CN108523849A - Based on autofluorescence technology and the classification of the thyroid gland neck tissue of optical coherence tomography and identifying system and method - Google Patents
Based on autofluorescence technology and the classification of the thyroid gland neck tissue of optical coherence tomography and identifying system and method Download PDFInfo
- Publication number
- CN108523849A CN108523849A CN201810407918.6A CN201810407918A CN108523849A CN 108523849 A CN108523849 A CN 108523849A CN 201810407918 A CN201810407918 A CN 201810407918A CN 108523849 A CN108523849 A CN 108523849A
- Authority
- CN
- China
- Prior art keywords
- mirror
- autofluorescence
- collimator
- coupler
- dichroic mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/0035—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0073—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种双模式成像系统及方法,特别是基于自发荧光技术和光学相干层析术的可用于甲状腺颈部组织分类和识别的系统及方法,是甲状腺颈部组织成像的一种新系统及方法,属于生物组织成像技术领域。The present invention relates to a dual-mode imaging system and method, especially a system and method based on autofluorescence technology and optical coherence tomography that can be used for thyroid neck tissue classification and identification, and is a new system for thyroid neck tissue imaging A method and a method belong to the technical field of biological tissue imaging.
背景技术Background technique
近年来,甲状腺癌的发病率呈逐年增高趋势。甲状腺部分或全部切除是大多数恶性和一些良性甲状腺病变的最佳选择。为了防止肿瘤病变复发,通常要清扫周围的淋巴结。在甲状腺手术中,为了防止术后出现低钙血症需要保护甲状旁腺。而由于甲状旁腺体积小(长3-8毫米、宽2-5毫米、厚0.5-2毫米)、数目及位置不完全确定,而且与周围的淋巴结和脂肪组织从外观上很难区分,因此很容易被损坏或被错误地切除。In recent years, the incidence of thyroid cancer has been increasing year by year. Partial or total thyroidectomy is the best option for most malignant and some benign thyroid lesions. To prevent recurrence of the neoplastic lesion, the surrounding lymph nodes are usually dissected. In thyroid surgery, parathyroid protection is required to prevent postoperative hypocalcemia. However, due to the small size of the parathyroid glands (3-8 mm in length, 2-5 mm in width, and 0.5-2 mm in thickness), the number and location are not completely determined, and it is difficult to distinguish them from the surrounding lymph nodes and adipose tissue in appearance, so It can be easily damaged or removed by mistake.
鉴于保护甲状旁腺和清扫淋巴结的两个需求,在甲状腺手术中亟需准确分类和识别甲状腺颈部组织,即甲状旁腺、淋巴结及脂肪的方法。临床上现有的分类和识别甲状旁腺、淋巴结和脂肪的快速冰冻法和“浮沉法”存在损失组织样品量和准确度不高的问题。现有的辅助识别技术如超声技术、基于亚甲蓝和5-氨基乙酰丙酸(ALA)的荧光检测、利用伽马探头的锝甲氧异腈(99mTc-MIBI)显像术等技术存在分辨率不高或有毒性等问题。In view of the two needs of protecting the parathyroid glands and dissecting the lymph nodes, methods for accurately classifying and identifying the thyroid neck tissues, namely, parathyroid glands, lymph nodes, and fat, are urgently needed in thyroid surgery. The current rapid freezing method and "floating and sinking method" for classifying and identifying parathyroid glands, lymph nodes and fat in clinical practice have the problems of loss of tissue sample volume and low accuracy. Existing auxiliary identification technologies such as ultrasound technology, fluorescence detection based on methylene blue and 5-aminolevulinic acid (ALA), and technetium methoxyisonitrile (99mTc-MIBI) imaging using gamma probes exist to distinguish The rate is not high or there are problems such as toxicity.
基于自发荧光技术的方法,利用785nm波长的光可以激发甲状旁腺和甲状腺产生峰值在822nm的近红外自发荧光,从而可以从甲状腺颈部组织中分类出甲状旁腺和甲状腺,而且由于甲状旁腺的自发荧光比甲状腺的高,从而可以定位甲状旁腺。但是,近红外自发荧光技术无法判断所定位的甲状旁腺是否为正常的甲状旁腺,也无法分类淋巴结和脂肪。光学相干层析术可以对生物组织实现高分辨实时无损的结构成像,已在眼科、皮肤及心内科等医学临床上得到了广泛的应用,可以实现不同组织的分类和识别。对于甲状腺颈部组织成像,光学相干层析术存在的问题是成像范围小,无法快速定位甲状旁腺。Based on the method of autofluorescence technology, the parathyroid gland and thyroid gland can be excited by the light of 785nm wavelength to produce near-infrared autofluorescence with a peak value of 822nm, so that the parathyroid gland and thyroid gland can be classified from the thyroid neck tissue, and because the parathyroid gland The autofluorescence of the thyroid is higher than that of the thyroid, allowing the localization of the parathyroid glands. However, the near-infrared autofluorescence technique cannot judge whether the localized parathyroid gland is a normal parathyroid gland, nor can it classify lymph nodes and fat. Optical coherence tomography can realize high-resolution real-time non-destructive structural imaging of biological tissues, and has been widely used in clinical medicine such as ophthalmology, dermatology and cardiology, and can realize the classification and identification of different tissues. For thyroid neck tissue imaging, the problem with optical coherence tomography is that the imaging range is small and the parathyroid glands cannot be quickly located.
发明内容Contents of the invention
本发明目的是克服现有技术存在的上述不足,进而对甲状腺颈部组织进行分类和识别,提供一种基于自发荧光技术和光学相干层析术的甲状腺颈部组织分类和识别系统及方法,辅助医生在甲状腺手术中进行组织分类和识别。The purpose of the present invention is to overcome the above-mentioned deficiencies existing in the prior art, and then classify and identify thyroid neck tissue, and provide a system and method for thyroid neck tissue classification and identification based on autofluorescence technology and optical coherence tomography, assisting Doctors perform tissue classification and identification during thyroid surgery.
本发明把近红外自发荧光技术高灵敏的组织成份分辨能力和光学相干层析术高分辨的结构成像结合,进行大范围粗定位和小范围精识别,可有效地辅助医生在手术中分类和识别甲状腺颈部组织。The present invention combines the highly sensitive resolution of tissue components of near-infrared autofluorescence technology with the high-resolution structural imaging of optical coherence tomography to perform large-scale coarse positioning and small-scale precise identification, which can effectively assist doctors in classification and identification during surgery Thyroid neck tissue.
本发明的技术方案:Technical scheme of the present invention:
一种基于自发荧光技术和光学相干层析术的甲状腺颈部组织分类和识别系统,是一种双模式成像系统,包括串接在一起的光学相干层析(Optical Coherence Tomography,OCT)成像系统和自发荧光(Auto-fluorescence,AF)成像系统,其中,光学相干层析成像系统可以是TD-OCT系统、SD-OCT系统或者是SS-OCT系统。A thyroid neck tissue classification and identification system based on autofluorescence technology and optical coherence tomography is a dual-mode imaging system, including an optical coherence tomography (Optical Coherence Tomography, OCT) imaging system and An autofluorescence (Auto-fluorescence, AF) imaging system, wherein the optical coherence tomography system may be a TD-OCT system, an SD-OCT system or an SS-OCT system.
对于TD-OCT和AF双模式成像系统及SS-OCT和AF双模式成像系统,系统硬件包括:宽谱光源(1)、第一耦合器(2)、第一环形器(3)、第一偏振控制器(4)、第一准直器(5)、第一反射镜(6)、第二环形器(7)、第二耦合器(8)、平衡探测器(9)、第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)、自发荧光激发光源(17)、第三准直器(18)、第二二向色镜(19)、光电探测器(20);For TD-OCT and AF dual-mode imaging system and SS-OCT and AF dual-mode imaging system, the system hardware includes: wide-spectrum light source (1), first coupler (2), first circulator (3), first Polarization controller (4), first collimator (5), first mirror (6), second circulator (7), second coupler (8), balance detector (9), second polarization Controller (10), second collimator (11), first dichroic mirror (12), second mirror (13), scanning galvanometer (14), first focusing mirror (15), sample stage (16), autofluorescence excitation light source (17), third collimator (18), second dichroic mirror (19), photodetector (20);
其中,宽谱光源(1)、第一耦合器(2)、第一环形器(3)、第一偏振控制器(4)、第一准直器(5)、第一反射镜(6)、第二环形器(7)、第二耦合器(8)、平衡探测器(9)、第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)构成光学相干层析系统;从宽谱光源(1)输出的光顺次经过第一耦合器(2)分光后分别进入第一环形器(3)和第二环形器(7),从第一环形器(3)出射的光经过第一偏振控制器(4)、第一准直器(5)后照射到第一反射镜(6)上,从第一反射镜(6)反射的光沿原路返回第一环形器(3)进入第二耦合器(8)的a端,从第二环形器(7)出射的光经过第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)后照射样品台(16)上的样品,从样品散射回的光沿原路返回第二环形器(7)进入第二耦合器(8)的b端,进入第二耦合器(8)的a端和b端的光发生干涉,干涉后的光从第二耦合器(8)的c端和d端出射进入平衡探测器(9),由计算机控制采集卡采集干涉信号;Among them, the broadband light source (1), the first coupler (2), the first circulator (3), the first polarization controller (4), the first collimator (5), and the first mirror (6) , the second circulator (7), the second coupler (8), the balance detector (9), the second polarization controller (10), the second collimator (11), the first dichroic mirror (12 ), the second mirror (13), the scanning mirror (14), the first focusing mirror (15), and the sample stage (16) constitute an optical coherence tomography system; the light output from the broadband light source (1) passes through The light split by the first coupler (2) enters the first circulator (3) and the second circulator (7) respectively, and the light emitted from the first circulator (3) passes through the first polarization controller (4), the first After the collimator (5) irradiates on the first reflector (6), the light reflected from the first reflector (6) returns to the first circulator (3) along the original path and enters the a of the second coupler (8) end, the light emitted from the second circulator (7) passes through the second polarization controller (10), the second collimator (11), the first dichroic mirror (12), the second mirror (13), After the scanning galvanometer (14) and the first focusing mirror (15) irradiate the sample on the sample stage (16), the light scattered back from the sample returns to the second circulator (7) along the original path and enters the second coupler (8) The b-end of the second coupler (8) interferes with the light entering the a-end and b-end of the second coupler (8), and the light after interference enters the balance detector (9) from the c-end and d-end of the second coupler (8), and is determined by The computer controls the acquisition card to collect interference signals;
对于TD-OCT系统,第一反射镜(6)沿纵向移动实现样品深度扫描;对于SS-OCT系统,宽谱光源(1)采用扫频宽谱光源实现样品深度扫描;For the TD-OCT system, the first reflector (6) moves along the longitudinal direction to realize the deep scanning of the sample; for the SS-OCT system, the wide-spectrum light source (1) uses a swept-frequency wide-spectrum light source to realize the deep scanning of the sample;
对于TD-OCT技术和AF双模式成像系统及SS-OCT技术和AF双模式成像系统,自发荧光激发光源(17)、第三准直器(18)、第二二向色镜(19)、光电探测器(20)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)构成自发荧光成像系统;从自发荧光激发光源(17)输出的光,顺次经过第三准直器(18)、第二二向色镜(19)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)后照射在样品台(16)上的样品上激发自发荧光,反射回的自发荧光经过第一聚焦镜(15)、扫描振镜(14)、第二反射镜(13)后在第一二向色镜(12)上反射,再在第二二向色镜(19)上反射进入光电探测器(20),由计算机控制采集卡采集自发荧光信号。For TD-OCT technology and AF dual-mode imaging system and SS-OCT technology and AF dual-mode imaging system, autofluorescence excitation light source (17), third collimator (18), second dichroic mirror (19), The photodetector (20), the first dichroic mirror (12), the second mirror (13), the scanning galvanometer (14), the first focusing mirror (15), and the sample stage (16) form an autofluorescence imaging system ; The light output from the autofluorescence excitation light source (17) passes through the third collimator (18), the second dichroic mirror (19), the first dichroic mirror (12), the second mirror ( 13), the scanning galvanometer (14) and the first focusing mirror (15) irradiate the sample on the sample stage (16) to excite autofluorescence, and the reflected autofluorescence passes through the first focusing mirror (15) and the scanning galvanometer (14), reflect on the first dichroic mirror (12) after the second reflecting mirror (13), then reflect on the second dichroic mirror (19) and enter the photodetector (20), collected by computer control The card collects the autofluorescence signal.
对于SD-OCT和AF双模式成像系统,系统硬件包括:宽谱光源(1)、第一耦合器(2)、第一偏振控制器(4)、第一准直器(5)、第一反射镜(6)、第四准直器(21)、光栅(22)、第二聚焦镜(23)、线阵相机(24)、第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)、自发荧光激发光源(17)、第三准直器(18)、第二二向色镜(19)、光电探测器(20);For the SD-OCT and AF dual-mode imaging system, the system hardware includes: a wide-spectrum light source (1), a first coupler (2), a first polarization controller (4), a first collimator (5), a first Mirror (6), the fourth collimator (21), grating (22), the second focusing mirror (23), line array camera (24), the second polarization controller (10), the second collimator ( 11), the first dichroic mirror (12), the second mirror (13), the scanning galvanometer (14), the first focusing mirror (15), the sample stage (16), the autofluorescence excitation light source (17), The third collimator (18), the second dichroic mirror (19), photodetector (20);
对于SD-OCT技术和AF双模式成像系统,其中,宽谱光源(1)、第一耦合器(2)、第一偏振控制器(4)、第一准直器(5)、第一反射镜(6)、第四准直器(21)、光栅(22)、第二聚焦镜(23)、线阵相机(24)、第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)构成谱域光学相干层析系统;从宽谱光源(1)输出的光进入第一耦合器(2)的a端,分光后从第一耦合器(2)的b端和c端分别进入第一偏振控制器(4)和第二偏振控制器(10),从第一偏振控制器(4)出射的光经过第一准直器(5)后照射到第一反射镜(6)上,从第一反射镜(6)反射的光沿原路返回进入第二耦合器(2)的b端;从第二偏振控制器(10)出射的光经过第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)后照射样品台(16)上的样品,从样品散射回的光沿原路返回进入第一耦合器(2)的c端;进入第一耦合器(2)的b端和c端的光发生干涉,干涉后的光从第一耦合器(2)的d端出射进入第四准直器(21)、光栅(22)、第二聚焦镜(23)和线阵相机(24),由计算机控制采集卡采集干涉信号;For SD-OCT technology and AF dual-mode imaging system, where the broadband light source (1), the first coupler (2), the first polarization controller (4), the first collimator (5), the first reflector Mirror (6), the fourth collimator (21), grating (22), the second focusing mirror (23), line camera (24), the second polarization controller (10), the second collimator (11 ), the first dichroic mirror (12), the second reflector (13), the scanning galvanometer (14), the first focusing mirror (15), and the sample stage (16) constitute a spectral domain optical coherence tomography system; The light output by the wide-spectrum light source (1) enters the a-end of the first coupler (2), and after light splitting, enters the first polarization controller (4) and the second polarization controller (4) from the b-end and c-end of the first coupler (2) respectively. Polarization controller (10), the light emitted from the first polarization controller (4) passes through the first collimator (5) and then irradiates on the first reflector (6), and the light reflected from the first reflector (6) The light returns along the original path and enters the b end of the second coupler (2); the light emitted from the second polarization controller (10) passes through the second collimator (11), the first dichroic mirror (12), the second After the two mirrors (13), the scanning galvanometer (14), and the first focusing mirror (15) irradiate the sample on the sample stage (16), the light scattered back from the sample returns along the original path and enters the first coupler (2) The c-end of the first coupler (2) interferes with the light entering the b-end and c-end of the first coupler (2), and the light after interference enters the fourth collimator (21), the grating ( 22), the second focusing mirror (23) and the line array camera (24), are collected interference signals by computer control acquisition card;
对于SD-OCT系统和AF双模式成像系统,自发荧光激发光源(17)、第三准直器(18)、第二二向色镜(19)、光电探测器(20)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)构成自发荧光成像系统;从自发荧光激发光源(17)输出的光,顺次经过第三准直器(18)、第二二向色镜(19)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)后照射在样品台(16)上的样品上激发自发荧光,反射回的自发荧光经过第一聚焦镜(15)、扫描振镜(14)、第二反射镜(13)后在第一二向色镜(12)上反射,再在第二二向色镜(19)上反射进入光电探测器(20),由计算机控制采集卡采集自发荧光信号。For the SD-OCT system and the AF dual-mode imaging system, the autofluorescence excitation light source (17), the third collimator (18), the second dichroic mirror (19), the photodetector (20), the first dichroic Chromatic mirror (12), second reflection mirror (13), scanning galvanometer (14), first focusing mirror (15), sample stage (16) constitute autofluorescence imaging system; From autofluorescence excitation light source (17) output The light passes through the third collimator (18), the second dichroic mirror (19), the first dichroic mirror (12), the second reflecting mirror (13), the scanning vibrating mirror (14), the second A focusing mirror (15) irradiates the sample on the sample stage (16) to excite autofluorescence, and the reflected autofluorescence passes through the first focusing mirror (15), scanning galvanometer (14), and second reflecting mirror (13) Afterwards, it is reflected on the first dichroic mirror (12), and then reflected on the second dichroic mirror (19) to enter the photodetector (20), and the acquisition card is controlled by a computer to collect autofluorescence signals.
所述的光学相干层析成像系统和自发荧光成像系统利用第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)和样品台(16)有机地融合在一起。The optical coherence tomography system and the autofluorescence imaging system utilize the first dichroic mirror (12), the second reflection mirror (13), the scanning galvanometer (14), the first focusing mirror (15) and the sample stage (16) TOGETHER ORGANICLY.
所述的光学相干层析系统的光源所采用的波段在1300nm或1550nm。The wavelength band used by the light source of the optical coherence tomography system is 1300nm or 1550nm.
所述的自发荧光成像系统所采用的自发荧光激发光源可以采用780nm的LED、785nm激光器或覆盖780nm的其它光源。The autofluorescence excitation light source adopted by the autofluorescence imaging system can be a 780nm LED, a 785nm laser or other light sources covering 780nm.
所述的第一二向色镜(12)是长波透射短波反射的二向色镜和第二二向色镜(19)是短波透射长波反射的二向色镜。The first dichroic mirror (12) is a dichroic mirror for long-wave transmission and short-wave reflection, and the second dichroic mirror (19) is a dichroic mirror for short-wave transmission and long-wave reflection.
本发明提供的基于自发荧光技术和光学相干层析术的甲状腺颈部组织分类和识别系统的识别方法,采用粗扫描和精识别的方法进行甲状旁腺定位和识别,即首先利用自发荧光技术控制扫描振镜(14)在甲状旁腺热区大范围扫描,确定是否有自发荧光信号,当确定存在有面积在8mm2~32mm2、并且自发荧光信号强于周围样品的自发荧光信号的区域时,再采用光学相干层析系统控制扫描振镜(14)在该区域进行小范围扫描,采集该区域的光学相干层析图像,进一步确认该区域的组织是否为甲状旁腺、并识别是否为正常的甲状旁腺。对于手术中已切除的医生无法确认的其它组织,采用光学相干层析系统进行扫描成像,分类和识别该组织是甲状腺、甲状旁腺、脂肪或是淋巴结。The identification method of the thyroid neck tissue classification and identification system based on autofluorescence technology and optical coherence tomography provided by the present invention uses rough scanning and fine identification methods to locate and identify parathyroid glands, that is, firstly uses autofluorescence technology to control The scanning galvanometer (14) scans a large area of the parathyroid hot area to determine whether there is an autofluorescence signal. When it is determined that there is an area with an area of 8mm 2 to 32mm 2 and the autofluorescence signal is stronger than the autofluorescence signal of the surrounding samples , and then use the optical coherence tomography system to control the scanning galvanometer (14) to scan the area in a small area, collect the optical coherence tomography image of the area, further confirm whether the tissue in the area is parathyroid gland, and identify whether it is normal of the parathyroid glands. For other tissues that cannot be confirmed by doctors who have been removed during the operation, an optical coherence tomography system is used for scanning and imaging to classify and identify whether the tissue is thyroid gland, parathyroid gland, fat or lymph node.
所述的自发荧光成像系统采用光电探测器,采集自发荧光信号,控制扫描振镜(14)扫描获得二维自发荧光图像。The autofluorescence imaging system uses a photodetector to collect autofluorescence signals, and controls the scanning galvanometer (14) to scan to obtain a two-dimensional autofluorescence image.
本发明的优点和有益效果:Advantages and beneficial effects of the present invention:
本发明基于自发荧光技术和光学相干层析术实现甲状腺颈部组织的分类和识别,把自发荧光技术和光学相干层析术有机地融合在一起,通过大范围粗定位和小范围精识别的方法,利用自发荧光技术对组织成份高灵敏的分辨能力和光学相干层析术对组织结构的高分辨成像,实现快速、无标记、无损、高灵敏、实时的甲状腺颈部组织的分类和识别。可有效提高甲状腺临床手术中医生对甲状旁腺、甲状腺、脂肪和淋巴结等颈部组织的分类和识别效率和准确率,辅助医生保护甲状旁腺、彻底清扫淋巴结。The present invention realizes the classification and identification of thyroid neck tissue based on autofluorescence technology and optical coherence tomography, organically integrates autofluorescence technology and optical coherence tomography, and adopts the method of large-scale coarse positioning and small-scale fine identification , using autofluorescence technology for highly sensitive resolution of tissue components and optical coherence tomography for high-resolution imaging of tissue structures, to achieve fast, label-free, non-destructive, high-sensitivity, real-time classification and identification of thyroid neck tissue. It can effectively improve the efficiency and accuracy of doctors' classification and identification of parathyroid glands, thyroid glands, fat, lymph nodes and other neck tissues during clinical thyroid surgery, and assist doctors in protecting parathyroid glands and thoroughly dissecting lymph nodes.
附图说明Description of drawings
图1是TD-OCT和AF双模式成像系统及SS-OCT和AF双模式成像系统组成示意图;Figure 1 is a schematic diagram of the composition of the TD-OCT and AF dual-mode imaging system and the SS-OCT and AF dual-mode imaging system;
图2是SDOCT-AF双模式成像系统组成示意图;Figure 2 is a schematic diagram of the composition of the SDOCT-AF dual-mode imaging system;
图3是扫描范围示意图;Fig. 3 is a schematic diagram of the scanning range;
图中,1.宽谱光源、2.第一耦合器、3.第一环形器、4.第一偏振控制器、5.第一准直器、6.第一反射镜、7.第二环形器、8.第二耦合器、9.平衡探测器、10.第二偏振控制器、11.第二准直器、12.第一二向色镜、13.第二反射镜、14.扫描振镜、15.第一聚焦镜、16.样品台、17.自发荧光激发光源、18.第三准直器、19.第二二向色镜、20.光电探测器;In the figure, 1. Broad-spectrum light source, 2. First coupler, 3. First circulator, 4. First polarization controller, 5. First collimator, 6. First mirror, 7. Second Circulator, 8. Second coupler, 9. Balance detector, 10. Second polarization controller, 11. Second collimator, 12. First dichroic mirror, 13. Second mirror, 14. Scanning mirror, 15. First focusing mirror, 16. Sample stage, 17. Autofluorescence excitation light source, 18. Third collimator, 19. Second dichroic mirror, 20. Photodetector;
21第四准直器、22光栅、23第二聚焦镜、24线阵相机;21 fourth collimator, 22 grating, 23 second focusing mirror, 24 line array camera;
25.甲状腺、26.甲状旁腺、27.自发荧光系统扫描区域、28.光学相干层析系统扫描区域。25. Thyroid gland, 26. Parathyroid gland, 27. Autofluorescence system scanning area, 28. Optical coherence tomography system scanning area.
具体实施方式Detailed ways
下面结合附图进一步说明本发明的具体实施方式。The specific implementation manner of the present invention will be further described below in conjunction with the accompanying drawings.
实施例1:Example 1:
对于TD-OCT和AF双模式成像系统及SS-OCT和AF双模式成像系统,系统硬件包括:1300nm或1550nm的宽谱光源(1)、第一耦合器(2)、第一环形器(3)、第一偏振控制器(4)、第一准直器(5)、第一反射镜(6)、第二环形器(7)、第二耦合器(8)、平衡探测器(9)、第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)、采用780nm的LED或785nm激光器或覆盖780nm的其它光源作为自发荧光激发光源(17)、第三准直器(18)、第二二向色镜(19)、光电探测器(20);For the TD-OCT and AF dual-mode imaging system and SS-OCT and AF dual-mode imaging system, the system hardware includes: 1300nm or 1550nm wide-spectrum light source (1), the first coupler (2), the first circulator (3 ), the first polarization controller (4), the first collimator (5), the first mirror (6), the second circulator (7), the second coupler (8), the balance detector (9) , the second polarization controller (10), the second collimator (11), the first dichroic mirror (12), the second reflection mirror (13), the scanning galvanometer (14), the first focusing mirror (15 ), sample stage (16), adopt 780nm LED or 785nm laser or other light sources covering 780nm as autofluorescence excitation light source (17), third collimator (18), second dichroic mirror (19), photoelectric detector (20);
其中,宽谱光源(1)、第一耦合器(2)、第一环形器(3)、第一偏振控制器(4)、第一准直器(5)、第一反射镜(6)、第二环形器(7)、第二耦合器(8)、平衡探测器(9)、第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)构成光学相干层析系统;从宽谱光源(1)输出的光顺次经过第一耦合器(2)分光后分别进入第一环形器(3)和第二环形器(7),从第一环形器(3)出射的光经过第一偏振控制器(4)、第一准直器(5)后照射到第一反射镜(6)上,从第一反射镜(6)反射的光沿原路返回第一环形器(3)进入第二耦合器(8)的a端,从第二环形器(7)出射的光经过第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)后照射样品台(16)上的样品,从样品散射回的光沿原路返回第二环形器(7)进入第二耦合器(8)的b端,进入第二耦合器(8)的a端和b端的光发生干涉,干涉后的光从第二耦合器(8)的c端和d端出射进入平衡探测器(9),由计算机控制采集卡采集干涉信号;Among them, the broadband light source (1), the first coupler (2), the first circulator (3), the first polarization controller (4), the first collimator (5), and the first mirror (6) , the second circulator (7), the second coupler (8), the balance detector (9), the second polarization controller (10), the second collimator (11), the first dichroic mirror (12 ), the second mirror (13), the scanning mirror (14), the first focusing mirror (15), and the sample stage (16) constitute an optical coherence tomography system; the light output from the broadband light source (1) passes through The light split by the first coupler (2) enters the first circulator (3) and the second circulator (7) respectively, and the light emitted from the first circulator (3) passes through the first polarization controller (4), the first After the collimator (5) irradiates on the first reflector (6), the light reflected from the first reflector (6) returns to the first circulator (3) along the original path and enters the a of the second coupler (8) end, the light emitted from the second circulator (7) passes through the second polarization controller (10), the second collimator (11), the first dichroic mirror (12), the second mirror (13), After the scanning galvanometer (14) and the first focusing mirror (15) irradiate the sample on the sample stage (16), the light scattered back from the sample returns to the second circulator (7) along the original path and enters the second coupler (8) The b-end of the second coupler (8) interferes with the light entering the a-end and b-end of the second coupler (8), and the light after interference enters the balance detector (9) from the c-end and d-end of the second coupler (8), and is determined by The computer controls the acquisition card to collect interference signals;
对于TD-OCT系统,第一反射镜(6)沿纵向移动实现样品深度扫描;对于SS-OCT系统,宽谱光源(1)采用扫频宽谱光源实现样品深度扫描;For the TD-OCT system, the first reflector (6) moves along the longitudinal direction to realize the deep scanning of the sample; for the SS-OCT system, the wide-spectrum light source (1) uses a swept-frequency wide-spectrum light source to realize the deep scanning of the sample;
自发荧光激发光源(17)、第三准直器(18)、第二二向色镜(19)、光电探测器(20)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)构成自发荧光成像系统;从自发荧光激发光源(17)输出的光,顺次经过第三准直器(18)、第二二向色镜(19)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)后照射在样品台(16)上的样品上激发自发荧光,反射回的自发荧光经过第一聚焦镜(15)、扫描振镜(14)、第二反射镜(13)后在第一二向色镜(12)上反射,再在第二二向色镜(19)上反射进入光电探测器(20),由计算机控制采集卡采集自发荧光信号。Autofluorescence excitation light source (17), third collimator (18), second dichroic mirror (19), photodetector (20), first dichroic mirror (12), second reflection mirror (13 ), the scanning galvanometer (14), the first focusing mirror (15), and the sample stage (16) constitute the autofluorescence imaging system; the light output from the autofluorescence excitation light source (17) passes through the third collimator (18) in sequence ), the second dichroic mirror (19), the first dichroic mirror (12), the second reflection mirror (13), the scanning galvanometer (14), the first focusing mirror (15) and then irradiate on the sample stage ( Autofluorescence is excited on the sample on 16), and the reflected autofluorescence passes through the first focusing mirror (15), the scanning galvanometer (14), and the second mirror (13) on the first dichroic mirror (12) The reflection is reflected on the second dichroic mirror (19) and enters the photodetector (20), and the acquisition card is controlled by a computer to collect autofluorescence signals.
上述第一二向色镜(12)是长波透射短波反射的二向色镜和第二二向色镜(19)是短波透射长波反射的二向色镜。The above-mentioned first dichroic mirror (12) is a dichroic mirror for long-wave transmission and short-wave reflection, and the second dichroic mirror (19) is a dichroic mirror for short-wave transmission and long-wave reflection.
具体扫描时,首先利用AF技术控制扫描振镜(14)在甲状旁腺热区即自发荧光系统扫描区域(27)内大范围(如附图3所示)扫描,确定是否有峰值在822nm附近的近红外自发荧光信号。当采用光电探测器(20)探测到存在有面积在8mm2~32mm2、并且该自发荧光信号强于周围样品的自发荧光信号的区域时,再使用OCT系统控制扫描振镜(14)在该区域进行小范围即光学相干层析系统扫描区域(28)内扫描(如附图3所示),采集该区域的光学相干层析图像,进一步确认该区域的组织是否为甲状旁腺(26)、并识别是否为正常的甲状旁腺。对于手术中已切除的医生无法确认的其它组织,采用OCT系统进行扫描成像,分类和识别该组织是甲状腺(25)、甲状旁腺(26)、脂肪或是淋巴结。During specific scanning, at first utilize AF technology to control the scanning galvanometer (14) to scan in a large range (as shown in accompanying drawing 3) in the parathyroid heat zone, that is, the autofluorescence system scanning area (27), to determine whether there is a peak near 822nm near-infrared autofluorescence signal. When the photodetector (20) is used to detect an area with an area of 8 mm 2 to 32 mm 2 and the autofluorescence signal is stronger than the autofluorescence signal of the surrounding samples, the OCT system is used to control the scanning galvanometer (14). The area is scanned in a small area, that is, the scanning area (28) of the optical coherence tomography system (as shown in Figure 3), and the optical coherence tomography image of the area is collected to further confirm whether the tissue in the area is a parathyroid gland (26) , and identify whether it is a normal parathyroid gland. For other tissues that have been resected and cannot be identified by doctors, the OCT system is used for scanning and imaging to classify and identify whether the tissue is thyroid (25), parathyroid (26), fat or lymph nodes.
实施例2:Example 2:
对于SD-OCT和AF双模式成像系统,系统硬件包括:1300nm或1550nm的宽谱光源(1)、第一耦合器(2)、第一偏振控制器(4)、第一准直器(5)、第一反射镜(6)、第四准直器(21)、光栅(22)、第二聚焦镜(23)、线阵相机(24)、第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)、采用780nm的LED或785nm激光器或覆盖780nm的其它光源作为自发荧光激发光源(17)、第三准直器(18)、第二二向色镜(19)、光电探测器(20);For the SD-OCT and AF dual-mode imaging system, the system hardware includes: 1300nm or 1550nm wide-spectrum light source (1), the first coupler (2), the first polarization controller (4), the first collimator (5 ), the first mirror (6), the fourth collimator (21), the grating (22), the second focusing mirror (23), the line scan camera (24), the second polarization controller (10), the second Collimator (11), first dichroic mirror (12), second reflector (13), scanning galvanometer (14), first focusing mirror (15), sample stage (16), LED with 780nm Or 785nm laser or other light source covering 780nm as autofluorescence excitation light source (17), third collimator (18), second dichroic mirror (19), photodetector (20);
其中,宽谱光源(1)、第一耦合器(2)、第一偏振控制器(4)、第一准直器(5)、第一反射镜(6)、第四准直器(21)、光栅(22)、第二聚焦镜(23)、线阵相机(24)、第二偏振控制器(10)、第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)构成SD-OCT系统;从宽谱光源(1)输出的光进入第一耦合器(2)的a端,分光后从第一耦合器(2)的b端和c端分别进入第一偏振控制器(4)和第二偏振控制器(10),从第一偏振控制器(4)出射的光经过第一准直器(5)后照射到第一反射镜(6)上,从第一反射镜(6)反射的光沿原路返回进入第二耦合器(2)的b端;从第二偏振控制器(10)出射的光经过第二准直器(11)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)后照射样品台(16)上的样品,从样品散射回的光沿原路返回进入第一耦合器(2)的c端;进入第一耦合器(2)的b端和c端的光发生干涉,干涉后的光从第一耦合器(2)的d端出射进入第四准直器(21)、光栅(22)、第二聚焦镜(23)和线阵相机(24),由计算机控制采集卡采集干涉信号;Wherein, the wide-spectrum light source (1), the first coupler (2), the first polarization controller (4), the first collimator (5), the first mirror (6), the fourth collimator (21 ), grating (22), second focusing mirror (23), line scan camera (24), second polarization controller (10), second collimator (11), first dichroic mirror (12), The second reflecting mirror (13), the scanning vibrating mirror (14), the first focusing mirror (15), and the sample stage (16) constitute the SD-OCT system; the light output from the wide-spectrum light source (1) enters the first coupler ( 2) end a, enter the first polarization controller (4) and the second polarization controller (10) respectively from the b end and c end of the first coupler (2) after light splitting, from the first polarization controller (4) ) the outgoing light passes through the first collimator (5) and irradiates on the first reflector (6), and the light reflected from the first reflector (6) returns along the original path and enters b of the second coupler (2) end; the light emitted from the second polarization controller (10) passes through the second collimator (11), the first dichroic mirror (12), the second reflector (13), the scanning galvanometer (14), the second After a focusing mirror (15) irradiates the sample on the sample stage (16), the light scattered back from the sample returns along the original path and enters the c end of the first coupler (2); enters the b end of the first coupler (2) Interferes with the light at the c-end, and the interfering light exits from the d-end of the first coupler (2) and enters the fourth collimator (21), the grating (22), the second focusing mirror (23) and the line camera ( 24), the acquisition card is controlled by a computer to collect interference signals;
自发荧光激发光源(17)、第三准直器(18)、第二二向色镜(19)、光电探测器(20)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)、样品台(16)构成自发荧光成像系统;从自发荧光激发光源(17)输出的光,顺次经过第三准直器(18)、第二二向色镜(19)、第一二向色镜(12)、第二反射镜(13)、扫描振镜(14)、第一聚焦镜(15)后照射在样品台(16)上的样品上激发自发荧光,反射回的自发荧光经过第一聚焦镜(15)、扫描振镜(14)、第二反射镜(13)后在第一二向色镜(12)上反射,再在第二二向色镜(19)上反射进入光电探测器(20),由计算机控制采集卡采集自发荧光信号。Autofluorescence excitation light source (17), third collimator (18), second dichroic mirror (19), photodetector (20), first dichroic mirror (12), second reflection mirror (13 ), the scanning galvanometer (14), the first focusing mirror (15), and the sample stage (16) constitute the autofluorescence imaging system; the light output from the autofluorescence excitation light source (17) passes through the third collimator (18) in sequence ), the second dichroic mirror (19), the first dichroic mirror (12), the second reflection mirror (13), the scanning galvanometer (14), the first focusing mirror (15) and then irradiate on the sample stage ( Autofluorescence is excited on the sample on 16), and the reflected autofluorescence passes through the first focusing mirror (15), the scanning galvanometer (14), and the second mirror (13) on the first dichroic mirror (12) The reflection is reflected on the second dichroic mirror (19) and enters the photodetector (20), and the acquisition card is controlled by a computer to collect autofluorescence signals.
上述第一二向色镜(12)是长波透射短波反射的二向色镜和第二二向色镜(19)是短波透射长波反射的二向色镜。The above-mentioned first dichroic mirror (12) is a dichroic mirror for long-wave transmission and short-wave reflection, and the second dichroic mirror (19) is a dichroic mirror for short-wave transmission and long-wave reflection.
具体扫描时,首先利用自发荧光技术控制扫描振镜(14)在甲状旁腺热区即自发荧光系统扫描区域(27)内大范围(如附图3所示)扫描,确定是否有峰值在822nm附近的近红外自发荧光信号。当采用光电探测器(20)探测到存在有面积在8mm2~32mm2、并且该自发荧光信号强于周围样品的自发荧光信号的区域时,再采用光学相干层析系统控制扫描振镜(14)在该区域进行小范围即光学相干层析系统扫描区域(28)内扫描(如附图3所示),采集该区域的光学相干层析图像,进一步确认该区域的组织是否为甲状旁腺(26)、并识别是否为正常的甲状旁腺。对于手术中已切除的医生无法确认的其它组织,采用光学相干层析系统进行扫描成像,分类和识别该组织是甲状腺(25)、甲状旁腺(26)、脂肪或是淋巴结。During specific scanning, at first utilize autofluorescence technology to control scanning vibrating mirror (14) to scan in a large range (as shown in accompanying drawing 3) in the parathyroid heat zone (27) of the autofluorescence system to determine whether there is a peak at 822nm near-infrared autofluorescence signal. When a photodetector (20) is used to detect an area with an area of 8 mm 2 to 32 mm 2 and the autofluorescence signal is stronger than that of the surrounding samples, an optical coherence tomography system is used to control the scanning galvanometer (14 ) in this area, scan in a small area, that is, the scanning area (28) of the optical coherence tomography system (as shown in Figure 3), collect the optical coherence tomography image of this area, and further confirm whether the tissue in this area is a parathyroid gland (26), and identify whether it is a normal parathyroid gland. For other tissues that have been resected and cannot be identified by doctors, optical coherence tomography is used for scanning and imaging to classify and identify whether the tissue is thyroid (25), parathyroid glands (26), fat, or lymph nodes.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810407918.6A CN108523849A (en) | 2018-05-02 | 2018-05-02 | Based on autofluorescence technology and the classification of the thyroid gland neck tissue of optical coherence tomography and identifying system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810407918.6A CN108523849A (en) | 2018-05-02 | 2018-05-02 | Based on autofluorescence technology and the classification of the thyroid gland neck tissue of optical coherence tomography and identifying system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108523849A true CN108523849A (en) | 2018-09-14 |
Family
ID=63476108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810407918.6A Pending CN108523849A (en) | 2018-05-02 | 2018-05-02 | Based on autofluorescence technology and the classification of the thyroid gland neck tissue of optical coherence tomography and identifying system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108523849A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109124588A (en) * | 2018-09-25 | 2019-01-04 | 南开大学 | A kind of OCT probe for mouth disease inspection |
CN109870439A (en) * | 2019-03-22 | 2019-06-11 | 中国科学院苏州生物医学工程技术研究所 | Optical coherence tomography and two-photon fluorescence simultaneous imaging system |
CN110558938A (en) * | 2019-04-04 | 2019-12-13 | 济南显微智能科技有限公司 | Parathyroid gland recognition device and system |
CN112656370A (en) * | 2020-11-30 | 2021-04-16 | 浙江大学医学院附属第一医院 | Parathyroid gland position detecting instrument |
CN113662515A (en) * | 2021-09-22 | 2021-11-19 | 赛德生物科技(山东)有限责任公司 | Parathyroid gland check out test set |
CN115517669A (en) * | 2022-09-30 | 2022-12-27 | 北京心联光电科技有限公司 | Ion channel detection equipment at somatic cell level |
CN116138744A (en) * | 2023-04-21 | 2023-05-23 | 北京航空航天大学 | Autofluorescence detection probe and system for in vivo detection of parathyroid tissue |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2060227A1 (en) * | 2007-11-15 | 2009-05-20 | Carestream Health, Inc. | Multimodal imaging system for tissue imaging |
US20150305623A1 (en) * | 2014-04-23 | 2015-10-29 | Invuity, Inc. | Methods for localizing and treating a parathyroid adenoma |
WO2016127173A1 (en) * | 2015-02-06 | 2016-08-11 | The University Of Akron | Optical imaging system and methods thereof |
US20160367134A1 (en) * | 2015-06-19 | 2016-12-22 | Wei Su | Wide field of view optical coherence tomography imaging system |
US20170196459A1 (en) * | 2014-02-05 | 2017-07-13 | British Columbia Cancer Agency Branch | Systems for optical imaging of biological tissues |
US20180092538A1 (en) * | 2016-06-08 | 2018-04-05 | Massachusetts Institute Of Technology | Systems and methods for dual-mode imaging using optical coherence tomography and fluorescence imaging |
-
2018
- 2018-05-02 CN CN201810407918.6A patent/CN108523849A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2060227A1 (en) * | 2007-11-15 | 2009-05-20 | Carestream Health, Inc. | Multimodal imaging system for tissue imaging |
US20170196459A1 (en) * | 2014-02-05 | 2017-07-13 | British Columbia Cancer Agency Branch | Systems for optical imaging of biological tissues |
US20150305623A1 (en) * | 2014-04-23 | 2015-10-29 | Invuity, Inc. | Methods for localizing and treating a parathyroid adenoma |
WO2016127173A1 (en) * | 2015-02-06 | 2016-08-11 | The University Of Akron | Optical imaging system and methods thereof |
US20160367134A1 (en) * | 2015-06-19 | 2016-12-22 | Wei Su | Wide field of view optical coherence tomography imaging system |
US20180092538A1 (en) * | 2016-06-08 | 2018-04-05 | Massachusetts Institute Of Technology | Systems and methods for dual-mode imaging using optical coherence tomography and fluorescence imaging |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109124588A (en) * | 2018-09-25 | 2019-01-04 | 南开大学 | A kind of OCT probe for mouth disease inspection |
CN109870439A (en) * | 2019-03-22 | 2019-06-11 | 中国科学院苏州生物医学工程技术研究所 | Optical coherence tomography and two-photon fluorescence simultaneous imaging system |
CN110558938A (en) * | 2019-04-04 | 2019-12-13 | 济南显微智能科技有限公司 | Parathyroid gland recognition device and system |
WO2020199605A1 (en) * | 2019-04-04 | 2020-10-08 | 济南显微智能科技有限公司 | Parathyroid gland recognition device and system |
CN112656370A (en) * | 2020-11-30 | 2021-04-16 | 浙江大学医学院附属第一医院 | Parathyroid gland position detecting instrument |
CN113662515A (en) * | 2021-09-22 | 2021-11-19 | 赛德生物科技(山东)有限责任公司 | Parathyroid gland check out test set |
CN115517669A (en) * | 2022-09-30 | 2022-12-27 | 北京心联光电科技有限公司 | Ion channel detection equipment at somatic cell level |
CN116138744A (en) * | 2023-04-21 | 2023-05-23 | 北京航空航天大学 | Autofluorescence detection probe and system for in vivo detection of parathyroid tissue |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108523849A (en) | Based on autofluorescence technology and the classification of the thyroid gland neck tissue of optical coherence tomography and identifying system and method | |
CN102892348B (en) | The method and apparatus of multispectral photon imaging | |
US7256894B2 (en) | Method and apparatus for performing second harmonic optical coherence tomography | |
US7953467B2 (en) | Method for non-invasive cancerous tissue diagnosis and tomography using terahertz imaging | |
CN110367941B (en) | Detection light fusion non-contact photoacoustic-optical coherence tomography dual-mode imaging system | |
US11576580B2 (en) | Apparatus, systems and methods for intraoperative imaging | |
JP5911196B2 (en) | Photoacoustic imaging device | |
CN105877711A (en) | Multimode imaging detection system for skin disease | |
US9155474B2 (en) | System for multispectral imaging of fluorescence | |
US20090326359A1 (en) | Method of in vivo detection and/or diagnosis of cancer using fluorescence based dna image cytometry | |
CN101947097B (en) | High-resolution optical endoscopic system for pancreatography | |
Barton et al. | Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy | |
JP2013181929A (en) | Measuring apparatus and method, tomography device and method | |
CN205758513U (en) | A kind of dermatosis multi-modality imaging detecting system | |
Zhang et al. | Trimodal detection of early childhood caries using laser light scanning and fluorescence spectroscopy: clinical prototype | |
TWI223719B (en) | Sub-micrometer-resolution optical coherent tomography | |
CN105996999A (en) | Method and system for measuring depth resolution attenuation coefficient of sample based on OCT | |
CN208973832U (en) | Thyroid neck tissue classification and identification system based on autofluorescence technique and spectral domain optical coherence tomography | |
CN208973833U (en) | Thyroid neck tissue classification and identification system based on autofluorescence technique and optical coherence tomography | |
Pahlevaninezhad et al. | Coregistered autofluorescence-optical coherence tomography imaging of human lung sections | |
CN107361723B (en) | Quick tissue molecular spectrum imaging device | |
Van Dam | Novel methods of enhanced endoscopic imaging | |
Su et al. | Depth-sensitive Raman spectroscopy for skin wound evaluation in rodents | |
US9594024B2 (en) | Method for correcting a signal backscattered by a sample and associated device | |
Schomacker et al. | Novel optical detection system for in vivo identification and localization of cervical intraepithelial neoplasia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180914 |