[go: up one dir, main page]

CN108519557A - A power battery parameter identification method suitable for sparse data - Google Patents

A power battery parameter identification method suitable for sparse data Download PDF

Info

Publication number
CN108519557A
CN108519557A CN201810342607.6A CN201810342607A CN108519557A CN 108519557 A CN108519557 A CN 108519557A CN 201810342607 A CN201810342607 A CN 201810342607A CN 108519557 A CN108519557 A CN 108519557A
Authority
CN
China
Prior art keywords
ocv
identification
power battery
vector
online
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810342607.6A
Other languages
Chinese (zh)
Other versions
CN108519557B (en
Inventor
熊瑞
靳琪
穆浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201810342607.6A priority Critical patent/CN108519557B/en
Publication of CN108519557A publication Critical patent/CN108519557A/en
Application granted granted Critical
Publication of CN108519557B publication Critical patent/CN108519557B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种适用于稀疏数据的动力电池参数辨识方法,基于集员辨识算法,在实际系统噪声的统计分布特性难以确定时,不需要对系统噪声的统计分布特征作假定,只需知道系统噪声的界,通过传感器进行测量引入的误差,机器数的舍入误差以及建模误差都可以看做有界误差的形式。同时该算法具有识别冗余数据的能力,在电池管理系统采样间隔增大时,也可保证辨识精度,因而特别适用于稀疏数据的情况,具有显著提高动力电池管理系统可靠性等的诸多有益效果。

The invention provides a power battery parameter identification method suitable for sparse data. Based on the set member identification algorithm, when the statistical distribution characteristics of the actual system noise are difficult to determine, it is not necessary to assume the statistical distribution characteristics of the system noise, and only need to know Bounds on system noise, errors introduced by measurements via sensors, machine number rounding errors, and modeling errors can all be considered as bounded errors. At the same time, the algorithm has the ability to identify redundant data. When the sampling interval of the battery management system increases, the identification accuracy can also be guaranteed. Therefore, it is especially suitable for sparse data and has many beneficial effects such as significantly improving the reliability of the power battery management system. .

Description

一种适用于稀疏数据的动力电池参数辨识方法A power battery parameter identification method suitable for sparse data

技术领域technical field

本发明涉及动力电池系统领域,尤其涉及一种车载动力电池的参数辨识技术。The invention relates to the field of power battery systems, in particular to a parameter identification technology for vehicle power batteries.

背景技术Background technique

动力电池作为新能源汽车中的重要组成部分,其电池剩余容量的估算以及电池老化程度的评估可通过电池管理系统实现,以使电池的SOC和SOH保持在正常的工作水平内,防止由于电池的过充过放、过流对电池造成的永久损伤,从而提高电池的使用寿命,降低电动汽车的使用成本,而精确的动力电池参数辨识估计是确保内部状态准确在线预估的基础。As an important part of new energy vehicles, the power battery can estimate the remaining capacity of the battery and evaluate the aging degree of the battery through the battery management system, so as to keep the SOC and SOH of the battery within the normal working level and prevent the damage caused by the battery. Overcharge, overdischarge, and overcurrent cause permanent damage to the battery, thereby increasing the service life of the battery and reducing the cost of electric vehicles. Accurate identification and estimation of power battery parameters is the basis for ensuring accurate online estimation of the internal state.

在线参数辨识通常能够直接利用电流、端电压等信息实时得到相应SOC下的参数值,适用于复杂多变的实车系统,然而现有的基于模型的参数辨识方法稳定性较差,在复杂工况下会产生较大误差,甚至出现发散的现象,且随着车载传感器采样间隔的增大,辨识结果的精度随之降低。常用的基于遗忘因子的递推最小二乘辨识方法,其随机误差需服从零均值、零协方差的正态分布,在实际应用时显然难以得到满足。因此,本领域中尚需要一种不受限于噪声分布,并且在一定程度上能够降低所需数据量的稀疏数据的动力电池参数辨识方法。Online parameter identification can usually directly use current, terminal voltage and other information to obtain the corresponding parameter value under the SOC in real time, which is suitable for complex and changeable real vehicle systems. In this case, a large error will be generated, and even divergence will occur, and with the increase of the sampling interval of the vehicle sensor, the accuracy of the identification result will decrease. The commonly used recursive least squares identification method based on forgetting factor, its random error must obey the normal distribution of zero mean and zero covariance, which is obviously difficult to be satisfied in practical application. Therefore, there is still a need in the art for a power battery parameter identification method based on sparse data that is not limited to noise distribution and can reduce the amount of required data to a certain extent.

发明内容Contents of the invention

针对上述本领域中存在的技术问题,本发明提供了一种适用于稀疏数据的动力电池参数辨识方法,具体包括以下步骤:In view of the above-mentioned technical problems in this field, the present invention provides a power battery parameter identification method suitable for sparse data, which specifically includes the following steps:

步骤一、实时在线获取并存储动力电池运行过程中的电流、端电压信息;Step 1. Obtain and store the current and terminal voltage information of the power battery during operation online in real time;

步骤二、对所述动力电池建立状态空间模型;Step 2, establishing a state space model for the power battery;

步骤三、基于集员辨识算法对所述状态空间模型进行在线参数辨识和更新;Step 3, performing online parameter identification and updating of the state space model based on the set member identification algorithm;

步骤四、利用由所述在线辨识所得到的前一时刻的OCV估计值与当前时刻的参数向量估计值,得到当前时刻下的OCV估计结果,同时根据OCV-SOC的对应关系插值得到OCV的变化曲线;Step 4: Using the estimated value of OCV at the previous moment and the estimated value of the parameter vector at the current moment obtained by the online identification to obtain the estimated result of OCV at the current moment, and at the same time obtain the change of OCV by interpolating according to the corresponding relationship between OCV-SOC curve;

步骤五、比较基于所述步骤三得到的OCV在线辨识结果与基于所述步骤四通过插值得到的OCV变化曲线,对所述在线辨识结果进行验证。Step 5: comparing the OCV online identification result obtained in step 3 with the OCV change curve obtained by interpolation in step 4, and verifying the online identification result.

进一步地,所述步骤二中对所述动力电池建立状态空间模型,具体包括:基于Thevenin等效电路模型并具有如下输入、输出关系:Further, in the step 2, establishing a state space model for the power battery specifically includes: based on the Thevenin equivalent circuit model and having the following input and output relationships:

其中,Ut,i分别表示端电压、电流,k表示时刻,Φ(k)表示由已知的输入量和输出量构成的观测矢量,θ(k)表示需要辨识的未知参数矢量,e(k)表示模型干扰或噪声序列,Uoc(k)表示k时刻的OCV值,a1,a2,a3为待辨识参数矢量的分量。Among them, U t , i represent the terminal voltage and current respectively, k represents the time, Φ(k) represents the observation vector composed of the known input and output, θ(k) represents the unknown parameter vector to be identified, e( k) represents the model interference or noise sequence, U oc (k) represents the OCV value at time k, and a 1 , a 2 , a 3 are the components of the parameter vector to be identified.

进一步地,所述步骤三中基于集员辨识算法对所述状态空间模型进行在线参数辨识和更新,具体包括:Further, in the step 3, the online parameter identification and update of the state space model is performed based on the member identification algorithm, specifically including:

3.1、对所述状态空间模型中的观测矢量Φ(k),未知参数矢量θ(k),辨识算法中的协方差矩阵P(k),以及系统噪声的界限γ和椭球的半径矢量σ2(k)进行初始化,得到观测矢量初始值Φ(0),未知参数矢量初始值θ(0),协方差矩阵初始值P(0)以及椭球的半径矢量σ2(0)。通常情况下根据算法的收敛性以及电池的参数特性,可将Φ(0),θ(0)设为0,将P(0)设为μ为一个较小的正数,一般取值为μ=10-4,I表示n维单位矩阵,取椭球的半径大于零,可令σ2(0)=1,根据实际测量设备及建模误差等因素确定系统噪声界限值γ。3.1. For the observation vector Φ(k) in the state space model, the unknown parameter vector θ(k), the covariance matrix P(k) in the identification algorithm, the boundary γ of the system noise and the radius vector σ of the ellipsoid 2 (k) is initialized to obtain the initial value of the observation vector Φ(0), the initial value of the unknown parameter vector θ(0), the initial value of the covariance matrix P(0) and the radius vector σ 2 (0) of the ellipsoid. Usually, according to the convergence of the algorithm and the parameter characteristics of the battery, Φ(0), θ(0) can be set to 0, and P(0) can be set to μ is a small positive number, usually μ=10 -4 , I represents the n-dimensional unit matrix, and the radius of the ellipsoid is greater than zero, so that σ 2 (0)=1, according to the actual measurement equipment and construction Factors such as mode error determine the system noise threshold γ.

3.2、对当前k时刻下的参数采用以下公式进行递推更新计算,其中k∈(1,2,…):3.2. Use the following formula to recursively update and calculate the parameters at the current k moment, where k∈(1,2,…):

其中,δ(k)=y(k)-Φ(k)θ(k),G(k)=Φ(k)TP(k-1)Φ(k);Among them, δ(k)=y(k)-Φ(k)θ(k), G(k)=Φ(k) T P(k-1)Φ(k);

采用椭球优化准则对参数α(k),β(k)进行求解。The parameters α(k) and β(k) are solved by ellipsoid optimization criterion.

进一步地,上述参数α(k),β(k)值的选取关系到最终辨识结果的精确性,因此可以采取最小体积椭球准则min det(P(k))、最小迹椭球准则min tr(P(k))和最小化参数σ2(k)等优化准则来计算。Furthermore, the selection of the above parameters α(k), β(k) is related to the accuracy of the final identification result, so the minimum volume ellipsoid criterion min det(P(k)), the minimum trace ellipsoid criterion min tr (P(k)) and optimization criteria such as minimizing the parameter σ 2 (k) to calculate.

进一步地,所述步骤四中所述的利用由所述在线辨识所得到的前一时刻的OCV估计值与当前时刻的参数向量估计值,得到当前时刻下的OCV估计结果,具体包括:Further, using the OCV estimated value at the previous moment and the parameter vector estimated value at the current moment obtained by the online identification in the step 4 to obtain the OCV estimation result at the current moment specifically includes:

根据所述未知参数矢量θ(k)=[Uoc(k)-a1Uoc(k-1)a1 a2 a3]的在线辨识结果,通过k-1时刻的OCV估计值与所述待辨识参数矢量中的分量a1,得到k时刻的OCV估计结果:According to the online identification result of the unknown parameter vector θ(k)=[U oc (k)-a 1 U oc (k-1)a 1 a 2 a 3 ], the OCV estimated value at time k-1 is compared with the Describe the component a 1 in the parameter vector to be identified, and obtain the OCV estimation result at time k:

Uoc(k)=θ1(k)+a1(k)Uoc(k-1)U oc (k)=θ 1 (k)+a 1 (k)U oc (k-1)

其中,θ1(k)代表所述未知参数矢量θ(k)的第一个分量。Wherein, θ 1 (k) represents the first component of the unknown parameter vector θ(k).

进一步地,所述步骤四中所述的根据OCV-SOC的对应关系插值得到OCV的变化曲线,具体包括:Further, the interpolation according to the corresponding relationship of OCV-SOC described in the step 4 to obtain the change curve of OCV specifically includes:

4.1、进行开路电压试验,分别得到不同荷电状态下的多个OCV值;4.1. Carry out the open circuit voltage test to obtain multiple OCV values under different states of charge;

4.2、利用所述步骤一中所采集的电流i(k),由于动力电池在温度和老化状态相对稳定的情况下,SOC与OCV存在一一对应的映射关系,因此可基于安时积分法得到相应时刻下的SOC值;4.2. Using the current i(k) collected in step 1, since the power battery has a relatively stable temperature and aging state, there is a one-to-one mapping relationship between SOC and OCV, so it can be obtained based on the ampere-hour integration method SOC value at the corresponding moment;

4.3、基于所述多个OCV值与所述SOC值,通过线性插值得到OCV-SOC的关系曲线。4.3. Based on the multiple OCV values and the SOC value, an OCV-SOC relationship curve is obtained through linear interpolation.

上述基于集员辨识算法进行动力电池在线参数辨识的方法,在实际系统噪声的统计分布特性难以确定时,不需要对系统噪声的统计分布特征作假定,只需知道系统噪声的界,通过传感器进行测量引入的误差,机器数的舍入误差以及建模误差都可以看做有界误差的形式。同时该算法具有识别冗余数据的能力,在电池管理系统采样间隔增大时,也可保证辨识精度,因而特别适用于稀疏数据的情况,具有显著提高动力电池管理系统可靠性等的诸多有益效果。The above-mentioned method for online parameter identification of power batteries based on the set member identification algorithm does not need to make assumptions about the statistical distribution characteristics of the system noise when the statistical distribution characteristics of the actual system noise are difficult to determine. Errors introduced by measurement, machine number rounding errors, and modeling errors can all be seen as bounded errors. At the same time, the algorithm has the ability to identify redundant data. When the sampling interval of the battery management system increases, the identification accuracy can also be guaranteed. Therefore, it is especially suitable for sparse data and has many beneficial effects such as significantly improving the reliability of the power battery management system. .

附图说明Description of drawings

图1是根据本发明所提供的方法的流程示意图Fig. 1 is a schematic flow chart of the method provided according to the present invention

图2是Thevenin等效电路模型示意图示意图Figure 2 is a schematic diagram of the Thevenin equivalent circuit model

图3是UDDS工况1秒采样间隔OCV辨识结果对比Figure 3 is a comparison of OCV identification results at 1-second sampling intervals under UDDS conditions

图4是UDDS工况10秒采样间隔OCV辨识结果对比Figure 4 is a comparison of OCV identification results at 10-second sampling intervals under UDDS conditions

图5是DST工况1秒采样间隔OCV辨识结果对比Figure 5 is a comparison of OCV identification results at 1-second sampling intervals under DST conditions

图6是DST工况10秒采样间隔OCV辨识结果对比Figure 6 is a comparison of OCV identification results at 10-second sampling intervals under DST conditions

具体实施方式Detailed ways

下面结合附图对本发明所提供的一种适用于稀疏数据的动力电池参数辨识方法,做出进一步详尽的阐释。A power battery parameter identification method suitable for sparse data provided by the present invention will be further explained in detail below in conjunction with the accompanying drawings.

本发明所提供的一种适用于稀疏数据的动力电池参数辨识方法,如图1所示,具体包括以下步骤:A power battery parameter identification method suitable for sparse data provided by the present invention, as shown in Figure 1, specifically includes the following steps:

步骤一、实时在线获取并存储动力电池运行过程中的电流、端电压信息;Step 1. Obtain and store the current and terminal voltage information of the power battery during operation online in real time;

步骤二、对所述动力电池建立状态空间模型;Step 2, establishing a state space model for the power battery;

步骤三、基于集员辨识算法对所述状态空间模型进行在线参数辨识和更新;Step 3, performing online parameter identification and updating of the state space model based on the set member identification algorithm;

步骤四、利用由所述在线辨识所得到的前一时刻的OCV估计值与当前时刻的参数向量估计值,得到当前时刻下的OCV估计结果,同时根据OCV-SOC的对应关系插值得到OCV的变化曲线;Step 4: Using the estimated value of OCV at the previous moment and the estimated value of the parameter vector at the current moment obtained by the online identification to obtain the estimated result of OCV at the current moment, and at the same time obtain the change of OCV by interpolating according to the corresponding relationship between OCV-SOC curve;

步骤五、比较基于所述步骤三得到的在线辨识结果与基于所述步骤四通过插值得到的OCV变化曲线,对所述在线辨识结果进行验证。Step 5: comparing the online identification result obtained in step 3 with the OCV change curve obtained by interpolation in step 4, and verifying the online identification result.

在本申请的一个优选实施例中,选用镍钴锰三元电池NMC为研究对象,其额定容量为25Ah,充放电截止电压分别为4.2V和2.5V,额定电流为7.5A。试验工况为动态应力工况(DST)和城市道路循环工况(UDDS)。用电池测试系统测量得出的端电压值作为参考值与所述算法的端电压估计值对比作为误差,来验证稀疏数据情况下算法的稳定性,通过所述OCV-SOC曲线插值得到的OCV结果作为参考值对比估计值为误差,来验证稀疏数据情况下算法的可靠性。同时,将本发明提出的算法与稀疏数据情况下基于遗忘因子的递推最小二乘辨识算法作比较,以说明所述算法在稀疏数据时的适用性与稳定性。In a preferred embodiment of the present application, the nickel-cobalt-manganese ternary battery NMC is selected as the research object, with a rated capacity of 25Ah, charge and discharge cut-off voltages of 4.2V and 2.5V, and a rated current of 7.5A. The test conditions are Dynamic Stress Condition (DST) and Urban Road Cycle Condition (UDDS). The terminal voltage value measured by the battery test system is used as a reference value and compared with the terminal voltage estimated value of the algorithm as an error to verify the stability of the algorithm in the case of sparse data, and the OCV result obtained by interpolation of the OCV-SOC curve It is used as a reference value to compare the error of the estimated value to verify the reliability of the algorithm in the case of sparse data. At the same time, the algorithm proposed by the present invention is compared with the recursive least squares identification algorithm based on forgetting factor in the case of sparse data to illustrate the applicability and stability of the algorithm in sparse data.

所述步骤二中对所述动力电池建立状态空间模型基于如图2所示的Thevenin等效电路模型。The establishment of a state space model for the power battery in the second step is based on the Thevenin equivalent circuit model shown in FIG. 2 .

图3和图4分别为在UDDS工况下,基于遗忘因子的递推最小二乘法与本发明提出算法在采样间隔1s和10s时的OCV辨识结果对比,图5和图6示出了DST工况下的OCV辨识结果比较,由附图可知,在采样间隔较大时,本发明提出的参数辨识方法仍然适用于稀疏数据,相比于传统的基于遗忘因子的递推最小二乘法,在动力电池低SOC阶段,OCV的辨识结果仍可以保持收敛性,稳定性强,不会出现较大的震荡尖峰。Fig. 3 and Fig. 4 are under UDDS working condition respectively, the recursive least squares method based on forgetting factor and the OCV identification result comparison of the algorithm proposed in the present invention when the sampling interval is 1s and 10s, Fig. 5 and Fig. 6 have shown DST working condition Compared with the OCV identification results under the above conditions, it can be seen from the accompanying drawings that the parameter identification method proposed by the present invention is still suitable for sparse data when the sampling interval is large. Compared with the traditional recursive least squares method based on forgetting factor, the In the low SOC stage of the battery, the OCV identification results can still maintain convergence, strong stability, and no large shock peaks.

UDDS工况下,不同采样间隔下OCV辨识结果的均方根统计特性如表1所示:Under UDDS working conditions, the root mean square statistical characteristics of OCV identification results at different sampling intervals are shown in Table 1:

表1不同采样间隔下OCV辨识结果的均方根统计特性Table 1 Root mean square statistical characteristics of OCV identification results at different sampling intervals

由表1可见,本发明提出的用于稀疏数据的动力电池参数辨识方法,精度高,均方根估计误差可以控制在5%以内。It can be seen from Table 1 that the power battery parameter identification method for sparse data proposed by the present invention has high precision, and the root mean square estimation error can be controlled within 5%.

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.

Claims (6)

1.一种适用于稀疏数据的动力电池参数辨识方法,其特征在于:具体包括以下步骤:1. A power battery parameter identification method suitable for sparse data, characterized in that: specifically comprising the following steps: 步骤一、实时在线获取并存储动力电池运行过程中的电流、端电压信息;Step 1. Obtain and store the current and terminal voltage information of the power battery during operation online in real time; 步骤二、对所述动力电池建立状态空间模型;Step 2, establishing a state space model for the power battery; 步骤三、基于集员辨识算法对所述状态空间模型进行在线参数辨识和更新;Step 3, performing online parameter identification and updating of the state space model based on the set member identification algorithm; 步骤四、利用由所述在线辨识所得到的前一时刻的OCV估计值与当前时刻的参数向量估计值,得到当前时刻下的OCV估计结果,同时根据OCV-SOC的对应关系插值得到OCV的变化曲线;Step 4: Using the estimated value of OCV at the previous moment and the estimated value of the parameter vector at the current moment obtained by the online identification to obtain the estimated result of OCV at the current moment, and at the same time obtain the change of OCV by interpolating according to the corresponding relationship between OCV-SOC curve; 步骤五、比较基于所述步骤三得到的OCV在线辨识结果与基于所述步骤四通过插值得到的OCV变化曲线,对所述在线辨识结果进行验证。Step 5: comparing the OCV online identification result obtained in step 3 with the OCV change curve obtained by interpolation in step 4, and verifying the online identification result. 2.如权利要求1所述的方法,其特征在于:所述步骤二中对所述动力电池建立状态空间模型,具体包括:基于Thevenin等效电路模型并具有如下输入、输出关系:2. The method according to claim 1, characterized in that: in said step 2, a state-space model is established for said power battery, specifically comprising: based on Thevenin equivalent circuit model and having the following input and output relations: 其中,Ut,i分别表示端电压、电流,k表示时刻,Φ(k)表示由已知的输入量和输出量构成的观测矢量,θ(k)表示需要辨识的未知参数矢量,e(k)表示模型干扰或噪声序列,Uoc(k)表示k时刻的OCV值,a1,a2,a3为待辨识参数矢量的分量。Among them, U t , i represent the terminal voltage and current respectively, k represents the time, Φ(k) represents the observation vector composed of the known input and output, θ(k) represents the unknown parameter vector to be identified, e( k) represents the model interference or noise sequence, U oc (k) represents the OCV value at time k, and a 1 , a 2 , a 3 are the components of the parameter vector to be identified. 3.如权利要求2所述的方法,其特征在于:所述步骤三中基于集员辨识算法对所述状态空间模型进行在线参数辨识和更新,具体包括:3. The method according to claim 2, characterized in that: in said step 3, online parameter identification and updating of said state-space model is performed based on a member identification algorithm, specifically comprising: 3.1、对所述状态空间模型中的观测矢量Φ(k),未知参数矢量θ(k),辨识算法中的协方差矩阵P(k),以及系统噪声的界限γ和椭球的半径矢量σ2(k)进行初始化,得到观测矢量初始值Φ(0),未知参数矢量初始值θ(0),协方差矩阵初始值P(0)以及椭球的半径矢量σ2(0)。3.1. For the observation vector Φ(k) in the state space model, the unknown parameter vector θ(k), the covariance matrix P(k) in the identification algorithm, the boundary γ of the system noise and the radius vector σ of the ellipsoid 2 (k) is initialized to obtain the initial value of the observation vector Φ(0), the initial value of the unknown parameter vector θ(0), the initial value of the covariance matrix P(0) and the radius vector σ 2 (0) of the ellipsoid. 3.2、对当前k时刻下的参数采用以下公式进行递推更新计算,其中k∈(1,2,…):3.2. Use the following formula to recursively update and calculate the parameters at the current k moment, where k∈(1,2,…): 其中,δ(k)=y(k)-Φ(k)θ(k),G(k)=Φ(k)TP(k-1)Φ(k);Among them, δ(k)=y(k)-Φ(k)θ(k), G(k)=Φ(k) T P(k-1)Φ(k); 采用椭球优化准则对参数α(k),β(k)进行求解。The parameters α(k) and β(k) are solved by ellipsoid optimization criterion. 4.如权利要求3所述的方法,其特征在于:所述椭球优化准则采用最小体积椭球准则min det(P(k))、最小迹椭球准则min tr(P(k))和最小化参数σ2(k)等。4. The method according to claim 3, characterized in that: said ellipsoid optimization criterion adopts minimum volume ellipsoid criterion min det (P (k)), minimum trace ellipsoid criterion min tr (P (k)) and Minimize the parameter σ 2 (k) and so on. 5.如权利要求2所述的方法,其特征在于:所述步骤四中所述的利用由所述在线辨识所得到的前一时刻的OCV估计值与当前时刻的参数向量估计值,得到当前时刻下的OCV估计结果,具体包括:5. The method as claimed in claim 2, characterized in that: the OCV estimated value at the previous moment obtained by the online identification and the parameter vector estimated value at the current moment described in the step 4 are used to obtain the current The OCV estimation results at each moment, including: 根据所述未知参数矢量θ(k)=[Uoc(k)-a1Uoc(k-1) a1 a2 a3]的在线辨识结果,通过k-1时刻的OCV估计值与所述待辨识参数矢量中的分量a1,得到k时刻的OCV估计结果:According to the online identification result of the unknown parameter vector θ(k)=[U oc (k)-a 1 U oc (k-1) a 1 a 2 a 3 ], the OCV estimated value at time k-1 is compared with the Describe the component a 1 in the parameter vector to be identified, and obtain the OCV estimation result at time k: Uoc(k)=θ1(k)+a1(k)Uoc(k-1)U oc (k)=θ 1 (k)+a 1 (k)U oc (k-1) 其中,θ1(k)代表所述未知参数矢量θ(k)的第一个分量。Wherein, θ 1 (k) represents the first component of the unknown parameter vector θ(k). 6.如权利要求1所述的方法,其特征在于:所述步骤四中所述的根据OCV-SOC的对应关系插值得到OCV的变化曲线,具体包括:6. The method according to claim 1, characterized in that: the interpolation according to the corresponding relationship of OCV-SOC described in the step 4 obtains the variation curve of OCV, specifically comprising: 4.1、进行开路电压试验,分别得到不同荷电状态下的多个OCV值;4.1. Carry out the open circuit voltage test to obtain multiple OCV values under different states of charge; 4.2、利用所述步骤一中所采集的电流i(k),由于动力电池在温度和老化状态相对稳定的情况下,SOC与OCV存在一一对应的映射关系,因此可基于安时积分法得到相应时刻下的SOC值;4.2. Using the current i(k) collected in step 1, since the power battery has a relatively stable temperature and aging state, there is a one-to-one mapping relationship between SOC and OCV, so it can be obtained based on the ampere-hour integration method SOC value at the corresponding moment; 4.3、基于所述多个OCV值与所述SOC值,通过线性插值得到OCV-SOC的关系曲线。4.3. Based on the multiple OCV values and the SOC value, an OCV-SOC relationship curve is obtained through linear interpolation.
CN201810342607.6A 2018-04-17 2018-04-17 A kind of power battery parameter identification method suitable for sparse data Active CN108519557B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810342607.6A CN108519557B (en) 2018-04-17 2018-04-17 A kind of power battery parameter identification method suitable for sparse data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810342607.6A CN108519557B (en) 2018-04-17 2018-04-17 A kind of power battery parameter identification method suitable for sparse data

Publications (2)

Publication Number Publication Date
CN108519557A true CN108519557A (en) 2018-09-11
CN108519557B CN108519557B (en) 2019-11-05

Family

ID=63428742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810342607.6A Active CN108519557B (en) 2018-04-17 2018-04-17 A kind of power battery parameter identification method suitable for sparse data

Country Status (1)

Country Link
CN (1) CN108519557B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884550A (en) * 2019-04-01 2019-06-14 北京理工大学 An online parameter identification and backtracking method for power battery system
CN114740364A (en) * 2022-04-12 2022-07-12 江南大学 Battery SOC state estimation method based on improved interval inversion filtering
CN115236517A (en) * 2022-06-23 2022-10-25 湖北工程学院 Lithium battery SOC estimation method, equipment, storage medium and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884550A (en) * 2019-04-01 2019-06-14 北京理工大学 An online parameter identification and backtracking method for power battery system
CN109884550B (en) * 2019-04-01 2020-01-17 北京理工大学 An online parameter identification and backtracking method for power battery system
CN114740364A (en) * 2022-04-12 2022-07-12 江南大学 Battery SOC state estimation method based on improved interval inversion filtering
CN115236517A (en) * 2022-06-23 2022-10-25 湖北工程学院 Lithium battery SOC estimation method, equipment, storage medium and device

Also Published As

Publication number Publication date
CN108519557B (en) 2019-11-05

Similar Documents

Publication Publication Date Title
CN110988690B (en) Battery health state correction method, device, management system, and storage medium
CN106291381B (en) A kind of method of Combined estimator electrokinetic cell system state-of-charge and health status
CN113625174B (en) Lithium ion battery SOC and capacity joint estimation method
CN106249171B (en) A kind of electrokinetic cell system identification and method for estimating state for the wide sampling interval
CN108717164B (en) SOC calibration method and system for battery
CN108369258B (en) State estimation device and state estimation method
CN105938181B (en) Storage element management device, management method, module, recording medium, and moving object
CN110261779A (en) A kind of ternary lithium battery charge state cooperates with estimation method with health status online
CN105425153B (en) A kind of method of the state-of-charge for the electrokinetic cell for estimating electric vehicle
CN105021996A (en) Battery SOH (section of health) estimation method of energy storage power station BMS (battery management system)
KR20160004077A (en) Method and apparatus for estimating state of battery
CN110687462B (en) A joint estimation method of power battery SOC and capacity full life cycle
CN109884550B (en) An online parameter identification and backtracking method for power battery system
CN108445422B (en) Battery state-of-charge estimation method based on polarization voltage recovery characteristics
KR20120028000A (en) A method for the soc estimation of li-ion battery and a system for its implementation
CN103439666A (en) Geometric method for evaluating capacity recession of lithium ion battery
CN110133510B (en) A Hybrid Estimation Method for State of Charge (SOC) of Li-ion Batteries
CN108519557B (en) A kind of power battery parameter identification method suitable for sparse data
CN108287316A (en) Accumulator method for estimating remaining capacity based on threshold spread Kalman Algorithm
CN112433170A (en) Method for identifying parameter difference of single batteries of series battery pack
Ahmed et al. A scaling approach for improved open circuit voltage modeling in Li-ion batteries
JP2022044172A (en) Determination device, power storage system, determination method, and determination program for multiple batteries
Misyris et al. Battery energy storage systems modeling for online applications
CN115754724A (en) Power battery state of health estimation method suitable for future uncertainty dynamic working condition discharge
Nemounehkhah et al. Comparison and evaluation of state of charge estimation methods for a verified battery model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant