具有较大尺寸的岛状物144。用于沉积模板层140的温度范围的一些示例包括约600℃至约900℃。Another parameter that may be selected to control the growth of islands 144 includes the temperature provided during the deposition process of island layer 140 . For example, the temperature can be made higher to produce islands 144 with larger dimensions. Some examples of temperature ranges for depositing template layer 140 include about 600°C to about 900°C.

用于控制岛状物144的生长的另一参数是在模板层140的沉积期间提供的压强。例如,可以使压强更大以产生具有较小尺寸的岛状物144。可以用于沉积模板层140的压强范围的一些示例包括约50托至约600托。Another parameter used to control the growth of the islands 144 is the pressure provided during the deposition of the template layer 140 . For example, the pressure can be made higher to produce islands 144 with smaller dimensions. Some examples of pressure ranges that may be used to deposit template layer 140 include about 50 Torr to about 600 Torr.

另一参数是模板层140的生长速率,其可以被控制以影响纹理化层的特性。例如,在使用Stranski-Krastanov工艺的一些实施方案中,模板层140的生长速率可以被控制为比在使用Stranski-Krastanov工艺之前的标准的生长速率更快。在一个示例中,可以根据如以上关于外延生长层所描述的用于沉积光电器件100的其他层的高生长速率来控制生长速率。在其他实施方案中,岛状物144可以生长得更慢,例如,如果在一些实施方案中,对岛状物的特定特征的更好的控制是期望的,比如小平面。在一些实施方案中,可以将大于约5μm/小时的生长速率范围用于模板层140。Another parameter is the growth rate of the template layer 140, which can be controlled to affect the properties of the textured layer. For example, in some embodiments using the Stranski-Krastanov process, the growth rate of the template layer 140 can be controlled to be faster than the standard growth rate prior to using the Stranski-Krastanov process. In one example, the growth rate may be controlled according to the high growth rate used to deposit the other layers of optoelectronic device 100 as described above with respect to the epitaxially grown layers. In other embodiments, the islands 144 may grow more slowly, for example, if in some embodiments better control over specific features of the islands is desired, such as facets. In some embodiments, a growth rate range of greater than about 5 μm/hour may be used for template layer 140 .

可以被控制的另一参数是在沉积期间提供的沉积气体中流动的V族元素。例如,用于形成模板层140的沉积气体可以具有一定比率的V族前体与III族前体。在一些实施方案中,V族元素是磷化氢。可以控制该流量比率以将模板生长调整为期望的特性。通常,例如,磷化氢流量的比率可以相对于用于先前的沉积层(例如,基底层112)的流量比率被减小(即,所提供的比率低),以促进岛状物形成。在一些实施方案中,沉积气体可以具有在约50:1至约300:1的范围中的磷化氢/III族前体。Another parameter that can be controlled is the group V elements flowing in the deposition gas provided during deposition. For example, the deposition gas used to form the template layer 140 may have a certain ratio of group V precursors to group III precursors. In some embodiments, the Group V element is phosphine. This flow ratio can be controlled to tune template growth to desired characteristics. In general, for example, the rate of phosphine flow may be reduced (ie, provided a low rate) relative to the flow rate for a previously deposited layer (eg, base layer 112 ) to promote island formation. In some embodiments, the deposition gas may have a phosphine/Group III precursor in a range of about 50:1 to about 300:1.

可以被选择来控制岛状物144的生长的另一参数是在基底层112和模板层140中所使用的材料的组成(类型)。例如,可以基于接触层112的材料的晶格参数和模板层140的材料的晶格参数来选择材料。通常,岛状物144的生长部分地取决于基底层112和模板层140之间的晶格失配。例如,在Stanski-Krastanov工艺中,晶格参数之间的较大失配导致湿层142的较小的临界厚度,在临界厚度处,岛状物生长开始发生。可以选择基底层112的材料的晶格参数和模板层140的材料的晶格参数,以提供岛状物144的期望的生长图样或特征,比如岛状物的形式、岛状物在湿层沉积之后开始生长的点等等。在一些示例实施方案中,基底层112的材料和模板层140的材料之间可以使用在约3%至约20%的范围中的晶格失配。在一些实施方案中,模板层140可以是具有比基底层112的材料更大的带隙的材料。Another parameter that may be selected to control the growth of islands 144 is the composition (type) of materials used in base layer 112 and template layer 140 . For example, the material may be selected based on the lattice parameter of the material of the contact layer 112 and the lattice parameter of the material of the template layer 140 . In general, the growth of islands 144 depends in part on the lattice mismatch between base layer 112 and template layer 140 . For example, in the Stanski-Krastanov process, a larger mismatch between lattice parameters results in a smaller critical thickness of wet layer 142 at which island growth begins to occur. The lattice parameter of the material of the base layer 112 and the lattice parameter of the material of the template layer 140 may be selected to provide a desired growth pattern or feature of the islands 144, such as the form of the islands, the islands deposited in a wet layer Then the point where it starts to grow and so on. In some example embodiments, a lattice mismatch in the range of about 3% to about 20% may be used between the material of the base layer 112 and the material of the template layer 140 . In some embodiments, template layer 140 may be a material having a larger bandgap than the material of base layer 112 .

岛状物144可以被控制以具有特定的或通常的物理特性,比如规则或不规则的形状、尺寸和/或间隔。例如,可以通过控制湿层和/或岛状物的生长速率、控制临界厚度、使用带纹理或有图案的基底层112等等来控制岛状物的几何结构和大小。Islands 144 may be manipulated to have specific or general physical characteristics, such as regular or irregular shape, size and/or spacing. For example, the geometry and size of the islands can be controlled by controlling the growth rate of the wet layer and/or the islands, controlling the critical thickness, using a textured or patterned substrate layer 112, and the like.

此外,岛状物144的物理特性(例如,尺寸、形状和/或间隔)中的一些或全部可以具有特定程度的变化或不规则性,以提供不同的、非一致形状的以及非一致间隔的岛状物144。与均匀的纹理相比,这种变化和随机化的纹理通常增强将由模板层接收到的光随机散射到吸收层108中的能力。Additionally, some or all of the physical characteristics (e.g., size, shape, and/or spacing) of the islands 144 may have a certain degree of variation or irregularity to provide varying, non-uniformly shaped, and non-uniformly spaced Island 144. Such a varying and randomized texture generally enhances the ability to randomly scatter light received by the template layer into the absorbing layer 108 compared to a uniform texture.

因为包括模板层140的纹理化表面形成为非活泼的散射层,并且利用使用岛状物生长沉积过程成形的形状,所述非活泼的散射层具有吸收层或发射层内未提供的特征;并且因为较大程度的变化、不规则性或随机性在岛状物144形成中是优选的,所以在一些实施方案中,高品质的半导体作为模板层140的材料不是必需的。与岛状物生长工艺比如Stranski-Krastanov工艺的先前使用相比,这可以允许材料和/或处理的成本的一些降低,在Stranski-Krastanov工艺中,被精确地设置尺寸且被精确地间隔的岛状物在器件的吸收层中生长(例如,用于调整半导体激光器中的波长发射)。此外,在一些实施方案中,品质较次的半导体的使用可以允许模板层140的较高的生长速率。Because the textured surface comprising the template layer 140 is formed as an inactive scattering layer with a shape formed using the island growth deposition process, the inactive scattering layer has features not provided in the absorbing or emitting layers; and Because a greater degree of variation, irregularity, or randomness is preferred in island 144 formation, in some embodiments, a high quality semiconductor is not necessary as a material for template layer 140 . This may allow some reduction in cost of materials and/or processing compared to previous use of island growth processes, such as the Stranski-Krastanov process, where precisely sized and precisely spaced islands Shapes are grown in the absorbing layer of the device (for example, for tuning wavelength emission in semiconductor lasers). Furthermore, the use of lower quality semiconductors may allow for higher growth rates of the template layer 140 in some embodiments.

图3B是光伏器件100'的横截面图,光伏器件100'包括适合于本文公开的一些实施方案的模板层150的沉积物,其中岛状物使用不同的岛状物生长工艺来形成。在图3B中,Volmer-Weber生长工艺已经代替用于图3A的示例中的Stranski-Krastanov工艺用于岛状物生长。Figure 3B is a cross-sectional view of a photovoltaic device 100' comprising a deposition of a template layer 150 suitable for some embodiments disclosed herein, wherein the islands are formed using a different island growth process. In FIG. 3B , a Volmer-Weber growth process has been used for island growth instead of the Stranski-Krastanov process used in the example of FIG. 3A .

模板层150包括岛状物152,其已经通过将模板层材料沉积在基底层112(或如上所述的在不具有基底层112的实施方案中的其他层)上来形成。与图3A的模板层140不同,示例模板层150不包括在岛状物形成之前所沉积的湿层。岛状物152由于基底层112的表面上的原子与岛状物材料的原子具有比其与基底层的表面的原子更强的相互作用而形成。这引起材料或岛状物152的簇随着岛状物材料沉积而形成。因此,一些或全部岛状物152可以直接在基底层112的表面上形成,和/或一些或全部岛状物152可以具有在基底层112表面和岛状物152之间形成的岛状物材料的层。与以上描述的Stranski-Krastanov生长相比,Volmer-Weber岛状物生长通常发生在模板层和基底层之间较高的晶格失配处并且在模板层的较低厚度上。例如,在一些实施方案中,Volmer-Weber岛状物生长可以发生在模板层的约5埃以下的厚度处。Template layer 150 includes islands 152 that have been formed by depositing a template layer material on base layer 112 (or other layers as described above in embodiments without base layer 112). Unlike template layer 140 of FIG. 3A , example template layer 150 does not include a wet layer deposited prior to island formation. Islands 152 are formed because atoms on the surface of base layer 112 have stronger interactions with atoms of the island material than they do with atoms on the surface of the base layer. This causes clusters of material or islands 152 to form as the island material is deposited. Accordingly, some or all of the islands 152 may be formed directly on the surface of the base layer 112, and/or some or all of the islands 152 may have island material formed between the surface of the base layer 112 and the islands 152. layer. Compared to the Stranski-Krastanov growth described above, Volmer-Weber island growth typically occurs at higher lattice mismatches between the template layer and the substrate layer and at lower thicknesses of the template layer. For example, in some embodiments, Volmer-Weber island growth can occur at a thickness of about 5 Angstroms or less of the template layer.

模板层150包括半导体材料,并且是与模板层150沉积在其上的基底层112的材料不同的材料。例如,在一些实施方案中,模板层150可以包括磷、镓、铝、铟、砷、锑、氮、其衍生物和/或其组合。在一些实施方案中,基底层112和模板层150可以是以上描述的用于模板层140的材料的材料的组合或衍生物。一些实施方案可以使用被掺杂的材料用于模板层150。The template layer 150 includes a semiconductor material and is a different material than that of the base layer 112 on which the template layer 150 is deposited. For example, in some embodiments, template layer 150 can include phosphorous, gallium, aluminum, indium, arsenic, antimony, nitrogen, derivatives thereof, and/or combinations thereof. In some embodiments, base layer 112 and template layer 150 may be a combination or derivative of the materials described above for template layer 140 materials. Some embodiments may use doped materials for the template layer 150 .

类似地,如以上关于图3A的实施方案所解释的,岛状物152的生长可以通过调整沉积过程的一个或多个不同的参数来控制,包括以上描述的参数。Similarly, as explained above with respect to the embodiment of FIG. 3A , the growth of islands 152 can be controlled by adjusting one or more different parameters of the deposition process, including those described above.

在另一实施方案中,模板层具有组成的不一致性,但可以具有或可以不具有显著的厚度不一致性。图3C是示出这种实施方案的示例的光伏器件100”的横截面图。模板层155包括两种或两种以上的材料组成,第一种材料显示为无阴影区域156和157,并且第二种材料显示为阴影区域158。图3C旨在仅示出一个示例,并且不旨在限制本发明的范围。特别地,可能的是,存在多于两种化学组成,156和157具有相同或不同的材料组成,并且156是连接层而不是如图所示的断开的岛状物。In another embodiment, the template layer has compositional inconsistencies, but may or may not have significant thickness inconsistencies. Figure 3C is a cross-sectional view of a photovoltaic device 100" illustrating an example of such an embodiment. Template layer 155 comprises a composition of two or more materials, the first material being shown as unshaded regions 156 and 157, and the second material being shown as unshaded regions 156 and 157. Two materials are shown as shaded areas 158. Fig. 3C is intended to illustrate only one example, and is not intended to limit the scope of the invention. In particular, it is possible that there are more than two chemical compositions, 156 and 157 having the same or The material composition is different, and 156 is a connected layer rather than a disconnected island as shown.

那么,具有组成的不一致性的图3C的实施方案易受蚀刻的影响,该蚀刻可以以不同的速率蚀刻层156和158。在一个实施方案中,当层暴露于蚀刻剂或蚀刻过程时,层158比层156更快速地被蚀刻,使得在蚀刻之后,保留的结构类似于图3B的结构。然后,来自图3C的层156变得等同于图3B的岛状物层152。The embodiment of FIG. 3C with compositional inconsistencies is then susceptible to an etch that may etch layers 156 and 158 at different rates. In one embodiment, layer 158 is etched more rapidly than layer 156 when the layer is exposed to an etchant or etching process, such that after etching, a structure similar to that of FIG. 3B remains. Layer 156 from Figure 3C then becomes equivalent to island layer 152 of Figure 3B.

在一些示例实施方案中,模板层155可以包括一种或多种半导体的两种或多于两种不同的组成,比如铝镓砷(AlGaAs)(例如,具有不同量的Al和Ga含量)、或铝镓铟磷(AlGaInP)(例如,具有不同量的Al、Ga和/或In含量)或其他材料。In some example embodiments, template layer 155 may include two or more different compositions of one or more semiconductors, such as aluminum gallium arsenide (AlGaAs) (e.g., with different amounts of Al and Ga content), Or aluminum gallium indium phosphide (AlGaInP) (eg, with varying amounts of Al, Ga, and/or In content) or other materials.

为了进一步改变岛状物152并且提供更粗糙的纹理,蚀刻可以在岛状物生长之后如在图3D的可选实施方案100”’中所示的被进行。岛状物生长和蚀刻两者的参数可以控制纹理的形态和尺寸,从而最大化纹理对器件性能的益处。岛状物152的变化可以包括改变纹理化表面的物理尺寸,其中改变的物理尺寸包括纹理化表面中的一个或多个岛状物的改变的形状或纹理化表面中的多个岛状物之间的改变的距离。在各种实施方案中,蚀刻可以是化学蚀刻、激光蚀刻、等离子体蚀刻或离子蚀刻或类似蚀刻中的一种或多种。To further modify the islands 152 and provide a rougher texture, etching can be performed after the islands are grown as shown in the alternative embodiment 100"' of FIG. 3D. Both islands growth and etching The parameters can control the morphology and size of the texture, thereby maximizing the benefit of the texture to the device performance. The change of the island 152 can include changing the physical size of the textured surface, wherein the changed physical size includes one or more of the textured surfaces The altered shape of the islands or the altered distance between the islands in the textured surface. In various embodiments, the etching can be chemical etching, laser etching, plasma etching, or ion etching or similar etching one or more of.

在另一实施方案中,在去除层158之后,层156提供岛状物模板用于进一步蚀刻。In another embodiment, after layer 158 is removed, layer 156 provides an island template for further etching.

在另一实施方案中,层140被部分地蚀刻,以产生岛状物模板(图3E)。在蚀刻之后,层140的剩余部分被标记为146。进一步蚀刻在层112中产生纹理(图3F)。图3F示出了其中对层112进行蚀刻的蚀刻剂对层146具有可忽略的影响的一种实施方案。在又一实施方案中,对层112进行蚀刻的蚀刻剂同时有效地蚀刻层146(图3G)。同样可能的是,在层112的蚀刻之后层146不再存在。In another embodiment, layer 140 is partially etched to create an island template (FIG. 3E). After etching, the remainder of layer 140 is labeled 146 . Further etching produces texture in layer 112 (FIG. 3F). FIG. 3F shows an embodiment in which the etchant that etches layer 112 has negligible effect on layer 146 . In yet another embodiment, the etchant that etches layer 112 is effective to simultaneously etch layer 146 (FIG. 3G). It is also possible that layer 146 is no longer present after the etching of layer 112 .

在又一实施方案(图3H)中,蚀刻不限于层112和在层112上方的那些层,而是还扩展到层110。无论层146或层152或层156是岛状物层,这都可以适用。In yet another embodiment ( FIG. 3H ), etching is not limited to layer 112 and those layers above layer 112 , but extends to layer 110 as well. This may apply whether layer 146 or layer 152 or layer 156 is an island layer.

在图4中,图3B的光电器件100进一步通过将可选的半导体接触层160沉积在模板层140、150或155上、接下来将介电层162沉积在接触层(若存在的话)上或沉积在模板层140、150或155(若接触层160不存在的话)上来形成。在下面描述的示例附图中示出了模板层140,其中模板层150或155可以按照需要代替模板层140来使用。本领域普通技术人员容易地意识到,图3B的光电器件100’可以进一步地按相同的方式来形成并且其将在本发明的精神和范围内。此外,器件100的下面的描述相等地适用于图3A-3H的器件100”–100”””’。半导体接触层160在某些实施方式中可以被沉积以例如在模板层上提供帽状物(cap)并且以允许其他层被更容易地沉积在模板层上,和/或以为器件100中的电荷载子运动提供更好的欧姆接触。在一些示例实施方式中,接触层160可以包括半导体(例如砷化镓(GaAs)(例如,由于它可以是较不透明的而具有较小的厚度)、砷化铝镓(AlGaAs)(例如,因为它可以是更透明的而具有较大的厚度))或其他材料,并且在某些实施方式中可以是p-掺杂的,其具有约5nm至约500nm的范围内的厚度。In FIG. 4, the optoelectronic device 100 of FIG. 3B is further processed by depositing an optional semiconductor contact layer 160 on the template layer 140, 150 or 155, followed by depositing a dielectric layer 162 on the contact layer (if present) or Formed by deposition on template layer 140, 150 or 155 (if contact layer 160 is not present). Template layer 140 is shown in the example figures described below, where template layer 150 or 155 may be used in place of template layer 140 as desired. Those of ordinary skill in the art readily appreciate that the optoelectronic device 100' of FIG. 3B can further be formed in the same manner and that it will be within the spirit and scope of the present invention. Furthermore, the following description of device 100 applies equally to devices 100"-100"""' of FIGS. 3A-3H. The semiconductor contact layer 160 may be deposited in some embodiments, for example, to provide a cap on the template layer and to allow other layers to be more easily deposited on the template layer, and/or to provide electrical connections in the device 100. Load sub-motion provides better ohmic contact. In some example embodiments, the contact layer 160 may include a semiconductor such as gallium arsenide (GaAs) (eg, having a smaller thickness because it may be less transparent), aluminum gallium arsenide (AlGaAs) (eg, because It can be more transparent with a larger thickness)) or other material, and in some embodiments can be p - doped, with a thickness in the range of about 5nm to about 500nm.

介电层162在某些实施方式中可以被沉积在接触层160和/或模板层140、150或155上,并且可以促进撞击或行进穿过模板层140、150或155的光的反射或散射。在一些示例中,介电层162可以包括例如具有模板半导体材料和1之间的介电常数的绝缘材料(例如二氧化硅(SiO2))。在一些实施方式中,介电层162可以具有意图通过纹理化层散射的光的四分之一波长(或多个四分之一波长)的厚度,并且允许比仅使用金属层(下面描述的)更大的反射能力。在一些实施方式中,介电层可以具有比模板层140、150或155低的折射率n。Dielectric layer 162 may be deposited on contact layer 160 and/or template layer 140, 150, or 155 in certain embodiments, and may facilitate reflection or scattering of light striking or traveling through template layer 140, 150, or 155 . In some examples, dielectric layer 162 may include, for example, an insulating material (eg, silicon dioxide (SiO 2 )) having a dielectric constant between the template semiconductor material and 1 . In some embodiments, the dielectric layer 162 may have a thickness of one-quarter wavelength (or multiple quarter-wavelengths) of light intended to be scattered by the textured layer, and allow for a higher thickness than using only a metal layer (described below). ) greater reflectivity. In some embodiments, the dielectric layer may have a lower refractive index n than the template layer 140 , 150 or 155 .

因此,岛状物144或152可以在沉积于模板层上的层中形成凹部,使得在背部反射器实施方式中,穿过模板层140、150或155的材料行进的光撞击凹部的表面并且从凹部的表面反射离开(例如,通过凹部的表面散射)。关于图10更详细地示出了一些示例。Accordingly, the islands 144 or 152 may form recesses in a layer deposited on the template layer such that in back reflector embodiments, light traveling through the material of the template layer 140, 150, or 155 strikes the surface of the recess and exits the The surface of the recess is reflected off (eg, scattered by the surface of the recess). Some examples are shown in more detail with respect to FIG. 10 .

在一些其他实施方式中,不同的材料可以替代介电层162沉积在半导体层160上或模板层140、150或155上(如果接触层160不存在的话)。例如,在一些实施方式中,透明导电氧化物(TCO)层可以被沉积以提供与介电层相似的提高的反射能力,并且还为模板层和设置在TCO层上的导电金属层之间的电荷载流子提供导电通路。在这些实施方式中,如针对图5中的介电层162所描述的孔可以不必被形成于TCO层中。在一些实施方式中,高电阻率的透明(HRT)层还可以设置在TCO层和半导体层(例如模板层140/150/155、发射层110或吸收层108)之间。HRT层可以减少电荷载流子穿过半导体材料中的针孔(pin hole)的分流。In some other embodiments, a different material may be deposited on the semiconductor layer 160 or on the template layer 140, 150 or 155 instead of the dielectric layer 162 (if the contact layer 160 is not present). For example, in some embodiments, a transparent conductive oxide (TCO) layer may be deposited to provide enhanced reflectivity similar to that of a dielectric layer, and also provide a barrier between the template layer and a conductive metal layer disposed on the TCO layer. The charge carriers provide a conductive path. In these embodiments, holes may not necessarily be formed in the TCO layer as described for the dielectric layer 162 in FIG. 5 . In some embodiments, a high resistivity transparent (HRT) layer may also be disposed between the TCO layer and the semiconductor layer (eg template layer 140/150/155, emissive layer 110 or absorber layer 108). The HRT layer can reduce the shunting of charge carriers through pin holes in the semiconductor material.

图5示出了在孔已形成于介电层162中之后以允许穿过介电层162的导电触点的器件100。在具有半导体接触层160的实施方式中,例如图5中所示的示例实施方式,从介电层162的表面至半导体接触层160穿过介电层162形成孔164。在不具有半导体接触层160的其他实施方式中,可以从介电层的表面至模板层140、150或155形成孔164。FIG. 5 shows device 100 after holes have been formed in dielectric layer 162 to allow conductive contacts through dielectric layer 162 . In an embodiment having a semiconductor contact layer 160 , such as the example embodiment shown in FIG. 5 , a hole 164 is formed through the dielectric layer 162 from a surface of the dielectric layer 162 to the semiconductor contact layer 160 . In other embodiments without semiconductor contact layer 160 , hole 164 may be formed from the surface of the dielectric layer to template layer 140 , 150 or 155 .

在一些实施方式中,通过使用蚀刻工艺进行蚀刻来形成孔164。蚀刻工艺可以使用任何可用的合适的技术来进行。In some embodiments, the holes 164 are formed by etching using an etching process. The etching process can be performed using any suitable technique that is available.

在一些示例实施方式中,介电层162中的孔164的特定图样可以通过掩模(例如光刻胶/蚀刻掩模)来提供。图6A示出了在介电层162中设置孔164的掩模图样165的俯视图的一个示例,其中孔是具有近似圆形横截面的圆形洞166(在图6A的俯视图中为近似圆形)。图6B示出了在介电层162中设置孔164的掩模图样167的俯视图的另一个示例,其中孔是线型凹槽。如所示的,一个或更多个凹槽168可以与一个或更多个其他凹槽169相交。如所示的,凹槽可以安置成近似地彼此平行和/或垂直,或在其他实施方式中可以以各种其他角度进行安置。在其他实施方式中可以使用非线型的或不规则的凹槽。In some example embodiments, the specific pattern of holes 164 in the dielectric layer 162 may be provided by a mask (eg, a photoresist/etch mask). 6A shows an example of a top view of a mask pattern 165 in which a hole 164 is provided in a dielectric layer 162, wherein the hole is a circular hole 166 with an approximately circular cross-section (approximately circular in the top view of FIG. 6A ). ). FIG. 6B shows another example of a top view of a mask pattern 167 providing holes 164 in the dielectric layer 162, wherein the holes are linear grooves. As shown, one or more grooves 168 may intersect one or more other grooves 169 . As shown, the grooves may be positioned approximately parallel and/or perpendicular to each other, or may be positioned at various other angles in other embodiments. Non-linear or irregular grooves may be used in other embodiments.

在图7中,光电器件100已进一步地通过将反射性背部金属层170沉积在介电层162上、设置纹理化层180的一个示例来形成。金属层170包括有效反射光的金属。例如,在一些实施方式中,金属层170可以包括金、银、铜或其他反射性金属、它们的衍生物、和/或它们的组合。金属层170的沉积提供了与模板层140、150或155相对的近似平的表面。在一些实施方式中,层140、150或155已在后续的加工步骤之前进行了蚀刻。在一些实施方式中,金属层170可以具有约70nm至约10μm的范围内的平均厚度。金属层170的材料还被沉积至孔164中,使得导电触点形成在金属层170和半导体接触层160之间、或形成在金属层170和模板层140、150或155之间(不存在接触层160的话)。在一些其他实施方式中,金属层170可以被沉积在模板层140、150或155上,而不使介电层162和/或半导体接触层160沉积于金属层和模板层之间。In FIG. 7 , optoelectronic device 100 has been further formed by depositing a reflective back metal layer 170 on dielectric layer 162 , providing an example of textured layer 180 . The metal layer 170 includes metal that effectively reflects light. For example, in some embodiments, metal layer 170 may include gold, silver, copper, or other reflective metals, derivatives thereof, and/or combinations thereof. Deposition of metal layer 170 provides an approximately flat surface opposite template layer 140 , 150 or 155 . In some embodiments, layer 140, 150, or 155 has been etched prior to subsequent processing steps. In some embodiments, the metal layer 170 may have an average thickness in a range of about 70 nm to about 10 μm. Metal layer 170 material is also deposited into holes 164 such that conductive contacts are formed between metal layer 170 and semiconductor contact layer 160, or between metal layer 170 and template layer 140, 150 or 155 (no contact is present). layer 160). In some other embodiments, metal layer 170 may be deposited on template layer 140, 150, or 155 without dielectric layer 162 and/or semiconductor contact layer 160 being deposited between the metal layer and the template layer.

在图8中,在剥离工艺已除去了图2-7中的前面步骤中所示的一些层之后,光伏电池120示出为被翻转了方向。一旦外延层已形成为用于如图7中所示的PV器件100时,光伏器件100中的一些层(例如前部接触层105、窗口层106、吸收层108、发射层110和纹理化层180)可以在ELO工艺的期间与衬底101和任何缓冲层102分离。In FIG. 8, photovoltaic cell 120 is shown reversed after the lift-off process has removed some of the layers shown in the previous steps in FIGS. 2-7. Once the epitaxial layers have been formed for the PV device 100 as shown in FIG. 180) may be separated from the substrate 101 and any buffer layer 102 during the ELO process.

在一个示例中,光伏器件100可以暴露于蚀刻溶液以便蚀刻牺牲层104并且在外延剥离(ELO)工艺的期间使电池120与生长晶圆101分离。图8示出了在其得到的定向中的电池120,其中电池120的前部被定向在电池的顶部,在电池的顶部,光撞击并进入电池。因此,纹理化层180在距电池120的前部比通过吸收层和发射层形成的p-n结远的位置处充当背部反射器。一旦被分离,则电池120就可以被进一步地加工以形成多种光伏器件(包括光伏电池和模块)。例如,金属触点190可以被沉积在前部接触层105上。In one example, photovoltaic device 100 may be exposed to an etching solution in order to etch sacrificial layer 104 and separate cell 120 from growth wafer 101 during an epitaxial lift off (ELO) process. Figure 8 shows the cell 120 in its resulting orientation, where the front of the cell 120 is oriented on top of the cell where light strikes and enters the cell. Thus, the textured layer 180 acts as a back reflector at a location farther from the front of the cell 120 than the p-n junction formed by the absorber and emitter layers. Once separated, cell 120 may be further processed to form various photovoltaic devices, including photovoltaic cells and modules. For example, a metal contact 190 may be deposited on the front contact layer 105 .

图9示出了光伏电池120的可选择的实施方式120’的横截面图,其中孔未形成于介电层162中,并且导电触点被沉积在介电层162下面。在该示例中,在层沉积期间,一些导电触点194可以被沉积在半导体接触层160’上,或在模板层140’/150’/155’上(如果不存在接触层160’的话)。在一些实施方式中,层140’、150’或155’已在后续的加工步骤之前进行了蚀刻。介电层162’被沉积在触点194和半导体接触层160’上。金属接触层170’被沉积在介电层162’上。然后,器件在ELO或相似工艺之后被翻转至图9中所示的方向。Figure 9 shows a cross-sectional view of an alternative embodiment 120' In this example, during layer deposition, some conductive contacts 194 may be deposited on the semiconductor contact layer 160', or on the template layer 140'/150'/155' if the contact layer 160' is not present. In some embodiments, layer 140', 150' or 155' has been etched prior to subsequent processing steps. Dielectric layer 162' is deposited over contacts 194 and semiconductor contact layer 160'. A metal contact layer 170' is deposited on the dielectric layer 162'. The device is then flipped to the orientation shown in Figure 9 after ELO or similar process.

导电触点194以横截面被示出,并且可以延伸至图9的平面中或从图9的平面延伸出来至按路线穿过介电层162’到达金属接触层170’的一个或更多个位置(未示出)。例如,在一些实施方式中,触点194可以配置成与图6B中所示的掩模图样167的凹槽168和169相似,其中触点194在电池120’的区域上延伸并且被连接至一个或更多个连接节点(例如,相似于图6B中所示的节点196),所述一个或更多个连接节点通过介电层162’的覆盖部分延伸至金属接触层170’,或延伸至电池120’外部的位置。提供金属触点194的各实施方式可以避免蚀刻介电层中的孔,在形成电池120’中节省了加工步骤。Conductive contacts 194 are shown in cross-section and may extend into or out of the plane of FIG. 9 to one or more of the contacts routed through dielectric layer 162' to metal contact layer 170'. location (not shown). For example, in some embodiments, contacts 194 may be configured similar to recesses 168 and 169 of mask pattern 167 shown in FIG. or more connection nodes (e.g., similar to node 196 shown in FIG. Location outside of battery 120'. Embodiments that provide metal contacts 194 can avoid etching holes in the dielectric layer, saving processing steps in forming cell 120'.

图10示出了图示图8的光伏电池120的部分200的图,并且其中光通过充当背部反射层的纹理化层180来接收。活性层或区202被设置在纹理反射层180上。例如,活性层202可以是太阳能电池活性区,例如发射层110和/或吸收层108。一个或更多个其他层204在一些实施方式中还可以安置在活性层202和纹理化层180之间。FIG. 10 shows a diagram illustrating a portion 200 of the photovoltaic cell 120 of FIG. 8 and wherein light is received through the textured layer 180 acting as a back reflector. Active layer or region 202 is disposed on textured reflective layer 180 . For example, active layer 202 may be a solar cell active region, such as emissive layer 110 and/or absorber layer 108 . One or more other layers 204 may also be disposed between the active layer 202 and the textured layer 180 in some embodiments.

光206已行进至光伏电池120中并且已被上层吸收。该光206自活性层202出现并且撞击纹理化层180的前表面210。光206穿过模板层140、150或155的透明材料。在一些实施方式中,层140、150或155已在后续的加工步骤之前进行了蚀刻。光子206的一些可以撞击介电层162的表面并且从该层被反射。其他光子206可以穿过介电层162并且可以撞击背部金属层170的表面并且从该层被反射。经反射的光子如箭头212所示定向返回通过模板层140、150或155并且然后进入活性层202中,其中它们可以“在周围弹跳”并且可以通过吸收层108和发射层110来捕获,并且进一步地在电池中产生电流。Light 206 has traveled into photovoltaic cell 120 and has been absorbed by the upper layers. This light 206 emerges from the active layer 202 and strikes the front surface 210 of the textured layer 180 . Light 206 passes through the transparent material of template layer 140 , 150 or 155 . In some embodiments, layer 140, 150, or 155 has been etched prior to subsequent processing steps. Some of the photons 206 may strike the surface of the dielectric layer 162 and be reflected from the layer. Other photons 206 may pass through the dielectric layer 162 and may strike the surface of the back metal layer 170 and be reflected from this layer. The reflected photons are directed back through template layer 140, 150, or 155 as indicated by arrow 212 and then into active layer 202, where they can "bounce around" and can be captured by absorbing layer 108 and emitting layer 110, and further ground to generate current in the battery.

模板层140的岛状物144(或模板层150的岛状物152、或模板层155的岛状物156)在介电层162和背部金属层170中创造凹部172。这创造了介电层162和背部金属层170的随机化的、变粗糙的且有角的前表面。纹理化层180漫射或散射穿过活性层202的未被吸收的光子。纹理化层180的纹理可以为入射光子提供新的角度,这些入射光子的一些可以重新定向返回通过模板层140、150或155并且朝向光伏电池的内部。尽管一些光可以被模板层吸收,但是因为光子在内部被散射并重新定向,所以许多光被重新定向至活性层202。因此,纹理化层180及其凹部172的表面上的不同的角度因此有效地引起光子206以随机角度反射回活性层202中以允许较大量的光子被活性层重新捕获并且转换成电能,从而增强了电池120的光捕获性能并且增大了效率。Islands 144 of template layer 140 (or islands 152 of template layer 150 , or islands 156 of template layer 155 ) create recesses 172 in dielectric layer 162 and back metal layer 170 . This creates a randomized, roughened and angular front surface of the dielectric layer 162 and the back metal layer 170 . Textured layer 180 diffuses or scatters unabsorbed photons that pass through active layer 202 . The texture of the textured layer 180 can provide new angles for incident photons, some of which can be redirected back through the template layer 140, 150 or 155 and towards the interior of the photovoltaic cell. Although some light may be absorbed by the template layer, much light is redirected to the active layer 202 because photons are scattered and redirected internally. Thus, the different angles on the surface of the textured layer 180 and its recesses 172 thus effectively cause the photons 206 to reflect back into the active layer 202 at random angles to allow a larger number of photons to be recaptured by the active layer and converted into electrical energy, thereby enhancing The light harvesting performance of the cell 120 is improved and the efficiency is increased.

图11是适合于在光电器件300的前侧提供纹理化层的光伏器件300的另一个实施方式的横截面图。代替上述背侧光捕获或除此之外,纹理化层可以设置成用于光伏电池的前侧处的光捕获。这允许撞击光伏器件的前侧的光通过由纹理化层创造的纹理表面在器件中被散射,增大了器件中的光捕获。FIG. 11 is a cross-sectional view of another embodiment of a photovoltaic device 300 suitable for providing a textured layer on the front side of the photovoltaic device 300 . Instead of, or in addition to, the aforementioned backside light trapping, a textured layer may be provided for light trapping at the front side of the photovoltaic cell. This allows light striking the front side of the photovoltaic device to be scattered in the device by the textured surface created by the textured layer, increasing light trapping in the device.

光伏器件300包括通过布置于其间的ELO释放层或牺牲层304与生长晶圆301耦合的电池320。在一些实施方式中,一个或更多个缓冲层302可以形成于生长晶圆301上以便开始形成光伏器件300。光伏电池320的层可以沉积在牺牲层304上,所述牺牲层304在一些实施方式中可以包括背部半导体接触层312、背部接触层312上的发射层310、发射层310上的吸收层308(或吸收层308上的发射层310)、吸收层308上的前窗口层或钝化层306以及用于纹理化的、设置在窗口层306上的基底层305。Photovoltaic device 300 includes a cell 320 coupled to a growth wafer 301 with an ELO release or sacrificial layer 304 disposed therebetween. In some embodiments, one or more buffer layers 302 may be formed on the growth wafer 301 to initiate formation of the photovoltaic device 300 . The layers of the photovoltaic cell 320 can be deposited on the sacrificial layer 304, which in some embodiments can include the back semiconductor contact layer 312, the emitter layer 310 on the back contact layer 312, the absorber layer 308 on the emitter layer 310 ( or the emissive layer 310 on the absorber layer 308), the front window layer or passivation layer 306 on the absorber layer 308, and the base layer 305 disposed on the window layer 306 for texturing.

在一些实施方式中,背部接触层312可以包括非金属的第III-V族化合物半导体,例如砷化镓。In some embodiments, the back contact layer 312 may include a non-metallic Group III-V compound semiconductor, such as gallium arsenide.

用于纹理化的基底层305相似于上面参照图1描述的基底层112。例如,基底层305提供了其上为了纹理化目的沉积模板层的第一层,并且例如通过具有与模板层不同的组成(例如,不同的晶格参数),可以有助于岛状物形成。The base layer 305 for texturing is similar to the base layer 112 described above with reference to FIG. 1 . For example, base layer 305 provides a first layer upon which a template layer is deposited for texturing purposes, and may facilitate island formation, for example by having a different composition (eg, different lattice parameters) than the template layer.

在其他实施方式中,器件300未生长在如所示的牺牲层结构或ELO释放层结构上。例如,在其他实施方式中,器件300未被包括ELO剥离程序并且生长在无牺牲层104或缓冲层302的衬底上。In other embodiments, the device 300 is not grown on the sacrificial layer structure or the ELO release layer structure as shown. For example, in other embodiments, device 300 is not included with an ELO lift-off procedure and is grown on a substrate without sacrificial layer 104 or buffer layer 302 .

图12是光伏器件300的横截面图,光伏器件300包括根据用作前侧光捕获层的纹理化层的实施方式的基底层305上的模板层340的沉积物。模板层340可以使用岛状物生长工艺来创建并且提供用于使模板层的一个或更多个表面纹理化的岛状物344以在器件中引起光反射和散射,增加了光捕获。一些实施方式可以包括润湿层342,其相似于上述的润湿层。在其他实施方式中,在层340中不存在岛状物生长,而相反地,该模板层具有组分不均匀性并且随后的蚀刻工艺移除某些材料比移除其它材料更快。这也相似于上面针对图3C描述的情形。在一些实施方式中,层340已在后续的加工步骤之前进行了蚀刻。12 is a cross-sectional view of a photovoltaic device 300 comprising a deposition of a template layer 340 on a base layer 305 according to an embodiment used as a textured layer for the front-side light-harvesting layer. Template layer 340 may be created using an island growth process and provide islands 344 for texturing one or more surfaces of the template layer to induce light reflection and scattering in the device, increasing light trapping. Some embodiments may include a wetting layer 342, which is similar to the wetting layer described above. In other embodiments, there is no island growth in layer 340, but instead the template layer has compositional inhomogeneity and the subsequent etch process removes some materials faster than others. This is also similar to the situation described above for Figure 3C. In some embodiments, layer 340 has been etched prior to subsequent processing steps.

在图13中,光电器件300已进一步地通过将层沉积在模板层340上来形成。在一些实施方式中,如在图13中所示的示例中,可选的半导体接触层360被沉积在模板层340上。In FIG. 13 , optoelectronic device 300 has been further formed by depositing layers on template layer 340 . In some embodiments, an optional semiconductor contact layer 360 is deposited on the template layer 340 as in the example shown in FIG. 13 .

抗反射性涂层(ARC)362可以被沉积在半导体接触层(若存在的话)上或在模板层340(若不存在接触层360的话)上。ARC层362包括介电材料,所述介电材料允许光穿过,同时防止光从ARC层362的表面反射。在一些实施方式中,ARC层362可以包括多个层。An anti-reflective coating (ARC) 362 may be deposited on the semiconductor contact layer (if present) or on the template layer 340 (if the contact layer 360 is not present). The ARC layer 362 includes a dielectric material that allows light to pass through while preventing light from being reflected from the surface of the ARC layer 362 . In some implementations, the ARC layer 362 may include multiple layers.

在ELO实施方式中,可以使用ELO工艺将电池320(包括层340、360和362)从ELO层301、302和304移除。在移除之后,电池320保持其在图11-13中所示的方向并且在关于上述背侧反射器实施方式的方向上没有翻转。在其他实施方式中,没有ELO工艺用于电池320。In an ELO embodiment, cell 320 (including layers 340, 360, and 362) may be removed from ELO layers 301, 302, and 304 using an ELO process. After removal, the battery 320 retains its orientation shown in FIGS. 11-13 and is not flipped in orientation with respect to the backside reflector embodiment described above. In other embodiments, no ELO process is used for battery 320 .

层340、360和362提供了前侧光捕获纹理化层380。纹理化层380的前侧位置允许其接收撞击器件300的光并且以不同的角度将光散射到器件300的下层中,这归因于模板层340中的岛状物的纹理化的、随机化的表面。这剥离了光捕获,因为光子在下层内弹跳,允许更多的光子被吸收以产生电流。Layers 340 , 360 and 362 provide a frontside light-harvesting textured layer 380 . The frontside location of the textured layer 380 allows it to receive light striking the device 300 and scatter the light into the underlying layer of the device 300 at different angles due to the textured, randomized nature of the islands in the template layer 340 s surface. This strips away light trapping as photons bounce within the underlying layer, allowing more photons to be absorbed to generate current.

在器件100和300的其他实施方式中,可以使用其他层布置、掺杂布置、层厚度等。例如,在一些实施方式中发射层可以被沉积在吸收层上。In other embodiments of devices 100 and 300, other layer arrangements, doping arrangements, layer thicknesses, etc. may be used. For example, an emissive layer may be deposited on an absorbing layer in some embodiments.

光电器件和用于提供本文中所述的此类器件的方法的各实施方式可以提供纹理化层,纹理化层包括被创建用于使纹理化层允许增加光捕获的岛状物。公开的各实施方式还可以提供优于先前的光捕获层形成技术的优点,包括较大的柔韧性、减低的成本和增加的层生长率,节省了制造器件中的时间和费用。Various embodiments of optoelectronic devices and methods for providing such devices described herein may provide a textured layer comprising islands created to allow the textured layer to increase light trapping. The disclosed embodiments may also provide advantages over previous light harvesting layer formation techniques, including greater flexibility, reduced cost, and increased layer growth rates, saving time and expense in fabricating devices.

虽然已根据所示出的各实施方式描述了本发明,但是本领域普通技术人员将容易意识到,各实施方式可以存在变化并且这些变化将在本发明的精神和范围之内。因此,本领域普通技术人员可以做出许多修改,而不脱离所附权利要求的精神和范围。While the invention has been described in terms of the illustrated embodiments, those of ordinary skill in the art will readily appreciate that variations can be made from the embodiments and will remain within the spirit and scope of the invention. Accordingly, many modifications can be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.

Claims (22)

1. a kind of photoelectric device at least one texturizing surfaces, at least one texturizing surfaces include by executing The method of following steps is made:
The semiconductor layer of photoelectric device described in epitaxial growth in growth substrates;
The semiconductor layer is exposed to etch process to form at least one texturizing surfaces on the semiconductor layer; With
The photoelectric device is removed from the growth substrates.
2. photoelectric device according to claim 1, wherein it includes executing to remove the photoelectric device from the growth substrates Extension removes (ELO) technique.
3. photoelectric device according to claim 1, wherein the etch process is lost by the chemistry based on liquid or solution Agent is carved to complete.
4. photoelectric device according to claim 1, wherein etch process pass through gas etch, laser-induced thermal etching, plasma One or more of etching or ion(ic) etching are completed.
5. photoelectric device according to claim 1, wherein at least one texturizing surfaces are configured as that light is caused to dissipate It penetrates.
6. photoelectric device according to claim 5, wherein at least one texturizing surfaces be configured as making photon with Random angles scatter.
7. photoelectric device according to claim 1, wherein the semiconductor layer includes in gallium, aluminium, indium, phosphorus, nitrogen or arsenic It is at least one or more of.
8. photoelectric device according to claim 1 further includes in being deposited below at least one texturizing surfaces One or more:
Dielectric layer,
Transparent conductive oxide (TCO) layer,
Anti-reflective coating, or
Reflective metallic.
9. photoelectric device according to claim 1, wherein at least one texturizing surfaces are than the photoelectric device P-n junction further from the photoelectric device front side position back reflecting layer a part.
10. photoelectric device according to claim 1, wherein at least one texturizing surfaces are than the photoelectric device P-n junction closer to the photoelectric device front side position front window layer a part.
11. photoelectric device according to claim 1, wherein the photoelectric device is a part for solar cell or shines A part for diode.
12. a kind of method for providing at least one veining layer in the opto-electronic device, the method includes:
The semiconductor layer of photoelectric device described in epitaxial growth in growth substrates;
The semiconductor layer is exposed to etch process to form at least one texturizing surfaces on the semiconductor layer; With
The photoelectric device is removed from the growth substrates.
13. according to the method for claim 12, wherein it includes that execution is outer to remove the photoelectric device from the growth substrates Prolong stripping (ELO) technique.
14. according to the method for claim 12, wherein the etch process passes through the chemical etching based on liquid or solution Agent is completed.
15. method as claimed in claim 12, wherein etch process pass through gas etch, laser-induced thermal etching, plasma etching Or one or more of ion(ic) etching is completed.
16. according to the method for claim 12, wherein at least one texturizing surfaces are configured as causing light scattering.
17. according to the method for claim 16, wherein at least one texturizing surfaces be configured such that photon with Random angles scatter.
18. according to the method for claim 12, wherein the semiconductor layer include in gallium, aluminium, indium, phosphorus, nitrogen or arsenic extremely It is few one or more.
19. further including according to the method for claim 12, in being deposited below at least one texturizing surfaces It is one or more:
Dielectric layer,
Transparent conductive oxide (TCO) layer,
Anti-reflective coating, or
Reflective metallic.
20. according to the method for claim 12, wherein at least one texturizing surfaces are than the photoelectric device The part in the back reflecting layer that p-n junction is positioned further from the front side of the photoelectric device.
21. according to the method for claim 12, wherein at least one texturizing surfaces are than the photoelectric device A part for the front window layer that p-n junction is positioned closer to the front side of the photoelectric device.
22. according to the method for claim 12, wherein the photoelectric device is a part or luminous two for solar cell A part for pole pipe.
CN201810340115.3A 2014-08-05 2015-08-05 Thin film semiconductor's photoelectric device with veining front surface and/or back surface Pending CN108565315A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/452,393 US9502594B2 (en) 2012-01-19 2014-08-05 Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US14/452,393 2014-08-05
CN201510475349.5A CN105336797B (en) 2014-08-05 2015-08-05 Thin film semiconductor's photoelectric device with veining front surface and/or back surface

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510475349.5A Division CN105336797B (en) 2014-08-05 2015-08-05 Thin film semiconductor's photoelectric device with veining front surface and/or back surface

Publications (1)

Publication Number Publication Date
CN108565315A true CN108565315A (en) 2018-09-21

Family

ID=55287212

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810340115.3A Pending CN108565315A (en) 2014-08-05 2015-08-05 Thin film semiconductor's photoelectric device with veining front surface and/or back surface
CN201510475349.5A Active CN105336797B (en) 2014-08-05 2015-08-05 Thin film semiconductor's photoelectric device with veining front surface and/or back surface

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510475349.5A Active CN105336797B (en) 2014-08-05 2015-08-05 Thin film semiconductor's photoelectric device with veining front surface and/or back surface

Country Status (1)

Country Link
CN (2) CN108565315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909100A (en) * 2021-01-18 2021-06-04 中山德华芯片技术有限公司 Solar cell and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019004905T5 (en) * 2018-09-28 2021-06-02 Sunpower Corporation Solar cells with hybrid architectures including distinguishable p and n regions
CN109767975B (en) * 2019-01-16 2021-11-05 合肥鑫晟光电科技有限公司 Preparation method and device of semiconductor layer and preparation method of display substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055397A1 (en) * 2006-11-15 2010-03-04 National Institute Of Advanced Industrial Science And Technology Mold for optical device with anti-reflection structure, method for producing the same, and optical device
CN102257637A (en) * 2008-10-23 2011-11-23 奥塔装置公司 Photovoltaic device
CN102473743A (en) * 2010-01-27 2012-05-23 因特潘开发咨询有限责任公司 Method for producing a coated item by means of texture etching
US20150171261A1 (en) * 2013-12-17 2015-06-18 Tel Solar Ag Transparent conductive oxide (tco) layer, and systems, apparatuses and methods for fabricating a transparent conductive oxide (tco) layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128324A1 (en) * 2008-04-17 2009-10-22 三菱電機株式会社 Method for roughening substrate surface and method for manufacturing photovoltaic device
KR101238285B1 (en) * 2008-10-17 2013-02-28 가부시키가이샤 아루박 Manufacturing method for solar cell
CN103952768A (en) * 2014-05-09 2014-07-30 中国科学院宁波材料技术与工程研究所 Monocrystal silicon inverted pyramid array structure suede, and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055397A1 (en) * 2006-11-15 2010-03-04 National Institute Of Advanced Industrial Science And Technology Mold for optical device with anti-reflection structure, method for producing the same, and optical device
CN102257637A (en) * 2008-10-23 2011-11-23 奥塔装置公司 Photovoltaic device
CN102473743A (en) * 2010-01-27 2012-05-23 因特潘开发咨询有限责任公司 Method for producing a coated item by means of texture etching
US20150171261A1 (en) * 2013-12-17 2015-06-18 Tel Solar Ag Transparent conductive oxide (tco) layer, and systems, apparatuses and methods for fabricating a transparent conductive oxide (tco) layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909100A (en) * 2021-01-18 2021-06-04 中山德华芯片技术有限公司 Solar cell and preparation method thereof

Also Published As

Publication number Publication date
CN105336797B (en) 2018-05-11
CN105336797A (en) 2016-02-17

Similar Documents

Publication Publication Date Title
US11942566B2 (en) Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
US10008628B2 (en) Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US9537025B1 (en) Texturing a layer in an optoelectronic device for improved angle randomization of light
JP7541480B2 (en) Nanostructure
US7915522B2 (en) Asymmetric surface texturing for use in a photovoltaic cell and method of making
CN103038671A (en) Micro-nano combined structure and preparation method thereof and preparation method of optical device
US10014429B2 (en) Semiconductor structures including bonding layers, multi-junction photovoltaic cells and related methods
US10957808B2 (en) Flexible double-junction solar cell
KR102102823B1 (en) Method of forming selective emitter using surface structure and solar cell comprising selective emitter using surface structure
US20180331245A1 (en) Dual-junction thin film solar cell module, and preparation method thereof
CN105336797B (en) Thin film semiconductor's photoelectric device with veining front surface and/or back surface
CN205452332U (en) GaP roughened surface's alGaInP base LED
US9972750B2 (en) Use of dielectric film to reduce resistivity of transparent conductive oxide in nanowire LEDs
JP5283588B2 (en) Solar cell
Hong et al. Back-contacted thin-film GaAs solar cells
KR20120040462A (en) Method for fabricating nanostructure and method for fabricating electronic devices using the same
KR101459650B1 (en) High Performance Selective Emitter Device and Method of Fabricating the Same
KR101359407B1 (en) Two-Step Wet Texturing Production Method Using Metal Ultra Thin Film
Bochicchio Light management in InP nanowire solar cells
Li et al. Control Surface Templates for Solution-Processed Hybrid PEDOT: PSS-Silicon Solar Cell
CN117767109A (en) Manufacturing method of flip-chip ridge waveguide semiconductor laser and semiconductor laser
Chao et al. GaAs nanowire/PEDOT: PSS hybrid solar cells: the relationship between nanowire morphology and device performance
CN105449015A (en) Micro-nano pyramid silicon/InGaN heterozygosis pn junction solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210219

Address after: 611, unit 3, 6th floor, building 1, yard 30, Yuzhi East Road, Changping District, Beijing

Applicant after: Zishi Energy Co.,Ltd.

Address before: California, USA

Applicant before: ALTA DEVICES, Inc.

TA01 Transfer of patent application right
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180921

WD01 Invention patent application deemed withdrawn after publication