CN108540802B - Local constraint linear coding method and system for hyperspectral image - Google Patents
Local constraint linear coding method and system for hyperspectral image Download PDFInfo
- Publication number
- CN108540802B CN108540802B CN201810268590.4A CN201810268590A CN108540802B CN 108540802 B CN108540802 B CN 108540802B CN 201810268590 A CN201810268590 A CN 201810268590A CN 108540802 B CN108540802 B CN 108540802B
- Authority
- CN
- China
- Prior art keywords
- feature
- band information
- dictionary
- hyperspectral image
- words
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 abstract description 10
- 238000012545 processing Methods 0.000 abstract description 4
- 230000000007 visual effect Effects 0.000 abstract description 3
- 238000004422 calculation algorithm Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Analysis (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明适用于图像处理技术领域,提供了高光谱图像的局部约束线性编码方法,包括:提取高光谱图像的待编码特征,得到特征集;根据特征集中的特征点,确定所述高光谱图像的词典;分别获取特征集的波段信息和词典中单词的波段信息;以特征点的波段信息和所述单词的波段信息作为判别约束项,计算所述高光谱图像的特征点与单词之间的欧氏距离,得到特征编码系数;根据所述特征编码系数对所述高光谱图像的特征进行编码。本发明实施例在利用高光谱图像局部特征和视觉单词的局部线性约束的同时,引入了高光谱图像的波段信息,并将其作为特征点到词典单词的映射的判别约束,从而降低了特征点与词典单词之间映射的模糊性,增强了对高光谱图像的表示能力。
The invention is applicable to the technical field of image processing, and provides a locally constrained linear encoding method for hyperspectral images, including: extracting features to be encoded in hyperspectral images to obtain a feature set; dictionary; obtain the band information of the feature set and the band information of the words in the dictionary respectively; take the band information of the feature point and the band information of the word as the discriminant constraint item, calculate the Euclidean between the feature point of the hyperspectral image and the word and obtain the feature encoding coefficient; encode the feature of the hyperspectral image according to the feature encoding coefficient. In the embodiment of the present invention, while using the local features of hyperspectral images and the local linear constraints of visual words, the band information of hyperspectral images is introduced as a discriminant constraint for the mapping of feature points to dictionary words, thereby reducing the number of feature points. The ambiguity of the mapping with dictionary words enhances the representation of hyperspectral images.
Description
技术领域technical field
本发明属于图像处理技术领域,尤其涉及一种高光谱图像的局部约束线性编码方法及系统。The invention belongs to the technical field of image processing, and in particular relates to a local constrained linear encoding method and system for hyperspectral images.
背景技术Background technique
在普通图像分类的特征编码方面,现有的编码算法主要有硬分配、稀疏编码、局部特征聚合描述符VLAD(vector of locally aggregated descriptors)、费舍尔向量和局部约束线性编码算法LLC(Locality-constrained linear coding)等。In terms of feature coding for common image classification, the existing coding algorithms mainly include hard allocation, sparse coding, local feature aggregation descriptor VLAD (vector of locally aggregated descriptors), Fisher vector and local constrained linear coding algorithm LLC (Locality- constrained linear coding), etc.
与传统的灰度图像相比,高光谱图像包含丰富的空间、辐射和光谱三重信息。将传统的应用在普通图像的LLC扩展到3维LLC并应用于高光谱图像分类中能取得较好的效果,但是由于图像容易受场景中光照变化和复杂背景等因素影响,不同类别的图像提取得到的特征点可能表现出较强的相似性,而相同类别的图像提取得到的特征点又表现出差异性,这导致LLC编码过程中特征点到词典单词的映射变得模糊,出现“一词多义”或者“多词同义”,高光谱图像的表示能力弱。Compared with traditional grayscale images, hyperspectral images contain rich spatial, radiometric and spectral triple information. Extending the traditional application from ordinary image LLC to 3-dimensional LLC and applying it to hyperspectral image classification can achieve good results. The obtained feature points may show strong similarity, while the feature points extracted from images of the same category show differences, which leads to the blurring of the mapping of feature points to dictionary words in the LLC encoding process. "meaning" or "multi-word synonym", the representation ability of hyperspectral images is weak.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于提供一种高光谱图像的局部约束线性编码方法及系统,旨在解决现有编码方法在编码过程中特征点到词典单词的映射模糊,高光谱图像的表示能力弱的问题。The technical problem to be solved by the present invention is to provide a local constrained linear encoding method and system for hyperspectral images, which aims to solve the problem that the mapping of feature points to dictionary words in the existing encoding method is ambiguous, and the representation ability of hyperspectral images is weak. The problem.
本发明是这样实现的,一种高光谱图像的局部约束线性编码方法,包括:The present invention is implemented in this way, a method for locally constrained linear encoding of hyperspectral images, comprising:
提取高光谱图像的待编码特征,得到特征集;Extract the features to be encoded of the hyperspectral image to obtain a feature set;
根据所述特征集中的特征点,确定所述高光谱图像的词典;determining the dictionary of the hyperspectral image according to the feature points in the feature set;
分别获取所述特征集的波段信息和所述词典中单词的波段信息;respectively acquiring the band information of the feature set and the band information of the words in the dictionary;
以所述特征点的波段信息和所述单词的波段信息作为判别约束项,计算所述高光谱图像的特征点与单词之间的欧氏距离,得到特征编码系数;Using the band information of the feature point and the band information of the word as a discriminant constraint item, calculate the Euclidean distance between the feature point of the hyperspectral image and the word, and obtain the feature encoding coefficient;
根据所述特征编码系数对所述高光谱图像的特征进行编码。The feature of the hyperspectral image is encoded according to the feature encoding coefficient.
进一步地,所述特征集以X=[x1,x2,...,xN]∈RD×N表示,所述词典以B=[b1,b2...bM]∈RD×M表示,所述词典B包括M个单词,所述特征集的波段信息以Ω表示,Ω=[μ1,μ2,...,μK]∈RD×K,所述单词的波段信息以U表示,U=[u1,u2,...,uL]∈RD×L,xi表示特征集X中的第i个特征点,所述特征编码系数以zi表示;Further, the feature set is represented by X=[x 1 ,x 2 ,...,x N ]∈R D×N , and the dictionary is represented by B=[b 1 ,b 2 ...b M ]∈ R D×M , the dictionary B includes M words, the band information of the feature set is represented by Ω, Ω=[μ 1 , μ 2 ,...,μ K ]∈R D×K , the The band information of the word is represented by U, U=[u 1 , u 2 ,...,u L ]∈R D×L , xi represents the ith feature point in the feature set X, and the feature encoding coefficient is represented by zi means;
特征编码系数以zi通过以下公式计算得到:The feature coding coefficient is calculated by the following formula with zi :
其中:in:
dif(μi,U)=[dif(μi,u1),dif(μi,u2),...,dif(μi,uN)]T,⊙表示各元素点乘,dij表示特征点xi与近邻特征点xj之间的欧式距离,H为距离阈值,λ1和λ2为惩罚因子,λ1=λ2=0.005,dif(μi,uj)表示所述高光谱图像的特征点的波段μi与该特征点映射的单词的波段uj的差值。 dif(μ i ,U)=[dif(μ i ,u 1 ),dif(μ i ,u 2 ),...,dif(μ i ,u N )] T , ⊙ denotes the dot product of each element, d ij represents the Euclidean distance between the feature point x i and the neighboring feature point x j , H is the distance threshold, λ 1 and λ 2 are penalty factors, λ 1 =λ 2 =0.005, dif(μ i , u j ) represents the The difference between the band μ i of the feature point of the hyperspectral image and the band u j of the word mapped by the feature point.
本发明实施例还提供了一种高光谱图像的局部约束线性编码系统,包括:The embodiment of the present invention also provides a locally constrained linear encoding system for hyperspectral images, including:
特征提取单元,用于提取高光谱图像的待编码特征,得到特征集;The feature extraction unit is used to extract the feature to be encoded of the hyperspectral image to obtain a feature set;
词典确定单元,用于根据所述特征集中的特征点,确定所述高光谱图像的词典;a dictionary determining unit, configured to determine the dictionary of the hyperspectral image according to the feature points in the feature set;
波段获取单元,用于分别获取所述特征集的波段信息和所述词典中单词的波段信息;a band acquisition unit, configured to obtain the band information of the feature set and the band information of the words in the dictionary respectively;
系数计算单元,用于以所述特征点的波段信息和所述单词的波段信息作为判别约束项,计算所述高光谱图像的特征点与单词之间的欧氏距离,得到特征编码系数;A coefficient calculation unit, for using the band information of the feature point and the band information of the word as a discriminant constraint item, calculating the Euclidean distance between the feature point of the hyperspectral image and the word, to obtain a feature encoding coefficient;
特征编码单元,用于根据所述特征编码系数对所述高光谱图像的特征进行编码。A feature encoding unit, configured to encode the feature of the hyperspectral image according to the feature encoding coefficient.
进一步地,所述特征集以X=[x1,x2,...,xN]∈RD×N表示,所述词典以B=[b1,b2...bM]∈RD×M表示,所述词典B包括M个单词,所述特征集的波段信息以Ω表示,Ω=[μ1,μ2,...,μK]∈RD×K,所述单词的波段信息以U表示,U=[u1,u2,...,uL]∈RD×L,xi表示特征集X中的第i个特征点,所述特征编码系数以zi表示;Further, the feature set is represented by X=[x 1 ,x 2 ,...,x N ]∈R D×N , and the dictionary is represented by B=[b 1 ,b 2 ...b M ]∈ R D×M , the dictionary B includes M words, the band information of the feature set is represented by Ω, Ω=[μ 1 , μ 2 ,...,μ K ]∈R D×K , the The band information of the word is represented by U, U=[u 1 , u 2 ,...,u L ]∈R D×L , xi represents the ith feature point in the feature set X, and the feature encoding coefficient is represented by zi means;
所述系数计算单元通过以下公式计算得到特征编码系数以zi:The coefficient calculation unit calculates and obtains the characteristic coding coefficient z i through the following formula:
其中:in:
dif(μi,U)=[dif(μi,u1),dif(μi,u2),...,dif(μi,uN)]T,⊙表示各元素点乘,dij表示特征点xi与近邻特征点xj之间的欧式距离,H为距离阈值,λ1和λ2为惩罚因子,λ1=λ2=0.005,dif(μi,uj)表示所述高光谱图像的特征点的波段μi与该特征点映射的单词的波段uj的差值。 dif(μ i ,U)=[dif(μ i ,u 1 ),dif(μ i ,u 2 ),...,dif(μ i ,u N )] T , ⊙ denotes the dot product of each element, d ij represents the Euclidean distance between the feature point x i and the neighboring feature point x j , H is the distance threshold, λ 1 and λ 2 are penalty factors, λ 1 =λ 2 =0.005, dif(μ i , u j ) represents the The difference between the band μ i of the feature point of the hyperspectral image and the band u j of the word mapped by the feature point.
本发明与现有技术相比,有益效果在于:本发明实施例提取高光谱图像的待编码特征,得到包含特征点的特征集,根据特征集中的特征点,确定所述高光谱图像的词典,获取该特征集的波段信息和该词典中单词的波段信息,并以此作为判别约束项,计算该高光谱图像的特征点与单词之间的欧氏距离,得到特征编码系数,根据该特征编码系数对该高光谱图像的特征进行编码。本发明实施例在利用高光谱图像局部特征和视觉单词的局部线性约束的同时,引入了高光谱图像的波段信息,并将其作为特征点到词典单词的映射的判别约束,从而降低了特征点与词典单词之间映射的模糊性,增强了对高光谱图像的表示能力。Compared with the prior art, the present invention has the beneficial effects that: in the embodiment of the present invention, the feature to be encoded of the hyperspectral image is extracted to obtain a feature set including feature points, and the dictionary of the hyperspectral image is determined according to the feature points in the feature set, Obtain the band information of the feature set and the band information of the words in the dictionary, and use this as a discriminant constraint, calculate the Euclidean distance between the feature points of the hyperspectral image and the word, and obtain the feature coding coefficient, which is encoded according to the feature. The coefficients encode the characteristics of the hyperspectral image. In the embodiment of the present invention, while using the local features of hyperspectral images and the local linear constraints of visual words, the band information of hyperspectral images is introduced, and it is used as a discriminant constraint for the mapping of feature points to dictionary words, thereby reducing the number of feature points. The ambiguity of the mapping with dictionary words enhances the representation of hyperspectral images.
附图说明Description of drawings
图1是本发明实施例提供的一种高光谱图像的局部约束线性编码方法的流程图;1 is a flowchart of a method for locally constrained linear encoding of hyperspectral images provided by an embodiment of the present invention;
图2是本发明实施例提供的一种高光谱图像的局部约束线性编码系统的结构示意图。FIG. 2 is a schematic structural diagram of a locally constrained linear encoding system for hyperspectral images provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
图1示出了本发明实施例提供的一种高光谱图像的局部约束线性编码方法,包括:1 shows a locally constrained linear encoding method for hyperspectral images provided by an embodiment of the present invention, including:
S101,提取高光谱图像的待编码特征,得到特征集;S101, extracting the feature to be encoded of the hyperspectral image to obtain a feature set;
S102,根据所述特征集中的特征点,确定所述高光谱图像的词典;S102, according to the feature points in the feature set, determine the dictionary of the hyperspectral image;
S103,分别获取所述特征集的波段信息和所述词典中单词的波段信息;S103, obtain the band information of the feature set and the band information of the words in the dictionary respectively;
S104,以所述特征点的波段信息和所述单词的波段信息作为判别约束项,计算所述高光谱图像的特征点与单词之间的欧氏距离,得到特征编码系数;S104, using the band information of the feature point and the band information of the word as a discriminant constraint, calculate the Euclidean distance between the feature point of the hyperspectral image and the word, and obtain a feature encoding coefficient;
S105,根据所述特征编码系数对所述高光谱图像的特征进行编码。S105: Encode the feature of the hyperspectral image according to the feature encoding coefficient.
现有技术中的LLC的基本思想是对待编码特征X使用距离最近的k个词典单词的线性组合表达特征。假设X=[x1,x2,...,xN]∈RD×N是提取高光谱图像得到的一组特征集,D表示D维描述符,B=[b1,b2,...,bM]∈RD×M是词典,包含M个单词,特征编码系数zi由高光谱图像的特征点xi和单词bj之间的欧式距离计算得到,如下所示:The basic idea of LLC in the prior art is to use the linear combination of the nearest k dictionary words to express the feature X to be encoded. Suppose X=[x 1 ,x 2 ,...,x N ]∈R D×N is a set of feature sets obtained by extracting hyperspectral images, D represents a D-dimensional descriptor, B=[b 1 ,b 2 , ...,b M ]∈R D×M is a dictionary containing M words, and the feature encoding coefficient z i is calculated from the Euclidean distance between the feature point x i of the hyperspectral image and the word b j , as follows:
其中,⊙表示各元素点乘,λ为惩罚因子,di∈RM表示局部适配器,可为每个基向量分配不同的自由度,所分配的自由度与基向量和输入特征点xi的相似性成正比,如式(2)所示:Among them, ⊙ represents the dot product of each element, λ is the penalty factor, d i ∈ R M represents the local adapter, which can assign different degrees of freedom to each basis vector, and the assigned degrees of freedom are related to the basis vector and the input feature point x i . The similarity is proportional, as shown in formula (2):
di=exp(dist(xi,B)/σ) (2)d i =exp(dist( xi ,B)/σ) (2)
其中:in:
dist(xi,B)=[dist(xi,b1),dist(xi,b2),...,dist(xi,bM)]T (3)dist( xi ,B)=[dist( xi ,b 1 ),dist( xi ,b 2 ),...,dist( xi ,b M )] T (3)
其中,dist(xi,bi)表示xi与bi之间的欧式距离,而σ用于调整局部适配器的权重衰减速度。通常将dist(xi,B)与max(dist(xi,B))相减从而将di正规化到(0,1]范围中,约束条件1Tzi=1满足LLC码的平移不变性的要求。式(1)中的LLC编码在l0范数方面不具有稀疏性,但是由于其解只有少数有效值,因此从这一角度看,式(1)中的LLC编码具有稀疏性。实际中通常对那些较小的系数进行阈值处理使其为0。where dist( xi , b i ) represents the Euclidean distance between xi and b i , and σ is used to adjust the weight decay rate of the local adapter. Usually, dist(x i ,B) is subtracted from max(dist(x i ,B)) to normalize d i to the (0,1] range, the constraint 1 T zi =1 satisfies the translation of LLC code The requirement of invariance. The LLC code in Eq. (1) does not have sparseness in terms of l 0 norm, but since its solution has only a few valid values, from this point of view, the LLC code in Eq. (1) has sparseness In practice, those smaller coefficients are usually thresholded to zero.
高光谱图像和普通二维图像不同之处在于,它不仅包含二维图像信息还包含光谱信息。鉴于上述的图像特征映射到词典单词可能产生“一词多义”或“多词同义”的模糊现象。为了能够更精确地对高光谱图像进行分类,本发明实施例引入高光谱图像特征点的波段信息作为判别约束项,提出了如图1所示的一种新的高光谱图像的局部约束线性编码方法。The difference between hyperspectral image and ordinary two-dimensional image is that it contains not only two-dimensional image information but also spectral information. In view of the above-mentioned mapping of image features to dictionary words, the ambiguity of "polysemy of one word" or "polysemy of multiple words" may occur. In order to classify the hyperspectral image more accurately, the embodiment of the present invention introduces the band information of the feature points of the hyperspectral image as a discriminant constraint item, and proposes a new locally constrained linear encoding of the hyperspectral image as shown in FIG. 1 . method.
假设X=[x1,x2,...,xN]∈RD×N是提取高光谱图像得到的一组特征集,B=[b1,b2...bM]∈RD×M是词典,词典B中有M个单词,Ω为待分类高光谱图像特征点集X的波段信息,Ω=[μ1,μ2,...,μK]∈RD×K,U表示高光谱图像的词典B中单词的波段信息,U=[u1,u2,...,uL]∈RD×L,R表示维度,D表示D维描述符。对传统的LLC中的式子(1)进行改进后,得到如下式子:Suppose X=[x 1 ,x 2 ,...,x N ]∈R D×N is a set of feature sets obtained by extracting hyperspectral images, B=[b 1 ,b 2 ...b M ]∈R D×M is a dictionary, there are M words in dictionary B, Ω is the band information of the feature point set X of the hyperspectral image to be classified, Ω=[μ 1 , μ 2 ,...,μ K ]∈R D×K , U represents the band information of the word in the dictionary B of the hyperspectral image, U=[u 1 , u 2 ,...,u L ]∈R D×L , R represents the dimension, and D represents the D-dimensional descriptor. After improving the formula (1) in the traditional LLC, the following formula is obtained:
其中,in,
其中,in,
dif(μi,U)=[dif(μi,u1),dif(μi,u2),...,dif(μi,uN)]T (6)dif(μ i ,U)=[dif(μ i ,u 1 ),dif(μ i ,u 2 ),...,dif(μ i ,u N )] T (6)
Z∈RD×N是通过式(4)求解出来的待分类高光谱图像的特征点与词典中单词的编码系数。式(4)中dij表示特征点xi与近邻特征点xj之间的欧式距离,H为距离阈值。λ1和λ2为惩罚因子,设置λ1=λ2=0.005。式(5)中dif(μi,uj)表示待分类高光谱图像的特征点的波段μi与该特征点映射的单词的波段uj的差值,波段差值越小的单词对该特征点的影响权重较波段差值大的单词要大。约束条件1Tzi=1同样满足LLC编码的平移不变性的要求。式(4)中的第1项为信号保真度,保证分类信号能量不损失,第2项是系数zi受特征点的近邻单词的欧式距离约束,保证特征点映射到最近邻的单词,第3项是利用系数zi受特征点的近邻单词的波段约束,保证特征点映射到波段最接近的单词。Z∈R D×N is the feature point of the hyperspectral image to be classified and the coding coefficient of the word in the dictionary solved by Equation (4). In formula (4), d ij represents the Euclidean distance between the feature point x i and the neighboring feature point x j , and H is the distance threshold. λ 1 and λ 2 are penalty factors, set λ 1 =λ 2 =0.005. In formula (5), dif(μ i , u j ) represents the difference between the band μ i of the feature point of the hyperspectral image to be classified and the band u j of the word mapped by the feature point. The influence weight of feature points is larger than that of words with large band difference. Constraint 1 T zi =1 also satisfies the translation invariance requirement of LLC coding. The first item in formula (4) is the signal fidelity, which ensures that the classification signal energy is not lost, and the second item is that the coefficient zi is constrained by the Euclidean distance of the nearest neighbor words of the feature point, which ensures that the feature point is mapped to the nearest neighbor word, The third item is to use the coefficient zi to be constrained by the band of the neighboring words of the feature point to ensure that the feature point is mapped to the word with the closest band.
本发明实施例提供的一种高光谱图像的局部约束线性编码方法基于普通二维图像的局部约束线性编码(Locality-constrained linear coding(LLC))算法进行改进。因为高光谱图像与普通彩色图像相比,增加波段信息,为三维数据结构,普通的LLC算法只能作用在普通彩色图像,不能直接用于高光谱图像的局部特征的编码。The locality-constrained linear coding method of a hyperspectral image provided by the embodiment of the present invention is improved based on a locality-constrained linear coding (LLC) algorithm of a common two-dimensional image. Compared with ordinary color images, hyperspectral images have increased band information and are three-dimensional data structures. The ordinary LLC algorithm can only work on ordinary color images, and cannot be directly used for encoding local features of hyperspectral images.
本发明实施例提供的局部约束线性编码方法在利用高光谱图像局部特征和视觉单词的局部线性约束的同时,引入了高光谱图像的波段信息,并将其作为特征点到词典单词的映射的判别约束,从而降低了特征点与词典单词之间映射的模糊性,增强了对高光谱图像的表示能力。The locally constrained linear coding method provided by the embodiment of the present invention utilizes the local features of hyperspectral images and the local linear constraints of visual words, and at the same time, introduces the band information of hyperspectral images, and uses it as the judgment of the mapping of feature points to dictionary words Constraints, thereby reducing the ambiguity of the mapping between feature points and dictionary words, and enhancing the representation of hyperspectral images.
在实际应用中,高光谱图像主要问题是波段数多,数据量大,给高光谱图像的分类、识别带来了很大困难。信息冗余度高,数据存储所需空间大,处理时间长,由于高光谱图像波段数多,容易出现维数灾难现象,即分类精度下降,因此,减少数据量、节省资源的降维处理非常有必要。因此本发明实施例根据高光谱图像的特点将二维图像的特征编码算法与高光谱图像结合在一起,提高了高光谱图像的分类准确精度。主要包括:In practical applications, the main problem of hyperspectral images is the large number of bands and the large amount of data, which brings great difficulties to the classification and identification of hyperspectral images. The information redundancy is high, the space required for data storage is large, and the processing time is long. Due to the large number of hyperspectral image bands, the phenomenon of dimensionality disaster is prone to occur, that is, the classification accuracy decreases. Therefore, the dimensionality reduction process that reduces the amount of data and saves resources is very important. Needed. Therefore, the embodiment of the present invention combines the feature encoding algorithm of the two-dimensional image with the hyperspectral image according to the characteristics of the hyperspectral image, thereby improving the classification accuracy of the hyperspectral image. mainly include:
1)提出了一种新的高光谱图像的局部约束线性编码LLC方法,在高光谱图像的词典单词对特征点的局部约束的基础上,引入高光谱图像的波段信息作为约束判别项,解决高光谱图像特征点和词典单词建立映射关系时存在的不确定性,提高对高光谱图像的表示能力。1) A new locally constrained linear coding LLC method for hyperspectral images is proposed. Based on the local constraints of the dictionary words of hyperspectral images on feature points, the band information of hyperspectral images is introduced as a constraint discriminant item to solve the problem of high spectral density. The uncertainty in the mapping relationship between spectral image feature points and dictionary words improves the representation ability of hyperspectral images.
2)利用上述提出的新的高光谱图像的改进局部约束线性编码LLC方法对高光谱图像进行分类,经过实验证明本实施例提出的编码算法能够更好地对高光谱图像进行分类。2) Classify hyperspectral images by using the improved locally constrained linear coding LLC method of the new hyperspectral image proposed above. It is proved by experiments that the coding algorithm proposed in this embodiment can better classify hyperspectral images.
本发明实施例能够实现于以下应用:1、高光谱图像分类识别;2、高光谱图像目标探测;3、物质分拣。The embodiments of the present invention can be implemented in the following applications: 1. Hyperspectral image classification and recognition; 2. Hyperspectral image target detection; 3. Substance sorting.
本发明实施例还提供了如图2所示的一种高光谱图像的局部约束线性编码系统,包括:The embodiment of the present invention also provides a locally constrained linear encoding system for hyperspectral images as shown in FIG. 2 , including:
特征提取单元201,用于提取高光谱图像的待编码特征,得到特征集;The
词典确定单元202,用于根据所述特征集中的特征点,确定所述高光谱图像的词典;a
波段获取单元203,用于分别获取所述特征集的波段信息和所述词典中单词的波段信息;
系数计算单元204,用于以所述特征点的波段信息和所述单词的波段信息作为判别约束项,计算所述高光谱图像的特征点与单词之间的欧氏距离,得到特征编码系数;The
特征编码单元205,用于根据所述特征编码系数对所述高光谱图像的特征进行编码。A
进一步地,所述特征集以X=[x1,x2,...,xN]∈RD×N表示,所述词典以B=[b1,b2...bM]∈RD×M表示,所述词典B包括M个单词,所述特征集的波段信息以Ω表示,Ω=[μ1,μ2,...,μK]∈RD×K,所述单词的波段信息以U表示,U=[u1,u2,...,uL]∈RD×L,xi表示特征集X中的第i个特征点,所述特征编码系数以zi表示;Further, the feature set is represented by X=[x 1 ,x 2 ,...,x N ]∈R D×N , and the dictionary is represented by B=[b 1 ,b 2 ...b M ]∈ R D×M , the dictionary B includes M words, the band information of the feature set is represented by Ω, Ω=[μ 1 , μ 2 ,...,μ K ]∈R D×K , the The band information of the word is represented by U, U=[u 1 , u 2 ,...,u L ]∈R D×L , xi represents the ith feature point in the feature set X, and the feature encoding coefficient is represented by zi means;
系数计算单元204通过以下公式计算得到特征编码系数以zi:The
其中:in:
dif(μi,U)=[dif(μi,u1),dif(μi,u2),...,dif(μi,uN)]T,⊙表示各元素点乘,dij表示特征点xi与近邻特征点xj之间的欧式距离,H为距离阈值,λ1和λ2为惩罚因子,λ1=λ2=0.005,dif(μi,uj)表示所述高光谱图像的特征点的波段μi与该特征点映射的单词的波段uj的差值。 dif(μ i ,U)=[dif(μ i ,u 1 ),dif(μ i ,u 2 ),...,dif(μ i ,u N )] T , ⊙ denotes the dot product of each element, d ij represents the Euclidean distance between the feature point x i and the neighboring feature point x j , H is the distance threshold, λ 1 and λ 2 are penalty factors, λ 1 =λ 2 =0.005, dif(μ i , u j ) represents the The difference between the band μ i of the feature point of the hyperspectral image and the band u j of the word mapped by the feature point.
本发明实施例还提供了一种终端,包括存储器、处理器及存储在存储器上且在处理器上运行的计算机程序,其特征在于,处理器执行计算机程序时,实现如图1所示的高光谱图像的局部约束线性编码方法的各个步骤。An embodiment of the present invention also provides a terminal, including a memory, a processor, and a computer program stored in the memory and running on the processor, characterized in that, when the processor executes the computer program, the high-level shown in FIG. 1 is implemented. Individual steps of a locally constrained linear encoding method for spectral images.
本发明实施例中还提供一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如图1所示的高光谱图像的局部约束线性编码方法的各个步骤。An embodiment of the present invention further provides a readable storage medium on which a computer program is stored, characterized in that, when the computer program is executed by a processor, the locally constrained linear encoding of the hyperspectral image as shown in FIG. 1 is implemented. the various steps of the method.
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。In addition, each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention. The aforementioned storage medium includes: U disk, removable hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810268590.4A CN108540802B (en) | 2018-03-29 | 2018-03-29 | Local constraint linear coding method and system for hyperspectral image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810268590.4A CN108540802B (en) | 2018-03-29 | 2018-03-29 | Local constraint linear coding method and system for hyperspectral image |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108540802A CN108540802A (en) | 2018-09-14 |
CN108540802B true CN108540802B (en) | 2021-12-03 |
Family
ID=63481666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810268590.4A Active CN108540802B (en) | 2018-03-29 | 2018-03-29 | Local constraint linear coding method and system for hyperspectral image |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108540802B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102324047A (en) * | 2011-09-05 | 2012-01-18 | 西安电子科技大学 | Hyperspectral Image Object Recognition Method Based on Sparse Kernel Coding SKR |
CN106203510A (en) * | 2016-07-11 | 2016-12-07 | 南京大学 | A kind of based on morphological feature with the hyperspectral image classification method of dictionary learning |
CN106815817A (en) * | 2017-01-16 | 2017-06-09 | 南京师范大学 | A kind of improved high spectrum image denoising method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7805005B2 (en) * | 2005-08-02 | 2010-09-28 | The United States Of America As Represented By The Secretary Of The Army | Efficient imagery exploitation employing wavelet-based feature indices |
US8655091B2 (en) * | 2012-02-24 | 2014-02-18 | Raytheon Company | Basis vector spectral image compression |
-
2018
- 2018-03-29 CN CN201810268590.4A patent/CN108540802B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102324047A (en) * | 2011-09-05 | 2012-01-18 | 西安电子科技大学 | Hyperspectral Image Object Recognition Method Based on Sparse Kernel Coding SKR |
CN106203510A (en) * | 2016-07-11 | 2016-12-07 | 南京大学 | A kind of based on morphological feature with the hyperspectral image classification method of dictionary learning |
CN106815817A (en) * | 2017-01-16 | 2017-06-09 | 南京师范大学 | A kind of improved high spectrum image denoising method |
Also Published As
Publication number | Publication date |
---|---|
CN108540802A (en) | 2018-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8126274B2 (en) | Visual language modeling for image classification | |
Kumar et al. | Extraction of informative regions of a face for facial expression recognition | |
Singh et al. | A study of moment based features on handwritten digit recognition | |
CN115860271B (en) | Scheme management system for artistic design and method thereof | |
CN106295498B (en) | Remote sensing image target area detection device and method | |
CN109977958A (en) | A kind of offline handwritten form mathematical formulae identification reconstructing method | |
CN104966090B (en) | Realize the system and method that the vision word towards image understanding is generated and evaluated | |
Zagoris et al. | Image retrieval systems based on compact shape descriptor and relevance feedback information | |
CN108520281A (en) | A semi-supervised dimensionality reduction method for hyperspectral images based on global and local preservation | |
CN110163294B (en) | A Method of Detection of Change Regions in Remote Sensing Images Based on Dimensionality Reduction Operation and Convolutional Network | |
CN112163114B (en) | An image retrieval method based on feature fusion | |
CN105678261A (en) | Supervised figure-based transductive data dimension-descending method | |
CN106649665A (en) | Object-level depth feature aggregation method for image retrieval | |
Li et al. | Fuzzy bag of words for social image description | |
CN112966629B (en) | Remote sensing image scene classification method based on image transformation and BoF model | |
CN115345168A (en) | Cascade Pooling for Natural Language Processing | |
Al-wajih et al. | An enhanced LBP-based technique with various size of sliding window approach for handwritten Arabic digit recognition | |
CN107392105A (en) | A kind of expression recognition method based on reverse collaboration marking area feature | |
Park et al. | Unified convolutional neural network for direct facial keypoints detection | |
CN107527058B (en) | An Image Retrieval Method Based on Weighted Local Feature Aggregate Descriptors | |
CN111368126B (en) | Image retrieval-oriented generation method | |
Hao et al. | Rotational Voxels Statistics Histogram for both real-valued and binary feature representations of 3D local shape | |
CN108540802B (en) | Local constraint linear coding method and system for hyperspectral image | |
CN108960125A (en) | A kind of three-dimensional palm print recognition methods | |
CN105975643B (en) | A kind of realtime graphic search method based on text index |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |