CN108519917A - A resource pool allocation method and device - Google Patents
A resource pool allocation method and device Download PDFInfo
- Publication number
- CN108519917A CN108519917A CN201810158890.7A CN201810158890A CN108519917A CN 108519917 A CN108519917 A CN 108519917A CN 201810158890 A CN201810158890 A CN 201810158890A CN 108519917 A CN108519917 A CN 108519917A
- Authority
- CN
- China
- Prior art keywords
- resource
- hardware resources
- resource pool
- task
- oversold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000005012 migration Effects 0.000 claims description 14
- 238000013508 migration Methods 0.000 claims description 14
- 230000002452 interceptive effect Effects 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 2
- 230000008447 perception Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/485—Task life-cycle, e.g. stopping, restarting, resuming execution
- G06F9/4856—Task life-cycle, e.g. stopping, restarting, resuming execution resumption being on a different machine, e.g. task migration, virtual machine migration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/4557—Distribution of virtual machine instances; Migration and load balancing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/5011—Pool
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/5017—Task decomposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算机技术领域,特别是涉及一种资源池分配方法和装置。The present invention relates to the field of computer technology, in particular to a resource pool allocation method and device.
背景技术Background technique
典型的资源共享平台为数据中心(Data Center),比如:Amazon云、Google云、阿里云等。每个数据中心都有成千上万的多品牌或多系列的服务器,这些服务器通过互联形成资源共享平台。A typical resource sharing platform is a data center (Data Center), such as: Amazon Cloud, Google Cloud, Alibaba Cloud, etc. Each data center has tens of thousands of multi-brand or multi-series servers, and these servers form a resource sharing platform through interconnection.
在大数据时代,在资源共享平台上,通常会有百万级的任务同时运行。在资源有限的今天,资源共享平台使用资源超卖的方式来避免资源浪费,以图1为例说明资源超卖方式的工作原理。资源超卖是指在单台服务器上,资源共享平台分配给任务的资源量总和大于服务器的容量。由于任务运行时占用的资源在部分时间远小于资源分配量,所以即使这些任务的分配量总和大于服务器容量,在任务执行时服务器也能满足任务的资源需求。借助于资源超卖,服务器上同时执行的任务大于非超卖时的任务量。In the era of big data, there are usually millions of tasks running at the same time on the resource sharing platform. Today, when resources are limited, resource sharing platforms use oversold resources to avoid waste of resources. Take Figure 1 as an example to illustrate the working principle of oversold resources. Resource overselling means that on a single server, the sum of resources allocated to tasks by the resource sharing platform is greater than the capacity of the server. Since the resources occupied by the task are much smaller than the resource allocation in part of the time, even if the sum of the allocation of these tasks is greater than the server capacity, the server can still meet the resource requirements of the task when the task is executed. With resource oversold, the number of tasks executed on the server at the same time is greater than that of non-oversold.
在现有技术中,不同的任务对资源的需求不同,不同的资源(如不同的服务器品牌或系列等)对同一任务的影响很大,当然,即便是同一任务,在不同时间也可能存在不同的资源需求,然而,资源超卖方式虽然在一定程度上避免了资源浪费,但是却不能按照任务的需求合理分配资源,无法有效提升资源利用率。In the existing technology, different tasks have different requirements for resources, and different resources (such as different server brands or series) have a great impact on the same task. Of course, even the same task may have different resource requirements at different times. However, although the resource overselling method can avoid resource waste to a certain extent, it cannot reasonably allocate resources according to the task requirements, and cannot effectively improve resource utilization.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种资源池分配方法和装置,用以解决现有技术中资源利用率低的问题。The technical problem to be solved by the present invention is to provide a resource pool allocation method and device to solve the problem of low resource utilization in the prior art.
为了解决上述技术问题,本发明是通过以下技术方案来解决的:In order to solve the above-mentioned technical problems, the present invention solves through the following technical solutions:
本发明提供了一种资源池分配方法,包括:根据硬件资源的资源信息,将硬件资源划分到不同类型的逻辑资源池;根据任务的类型,将所述任务下发到对应类型的逻辑资源池,并在所述逻辑资源池中的硬件资源上运行。The present invention provides a method for allocating resource pools, including: dividing hardware resources into different types of logical resource pools according to the resource information of the hardware resources; and sending the tasks to corresponding logical resource pools according to the types of tasks , and run on hardware resources in the logical resource pool.
其中,根据硬件资源的资源信息,将硬件资源划分到不同类型的逻辑资源池,包括:设置多个具有不同超卖比的超卖资源池;根据硬件资源的性能信息,将硬件资源划分到不同的超卖资源池。Among them, according to the resource information of the hardware resources, the hardware resources are divided into different types of logical resource pools, including: setting up multiple oversold resource pools with different oversold ratios; according to the performance information of the hardware resources, the hardware resources are divided into different types. oversold resource pool.
其中,根据硬件资源的资源信息,将硬件资源划分到不同类型的逻辑资源池,包括:在每个超卖资源池中,根据硬件资源的配置信息和性能信息,将硬件资源划分到所述超卖资源池中的不同子资源池。Wherein, according to the resource information of the hardware resources, the hardware resources are divided into different types of logical resource pools, including: in each oversold resource pool, according to the configuration information and performance information of the hardware resources, the hardware resources are divided into the super Sell different sub-resource pools in the resource pool.
其中,在将所述任务下发到对应类型的逻辑资源池之后,还包括:监测所述逻辑资源池中的任务;在所述任务满足预设迁移条件时,将所述硬件资源上运行的所述任务迁移到其他逻辑资源池中满足预设目标条件的硬件资源上。Wherein, after sending the task to the logical resource pool of the corresponding type, it also includes: monitoring the tasks in the logical resource pool; The task is migrated to hardware resources meeting preset target conditions in other logical resource pools.
其中,所述类型包括:超卖型、离线型、在线型、交互型、计算密集型、访问密集型、高输入/输出型。Wherein, the types include: overselling type, offline type, online type, interactive type, calculation-intensive type, access-intensive type, and high input/output type.
本发明还提供了一种资源池分配装置,包括:划分模块,用于根据硬件资源的资源信息,将硬件资源划分到不同类型的逻辑资源池;下发模块,用于根据任务的类型,将所述任务下发到对应类型的逻辑资源池,并在所述逻辑资源池中的硬件资源上运行。The present invention also provides a device for allocating resource pools, including: a dividing module, used to divide hardware resources into different types of logical resource pools according to the resource information of the hardware resources; The task is delivered to a logical resource pool of a corresponding type, and runs on hardware resources in the logical resource pool.
其中,所述划分模块,用于:设置多个具有不同超卖比的超卖资源池;根据硬件资源的性能信息,将硬件资源划分到不同的超卖资源池。Wherein, the division module is configured to: set a plurality of oversold resource pools with different oversold ratios; and divide the hardware resources into different oversold resource pools according to the performance information of the hardware resources.
其中,所述划分模块,进一步用于:在每个超卖资源池中,根据硬件资源的配置信息和性能信息,将硬件资源划分到所述超卖资源池中的不同子资源池。Wherein, the division module is further configured to: in each oversold resource pool, divide the hardware resources into different sub-resource pools in the oversold resource pool according to the configuration information and performance information of the hardware resources.
其中,所述装置还包括迁移模块;所述迁移模块,用于在将所述任务下发到对应类型的逻辑资源池之后,监测所述逻辑资源池中的任务;在所述任务满足预设迁移条件时,将所述硬件资源上运行的所述任务迁移到其他逻辑资源池中满足预设目标条件的硬件资源上。Wherein, the device further includes a migration module; the migration module is configured to monitor the tasks in the logical resource pool after the task is sent to the corresponding type of logical resource pool; when the task satisfies the preset When migrating the condition, the task running on the hardware resource is migrated to a hardware resource satisfying the preset target condition in another logical resource pool.
其中,所述类型包括:超卖型、离线型、在线型、交互型、计算密集型、访问密集型、高输入/输出型。Wherein, the types include: overselling type, offline type, online type, interactive type, calculation-intensive type, access-intensive type, and high input/output type.
本发明有益效果如下:The beneficial effects of the present invention are as follows:
本发明先对物理硬件资源进行资源池划分,并且在划分资源池时,使每个资源池具有一个类型,在分配任务时,将任务按照类型分配给对应的资源池,做到了感知资源共享平台和任务的特征,在时间和空间上使结合两者,有效提高了资源共享平台的资源利用率。The present invention firstly divides physical hardware resources into resource pools, and when dividing resource pools, makes each resource pool have a type, and when assigning tasks, assigns tasks to corresponding resource pools according to types, achieving a perceptual resource sharing platform And the characteristics of the task, combining the two in time and space, effectively improving the resource utilization of the resource sharing platform.
附图说明Description of drawings
图1是现有技术中资源超卖方式的工作原理图;Fig. 1 is a working principle diagram of resource overselling mode in the prior art;
图2是根据本发明第一实施例的资源池分配方法的流程图;FIG. 2 is a flowchart of a resource pool allocation method according to a first embodiment of the present invention;
图3是根据本发明第二实施例的硬件资源的划分步骤流程图;Fig. 3 is a flow chart of dividing steps of hardware resources according to the second embodiment of the present invention;
图4是根据本发明第二实施例的硬件资源的划分示意图;FIG. 4 is a schematic diagram of division of hardware resources according to a second embodiment of the present invention;
图5是根据本发明第二实施例的硬件资源的划分示意图;FIG. 5 is a schematic diagram of division of hardware resources according to a second embodiment of the present invention;
图6是根据本发明第三实施例的资源池分配装置的结构图。Fig. 6 is a structural diagram of a resource pool allocation device according to a third embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
实施例一Embodiment one
本实施例提供一种资源池分配方法。图2是根据本发明第一实施例的资源池分配方法的流程图。This embodiment provides a resource pool allocation method. Fig. 2 is a flowchart of a resource pool allocation method according to the first embodiment of the present invention.
步骤S210,根据硬件资源的资源信息,将硬件资源划分到不同类型的逻辑资源池。Step S210, divide the hardware resources into different types of logical resource pools according to the resource information of the hardware resources.
资源信息,包括但不限于:CPU品牌、CPU速度、CPU利用率、内存容量、内存利用率和网络带宽。其中,随着任务运行而发生变化的资源信息可以作为性能信息,随着任务运行不会发生变化的资源信息可以作为配置信息。Resource information, including but not limited to: CPU brand, CPU speed, CPU utilization, memory capacity, memory utilization, and network bandwidth. Wherein, resource information that changes as the task runs can be used as performance information, and resource information that does not change as the task runs can be used as configuration information.
所述类型,包括但不限于:超卖型、离线型、在线型、交互型、计算密集型、访问密集型、高I/O(Input/Output,输入/输出)型。The types include, but are not limited to: oversold, offline, online, interactive, computation-intensive, access-intensive, and high I/O (Input/Output, input/output) types.
具体的,划分方式可以根据具体需求而设置。可以将具有相同资源信息的硬件资源划分到同一类逻辑资源池。例如:将内容容量为1T的硬件资源划分到访问密集型逻辑资源池中。可以将符合预设类型条件的硬件资源划分到该类型条件对应的逻辑资源池中。例如:设置速度阈值,CPU速度大于该速度阈值的硬件资源划分到计算密集型逻辑资源池。Specifically, the division manner may be set according to specific requirements. Hardware resources with the same resource information can be divided into the same type of logical resource pool. For example: Divide hardware resources with a content capacity of 1T into access-intensive logical resource pools. Hardware resources that meet preset type conditions can be divided into logical resource pools corresponding to the type conditions. For example: set a speed threshold, and hardware resources whose CPU speed is greater than the speed threshold are divided into computing-intensive logical resource pools.
步骤S220,根据任务的类型,将所述任务下发到对应类型的逻辑资源池,并在所述逻辑资源池中的硬件资源上运行。Step S220, according to the type of the task, deliver the task to a logical resource pool of a corresponding type, and run on the hardware resources in the logical resource pool.
任务的类型和逻辑资源池的类型相对应。The type of task corresponds to the type of logical resource pool.
在本实施例中,在将所述任务下发到对应类型的逻辑资源池之后,监测所述逻辑资源池中的任务;在所述任务满足预设迁移条件时,将所述硬件资源上运行的所述任务迁移(转移)到其他逻辑资源池中满足预设目标条件的硬件资源上。In this embodiment, after the task is delivered to the logical resource pool of the corresponding type, the tasks in the logical resource pool are monitored; when the task meets the preset migration condition, the hardware resource is run The task is migrated (transferred) to a hardware resource satisfying a preset target condition in another logical resource pool.
迁移条件可以根据具体需求设置。例如:迁移条件为任务的性能小于预设阈值,并且任务所在逻辑资源池中的硬件资源不能够满足任务的性能。Migration conditions can be set according to specific needs. For example, the migration condition is that the performance of the task is less than a preset threshold, and the hardware resources in the logical resource pool where the task is located cannot meet the performance of the task.
目标条件可以根据具体需求设置,例如:目标条件为逻辑资源池中的硬件资源能够使任务的性能大于等于预设阈值。The target condition can be set according to specific requirements. For example, the target condition is that the hardware resources in the logical resource pool can make the performance of the task greater than or equal to a preset threshold.
换而言之,迁移条件是指任务的性能小于预设阈值,且该任务所在的逻辑资源池不能够将任务的性能提升到预设阈值以上;目标条件为任务迁移到目标逻辑资源池中的资源可以将该任务性能提升到预设阈值以上。In other words, the migration condition means that the performance of the task is less than the preset threshold, and the logical resource pool where the task is located cannot improve the performance of the task above the preset threshold; the target condition is that the task is migrated to the target logical resource pool The resource can boost the task performance above a preset threshold.
例如:如果CPU密集型任务的浮点运算次数(性能)小于1G FLOPS/s(预设阈值),而且逻辑资源池(如奔腾CPU)的CPU繁忙(平均CPU利用率在90%),则判定该任务满足预设的迁移条件,可以将该任务迁移到硬件资源的CPU利用率小于60%(目标条件)的高性能的逻辑资源池中,比如Xeon服务器集群中。For example: if the number of floating-point operations (performance) of a CPU-intensive task is less than 1G FLOPS/s (preset threshold), and the CPU of the logical resource pool (such as a Pentium CPU) is busy (the average CPU utilization is 90%), then determine The task satisfies the preset migration condition, and the task can be migrated to a high-performance logical resource pool whose CPU utilization of hardware resources is less than 60% (target condition), such as a Xeon server cluster.
在本实施例中,将所述任务下发到对应类型的逻辑资源池之前,可以在该逻辑资源池的硬件资源上设置虚拟机或者容器(container),将任务下达到硬件资源后,使该任务运行在虚拟机或者容器上,在任务需要迁移时,仅需迁移任务运行的虚拟机或者容器即可。In this embodiment, before sending the task to the logical resource pool of the corresponding type, a virtual machine or a container (container) can be set on the hardware resource of the logical resource pool, and after the task is sent to the hardware resource, the Tasks run on virtual machines or containers. When a task needs to be migrated, only the virtual machine or container where the task is running needs to be migrated.
在本实施例中,逻辑资源池中包括多个硬件资源,在将所述任务下发到对应类型的逻辑资源池之前,可以根据负载均衡算法,在逻辑资源池中确定可以运行该任务的硬件资源,然后将任务下发到该确定的硬件资源上。In this embodiment, the logical resource pool includes a plurality of hardware resources, and before sending the task to the logical resource pool of the corresponding type, the hardware that can run the task can be determined in the logical resource pool according to the load balancing algorithm resource, and then deliver the task to the determined hardware resource.
本实施例先对物理硬件资源进行资源池划分,并且在划分资源池时,使每个资源池具有一个类型,在分配任务时,将任务按照类型分配给对应的资源池,做到了感知资源共享平台和任务的特征,在时间和空间上使结合两者,有效提高了资源共享平台的资源利用率。In this embodiment, physical hardware resources are first divided into resource pools, and when dividing resource pools, each resource pool has a type. When assigning tasks, the tasks are assigned to corresponding resource pools according to types, so as to achieve perceptual resource sharing. The characteristics of the platform and tasks combine the two in terms of time and space, effectively improving the resource utilization of the resource sharing platform.
实施例二Embodiment two
本实施例对硬件资源的划分进行描述。在本实施例中,设置不同层次的逻辑资源池,获得更细粒度的逻辑资源池。This embodiment describes the division of hardware resources. In this embodiment, logical resource pools of different levels are set to obtain a more fine-grained logical resource pool.
图3是根据本发明第二实施例的硬件资源的划分步骤流程图。Fig. 3 is a flowchart of the steps of dividing hardware resources according to the second embodiment of the present invention.
步骤S310,设置多个具有不同超卖比的超卖资源池。Step S310, setting multiple oversold resource pools with different oversold ratios.
由于硬件资源的性能不同,所以能够承受的超卖比不同,为了进一步地提升资源利用率,设置多个超卖资源池,并且为每个超卖资源池对应设置超卖比。Since the performance of hardware resources is different, the oversold ratio that can be tolerated is different. In order to further improve resource utilization, multiple oversold resource pools are set up, and the oversold ratio is set for each oversold resource pool.
步骤S320,根据硬件资源的性能信息,将硬件资源划分到不同超卖资源池。Step S320, divide the hardware resources into different oversold resource pools according to the performance information of the hardware resources.
例如:将性能好的硬件资源划分到超卖比大的超卖资源池,将性能差的硬件资源划分到超卖比小的超卖资源池。For example: allocate hardware resources with good performance to oversold resource pools with a large oversold ratio, and divide hardware resources with poor performance to oversold resource pools with a small oversold ratio.
步骤S330,在每个超卖资源池中,根据硬件资源的配置信息和性能信息,将硬件资源划分到所述超卖资源池中的不同子资源池。Step S330, in each oversold resource pool, divide the hardware resources into different sub-resource pools in the oversold resource pool according to the configuration information and performance information of the hardware resources.
子资源池,是在每个超卖资源池(父资源池)中,划分的更细粒度的逻辑资源池。每个子资源池具有其对应的类型。The child resource pool is a more fine-grained logical resource pool divided in each oversold resource pool (parent resource pool). Each child resource pool has its corresponding type.
子资源池的类型,包括但不限于:离线型、在线型、交互型、计算密集型、访问密集型、高I/O型。Types of sub-resource pools, including but not limited to: offline, online, interactive, computing-intensive, access-intensive, and high I/O.
在本实施例中,可以根据需要设置一个或多个父资源池以及一个或多个子资源池。In this embodiment, one or more parent resource pools and one or more child resource pools may be set as required.
在本实施例中,每个逻辑资源池(超卖资源池和子资源池)对应一组或者多组服务器集合(硬件资源),并且逻辑资源池之间可以对应相同的服务器。In this embodiment, each logical resource pool (oversold resource pool and sub-resource pool) corresponds to one or more sets of server sets (hardware resources), and logical resource pools may correspond to the same server.
如图4和图5所示,在资源共享平台中,设置超卖区1资源池、超卖区2资源池和超卖区3资源池;以超卖区1为例,在超卖区1中,设置计算密集资源池、访问密集资源池和高I/O资源池;服务器1~服务器3划分到计算密集资源池,服务器1~服务器3划分到访问密集资源池,即计算密集资源池的硬件资源和访问密集资源池的硬件资源重叠,4个SSD(SolidState Drives,固态硬件)服务器划分到高I/O资源池。As shown in Figure 4 and Figure 5, in the resource sharing platform, the resource pool of oversold area 1, the resource pool of oversold area 2 and the resource pool of oversold area 3 are set; , set the computing-intensive resource pool, access-intensive resource pool, and high I/O resource pool; servers 1 to 3 are allocated to the computing-intensive resource pool, and servers 1 to 3 are allocated to the access-intensive resource pool, that is, the computing-intensive resource pool The hardware resources and the hardware resources of the access-intensive resource pool overlap, and 4 SSD (SolidState Drives, solid state hardware) servers are divided into the high I/O resource pool.
本实施例层次化的资源池逻辑划分方式,使资源池处理任务更具针对性,将不同的任务分配到不同的资源池,从而提高任务处理性能,将资源需求互补的任务分配到同一服务器上,提供任务处理的并发度,减少资源冲突,进而提供资源利用率。The hierarchical logical division of resource pools in this embodiment makes resource pool processing tasks more targeted, and assigns different tasks to different resource pools, thereby improving task processing performance and assigning tasks with complementary resource requirements to the same server , providing concurrency of task processing, reducing resource conflicts, and further improving resource utilization.
在本实施例中,在分配任务时,根据任务的类型,找到该类型对应的逻辑资源池。在本实施例中,因为任务都可以使用资源超卖的方式执行,所以任意任务可以在任意超卖资源池中运行。In this embodiment, when assigning a task, according to the type of the task, a logical resource pool corresponding to the type is found. In this embodiment, because tasks can be executed in the manner of oversold resources, any task can run in any oversold resource pool.
在线型任务对响应性能要求高,资源被时刻占用;Online tasks have high requirements on response performance, and resources are always occupied;
离线型任务对资源消耗大,无特殊性能要求,但需要在指定时间点前完成;Offline tasks consume a lot of resources and have no special performance requirements, but they need to be completed before the specified time point;
交互型任务对响应性能要求高,但资源只在用户使用时被占用;Interactive tasks require high response performance, but resources are only occupied when users use them;
计算密集型任务对资源运算性能要求高;Computation-intensive tasks require high resource computing performance;
访问密集型任务对资源内存容量要求高;Access-intensive tasks require high resource memory capacity;
高I/O型任务对接口的访问量较高。High I/O tasks have a high amount of access to interfaces.
由于各类任务存在资源占用的时间差异,因此本实施例在识别出任务类型之后,将任务下发到对应类型的逻辑资源池进行处理,能够较大程度的提高处理速度,提升资源利用率。Since various tasks have resource occupation time differences, this embodiment, after identifying the task type, sends the task to the logical resource pool of the corresponding type for processing, which can greatly improve the processing speed and resource utilization.
在运行任务的硬件资源性能不足时,任务可以在子资源池之间迁移,也可以直接在父资源池之间迁移,如图4和图5所示。When the performance of the hardware resource running the task is insufficient, the task can be migrated between child resource pools, or directly between parent resource pools, as shown in Figure 4 and Figure 5 .
实施例三Embodiment three
本实施例提供一种资源池分配装置。图6是根据本发明第三实施例的资源池分配装置的结构图。This embodiment provides a resource pool allocation device. Fig. 6 is a structural diagram of a resource pool allocation device according to a third embodiment of the present invention.
该资源池分配装置,包括:The resource pool allocation device includes:
划分模块610,用于根据硬件资源的资源信息,将硬件资源划分到不同类型的逻辑资源池。The division module 610 is configured to divide the hardware resources into different types of logical resource pools according to the resource information of the hardware resources.
下发模块620,用于根据任务的类型,将所述任务下发到对应类型的逻辑资源池,并在所述逻辑资源池中的硬件资源上运行。The delivery module 620 is configured to deliver the task to a logical resource pool of a corresponding type according to the type of the task, and run on the hardware resources in the logical resource pool.
可选地,所述划分模块610,用于:设置多个具有不同超卖比的超卖资源池;根据硬件资源的性能信息,将硬件资源划分到不同的超卖资源池。Optionally, the division module 610 is configured to: set multiple oversold resource pools with different oversold ratios; and divide the hardware resources into different oversold resource pools according to the performance information of the hardware resources.
可选地,所述划分模块610,进一步用于:在每个超卖资源池中,根据硬件资源的配置信息和性能信息,将硬件资源划分到所述超卖资源池中的不同子资源池。Optionally, the division module 610 is further configured to: in each oversold resource pool, divide the hardware resources into different sub-resource pools in the oversold resource pool according to the configuration information and performance information of the hardware resources .
可选地,所述装置还包括迁移模块(图中未示出);所述迁移模块,用于在将所述任务下发到对应类型的逻辑资源池之后,监测所述逻辑资源池中的任务;在所述任务满足预设迁移条件时,将所述硬件资源上运行的所述任务迁移到其他逻辑资源池中满足预设目标条件的硬件资源上。Optionally, the device further includes a migration module (not shown in the figure); the migration module is configured to, after sending the task to a logical resource pool of a corresponding type, monitor the Task: when the task satisfies a preset migration condition, migrate the task running on the hardware resource to a hardware resource satisfying a preset target condition in another logic resource pool.
可选地,所述类型包括:超卖型、离线型、在线型、交互型、计算密集型、访问密集型、高输入/输出型。Optionally, the types include: overselling type, offline type, online type, interactive type, calculation-intensive type, access-intensive type, and high input/output type.
本实施例所述的装置的功能已经在图2~图5所示的方法实施例中进行了描述,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。The functions of the device described in this embodiment have been described in the method embodiments shown in Figs. I won't go into details here.
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。Although preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, and therefore, the scope of the present invention should not be limited to the above-described embodiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810158890.7A CN108519917B (en) | 2018-02-24 | 2018-02-24 | Resource pool allocation method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810158890.7A CN108519917B (en) | 2018-02-24 | 2018-02-24 | Resource pool allocation method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108519917A true CN108519917A (en) | 2018-09-11 |
CN108519917B CN108519917B (en) | 2023-04-07 |
Family
ID=63433301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810158890.7A Expired - Fee Related CN108519917B (en) | 2018-02-24 | 2018-02-24 | Resource pool allocation method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108519917B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109471727A (en) * | 2018-10-29 | 2019-03-15 | 北京金山云网络技术有限公司 | A task processing method, device and system |
CN109558245A (en) * | 2018-12-03 | 2019-04-02 | 群蜂信息技术(上海)有限公司 | A kind of method for processing business based on microserver framework, device and server |
CN109634888A (en) * | 2018-12-12 | 2019-04-16 | 浪潮(北京)电子信息产业有限公司 | A kind of FC interface card exchange resource identification processing method and associated component |
CN110928649A (en) * | 2018-09-19 | 2020-03-27 | 北京国双科技有限公司 | Resource scheduling method and device |
CN111144830A (en) * | 2019-11-20 | 2020-05-12 | 上海泛云信息科技有限公司 | Enterprise-level computing resource management method, system and computer equipment |
CN112948067A (en) * | 2019-12-11 | 2021-06-11 | 北京金山云网络技术有限公司 | Service scheduling method and device, electronic equipment and storage medium |
CN112965806A (en) * | 2021-03-26 | 2021-06-15 | 北京汇钧科技有限公司 | Method and apparatus for determining resources |
CN113535405A (en) * | 2021-07-30 | 2021-10-22 | 上海壁仞智能科技有限公司 | Cloud service system and operation method thereof |
CN113553195A (en) * | 2021-09-22 | 2021-10-26 | 苏州浪潮智能科技有限公司 | A method, apparatus, device and readable medium for sharing memory pool resources |
CN114356586A (en) * | 2022-03-17 | 2022-04-15 | 飞腾信息技术有限公司 | Processor and electronic equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102958166A (en) * | 2011-08-29 | 2013-03-06 | 华为技术有限公司 | Resource allocation method and resource management platform |
US8489797B2 (en) * | 2009-09-30 | 2013-07-16 | International Business Machines Corporation | Hardware resource arbiter for logical partitions |
CN105320559A (en) * | 2014-07-30 | 2016-02-10 | 中国移动通信集团广东有限公司 | Scheduling method and device of cloud computing system |
WO2016176231A1 (en) * | 2015-04-29 | 2016-11-03 | Microsoft Technology Licensing, Llc | Optimal allocation of dynamic cloud computing platform resources |
CN107305505A (en) * | 2016-04-20 | 2017-10-31 | 中兴通讯股份有限公司 | The operation method and virtual platform of virtual platform |
CN107368336A (en) * | 2017-07-25 | 2017-11-21 | 郑州云海信息技术有限公司 | A kind of cloud data center deployed with devices and the method and apparatus of management |
-
2018
- 2018-02-24 CN CN201810158890.7A patent/CN108519917B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8489797B2 (en) * | 2009-09-30 | 2013-07-16 | International Business Machines Corporation | Hardware resource arbiter for logical partitions |
CN102958166A (en) * | 2011-08-29 | 2013-03-06 | 华为技术有限公司 | Resource allocation method and resource management platform |
CN105320559A (en) * | 2014-07-30 | 2016-02-10 | 中国移动通信集团广东有限公司 | Scheduling method and device of cloud computing system |
WO2016176231A1 (en) * | 2015-04-29 | 2016-11-03 | Microsoft Technology Licensing, Llc | Optimal allocation of dynamic cloud computing platform resources |
CN107305505A (en) * | 2016-04-20 | 2017-10-31 | 中兴通讯股份有限公司 | The operation method and virtual platform of virtual platform |
CN107368336A (en) * | 2017-07-25 | 2017-11-21 | 郑州云海信息技术有限公司 | A kind of cloud data center deployed with devices and the method and apparatus of management |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110928649A (en) * | 2018-09-19 | 2020-03-27 | 北京国双科技有限公司 | Resource scheduling method and device |
CN109471727A (en) * | 2018-10-29 | 2019-03-15 | 北京金山云网络技术有限公司 | A task processing method, device and system |
CN109558245A (en) * | 2018-12-03 | 2019-04-02 | 群蜂信息技术(上海)有限公司 | A kind of method for processing business based on microserver framework, device and server |
CN109634888A (en) * | 2018-12-12 | 2019-04-16 | 浪潮(北京)电子信息产业有限公司 | A kind of FC interface card exchange resource identification processing method and associated component |
CN111144830A (en) * | 2019-11-20 | 2020-05-12 | 上海泛云信息科技有限公司 | Enterprise-level computing resource management method, system and computer equipment |
CN112948067A (en) * | 2019-12-11 | 2021-06-11 | 北京金山云网络技术有限公司 | Service scheduling method and device, electronic equipment and storage medium |
CN112965806A (en) * | 2021-03-26 | 2021-06-15 | 北京汇钧科技有限公司 | Method and apparatus for determining resources |
WO2022199204A1 (en) * | 2021-03-26 | 2022-09-29 | 北京汇钧科技有限公司 | Method and apparatus for determining resources |
CN112965806B (en) * | 2021-03-26 | 2023-08-04 | 北京汇钧科技有限公司 | Method and device for determining resources |
CN113535405A (en) * | 2021-07-30 | 2021-10-22 | 上海壁仞智能科技有限公司 | Cloud service system and operation method thereof |
CN113553195A (en) * | 2021-09-22 | 2021-10-26 | 苏州浪潮智能科技有限公司 | A method, apparatus, device and readable medium for sharing memory pool resources |
CN114356586A (en) * | 2022-03-17 | 2022-04-15 | 飞腾信息技术有限公司 | Processor and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN108519917B (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108519917B (en) | Resource pool allocation method and device | |
TWI694339B (en) | Blockchain consensus method, equipment and system | |
US10810045B2 (en) | Method and apparatus for allocating central processing unit (CPU) resources in a default resource pool | |
CN107066319B (en) | Multi-dimensional scheduling system for heterogeneous resources | |
CN108701059B (en) | Multi-tenant resource allocation method and system | |
US7945913B2 (en) | Method, system and computer program product for optimizing allocation of resources on partitions of a data processing system | |
JP5510556B2 (en) | Method and system for managing virtual machine storage space and physical hosts | |
CN109726005B (en) | Method, server system and computer readable medium for managing resources | |
CN106897132A (en) | The method and device of a kind of server task scheduling | |
CN117480494A (en) | Coordinated container scheduling for improved resource allocation in virtual computing environments | |
CN103942098A (en) | System and method for task processing | |
CN104166597B (en) | A kind of method and device for distributing long-distance inner | |
CN108170526B (en) | Load capacity optimization method and device, server and readable storage medium | |
CN112181613B (en) | Heterogeneous resource distributed computing platform batch task scheduling method and storage medium | |
CN114281521B (en) | Method, system, equipment and medium for optimizing deep learning heterogeneous resource communication efficiency | |
CN103441918A (en) | Self-organizing cluster server system and self-organizing method thereof | |
CN111158909B (en) | Cluster resource allocation processing method, device, equipment and storage medium | |
CN111857992A (en) | Thread resource allocation method and device in Radosgw module | |
CN105045670A (en) | Method and system for balancing loads of central processing units and graphic processing units | |
CN106325995A (en) | GPU resource distribution method and system | |
US20230037293A1 (en) | Systems and methods of hybrid centralized distributive scheduling on shared physical hosts | |
CN115658311A (en) | Resource scheduling method, device, equipment and medium | |
CN105607955A (en) | Calculation task distribution method and apparatus | |
CN106447755A (en) | Animation rendering system | |
CN109558214B (en) | Host machine resource management method and device in heterogeneous environment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230407 |