CN108536210B - A Smooth Temperature Compensated Bandgap Reference Source Circuit - Google Patents
A Smooth Temperature Compensated Bandgap Reference Source Circuit Download PDFInfo
- Publication number
- CN108536210B CN108536210B CN201810752568.7A CN201810752568A CN108536210B CN 108536210 B CN108536210 B CN 108536210B CN 201810752568 A CN201810752568 A CN 201810752568A CN 108536210 B CN108536210 B CN 108536210B
- Authority
- CN
- China
- Prior art keywords
- transistor
- pmos
- drain
- pmos transistor
- nmos transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 102100026038 Lens fiber membrane intrinsic protein Human genes 0.000 description 14
- 101710115990 Lens fiber membrane intrinsic protein Proteins 0.000 description 14
- 102100027473 Cartilage oligomeric matrix protein Human genes 0.000 description 10
- 101710176668 Cartilage oligomeric matrix protein Proteins 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 102100037224 Noncompact myelin-associated protein Human genes 0.000 description 4
- 101710184695 Noncompact myelin-associated protein Proteins 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/567—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
一种平滑温度补偿带隙基准源电路,属于模拟集成电路技术领域。包括启动模块、偏置模块、高阶补偿模块和带隙基准核心模块,启动模块用于在电路初始化阶段使带隙基准源电路脱离零状态,并在带隙基准源电路正常工作后关断;偏置模块用于为高阶补偿模块和带隙基准核心模块产生第一偏置电压和第二偏置电压;带隙基准核心模块用来产生基准电压,高阶补偿模块用于产生高阶的补偿电流来提高基准电压的温度特性。本发明提出的带隙基准源在整个温度范围内实现了连续温度补偿,减小了基准电压在整个温度范围的温度漂移,实现了在整个温度范围的高阶补偿,从而使得基准电压在很宽的温度范围内具有高精度。
A smooth temperature compensation bandgap reference source circuit belongs to the technical field of analog integrated circuits. Including a start-up module, a bias module, a high-order compensation module and a bandgap reference core module, the start-up module is used to make the bandgap reference source circuit out of the zero state during the circuit initialization phase, and shut down after the bandgap reference source circuit works normally; The bias module is used to generate the first bias voltage and the second bias voltage for the high-order compensation module and the bandgap reference core module; the bandgap reference core module is used to generate the reference voltage, and the high-order compensation module is used to generate high-order compensation current to improve the temperature characteristics of the reference voltage. The bandgap reference source proposed in the present invention realizes continuous temperature compensation in the entire temperature range, reduces the temperature drift of the reference voltage in the entire temperature range, and realizes high-order compensation in the entire temperature range, so that the reference voltage is in a wide range high accuracy over a wide temperature range.
Description
技术领域technical field
本发明属于模拟集成电路技术领域,具体涉及一种平滑温度补偿带隙基准源电路。The invention belongs to the technical field of analog integrated circuits, and in particular relates to a smooth temperature compensation bandgap reference source circuit.
背景技术Background technique
电压基准源是所有电子系统中非常重要的一个模块,其特征直接关系到系统的安全可靠性和性能指标,因此高精度电压基准源在众多应用中扮演着重要的角色,其覆盖纯模拟电路、混合数字电路和纯数字电路,譬如A/D转换器、DRAMs、电源转换和闪存等电路。The voltage reference source is a very important module in all electronic systems, and its characteristics are directly related to the safety, reliability and performance indicators of the system. Therefore, the high-precision voltage reference source plays an important role in many applications, covering pure analog circuits, Mixed digital circuits and pure digital circuits, such as A/D converters, DRAMs, power conversion and flash memory circuits.
对于DC-DC变换器而言,电压基准源的性能将直接关系到变换器输出的精度和稳定性,因此对于高性能变换器的设计而言尤为重要。随着对基准电压精度要求越来越高,传统的一阶温度补偿基准源已不能满足应用需求。For DC-DC converters, the performance of the voltage reference source is directly related to the accuracy and stability of the converter output, so it is particularly important for the design of high-performance converters. As the accuracy of the reference voltage becomes higher and higher, the traditional first-order temperature-compensated reference source can no longer meet the application requirements.
发明内容Contents of the invention
针对上述传统观温度补偿基准源在精度和稳定性方面的不足之处,本发明提出一种平滑温度补偿带隙基准源电路,采用平滑温度补偿策略,提出的高阶补偿模块可以在整个温度范围内实现连续温度补偿,减小了输出电压在整个温度范围的温度漂移,实现了在整个温度范围的高阶补偿,从而使得基准电压在很宽的温度范围内具有高精度。Aiming at the deficiencies in the accuracy and stability of the traditional temperature compensation reference source, the present invention proposes a smooth temperature compensation bandgap reference source circuit, adopts a smooth temperature compensation strategy, and the proposed high-order compensation module can be used in the entire temperature range The continuous temperature compensation is realized within, which reduces the temperature drift of the output voltage in the whole temperature range, and realizes the high-order compensation in the whole temperature range, so that the reference voltage has high precision in a wide temperature range.
本发明的技术方案为:Technical scheme of the present invention is:
一种平滑温度补偿带隙基准源电路,包括启动模块和偏置模块,所述启动模块用于在电路初始化阶段使所述带隙基准源电路脱离零状态,并在所述带隙基准源电路正常工作后关断;所述偏置模块用于产生第一偏置电压V1和第二偏置电压V2;所述带隙基准源电路还包括高阶补偿模块和带隙基准核心模块;A smooth temperature-compensated bandgap reference source circuit, including a start-up module and a bias module, the start-up module is used to make the bandgap reference source circuit out of the zero state in the circuit initialization stage, and start the bandgap reference source circuit in the Shut down after normal operation; the bias module is used to generate the first bias voltage V1 and the second bias voltage V2; the bandgap reference source circuit also includes a high-order compensation module and a bandgap reference core module;
所述带隙基准核心模块包括第一电阻R1、第二电阻R2、第一电容C1、第二电容C2、第一NPN型三极管Q1、第二NPN型三极管Q2、第三NPN型三极管Q3、第一PNP型三极管QP1、第一NMOS管MN1、第二NMOS管MN2、第三NMOS管MN3、第四NMOS管MN4、第五NMOS管MN5、第六NMOS管MN6、第七NMOS管MN7、第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3、第四PMOS管MP4、第五PMOS管MP5、第六PMOS管MP6、第七PMOS管MP7、第八PMOS管MP8、第九PMOS管MP9和第十PMOS管MP10,The bandgap reference core module includes a first resistor R1, a second resistor R2, a first capacitor C1, a second capacitor C2, a first NPN transistor Q1, a second NPN transistor Q2, a third NPN transistor Q3, a first A PNP transistor QP1, the first NMOS transistor MN1, the second NMOS transistor MN2, the third NMOS transistor MN3, the fourth NMOS transistor MN4, the fifth NMOS transistor MN5, the sixth NMOS transistor MN6, the seventh NMOS transistor MN7, the first PMOS transistor MP1, second PMOS transistor MP2, third PMOS transistor MP3, fourth PMOS transistor MP4, fifth PMOS transistor MP5, sixth PMOS transistor MP6, seventh PMOS transistor MP7, eighth PMOS transistor MP8, ninth PMOS transistor MP9 and the tenth PMOS tube MP10,
第一PMOS管MP1的栅极连接第三PMOS管MP3、第五PMOS管MP5、第七PMOS管MP7和第九PMOS管MP9的栅极并连接所述第一偏置电压V1,其漏极连接第二PMOS管MP2的源极,其源极连接第三PMOS管MP3、第五PMOS管MP5、第七PMOS管MP7和第九PMOS管MP9的源极并连接电源电压VCC;The gate of the first PMOS transistor MP1 is connected to the gates of the third PMOS transistor MP3, the fifth PMOS transistor MP5, the seventh PMOS transistor MP7, and the ninth PMOS transistor MP9 and is connected to the first bias voltage V1, and its drain is connected to The source of the second PMOS transistor MP2 is connected to the source of the third PMOS transistor MP3, the fifth PMOS transistor MP5, the seventh PMOS transistor MP7 and the ninth PMOS transistor MP9 and connected to the power supply voltage VCC;
第二PMOS管MP2的栅极连接第四PMOS管MP4、第六PMOS管MP6、第八PMOS管MP8和第十PMOS管MP10的栅极并连接所述第二偏置电压V2,其漏极连接第一NMOS管MN1的栅极和漏极以及第四NMOS管MN4和第六NMOS管MN6的栅极;The gate of the second PMOS transistor MP2 is connected to the gates of the fourth PMOS transistor MP4, the sixth PMOS transistor MP6, the eighth PMOS transistor MP8, and the tenth PMOS transistor MP10 and is connected to the second bias voltage V2, and its drain is connected to The gate and drain of the first NMOS transistor MN1 and the gates of the fourth NMOS transistor MN4 and the sixth NMOS transistor MN6;
第四PMOS管MP4的源极连接第三PMOS管MP3的漏极,其漏极连接第三NMOS管MN3的栅极以及第二NMOS管MN2的栅极和漏极并通过第一电容C1后接地GND;The source of the fourth PMOS transistor MP4 is connected to the drain of the third PMOS transistor MP3, and its drain is connected to the gate of the third NMOS transistor MN3 and the gate and drain of the second NMOS transistor MN2, and grounded after passing through the first capacitor C1 GND;
第三NMOS管MN3的源极连接第三NPN型三极管Q3的发射极、第一PNP型三极管QP1的集电极以及第一NMOS管MN1、第二NMOS管MN2、第五NMOS管MN5和第七NMOS管MN7的源极并接地GND,其漏极连接第一NPN型三极管Q1和第二NPN型三极管Q2的发射极;The source of the third NMOS transistor MN3 is connected to the emitter of the third NPN transistor Q3, the collector of the first PNP transistor QP1, and the first NMOS transistor MN1, the second NMOS transistor MN2, the fifth NMOS transistor MN5, and the seventh NMOS transistor. The source of the tube MN7 is grounded to GND, and its drain is connected to the emitters of the first NPN transistor Q1 and the second NPN transistor Q2;
第二三极管Q2的基极连接第十PMOS管MP10的漏极和第一PNP型三极管QP1的发射极并作为所述带隙基准源电路的输出端输出基准电压VREF,其集电极连接第七PMOS管MP7的漏极和第八PMOS管MP8的源极;The base of the second triode Q2 is connected to the drain of the tenth PMOS transistor MP10 and the emitter of the first PNP transistor QP1 and is used as the output terminal of the bandgap reference source circuit to output the reference voltage V REF , and its collector is connected to The drain of the seventh PMOS transistor MP7 and the source of the eighth PMOS transistor MP8;
第一电阻R1和第二电阻R2串联并接在所述带隙基准源电路的输出端和第三NPN型三极管的集电极之间,其串联点连接第一NPN型三极管Q1的基极和所述高阶补偿模块的输出端,第一NPN型三极管Q1的基极连接其集电极;The first resistor R1 and the second resistor R2 are connected in series and in parallel between the output terminal of the bandgap reference source circuit and the collector of the third NPN transistor, and the series point is connected to the base of the first NPN transistor Q1 and the third transistor Q1. The output terminal of the above-mentioned high-order compensation module, the base of the first NPN transistor Q1 is connected to its collector;
第六PMOS管MP6的源极连接第一NPN型三极管Q1的集电极和第五PMOS管MP5的漏极,其漏极连接第四NMOS管MN4的漏极、第五NMOS管MN5和第七NMOS管MN7的栅极;The source of the sixth PMOS transistor MP6 is connected to the collector of the first NPN transistor Q1 and the drain of the fifth PMOS transistor MP5, and its drain is connected to the drain of the fourth NMOS transistor MN4, the fifth NMOS transistor MN5 and the seventh NMOS transistor. The gate of the tube MN7;
第四NMOS管MN4的源极连接第五NMOS管MN5的漏极;第九PMOS管MP9的漏极连接第十PMOS管MP10的源极;The source of the fourth NMOS transistor MN4 is connected to the drain of the fifth NMOS transistor MN5; the drain of the ninth PMOS transistor MP9 is connected to the source of the tenth PMOS transistor MP10;
第六NMOS管MN6的漏极连接第八PMOS管MP8的漏极和第一PNP型三极管QP1的基极并通过第二电容C2后接地,其源极连接第七NMOS管MN7的漏极;The drain of the sixth NMOS transistor MN6 is connected to the drain of the eighth PMOS transistor MP8 and the base of the first PNP transistor QP1 and grounded after passing through the second capacitor C2, and its source is connected to the drain of the seventh NMOS transistor MN7;
所述高阶补偿模块包括第三电阻R3、第四电阻R4、第四NPN型三极管Q4、第五NPN型三极管Q5、第六NPN型三极管Q6、第七NPN型三极管Q7、第八NMOS管MN8、第九NMOS管MN9、第十NMOS管MN10、第十一NMOS管MN11、第十二NMOS管MN12、第十三NMOS管MN13、第十一PMOS管MP11、第十二PMOS管MP12、第十三PMOS管MP13、第十四PMOS管MP14、第十五PMOS管MP15、第十六PMOS管MP16、第十七PMOS管MP17、第十八PMOS管MP18和第十九PMOS管MP19,The high-order compensation module includes a third resistor R3, a fourth resistor R4, a fourth NPN transistor Q4, a fifth NPN transistor Q5, a sixth NPN transistor Q6, a seventh NPN transistor Q7, and an eighth NMOS transistor MN8 , the ninth NMOS transistor MN9, the tenth NMOS transistor MN10, the eleventh NMOS transistor MN11, the twelfth NMOS transistor MN12, the thirteenth NMOS transistor MN13, the eleventh PMOS transistor MP11, the twelfth PMOS transistor MP12, the tenth Three PMOS transistors MP13, fourteenth PMOS transistors MP14, fifteenth PMOS transistors MP15, sixteenth PMOS transistors MP16, seventeenth PMOS transistors MP17, eighteenth PMOS transistors MP18 and nineteenth PMOS transistors MP19,
第四NPN型三极管Q4的基极连接第十NMOS管MN10和第十一NMOS管MN11的栅极并连接所述基准电压VREF,其集电极连接第十一PMOS管MP11的栅极和漏极以及第十二PMOS管MP12的栅极,其发射极通过第三电阻R3后接地GND;The base of the fourth NPN transistor Q4 is connected to the gates of the tenth NMOS transistor MN10 and the eleventh NMOS transistor MN11 and to the reference voltage V REF , and its collector is connected to the gate and drain of the eleventh PMOS transistor MP11 And the gate of the twelfth PMOS transistor MP12, the emitter of which is grounded to GND after passing through the third resistor R3;
第八NMOS管MN8的栅漏短接并连接第十二PMOS管MP12的漏极和第九NMOS管MN9的栅极,其源极连接第七NPN型三极管Q7的发射极以及第九NMOS管MN9、第十二NMOS管MN12和第十三NMOS管MN13的源极并接地GND;The gate-drain of the eighth NMOS transistor MN8 is short-circuited and connected to the drain of the twelfth PMOS transistor MP12 and the gate of the ninth NMOS transistor MN9, and its source is connected to the emitter of the seventh NPN transistor Q7 and the ninth NMOS transistor MN9 , the sources of the twelfth NMOS transistor MN12 and the thirteenth NMOS transistor MN13 are grounded to GND;
第十三PMOS管MP13的栅极连接所述第一偏置电压V1,其漏极连接第五NPN型三极管Q5的基极和集电极以及第六NPN型三极管Q6的基极,其源极连接第十一PMOS管MP11、第十二PMOS管MP12、第十四PMOS管MP14、第十五PMOS管MP15、第十七PMOS管MP17和第十八PMOS管MP18的源极并连接电源电压VCC;The gate of the thirteenth PMOS transistor MP13 is connected to the first bias voltage V1, its drain is connected to the base and collector of the fifth NPN transistor Q5 and the base of the sixth NPN transistor Q6, and its source is connected to The sources of the eleventh PMOS transistor MP11, the twelfth PMOS transistor MP12, the fourteenth PMOS transistor MP14, the fifteenth PMOS transistor MP15, the seventeenth PMOS transistor MP17 and the eighteenth PMOS transistor MP18 are connected to the power supply voltage VCC;
第五NPN型三极管Q5的发射极连接第七NPN型三极管Q7的基极和集电极;The emitter of the fifth NPN transistor Q5 is connected to the base and collector of the seventh NPN transistor Q7;
第六NPN型三极管Q6的发射极通过第四电阻R4后接地GND,其集电极连接第十四PMOS管MP14的栅极和漏极以及第十五PMOS管MP15的栅极;The emitter of the sixth NPN transistor Q6 is grounded to GND after passing through the fourth resistor R4, and its collector is connected to the gate and drain of the fourteenth PMOS transistor MP14 and the gate of the fifteenth PMOS transistor MP15;
第十六PMOS管MP16的栅极连接所述第二偏置电压V2,其源极连接第十五PMOS管MP15的漏极,其漏极连接第九NMOS管MN9的漏极、第十NMOS管MN10的源极、第十三NMOS管MN13的栅极以及第十二NMOS管MN12的栅极和漏极;The gate of the sixteenth PMOS transistor MP16 is connected to the second bias voltage V2, its source is connected to the drain of the fifteenth PMOS transistor MP15, and its drain is connected to the drain of the ninth NMOS transistor MN9, the tenth NMOS transistor the source of MN10, the gate of the thirteenth NMOS transistor MN13, and the gate and drain of the twelfth NMOS transistor MN12;
第十一NMOS管MN11的漏极连接第十NMOS管MN10的漏极、第十八PMOS管MP18的栅极以及第十七PMOS管MP17的栅极和漏极,其源极连接第十三NMOS管MN13的漏极;The drain of the eleventh NMOS transistor MN11 is connected to the drain of the tenth NMOS transistor MN10, the gate of the eighteenth PMOS transistor MP18, and the gate and drain of the seventeenth PMOS transistor MP17, and its source is connected to the thirteenth NMOS transistor. The drain of the tube MN13;
第十九PMOS管MP19的栅极连接所述第二偏置电压V2,其源极连接第十八PMOS管MP18的漏极,其漏极作为所述高阶补偿模块的输出端输出补偿电流ICOMP。The gate of the nineteenth PMOS transistor MP19 is connected to the second bias voltage V2, its source is connected to the drain of the eighteenth PMOS transistor MP18, and its drain is used as the output terminal of the high-order compensation module to output the compensation current I COMP .
本发明的有益效果是:通过电流比较方式及自动电流选择器,在低温时引入负温特性补偿电压,高温时引入正温特性补偿电压,使得该种基准电路具有更高的温度特性以及更宽的温度范围,从而满足所需求高精度温度范围较宽的基准源,提高了系统的工作性能和可靠性。The beneficial effects of the present invention are: through the current comparison mode and the automatic current selector, the negative temperature characteristic compensation voltage is introduced at low temperature, and the positive temperature characteristic compensation voltage is introduced at high temperature, so that the reference circuit has higher temperature characteristics and wider The temperature range, so as to meet the demand for high-precision reference source with a wide temperature range, improve the performance and reliability of the system.
附图说明Description of drawings
图1为本发明提出的平滑温度补偿带隙基准电路的等效结构图。FIG. 1 is an equivalent structure diagram of a smooth temperature compensation bandgap reference circuit proposed by the present invention.
图2为本发明提出的平滑温度补偿带隙基准的核心电路图。Fig. 2 is a core circuit diagram of the smooth temperature compensation bandgap reference proposed by the present invention.
图3为本发明提出的平滑温度补偿带隙基准的高阶补偿电路图。FIG. 3 is a high-order compensation circuit diagram of the smooth temperature compensation bandgap reference proposed by the present invention.
具体实施方式Detailed ways
下面结合附图和具体的实施例对本发明作进一步的阐述:Below in conjunction with accompanying drawing and specific embodiment, the present invention will be further elaborated:
如图1所示是本发明提出的一种具有平滑温度补偿的高精度带隙基准电路结构图,包括启动模块、偏置模块、高阶补偿模块和带隙基准核心模块,其中启动模块用于在电路初始化阶段使带隙基准源电路脱离零状态,带隙基准源电路正常工作后关断;偏置模块用于产生偏置电流,第一偏置电压V1和第二偏置电压V2为偏置电流镜像时的栅极电压;具体地工作过程为启动模块在电路初始化阶段使得偏置模块产生部分偏置电流,电路脱离零状态;当电路处于正常工作阶段时,启动模块支路关断以免影响电路正常工作;偏置模块产生的偏置电流一方面通过电流镜镜像产生第一偏置电压V1和第二偏置电压V2为整个基准电路提供偏置电压,另一方面在高阶补偿电路中产生高阶补偿电流;带隙基准核心模块用来产生基准电压VREF;高阶补偿模块产生高阶的补偿电流ICOMP来提高基准电压VREF的温度特性。下面结合具体电路详细分析本发明的工作过程。As shown in Figure 1 is a structure diagram of a high-precision bandgap reference circuit with smooth temperature compensation proposed by the present invention, including a start-up module, a bias module, a high-order compensation module and a bandgap reference core module, wherein the start-up module is used for In the circuit initialization stage, the bandgap reference source circuit is separated from the zero state, and the bandgap reference source circuit is turned off after normal operation; the bias module is used to generate bias current, and the first bias voltage V1 and the second bias voltage V2 are bias The gate voltage when the current mirror is set; the specific working process is that the startup module makes the bias module generate part of the bias current during the circuit initialization stage, and the circuit leaves the zero state; when the circuit is in the normal working stage, the startup module branch is turned off to avoid Affect the normal operation of the circuit; on the one hand, the bias current generated by the bias module is mirrored by the current mirror to generate the first bias voltage V1 and the second bias voltage V2 to provide the bias voltage for the entire reference circuit; on the other hand, in the high-order compensation circuit The high-order compensation current is generated in the center; the bandgap reference core module is used to generate the reference voltage V REF ; the high-order compensation module generates a high-order compensation current I COMP to improve the temperature characteristic of the reference voltage V REF . The working process of the present invention will be analyzed in detail below in conjunction with specific circuits.
如图2所示为本发明的带隙基准核心模块的具体电路图,偏置模块为带隙基准核心模块提供第一偏置电压V1与第二偏置电压V2,第一NPN型三极管Q1、第二NPN型三极管Q2和第三NPN型三极管Q3采用同种类型的三极管,第一NPN型三极管Q1与第二NPN型三极管Q2流过相等的电流,而其中为了得到理想带隙电压,将第一NPN型三极管Q1的发射极面积(M=8)设置为第二NPN型三极管Q2发射极面积(M=1)的8倍,由于第一NPN型三极管Q1与第二NPN型三极管Q2的发射极电压相等,使得第二NPN型三极管Q2与第一NPN型三极管Q1的基极-发射极电压的差值为△VBE,即第二NPN型三极管Q2的基极电压比第一NPN型三极管Q1的基极电压高VTln8,其中VT为热电压,在第一电阻R1上产生具有正温系数的电流,而第三NPN型三极管Q3的基极-发射极电压VBE,Q3是一个具有负温系数的电压,因此选择合适的第一电阻R1和第二电阻R2的阻值从而得到一个与温度关系很小的带隙基准源。As shown in Figure 2 is the specific circuit diagram of the bandgap reference core module of the present invention, the bias module provides the first bias voltage V1 and the second bias voltage V2 for the bandgap reference core module, the first NPN transistor Q1, the second The second NPN transistor Q2 and the third NPN transistor Q3 adopt the same type of transistors, the first NPN transistor Q1 and the second NPN transistor Q2 flow the same current, and in order to obtain the ideal bandgap voltage, the first The emitter area (M=8) of the NPN type transistor Q1 is set to 8 times of the emitter area (M=1) of the second NPN type transistor Q2, because the emitters of the first NPN type transistor Q1 and the second NPN type transistor Q2 The voltages are equal, so that the difference between the base-emitter voltages of the second NPN transistor Q2 and the first NPN transistor Q1 is △V BE , that is, the base voltage of the second NPN transistor Q2 is higher than that of the first NPN transistor Q1 The base voltage is higher than V T ln8, where V T is a thermal voltage, and a current with a positive temperature coefficient is generated on the first resistor R1, and the base-emitter voltage V BE of the third NPN transistor Q3, Q3 is a The voltage has a negative temperature coefficient, so select appropriate resistance values of the first resistor R1 and the second resistor R2 to obtain a bandgap reference source that has little relationship with temperature.
图2中的正反馈环路由第一电阻R1、第一NPN型三极管Q1、第六PMOS管MP6、第四NMOS管MN4、第五NMOS管MN5、第七NMOS管MN7、第六NMOS管MN6和第一PNP型三极管QP1组成,负反馈环路由第二NPN型三极管Q2、第八PMOS管MP8和第一PNP型三极管QP1组成。则正反馈增益AV,PF和负反馈增益AV,NF分别为:The positive feedback loop in Figure 2 consists of the first resistor R1, the first NPN transistor Q1, the sixth PMOS transistor MP6, the fourth NMOS transistor MN4, the fifth NMOS transistor MN5, the seventh NMOS transistor MN7, the sixth NMOS transistor MN6 and The first PNP transistor QP1 is formed, and the negative feedback loop is composed of the second NPN transistor Q2, the eighth PMOS transistor MP8 and the first PNP transistor QP1. Then the positive feedback gain A V, PF and the negative feedback gain A V, NF are respectively:
Av,NF=gm,Q2RC A v,NF =g m,Q2 R C
其中第三NPN型三极管Q3的跨导RC为运算放大器输出电阻,IC,Q3为第三NPN型三极管Q3的集电极电流,gm,Q1和gm,Q2分别是第一NPN型三极管Q1和第二NPN型三极管Q2的跨导。由于第一NPN型三极管Q1和第二NPN型三极管Q2的跨导相等,则有负反馈环的增益大于正反馈环的增益,那么整个电路系统在输出基准电压VREF偏离正常时能够通过环路调整稳定。因此整体环路增益为:The transconductance of the third NPN transistor Q3 R C is the output resistance of the operational amplifier, I C, Q3 is the collector current of the third NPN transistor Q3, g m, Q1 and g m, Q2 are the spans of the first NPN transistor Q1 and the second NPN transistor Q2 respectively guide. Since the transconductance of the first NPN transistor Q1 and the second NPN transistor Q2 are equal, the gain of the negative feedback loop is greater than the gain of the positive feedback loop, so the entire circuit system can pass through the loop when the output reference voltage V REF deviates from normal Adjusted for stability. The overall loop gain is therefore:
如图3所示为高阶补偿模块的具体电路图,高阶补偿电流产生部分包括第十三PMOS管MP13、第十四PMOS管MP14、第十五PMOS管MP15、第十六PMOS管MP16、第十七PMOS管MP17、第十八PMOS管MP18、第十九PMOS管MP19、第九NMOS管MN9、第十NMOS管MN10、第十一NMOS管MN11、第十二NMOS管MN12、第十三NMOS管MN13、第四电阻R4、第五NPN型三极管Q5、第六NPN型三极管Q6和第七NPN型三极管Q7,第四电阻R4上的压降为第其NPN型三极管Q7的基极-发射极电压VBE,Q7,由此产生具有负温特性的电流,经第十四PMOS管MP14和第十五PMOS管MP15组成的电流镜镜像后,流过第十五PMOS管MP15上电流为负温特性电流ICTAT。Figure 3 shows the specific circuit diagram of the high-order compensation module. The high-order compensation current generation part includes the thirteenth PMOS transistor MP13, the fourteenth PMOS transistor MP14, the fifteenth PMOS transistor MP15, the sixteenth PMOS transistor MP16, the Seventeenth PMOS tube MP17, eighteenth PMOS tube MP18, nineteenth PMOS tube MP19, ninth NMOS tube MN9, tenth NMOS tube MN10, eleventh NMOS tube MN11, twelfth NMOS tube MN12, thirteenth NMOS The tube MN13, the fourth resistor R4, the fifth NPN transistor Q5, the sixth NPN transistor Q6 and the seventh NPN transistor Q7, the voltage drop on the fourth resistor R4 is the base-emitter of the NPN transistor Q7 The voltage V BE,Q7 generates a current with negative temperature characteristics. After being mirrored by the current mirror composed of the fourteenth PMOS transistor MP14 and the fifteenth PMOS transistor MP15, the current flowing through the fifteenth PMOS transistor MP15 is negative temperature. Characteristic current I CTAT .
而第三电阻R3上所加电压为一个基准电压VREF与第四NPN型三极管Q4的基极-发射极电压VBE,Q4的差,即正温电压,所以第三电阻R3会产生正温电流,则经过第十一PMOS管MP11和第十二PMOS管MP12以及第八NMO管MN8和第九NMOS管MN9组成的两组电流镜镜像后,流过第九NMOS管MN9上电流为正温特性电流IPTAT。The voltage applied to the third resistor R3 is the difference between a reference voltage V REF and the base-emitter voltage V BE,Q4 of the fourth NPN transistor Q4, that is, the positive temperature voltage, so the third resistor R3 will generate a positive temperature After the current is mirrored by two groups of current mirrors composed of the eleventh PMOS transistor MP11 and the twelfth PMOS transistor MP12, the eighth NMOS transistor MN8 and the ninth NMOS transistor MN9, the current flowing through the ninth NMOS transistor MN9 is positive temperature Characteristic current I PTAT .
在低温时,负温电流ICTAT大于正温电流IPTAT,第十NMOS管MN10关断,第十二NMOS管MN12打开,经第十二NMOS管MN12和第十三NMOS管MN13组成的电流镜镜像,使得输出的补偿电流ICOMP与负温电流ICTAT和正温电流IPTAT之差成正比;高温时,正温电流IPTAT大于负温电流ICTAT,第十二NMOS管MN12关断,第十NMOS管MN10管MN10打开,输出的补偿电流ICOMP与正温电流IPTAT和负温电流ICTAT之差成正比。At low temperature, the negative temperature current ICTAT is greater than the positive temperature current IPTAT , the tenth NMOS transistor MN10 is turned off, the twelfth NMOS transistor MN12 is turned on, and the current mirror formed by the twelfth NMOS transistor MN12 and the thirteenth NMOS transistor MN13 The mirror image makes the output compensation current I COMP proportional to the difference between the negative temperature current I CTAT and the positive temperature current I PTAT ; at high temperature, the positive temperature current I PTAT is greater than the negative temperature current I CTAT , the twelfth NMOS tube MN12 is turned off, and the Ten NMOS transistors MN10 and MN10 are turned on, and the output compensation current I COMP is proportional to the difference between the positive temperature current I PTAT and the negative temperature current I CTAT .
由此可得补偿电流ICOMP表达式为:From this, the expression of the compensation current I COMP can be obtained as:
由以上分析可以得到基准电压VREF表达式为:From the above analysis, the expression of the reference voltage V REF can be obtained as:
VREF=VrefBGR+Vh,COMP V REF = V refBGR + V h,COMP
其中VrefBGR为传统带隙基准电压、Vh,COMP为高阶补偿电压Where V refBGR is the traditional bandgap reference voltage, V h, COMP is the high-order compensation voltage
由高阶补偿模块的分析可以得到高阶补偿电压Vh,COMP表达式为:The high-order compensation voltage V h can be obtained from the analysis of the high-order compensation module, and the expression of COMP is:
其中Tr为正温和负温补偿的临界点,K1是第十二NMOS管MN12和第十三NMOS管MN13的宽长比之比,K2是第十七PMOS管MP17和第十八PMOS管MP18的宽长比之比,在T<Tr时,高阶补偿电压Vh,COMP表现为负温特性,且随着温度的升高,负温特性越来越强;在T>Tr时,高阶补偿电压Vh,COMP表现为正温特性,且随着温度的升高,正温特性越来越强。传统带隙基准电压在低温时VBE的负温特性较弱,基准电压表现为正温,在高温时三极管的基极-发射极电压VBE负温特性随着温度升高而增强,基准电压表现为负温特性。由于三极管的基极-发射极电压VBE的非线性负温特性,负温特性随着温度的升高而增加,而传统带隙基准电压的正温电压的正温性几乎不会随温度变化,因此在低温时(T<Tr)需要补偿具有负温特性电压,高温时(T>Tr)补偿具有正温特性的补偿电压,以此来得到高精度基准电压,本发明提出的带隙基准源,在低温时补偿具有负温特性的电压,高温时补偿具有正温特性的电压,整体过程中实现了补偿温度的自动连续转换,平滑切换不同温度特性补偿电流,避免了输出基准电压VREF跳变的影响。此外,高低温区,分别引入的正温补偿电流和负温补偿电流,可以进一步减低第三NPN型三极管Q3的基极-发射极电压VBE,Q3的温度高阶非线性的影响,从而进一步提升了整体电路的性能。Where Tr is the critical point of positive and negative temperature compensation, K1 is the ratio of the width to length of the twelfth NMOS transistor MN12 and the thirteenth NMOS transistor MN13, and K2 is the ratio of the seventeenth PMOS transistor MP17 to the eighteenth PMOS transistor MP18. The aspect ratio, when T<Tr, the high-order compensation voltage V h,COMP exhibits a negative temperature characteristic, and as the temperature increases, the negative temperature characteristic becomes stronger; when T>Tr, the high-order The compensation voltage V h,COMP exhibits positive temperature characteristics, and the positive temperature characteristics become stronger as the temperature increases. The negative temperature characteristic of V BE of the traditional bandgap reference voltage is weak at low temperature, and the reference voltage exhibits positive temperature. Shown as negative temperature characteristics. Due to the nonlinear negative temperature characteristic of the base-emitter voltage V BE of the triode, the negative temperature characteristic increases with the increase of temperature, while the positive temperature characteristic of the positive temperature voltage of the traditional bandgap reference voltage hardly changes with temperature Therefore, at low temperature (T<Tr) it is necessary to compensate the voltage with negative temperature characteristics, and at high temperature (T>Tr) to compensate the compensation voltage with positive temperature characteristics, so as to obtain a high-precision reference voltage. The bandgap reference proposed by the present invention The source compensates the voltage with negative temperature characteristics at low temperature and compensates the voltage with positive temperature characteristics at high temperature. In the whole process, the automatic and continuous conversion of compensation temperature is realized, and the compensation current with different temperature characteristics is smoothly switched, avoiding the output reference voltage V REF The effect of jumping. In addition, in the high and low temperature region, the positive temperature compensation current and the negative temperature compensation current introduced respectively can further reduce the base-emitter voltage V BE of the third NPN transistor Q3, and the influence of the high-order nonlinearity of the temperature of Q3 , thereby further Improve the performance of the overall circuit.
综上所述,本发明提出的一种平滑温度补偿带隙基准源电路,采用平滑温度补偿策略,使得补偿网络(即高阶温度补偿电路)在整个温度范围(本发明中为-55-125℃)内实现连续温度补偿,减小了输出的基准电压在整个温度范围的温度漂移,实现了在整个温度范围的高阶补偿,从而使得基准电压在很宽的温度范围内具有高精度。In summary, a smooth temperature compensation bandgap reference source circuit proposed by the present invention adopts a smooth temperature compensation strategy, so that the compensation network (that is, the high-order temperature compensation circuit) can operate within the entire temperature range (-55-125 °C in the present invention). °C) to achieve continuous temperature compensation, reducing the temperature drift of the output reference voltage in the entire temperature range, and realizing high-order compensation in the entire temperature range, so that the reference voltage has high precision in a wide temperature range.
本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810752568.7A CN108536210B (en) | 2018-07-10 | 2018-07-10 | A Smooth Temperature Compensated Bandgap Reference Source Circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810752568.7A CN108536210B (en) | 2018-07-10 | 2018-07-10 | A Smooth Temperature Compensated Bandgap Reference Source Circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108536210A CN108536210A (en) | 2018-09-14 |
CN108536210B true CN108536210B (en) | 2023-04-28 |
Family
ID=63488007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810752568.7A Active CN108536210B (en) | 2018-07-10 | 2018-07-10 | A Smooth Temperature Compensated Bandgap Reference Source Circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108536210B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109521829B (en) * | 2018-12-25 | 2023-10-31 | 西安航天民芯科技有限公司 | Voltage reference source circuit with full temperature Duan Gaojie temperature compensation |
CN110275563B (en) * | 2019-07-12 | 2023-09-29 | 苏州锴威特半导体股份有限公司 | Current bias circuit with temperature compensation |
CN113157042B (en) * | 2021-05-19 | 2022-12-02 | 西安电子科技大学 | Quick start voltage stabilizing circuit with bias priority intervention |
CN115981406B (en) * | 2023-02-15 | 2025-01-28 | 重庆大学 | A new bandgap reference temperature compensation circuit |
CN116185117B (en) * | 2023-03-03 | 2023-08-29 | 西安航天民芯科技有限公司 | Low-temperature drift band gap reference circuit with base compensation and high-order compensation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101226414A (en) * | 2008-01-30 | 2008-07-23 | 北京中星微电子有限公司 | Method for dynamic compensation of reference voltage and band-gap reference voltage source |
CN102323842A (en) * | 2011-05-13 | 2012-01-18 | 电子科技大学 | A Bandgap Voltage Reference Source with High-order Temperature Compensation |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4633165A (en) * | 1984-08-15 | 1986-12-30 | Precision Monolithics, Inc. | Temperature compensated voltage reference |
GB8630980D0 (en) * | 1986-12-29 | 1987-02-04 | Motorola Inc | Bandgap reference circuit |
CN101216718B (en) * | 2007-12-27 | 2011-07-20 | 电子科技大学 | Piecewise linear temperature compensating circuit and temperature compensation voltage reference source |
CN101533288B (en) * | 2009-04-09 | 2011-01-26 | 中国科学院微电子研究所 | Closed-loop curvature compensation CMOS band-gap reference voltage source |
CN101604175B (en) * | 2009-07-07 | 2011-04-20 | 东南大学 | High order temperature supplementary band gap reference circuit |
CN101950191B (en) * | 2010-09-16 | 2012-05-09 | 电子科技大学 | Voltage reference source with high-order temperature compensation circuit |
CN102141818B (en) * | 2011-02-18 | 2013-08-14 | 电子科技大学 | Self-adaptive temperature bandgap reference circuit |
CN102323847B (en) * | 2011-07-29 | 2013-11-20 | 中国电子科技集团公司第二十四研究所 | Temperature compensation based voltage reference circuit |
CN102393786B (en) * | 2011-10-28 | 2013-07-31 | 中国兵器工业集团第二一四研究所苏州研发中心 | High-order temperature compensation CMOS band-gap reference voltage source |
CN102591394B (en) * | 2012-02-24 | 2013-11-06 | 电子科技大学 | Bandgap reference voltage source |
CN103399611B (en) * | 2013-07-10 | 2014-12-03 | 电子科技大学 | High-precision resistance-free band-gap reference voltage source |
CN103412605B (en) * | 2013-07-17 | 2014-12-03 | 电子科技大学 | Higher-order temperature compensation non-resistor band-gap reference voltage source |
CN103869868B (en) * | 2014-03-24 | 2015-07-08 | 重庆邮电大学 | A Bandgap Reference Circuit with Temperature Compensation |
CN105388953B (en) * | 2015-09-21 | 2017-04-05 | 东南大学 | A kind of bandgap voltage reference with high PSRR |
CN105867500B (en) * | 2016-04-27 | 2017-10-24 | 上海华虹宏力半导体制造有限公司 | Band-gap reference source circuit |
CN105739589B (en) * | 2016-05-11 | 2017-05-31 | 成都信息工程大学 | A kind of automatic method for repairing and regulating of temperature coefficient for reference circuit |
CN106406412B (en) * | 2016-11-23 | 2017-12-01 | 电子科技大学 | A kind of high-order temperature compensated band-gap reference circuit |
CN106774616B (en) * | 2016-12-22 | 2017-11-24 | 四川知微传感技术有限公司 | High-order temperature compensation's low temperature floats reference source circuit |
CN106647916B (en) * | 2017-02-28 | 2018-03-30 | 中国电子科技集团公司第五十八研究所 | High-order temperature compensation bandgap reference voltage source |
CN107121997B (en) * | 2017-05-08 | 2018-08-10 | 电子科技大学 | A kind of high-precision band-gap reference source with self-adaption high-order compensation |
CN107340796B (en) * | 2017-08-22 | 2019-01-01 | 成都信息工程大学 | A kind of non-resistance formula high-precision low-power consumption a reference source |
CN107861558B (en) * | 2017-11-09 | 2019-09-27 | 电子科技大学 | A kind of number high-order compensation band gap a reference source |
CN208335046U (en) * | 2018-07-10 | 2019-01-04 | 成都信息工程大学 | A kind of smoothed temperature compensation band gap reference source circuit |
-
2018
- 2018-07-10 CN CN201810752568.7A patent/CN108536210B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101226414A (en) * | 2008-01-30 | 2008-07-23 | 北京中星微电子有限公司 | Method for dynamic compensation of reference voltage and band-gap reference voltage source |
CN102323842A (en) * | 2011-05-13 | 2012-01-18 | 电子科技大学 | A Bandgap Voltage Reference Source with High-order Temperature Compensation |
Also Published As
Publication number | Publication date |
---|---|
CN108536210A (en) | 2018-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109947169B (en) | A High Power Supply Rejection Ratio Bandgap Reference Circuit with Preregulated Structure | |
CN108536210B (en) | A Smooth Temperature Compensated Bandgap Reference Source Circuit | |
CN108958348B (en) | A kind of band gap reference of high PSRR | |
CN104238611B (en) | Current-mode band gap current reference | |
CN110362144B (en) | Low Temperature Drift High Power Supply Rejection Ratio Bandgap Reference Circuit Based on Exponential Compensation | |
CN105955382B (en) | A kind of automatic biasing high PSRR reference circuit | |
CN106406410B (en) | Band-gap reference source circuit with self-biased structure | |
CN208335046U (en) | A kind of smoothed temperature compensation band gap reference source circuit | |
CN104111688B (en) | A kind of BiCMOS with temperature-monitoring function is without amplifier band gap voltage reference source | |
CN103869868B (en) | A Bandgap Reference Circuit with Temperature Compensation | |
CN113703510B (en) | Band gap reference circuit with low power consumption | |
CN107121997A (en) | A kind of high-precision band-gap reference source compensated with self-adaption high-order | |
CN114840049A (en) | Band-gap reference circuit with second-order curvature compensation | |
CN111781983A (en) | A High Power Supply Rejection Than Threshold MOSFET Compensation Bandgap Reference Voltage Circuit | |
CN109491439B (en) | A reference voltage source and its working method | |
CN108205353A (en) | A kind of CMOS subthreshold values reference voltage source | |
CN110320954A (en) | A kind of Low Drift Temperature band-gap reference circuit based on curvature compensation | |
WO2021248267A1 (en) | Voltage reference circuit with high power supply ripple rejection | |
CN107272817A (en) | A kind of voltage-mode band-gap reference circuit that amplifier is free of with premodulated voltage | |
CN106055011B (en) | A kind of self-starting power supply circuit | |
CN212484194U (en) | A CMOS Voltage Reference Source | |
CN111752325B (en) | High-precision linear voltage stabilizing circuit | |
CN111722668A (en) | LDO circuit | |
CN102890526B (en) | CMOS band-gap reference voltage source | |
CN219016862U (en) | Exponential temperature compensation band-gap reference circuit without operational amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |