CN108520790A - A kind of solidification method of fluorine-containing radioactive waste liquid - Google Patents
A kind of solidification method of fluorine-containing radioactive waste liquid Download PDFInfo
- Publication number
- CN108520790A CN108520790A CN201810294474.XA CN201810294474A CN108520790A CN 108520790 A CN108520790 A CN 108520790A CN 201810294474 A CN201810294474 A CN 201810294474A CN 108520790 A CN108520790 A CN 108520790A
- Authority
- CN
- China
- Prior art keywords
- cement
- waste liquid
- fluorine
- radioactive waste
- containing radioactive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 55
- 239000002901 radioactive waste Substances 0.000 title claims abstract description 53
- 239000011737 fluorine Substances 0.000 title claims abstract description 48
- 229910052731 fluorine Inorganic materials 0.000 title claims abstract description 48
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000007711 solidification Methods 0.000 title claims description 13
- 230000008023 solidification Effects 0.000 title claims description 13
- 239000004568 cement Substances 0.000 claims abstract description 87
- 239000002002 slurry Substances 0.000 claims abstract description 21
- 239000000654 additive Substances 0.000 claims abstract description 10
- 229910021538 borax Inorganic materials 0.000 claims abstract description 8
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 8
- 239000004328 sodium tetraborate Substances 0.000 claims abstract description 8
- 235000010339 sodium tetraborate Nutrition 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 239000002956 ash Substances 0.000 claims description 13
- 238000001723 curing Methods 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 6
- 239000006004 Quartz sand Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 239000010881 fly ash Substances 0.000 claims description 3
- 229910021487 silica fume Inorganic materials 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 2
- -1 fluorine ions Chemical class 0.000 abstract description 12
- 230000002285 radioactive effect Effects 0.000 abstract description 11
- 239000002699 waste material Substances 0.000 abstract description 3
- 238000002386 leaching Methods 0.000 description 21
- 150000003839 salts Chemical class 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000011398 Portland cement Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 150000002221 fluorine Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/16—Processing by fixation in stable solid media
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/20—Disposal of liquid waste
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明提供一种含氟放射性废液的固化方法,包括以下步骤:S1,提供含氟放射性废液,该含氟放射性废液包括氟和放射性废液;S2,将水泥灰与该含氟放射性废液混合形成水泥浆,该水泥灰包括:KH2PO4、重烧MgO、添加剂和硼砂;S3,将该水泥浆经固化、初凝和终凝形成第一水泥固化体;S4,将该第一水泥固化体养护形成第二水泥固化体。第二水泥固化体具有较高的抗压强度并能对放射性元素及氟离子形成有效包裹,满足最终处置的要求。
The invention provides a method for solidifying fluorine-containing radioactive waste liquid, comprising the following steps: S1, providing fluorine-containing radioactive waste liquid, the fluorine-containing radioactive waste liquid including fluorine and radioactive waste liquid; S2, mixing cement ash with the fluorine-containing radioactive waste liquid The waste liquid is mixed to form a cement slurry, and the cement ash includes: KH 2 PO 4 , dead-burned MgO, additives and borax; S3, the cement slurry is solidified, initially set and finally set to form the first cement solidified body; S4, the The first cement solidified body is cured to form the second cement solidified body. The second solidified cement body has high compressive strength and can effectively wrap radioactive elements and fluorine ions, meeting the requirements for final disposal.
Description
技术领域technical field
本发明涉及放射性废液固化方法,更具体地涉及一种应用于含氟放射性废液的固化方法。The invention relates to a solidification method of radioactive waste liquid, and more particularly relates to a solidification method applied to fluorine-containing radioactive waste liquid.
背景技术Background technique
熔盐堆采用熔融的氟盐作为主冷却剂,液态熔盐堆的燃料本身就溶解于氟化物高温熔盐中。熔盐堆的研发和运行过程会产生以氟盐为主要成分的放射性废物,乏燃料干法后处理、燃料盐分析测试、燃料添加盐分离回收等过程也会产生多种类型的放射性废物,这些放射性废物必然包括含氟放射性废液。为保证周边公众安全和减少废液对环境的污染,需要对含氟放射性废液进行减容和固化处理,使其达到安全暂存的要求。The molten salt reactor uses molten fluorine salt as the main coolant, and the fuel of the liquid molten salt reactor itself is dissolved in the fluoride high-temperature molten salt. The R&D and operation of molten salt reactors will produce radioactive waste with fluorine salt as the main component. Various types of radioactive waste will also be produced during dry reprocessing of spent fuel, analysis and testing of fuel salt, separation and recovery of fuel added salt, etc. These Radioactive waste necessarily includes fluorine-containing radioactive waste liquid. In order to ensure the safety of the surrounding public and reduce the pollution of the waste liquid to the environment, it is necessary to reduce the volume and solidify the fluorine-containing radioactive waste liquid to meet the requirements of safe temporary storage.
硅酸盐水泥固化氟离子浓度较高的含氟放射性废液时,水泥浆的初凝时间会大幅减少,氟离子浓度8wt%时初凝时间只有2-3min;添加缓凝剂(硼砂)后导致水泥固化体的抗压强度大幅降低,不能满足国标要求。When Portland cement solidifies fluorine-containing radioactive waste liquid with high fluoride ion concentration, the initial setting time of cement slurry will be greatly reduced. When the fluoride ion concentration is 8wt%, the initial setting time is only 2-3min; after adding retarder (borax) As a result, the compressive strength of the cement solidified body is greatly reduced, which cannot meet the requirements of the national standard.
因此针对含氟放射性废液的固化亟需新的水泥配方及方法,以解决水泥浆初凝时间短的问题。同时水泥固化体具有较高的抗压强度并能对放射性元素及氟离子形成有效包裹,满足最终处置的要求。Therefore, new cement formulations and methods are urgently needed for the solidification of fluorine-containing radioactive waste liquid to solve the problem of short initial setting time of cement slurry. At the same time, the solidified cement body has high compressive strength and can effectively wrap radioactive elements and fluoride ions, meeting the requirements for final disposal.
发明内容Contents of the invention
为解决上述含氟放射性废液水泥固化初凝时间短等问题,本发明提供了一种含氟放射性废液的固化方法。In order to solve the above-mentioned problems such as short curing initial setting time of the fluorine-containing radioactive waste liquid cement, the present invention provides a curing method for the fluorine-containing radioactive waste liquid.
本发明提供一种含氟放射性废液的固化方法,包括以下步骤:S1,提供含氟放射性废液,该含氟放射性废液包括氟和放射性废液;S2,将水泥灰与该含氟放射性废液混合形成水泥浆,该水泥灰包括KH2PO4、重烧MgO、添加剂和硼砂;S3,将该水泥浆经固化、初凝和终凝形成第一水泥固化体;S4,将该第一水泥固化体养护形成第二水泥固化体。The invention provides a method for solidifying fluorine-containing radioactive waste liquid, comprising the following steps: S1, providing fluorine-containing radioactive waste liquid, the fluorine-containing radioactive waste liquid including fluorine and radioactive waste liquid; S2, mixing cement ash with the fluorine-containing radioactive waste liquid The waste liquid is mixed to form a cement slurry, and the cement ash includes KH 2 PO 4 , dead-burned MgO, additives and borax; S3, the cement slurry is solidified, initially set and finally set to form the first cement solidified body; S4, the second A cement solidified body is cured to form a second cement solidified body.
其中,步骤S3具体为,将第一水泥固化体在空气中养护形成第二水泥固化体。Wherein, step S3 is specifically, curing the first solidified cement body in air to form the second solidified cement body.
优选的,步骤S3具体为,将第一水泥固化体在空气中养护28天形成第二水泥固化体。其中,步骤S2包括:S21,提供一种水泥灰与含氟放射性废液混合;S22,先缓慢搅拌20s-40s,然后快速搅拌80-100s,得到均匀的水泥浆。Preferably, step S3 specifically includes curing the first solidified cement body in air for 28 days to form the second solidified cement body. Wherein, step S2 includes: S21, providing a kind of cement ash mixed with fluorine-containing radioactive waste liquid; S22, first stirring slowly for 20s-40s, and then stirring rapidly for 80-100s to obtain uniform cement slurry.
优选的,步骤S21中,所述水泥灰与含氟放射性废液的重量比1:0.18-0.19。Preferably, in step S21, the weight ratio of the cement ash to the fluorine-containing radioactive waste liquid is 1:0.18-0.19.
优选的,水泥初凝时间为20-30min,终凝时间为1-2min。Preferably, the cement initial setting time is 20-30 minutes, and the final setting time is 1-2 minutes.
优选的,KH2PO4、重烧MgO、添加剂和硼砂的重量比为0.25:1:0-0.1:0.1-0.15。采用磷酸盐代替硅酸盐延长了水泥浆的初凝时间、增强了第二水泥固化体的抗压强度,同时对氟离子的包裹性较好。采用重烧MgO增加了水泥灰的反应性。采用硼砂延长了水泥浆的初凝时间。采用添加剂提高了第二水泥固化体的抗压强度。Preferably, the weight ratio of KH 2 PO 4 , dead-burned MgO, additives and borax is 0.25:1:0-0.1:0.1-0.15. The use of phosphate instead of silicate prolongs the initial setting time of cement slurry, enhances the compressive strength of the second cement solidified body, and at the same time has better encapsulation of fluoride ions. The use of dead-burned MgO increases the reactivity of cement ash. Using borax prolongs the initial setting time of cement slurry. The use of additives increases the compressive strength of the second cement solidified body.
优选的,添加剂包括石英砂、沸石、硅灰和粉煤灰中至少一种。Preferably, the additive includes at least one of quartz sand, zeolite, silica fume and fly ash.
优选的,氟在含氟放射性废液中的重量百分比为0.01-12%。Preferably, the weight percentage of fluorine in the fluorine-containing radioactive waste liquid is 0.01-12%.
优选的,氟在含氟放射性废液中的重量百分比为2%。Preferably, the weight percentage of fluorine in the fluorine-containing radioactive waste liquid is 2%.
优选的,氟在含氟放射性废液中的重量百分比为12%。Preferably, the weight percentage of fluorine in the fluorine-containing radioactive waste liquid is 12%.
优选的,含氟放射性废液,含有Cs+、Sr2+和Co2+中的至少一种。Preferably, the fluorine-containing radioactive waste liquid contains at least one of Cs + , Sr 2+ and Co 2+ .
优选的,放射性废液中含有质量含量为0-4.412g/L的放射性元素Cs。Preferably, the radioactive waste liquid contains radioactive element Cs with a mass content of 0-4.412g/L.
优选的,放射性废液中含有质量含量为0-4.601g/L的放射性元素Sr。Preferably, the radioactive waste liquid contains radioactive element Sr with a mass content of 0-4.601 g/L.
优选的,放射性废液中含有质量含量为0-4.305g/L的放射性元素Co。Preferably, the radioactive waste liquid contains the radioactive element Co with a mass content of 0-4.305 g/L.
本发明提供一种含氟放射性废液的固化方法,解决水泥浆初凝时间短的问题。同时水泥固化体具有较高的抗压强度并能对放射性元素及氟离子形成有效包裹,满足最终处置的要求。The invention provides a solidification method for fluorine-containing radioactive waste liquid, which solves the problem of short initial setting time of cement slurry. At the same time, the solidified cement body has high compressive strength and can effectively wrap radioactive elements and fluorine ions, meeting the requirements for final disposal.
附图说明Description of drawings
图1是实施例1对应第二水泥固化体中放射性元素0-42d的浸出率变化图;Fig. 1 is the change figure of the leaching rate of radioactive element 0-42d in embodiment 1 corresponding to the second cement solidification body;
图2是实施例1对应第二水泥固化体中放射性元素0-42d的累积浸出率变化图;Fig. 2 is the cumulative leaching rate change figure of embodiment 1 corresponding to the radioactive element 0-42d in the second cement solidification body;
图3是实施例1对应第二水泥固化体中F-0-42d的平均浸出浓度变化图;Fig. 3 is the average leaching concentration change figure of F - 0-42d in the second cement solidified body corresponding to embodiment 1;
图4是实施例1对应第二水泥固化体中F-0-42d的浸出率及累积浸出比例变化图。Fig. 4 is a chart showing the change of the leaching rate and cumulative leaching ratio of F - 0-42d in the second cement solidified body corresponding to Example 1.
具体实施方式Detailed ways
下面将结合本发明的具体实施方式,对本发明的技术方案进行详细的说明,但如下实施例仅是用以理解本发明,而不能限制本发明,本发明中的实施例及实施例中的特征可以相互组合,本发明可以由权利要求限定和覆盖的多种不同方式实施。The technical solution of the present invention will be described in detail below in conjunction with specific embodiments of the present invention, but the following examples are only used to understand the present invention, and cannot limit the present invention. The embodiments in the present invention and the characteristics in the embodiments Combinable with each other, the invention can be implemented in a multitude of different ways as defined and covered by the claims.
实施例1Example 1
根据本发明提供的一种含氟放射性废液的固化方法包括步骤S1,提供一种含氟放射性废液,其中,该含氟放射性废液包括氟和放射性废液。A method for solidifying fluorine-containing radioactive waste liquid according to the present invention includes step S1, providing a fluorine-containing radioactive waste liquid, wherein the fluorine-containing radioactive waste liquid includes fluorine and radioactive waste liquid.
所述放射性废液采用CsNO3、Sr(NO3)2和Co(NO3)2溶液混合制备,所述氟通过添加到放射性废液中的NaF来提供。如此,含氟放射性废液采用CsNO3、Sr(NO3)2、Co(NO3)2和NaF溶液制备,形成模拟放射性废液,其中,放射性元素Sr、Cs和Co含量分别为4.412g/L、4.601g/L、4.305g/L。The radioactive waste liquid is prepared by mixing CsNO 3 , Sr(NO 3 ) 2 and Co(NO 3 ) 2 solutions, and the fluorine is provided by NaF added to the radioactive waste liquid. In this way, the fluorine-containing radioactive waste liquid is prepared by CsNO 3 , Sr(NO 3 ) 2 , Co(NO 3 ) 2 and NaF solutions to form a simulated radioactive waste liquid, in which the contents of radioactive elements Sr, Cs and Co are 4.412g/ L, 4.601g/L, 4.305g/L.
根据本发明提供的一种含氟放射性废液的固化方法包括步骤S2,在水泥净浆搅拌机中加入水泥灰和44.4mL含氟放射性废液,两者的重量比为1:0.185,先缓慢搅拌30s,然后快速搅拌90s,得到均匀的水泥浆。A method for solidifying fluorine-containing radioactive waste liquid according to the present invention includes step S2, adding cement ash and 44.4mL fluorine-containing radioactive waste liquid into the cement paste mixer, the weight ratio of the two is 1:0.185, first slowly stirring 30s, then stir quickly for 90s to get a uniform cement slurry.
根据本发明提供的一种含氟放射性废液的固化方法包括步骤S3,将所得水泥浆注入Φ50×50mm3的塑料模具中固化,经过初凝、终凝得到第一水泥固化体,将其养护28天后得到第二水泥固化体。A method for solidifying fluorine-containing radioactive waste liquid according to the present invention includes step S3, injecting the obtained cement slurry into a Φ50× 50mm plastic mold for solidification, obtaining the first solidified cement body through initial setting and final setting, and curing it After 28 days, the second cement solidified body was obtained.
水泥灰包括KH2PO4、重烧MgO、添加剂和硼砂,其中,添加剂包括石英砂、沸石、硅灰和粉煤灰。在本实施例中根据表1的配方,采用水泥净浆搅拌机将上述水泥灰组分和2.12gNaF固体混合均匀。并且在本实施例中,该重烧MgO型号为200目,从而增加水泥灰的反应性;该石英砂型号为800目,从而降低形成的第一和第二水泥固化体的孔隙率。Cement ash includes KH 2 PO 4 , dead-burned MgO, additives and borax, wherein the additives include quartz sand, zeolite, silica fume and fly ash. In this embodiment, according to the formula in Table 1, the above-mentioned cement ash components and 2.12 g of NaF solids were mixed evenly by using a cement paste mixer. And in this embodiment, the type of the dead-burned MgO is 200 mesh, so as to increase the reactivity of cement ash; the type of the quartz sand is 800 mesh, so as to reduce the porosity of the formed first and second cement solidified bodies.
通过以下方法对水泥浆、第一水泥固化体和第二水泥固化体进行表征。The cement paste, first cement set and second cement set were characterized by the following methods.
(1)水泥浆表征:观察水泥浆的流动性、有无分层现象。记录水泥初凝时间、终凝时间。(1) Cement slurry characterization: Observe the fluidity and delamination of the cement slurry. Record the initial setting time and final setting time of cement.
具体的,在本实施例中水泥浆流动度适中,无分层现象。水泥浆初凝时间为30min左右,初凝时间较长,初凝后1-2min终凝。Specifically, in this embodiment, the fluidity of the cement slurry is moderate, and there is no delamination phenomenon. The initial setting time of cement slurry is about 30 minutes, the initial setting time is longer, and the final setting is 1-2 minutes after the initial setting.
(2)第一水泥固化体表征:观察第一水泥固化体的外观。(2) Characterization of the first solidified cement body: observe the appearance of the first solidified cement body.
具体的,在本实施例中第一水泥固化体外观完整,没有裂纹,表面不存在游离液体。Specifically, in this embodiment, the appearance of the first solidified cement body is complete, without cracks, and free liquid does not exist on the surface.
(3)第二水泥固化体浸出测试:按照GBT 7023-2011的要求进行浸出性能测试。(3) Leaching test of the second cement solidified body: the leaching performance test is carried out according to the requirements of GBT 7023-2011.
具体的,本实施例中,第二水泥固化体抗压强度大于50MPa,远大于国标7MPa的要求。在去离子水中浸泡42d后,第二水泥固化体的外观没有明显的裂缝或龟裂,抗压强度损失12.8%,满足国家标准中第二水泥固化体浸泡后抗压强度损失不超过25%的要求,抗压强度较高。Specifically, in this embodiment, the compressive strength of the second cement solidified body is greater than 50 MPa, far greater than the national standard requirement of 7 MPa. After soaking in deionized water for 42 days, the appearance of the second cement solidified body has no obvious cracks or cracks, and the compressive strength loss is 12.8%, which meets the national standard that the second cement solidified body loses no more than 25% of the compressive strength after soaking Requirements, high compressive strength.
参见图1和图2,本实施例中,第二水泥固化体中Sr2+的42d浸出率为1.96×10-5cm/d,累积浸出率为6.10×10-4cm;Cs+的42d浸出率为6.46×10-4cm/d,累积浸出率为5.80×10-2cm;Co2+的42d浸出率为8.29×10-8cm/d,累积浸出率为5.57×10-5cm,该结果满足GB14569.1-2011的限值,对放射性元素形成有效包裹。Referring to Figure 1 and Figure 2, in this example, the 42d leaching rate of Sr 2+ in the second cement solidified body is 1.96×10 -5 cm/d, and the cumulative leaching rate is 6.10×10 -4 cm; the 42d of Cs + The leaching rate was 6.46×10 -4 cm/d, and the cumulative leaching rate was 5.80×10 -2 cm; the 42d leaching rate of Co 2+ was 8.29×10 -8 cm/d, and the cumulative leaching rate was 5.57×10 -5 cm , the result meets the limit value of GB14569.1-2011, forming an effective package for radioactive elements.
参见图3,本实施例中第二水泥固化体的氟离子的最高平均浸出浓度为35mg/L远低于GB 5085.3-2007的限值100mg/L。Referring to Fig. 3, the maximum average leaching concentration of fluoride ions in the second cement solidified body in this embodiment is 35 mg/L, which is much lower than the limit value of 100 mg/L in GB 5085.3-2007.
参见图4,本实施例中第二水泥固化体的氟离子的42d浸出率为1.74×10-3cm/d,这一结果低于现有技术硅酸盐水泥固化的42d浸出率为4.59×10-3cm/d。氟离子的42d浸出量占水泥固化体样品中氟离子总量的10.68%,其余89.32%的氟离子包裹在第二水泥固化体中,该第二水泥固化体对氟离子形成有效包裹。Referring to Figure 4, the 42d leaching rate of fluoride ions in the second cement solidified body in this embodiment is 1.74×10 -3 cm/d, which is lower than the 42d leaching rate of Portland cement solidified in the prior art, which is 4.59× 10 -3 cm/d. The 42d leaching amount of fluoride ions accounted for 10.68% of the total fluoride ions in the cement solidified sample, and the remaining 89.32% of the fluoride ions were encapsulated in the second cement solidified body, which effectively encapsulated the fluoride ions.
实施例2-实施例12Example 2-Example 12
与实施例1实验过程基本一致,区别在于各实施例所用各组分的量不同,如下表1所示。The experimental process is basically the same as in Example 1, except that the amounts of the components used in each example are different, as shown in Table 1 below.
在实施例2-实施例12中,各水泥浆流动性均适中,无分层现象。各水泥浆初凝时间在20min-30min间,初凝后1~2min内终凝,初凝时间较长。In Example 2-Example 12, the fluidity of each cement slurry is moderate, and there is no delamination phenomenon. The initial setting time of each cement slurry is between 20min-30min, and the final setting is within 1-2min after the initial setting, and the initial setting time is longer.
各第一水泥固化体均外观完整,没有裂纹。Each first cement solidified body has a complete appearance without cracks.
各第二水泥固化体的抗压强度均大于50MPa,符合国标GB14569.1-2011的限值,抗压强度较高。各第二水泥固化体的Co2+的42d浸出率均低于1.54×10-7cm/d,Sr2+的42d浸出率均低于2.63×10-5cm/d,Cs+的42d浸出率均低于6.92×10-4cm/d,符合GB 14569.1-2011的限值,提高了对放射性元素的包裹能力。各第二水泥固化体的氟离子的浸出浓度均低于100mg/L,符合GB5085.3-2007的限值,对氟离子形成了有效包裹。The compressive strength of each second cement solidified body is greater than 50 MPa, which meets the limit value of the national standard GB14569.1-2011, and the compressive strength is relatively high. The 42d leaching rate of Co 2+ of each second cement solidified body is lower than 1.54×10 -7 cm/d, the 42d leaching rate of Sr 2+ is lower than 2.63×10 -5 cm/d, and the 42d leaching rate of Cs + The rates are all lower than 6.92×10 -4 cm/d, in line with the limit value of GB 14569.1-2011, which improves the ability to wrap radioactive elements. The leaching concentration of fluoride ions of each second cement solidified body is lower than 100 mg/L, which meets the limit value of GB5085.3-2007, and effectively wraps fluoride ions.
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即使不按照本发明提供的方法进行。凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。What is described above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Various changes can also be made to the above embodiments of the present invention. Even do not carry out according to the method provided by the invention. All simple and equivalent changes and modifications made according to the claims and description of the application for the present invention fall within the protection scope of the claims of the patent of the present invention. What is not described in detail in the present invention is conventional technical contents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810294474.XA CN108520790B (en) | 2018-03-30 | 2018-03-30 | A kind of solidification method of fluorine-containing radioactive waste liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810294474.XA CN108520790B (en) | 2018-03-30 | 2018-03-30 | A kind of solidification method of fluorine-containing radioactive waste liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108520790A true CN108520790A (en) | 2018-09-11 |
CN108520790B CN108520790B (en) | 2020-12-18 |
Family
ID=63431294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810294474.XA Active CN108520790B (en) | 2018-03-30 | 2018-03-30 | A kind of solidification method of fluorine-containing radioactive waste liquid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108520790B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109748567A (en) * | 2019-01-11 | 2019-05-14 | 济南大学 | A medium and low radioactive waste resin aluminophosphate cement-based curing substrate |
CN109903875A (en) * | 2019-02-28 | 2019-06-18 | 西南科技大学 | A kind of method for solidifying boron-containing nuclear waste liquid by phosphate polymer |
CN110491538A (en) * | 2019-09-27 | 2019-11-22 | 中国科学院上海应用物理研究所 | A kind of curing method of radioactive liquid waste with high salt |
CN114751666A (en) * | 2022-04-27 | 2022-07-15 | 中国科学院青海盐湖研究所 | Method for preparing magnesium material by using waste aluminum electrolysis waste cathode carbon block as raw material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1084898A (en) * | 1992-07-31 | 1994-04-06 | Rgc矿砂有限公司 | The processing of titaniferous materials |
CN105825906A (en) * | 2016-03-30 | 2016-08-03 | 中国科学院上海应用物理研究所 | Method for solidifying cement with radioactive fluorine-containing waste liquor |
-
2018
- 2018-03-30 CN CN201810294474.XA patent/CN108520790B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1084898A (en) * | 1992-07-31 | 1994-04-06 | Rgc矿砂有限公司 | The processing of titaniferous materials |
CN105825906A (en) * | 2016-03-30 | 2016-08-03 | 中国科学院上海应用物理研究所 | Method for solidifying cement with radioactive fluorine-containing waste liquor |
Non-Patent Citations (5)
Title |
---|
孙亚平: "熔盐堆含氟放射性废物磷酸盐固化方案及固化体性能研究", 《中国博士学位论文全文库》 * |
孟芹等: "磷酸镁水泥的研究现状及发展趋势", 《硅酸盐通报》 * |
张时豪等: "模拟放射性核素Cs对磷酸镁水泥性能的影响", 《后勤工程学院学报》 * |
戴丰乐等: "固化模拟放射性核素 Sr 对磷酸镁水泥水化特性的影响", 《硅酸盐学报》 * |
赖振宇等: "磷酸镁水泥固化模拟放射性焚烧灰", 《硅酸盐学报》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109748567A (en) * | 2019-01-11 | 2019-05-14 | 济南大学 | A medium and low radioactive waste resin aluminophosphate cement-based curing substrate |
CN109748567B (en) * | 2019-01-11 | 2021-09-07 | 济南大学 | A medium and low radioactive waste resin aluminophosphate cement-based curing substrate |
CN109903875A (en) * | 2019-02-28 | 2019-06-18 | 西南科技大学 | A kind of method for solidifying boron-containing nuclear waste liquid by phosphate polymer |
CN110491538A (en) * | 2019-09-27 | 2019-11-22 | 中国科学院上海应用物理研究所 | A kind of curing method of radioactive liquid waste with high salt |
CN114751666A (en) * | 2022-04-27 | 2022-07-15 | 中国科学院青海盐湖研究所 | Method for preparing magnesium material by using waste aluminum electrolysis waste cathode carbon block as raw material |
CN114751666B (en) * | 2022-04-27 | 2023-03-10 | 中国科学院青海盐湖研究所 | Method for preparing magnesium material by using waste aluminum electrolysis waste cathode carbon block as raw material |
Also Published As
Publication number | Publication date |
---|---|
CN108520790B (en) | 2020-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108520790B (en) | A kind of solidification method of fluorine-containing radioactive waste liquid | |
CN105825906B (en) | A kind of fluorine-containing waste liquid cement solidification method of radioactivity | |
CN109369113B (en) | Collapsible loess reinforcing grouting slurry, preparation method and application thereof | |
CN109265038A (en) | A kind of modification regeneration coarse aggregate and its method for preparing regeneration concrete | |
JPS59168399A (en) | Method of encapsulating boric acid-containing slurry into cement | |
CN103237772A (en) | Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor | |
CN106082926A (en) | A kind of inorganic polymer sludge solidification mortar and preparation method thereof | |
CN102262911B (en) | Method for solidifying waste radioactive resins with naphthalene series water reducer and cement | |
CN105945209B (en) | It is a kind of using water as phosphate binders hardening suspension curing agent of carrier and preparation method thereof | |
CN111524632A (en) | Magnesium-based cement curing substrate and method for treating low-medium radioactive nuclear waste | |
CN102800377A (en) | Cement solidification method of nuclear power wastes | |
CN105130286A (en) | River sediment adsorption brick and preparation method thereof | |
CN106587830B (en) | Waste phosphoric acid tributyl/cement solidification material of kerosene and its preparation method of solidified cement body | |
CN105130305B (en) | A kind of AASC Solidified Form method of nuclear power station boracic spent resin | |
CN109903875A (en) | A kind of method for solidifying boron-containing nuclear waste liquid by phosphate polymer | |
CN112142398B (en) | Quantitative design method of self-compacting concrete mix proportion of machine-made sand based on aggregate particle shape | |
JPH0249197A (en) | Radioactive waste cement solidification method and solidified material | |
CN114380621B (en) | Method for preparing foam concrete from slurry | |
CN117945678A (en) | Geopolymer curing method for fluorine-containing radioactive waste liquid | |
CN106242469B (en) | A kind of preparation method of river and lake silt solidification and stabilization medicament | |
JP3833294B2 (en) | Solidification method of radioactive waste | |
CN118184247B (en) | Rice hull ash cement-based material, preparation method, system and storage medium thereof | |
JP2003002725A (en) | Construction material using site generated rock material | |
CN116120022B (en) | A phosphorus solid-based road base material and its preparation process | |
JPH1172594A (en) | Solidification method of radioactive waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |