CN108511795A - A kind of O2-And F-Cooperate with the LISICON type solid electrolyte materials and preparation method thereof of doping - Google Patents
A kind of O2-And F-Cooperate with the LISICON type solid electrolyte materials and preparation method thereof of doping Download PDFInfo
- Publication number
- CN108511795A CN108511795A CN201810284292.4A CN201810284292A CN108511795A CN 108511795 A CN108511795 A CN 108511795A CN 201810284292 A CN201810284292 A CN 201810284292A CN 108511795 A CN108511795 A CN 108511795A
- Authority
- CN
- China
- Prior art keywords
- solid electrolyte
- electrolyte material
- preparation
- lisicon
- material according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 61
- 239000000463 material Substances 0.000 title claims abstract description 52
- 239000002227 LISICON Substances 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 238000000227 grinding Methods 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 6
- 238000004321 preservation Methods 0.000 claims abstract 2
- 239000000843 powder Substances 0.000 claims description 13
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229910005842 GeS2 Inorganic materials 0.000 claims 1
- 229910001216 Li2S Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 15
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 15
- 238000005245 sintering Methods 0.000 abstract description 4
- -1 lithium germanium phosphorus sulfuryl oxyfluoride Chemical compound 0.000 abstract 1
- 238000010583 slow cooling Methods 0.000 abstract 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 16
- 239000003792 electrolyte Substances 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 229910001947 lithium oxide Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 229910005839 GeS 2 Inorganic materials 0.000 description 5
- 229910018091 Li 2 S Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- YIZVROFXIVWAAZ-UHFFFAOYSA-N germanium disulfide Chemical compound S=[Ge]=S YIZVROFXIVWAAZ-UHFFFAOYSA-N 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000001453 impedance spectrum Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 1
- 238000003836 solid-state method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002203 sulfidic glass Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种O2‑和F‑协同掺杂的LISICON型固体电解质材料及其制备方法。该固体电解质材料为锂锗磷硫氧氟材料,其化学式为Li10GeP2S12‑x‑yOxFy,其中,1≤x≤3,0.5≤y≤1.5;其制备方法为先进行研磨,然后烧结、保温,缓慢冷却至室温即得到该材料。该固体电解质材料在室温条件下的离子电导率大于2×10‑5S/cm‑1,并且化学性质稳定,是一种优良的固体电解质材料,可以应用于全固态锂离子电池。The invention discloses a LISICON type solid electrolyte material synergistically doped with O 2 - and F - and a preparation method thereof. The solid electrolyte material is a lithium germanium phosphorus sulfuryl oxyfluoride material, and its chemical formula is Li 10 GeP 2 S 12‑x‑y O x F y , wherein, 1≤x≤3, 0.5≤y≤1.5; its preparation method is first Grinding, sintering, heat preservation, and slow cooling to room temperature is the material. The ionic conductivity of the solid electrolyte material at room temperature is greater than 2×10 ‑5 S/cm ‑1 , and its chemical properties are stable. It is an excellent solid electrolyte material and can be applied to all-solid-state lithium-ion batteries.
Description
技术领域technical field
本发明涉及全固态锂离子电池领域,尤其涉及一种LISICON型锂离子固体电解质材料及其制备方法。The invention relates to the field of all-solid lithium ion batteries, in particular to a LISICON type lithium ion solid electrolyte material and a preparation method thereof.
背景技术Background technique
目前,全球范围内出现了比较严重的生态问题,比如传统化石能源日益匮乏、日益严重的环境污染以及全球温室效应等突出问题。因此,当务之急就是加速发展清洁能源,建立高效、清洁、经济、安全的能源体系,降低汽车及工业对化石能源的依赖,实现新能源的可持续发展。而锂离子电池具有能量密度高、输出电压高、使用寿命长、对环境友好等优势,因而成为不可替代的优良储能设备。近年来,锂离子电池的发展集中在两个方面;一是作为汽车、航天航空设备上的动力电源和大型的储能设备,二是应用于智能手机、微型传感器、微电子系统等微型集成电子器件中。而这些高端产品的出现,就会对锂离子电池提出了高安全性、长循环寿命、高能量密度、高功率密度、价格低廉的新要求,其中安全性问题尤其关键。At present, there are relatively serious ecological problems in the world, such as the increasing shortage of traditional fossil energy, the increasingly serious environmental pollution, and the global greenhouse effect. Therefore, it is imperative to accelerate the development of clean energy, establish an efficient, clean, economical, and safe energy system, reduce the dependence of automobiles and industries on fossil energy, and achieve sustainable development of new energy. The lithium-ion battery has the advantages of high energy density, high output voltage, long service life, and environmental friendliness, so it has become an irreplaceable excellent energy storage device. In recent years, the development of lithium-ion batteries has been concentrated in two aspects; one is as a power source and large-scale energy storage device for automobiles and aerospace equipment; device. The emergence of these high-end products will put forward new requirements for lithium-ion batteries with high safety, long cycle life, high energy density, high power density, and low price, among which safety issues are particularly critical.
商用锂离子电池一般采用有机液态电解质和凝胶态电解质,不可避免的在电池体系中引入了易燃易爆、易挥发、易泄露的有机液体,给电池体系带来严重的安全隐患。若以固态电解质取代传统有机电解液制备固态电池,有望从根本上解决锂离子电池的安全问题。为推进高安全、高储能电池的产业化进程,在更高能量和功率密度的全固态锂离子电池的研究开发中,关键材料(固态电解质、正极和负极)的研发和制备是至关重要的一环。因此研究开发具有高电导率的固态电解质材料,是解决目前商业化电池不安全问题的有效措施。Commercial lithium-ion batteries generally use organic liquid electrolytes and gel electrolytes, which inevitably introduce flammable, explosive, volatile, and leaky organic liquids into the battery system, which brings serious safety hazards to the battery system. If solid-state batteries are prepared with solid-state electrolytes instead of traditional organic electrolytes, it is expected to fundamentally solve the safety problem of lithium-ion batteries. In order to promote the industrialization process of high safety and high energy storage batteries, the research and development and preparation of key materials (solid electrolyte, positive electrode and negative electrode) are crucial in the research and development of all-solid-state lithium-ion batteries with higher energy and power density. part of the Therefore, the research and development of solid electrolyte materials with high conductivity is an effective measure to solve the unsafe problems of current commercial batteries.
目前的无机固体电解质主要分为氧化物类和硫化物类固体电解质,对已报道的固态电解质材料来看,普遍存在性能差的缺点。主要体现在:(1)在室温条件下的离子电导率一般较低;(2)电化学窗口较低,一般不高于5V;(3)制备工艺要求复杂,无法大规模生产。The current inorganic solid electrolytes are mainly divided into oxide-based and sulfide-based solid electrolytes. For the reported solid-state electrolyte materials, there are generally disadvantages of poor performance. Mainly reflected in: (1) the ionic conductivity at room temperature is generally low; (2) the electrochemical window is low, generally not higher than 5V; (3) the preparation process requires complex and cannot be mass-produced.
发明内容Contents of the invention
本发明提供一种O2-和F-协同掺杂的LISICON型固体电解质材料及其制备方法,该固体电解质材料的离子电导率高、化学性质稳定,同时解决目前商业化电池不安全的问题。The invention provides a LISICON type solid electrolyte material synergistically doped with O 2 - and F - and a preparation method thereof. The solid electrolyte material has high ion conductivity and stable chemical properties, and at the same time solves the problem of unsafe commercial batteries.
该O2-和F-协同掺杂的LISICON型固体电解质材料为晶态结构,其化学式为Li10GeP2S12-x-yOxFy,其中,1≤x≤3,0.5≤y≤1.5。The O 2- and F - cooperatively doped LISICON solid electrolyte material has a crystalline structure, and its chemical formula is Li 10 GeP 2 S 12-xy O x F y , where, 1≤x≤3, 0.5≤y≤1.5 .
优选的:x=1或2或3,y=0.5或1.0或1.5;最佳方案为:x=2,y=1.0。Preferably: x=1 or 2 or 3, y=0.5 or 1.0 or 1.5; the best solution is: x=2, y=1.0.
该O2-和F-协同掺杂的LISICON型固体电解质材料的制备方法,包括以下步骤:The preparation method of the O2- and F - cooperatively doped LISICON type solid electrolyte material comprises the following steps:
(1)将Li2S、P2S5、GeS2、Li2O和LiF按照(5-x-y):1:1:x:y的摩尔比混合并研磨,其中,1≤x≤3,0.5≤y≤1.5;(1) Mix and grind Li 2 S, P 2 S 5 , GeS 2 , Li 2 O and LiF according to the molar ratio of (5-xy): 1: 1: x: y, where 1≤x≤3, 0.5≤y≤1.5;
(2)将步骤(1)中磨好的粉体装入坩埚中,密封转移至真空气氛管式电阻炉中,经煅烧保温一段时间后自然冷却,即得到所述固体电解质材料。(2) Put the powder ground in step (1) into a crucible, seal and transfer to a tube-type resistance furnace with a vacuum atmosphere, calcine and keep it warm for a period of time, and then cool naturally to obtain the solid electrolyte material.
更进一步地,步骤(1)中研磨采用顺逆时针交替运行,持续研磨1h。Furthermore, the grinding in step (1) is performed alternately clockwise and counterclockwise, and the grinding is continued for 1 hour.
更进一步地,步骤(1)中研磨时的环境氧气分压和水分压均小于1ppm。Furthermore, the ambient oxygen partial pressure and water pressure during grinding in step (1) are both less than 1 ppm.
更进一步地,步骤(1)中研磨所得粉体的粒度范围为500目左右。Furthermore, the particle size range of the powder obtained by grinding in step (1) is about 500 mesh.
更进一步地,步骤(2)中的煅烧温度为600℃,保温时间为24h。Furthermore, the calcination temperature in step (2) is 600° C., and the holding time is 24 hours.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明把氧化锂和氟化锂同时作为掺杂材料,不仅提高了离子电导率(可以达到1×10-4S/cm以上),而且有效降低了电极与电解质之间的界面阻抗,提升固态电池的循环寿命以及倍率性能;1. The present invention uses lithium oxide and lithium fluoride as doping materials at the same time, which not only improves the ion conductivity (up to 1×10 -4 S/cm or more), but also effectively reduces the interface impedance between the electrode and the electrolyte, Improve the cycle life and rate performance of solid-state batteries;
2、氧化锂和氟化锂同时作为掺杂材料,降低了Li10GeP2S12在体系上的能量,有益于形成固溶体Li10GeP2S12-x-yOXFy,其中1≤x≤3,0.5≤y≤1.5,从而对Li10GeP2S12在结构上有一定的稳定性作用,避免发生电解质坍塌的现象,提高电池的安全性;2. Lithium oxide and lithium fluoride are used as doping materials at the same time, which reduces the energy of Li 10 GeP 2 S 12 in the system, which is beneficial to the formation of solid solution Li 10 GeP 2 S 12-xy O X F y , where 1≤x≤ 3. 0.5≤y≤1.5, so as to have a certain stabilizing effect on the structure of Li 10 GeP 2 S 12 , avoid electrolyte collapse, and improve battery safety;
3、氧引入硫化物类电解质中,结合硫化物的高离子导电性与氧化物的电化学稳定性,提高电池的安全性;3. Oxygen is introduced into the sulfide-based electrolyte, combining the high ionic conductivity of sulfide and the electrochemical stability of oxides to improve the safety of the battery;
4、、氧化锂和氟化锂均为廉价的材料,降低了制备固体电解质材料的成本,从而降低锂电池的生产成本。4. Both lithium oxide and lithium fluoride are cheap materials, which reduce the cost of preparing solid electrolyte materials, thereby reducing the production cost of lithium batteries.
附图说明Description of drawings
图1为本发明实施例2制备的锂离子固体电解质材料在10KV条件下的粉末SEM图。(×10000,5微米)。Fig. 1 is a powder SEM image of the lithium ion solid electrolyte material prepared in Example 2 of the present invention under the condition of 10KV. (×10000, 5 microns).
图2为本发明实施例2制备的锂离子固体电解质材料在1KV条件下的粉末SEM图。(×2000,20微米)。Fig. 2 is a powder SEM image of the lithium ion solid electrolyte material prepared in Example 2 of the present invention under the condition of 1KV. (×2000, 20 microns).
图3为本发明实施例2制备的锂离子固体电解质材料在1KV条件下的电解质片SEM图。(×50000,1微米)。3 is an SEM image of the electrolyte sheet of the lithium-ion solid electrolyte material prepared in Example 2 of the present invention under the condition of 1KV. (×50000, 1 micron).
图4为本发明实施例2制备的锂离子固体电解质材料的XRD图。FIG. 4 is an XRD pattern of the lithium ion solid electrolyte material prepared in Example 2 of the present invention.
图5为本发明实施例2制备的锂离子固体电解质材料室温条件下的电化学阻抗谱图。Fig. 5 is an electrochemical impedance spectrum at room temperature of the lithium ion solid electrolyte material prepared in Example 2 of the present invention.
图6为本发明实施例2制备的锂离子固体电解质材料的EDS能谱图。FIG. 6 is an EDS energy spectrum diagram of the lithium ion solid electrolyte material prepared in Example 2 of the present invention.
具体实施方式Detailed ways
本发明采用固相法和高温烧结相结合的方法,制备该含O2-和F-离子的硫化物固体电解质材料,具体包括以下步骤:The present invention adopts the method of combining solid-state method and high-temperature sintering to prepare the sulfide solid electrolyte material containing O 2- and F- ions, which specifically includes the following steps:
(1)在手套箱中将硫化锂、五硫化二磷、二硫化锗、氧化锂和氟化锂按照合适的摩尔计量比准确称量,摩尔比例为(5-x-y)Li2S:P2S5:GeS2:xLi2O:yLiF,其化学式为Li10GeP2S12-x-yOXFy,其中,1≤x≤3,0.5≤y≤1.5,称量后置于玛瑙研钵中,然后均匀研磨1h。其中,称取并研磨原料的环境氧气分压和水分压均小于1ppm;研磨所得粉体的粒径为500目左右。(1) Lithium sulfide, phosphorus pentasulfide, germanium disulfide, lithium oxide and lithium fluoride are accurately weighed according to a suitable molar ratio in a glove box, and the molar ratio is (5-xy)Li 2 S:P 2 S 5 : GeS 2 : xLi 2 O: yLiF, its chemical formula is Li 10 GeP 2 S 12-xy O X F y , where, 1≤x≤3, 0.5≤y≤1.5, put it in an agate mortar after weighing, and then Grind evenly for 1h. Among them, the ambient oxygen partial pressure and water pressure of the weighed and ground raw materials are both less than 1 ppm; the particle size of the ground powder is about 500 mesh.
(2)将步骤(1)中球磨好的粉体装入坩埚中,密封转移至真空气氛管式电阻炉,通入氩气作为保护气体,煅烧温度600℃,保温24h,然后自然冷却,即得到样品,所述样品为含O2-和F-离子的LISICON型固体电解质材料,所述固体电解质材料的成分为Li10GeP2S12-x- yOXFy,其中,1≤x≤3,0.5≤y≤1.5。(2) Put the ball-milled powder in step (1) into a crucible, seal it and transfer it to a tube-type resistance furnace with a vacuum atmosphere, pass in argon as a protective gas, calcine at a temperature of 600°C, keep it warm for 24 hours, and then cool it naturally, that is A sample is obtained, the sample is a LISICON type solid electrolyte material containing O 2- and F - ions, and the composition of the solid electrolyte material is Li 10 GeP 2 S 12-x- y O X F y , wherein, 1≤x ≤3, 0.5≤y≤1.5.
(3)为了便于测试粉末的离子电导率,将上述固体电解质粉末材料在手套箱中压片,然后在固体电解质片的两面均匀涂覆一层导电胶,然后进行煅烧,温度200℃,保温2h。(3) In order to facilitate the test of the ionic conductivity of the powder, the above-mentioned solid electrolyte powder material is pressed into a tablet in a glove box, and then a layer of conductive adhesive is evenly coated on both sides of the solid electrolyte sheet, and then calcined at a temperature of 200 ° C and kept for 2 hours. .
本发明中含O2-和F-离子的LISICON型固体电解质材料的结构采用X射线衍射仪(XRD)确定,X射线衍射图谱表明烧结后得到的固体电解质材料为晶体形态,呈四方相。该固体电解质材料的形貌采用扫描电镜(SEM)对烧结后的电解质片的横截断面进行分析测试,结果显示晶粒之间结合紧密,没有气孔存在,致密度较好。其成分组成采用X射线能谱仪(EDS)测试,EDS谱图能够确定固体电解质的成分为Li10GeP2S12-x-yOXFy,具体如表1所示(与实际值存在一定的误差)。The structure of the LISICON type solid electrolyte material containing O 2 - and F - ions in the present invention is determined by X-ray diffractometer (XRD). The X-ray diffraction pattern shows that the solid electrolyte material obtained after sintering is in a crystal form and is in a tetragonal phase. The morphology of the solid electrolyte material is analyzed and tested by scanning electron microscopy (SEM) on the cross-section of the sintered electrolyte sheet, and the results show that the crystal grains are tightly bonded, there are no pores, and the density is good. Its composition is tested by X-ray energy spectrometer (EDS). The EDS spectrum can confirm that the composition of the solid electrolyte is Li 10 GeP 2 S 12-xy O X F y , as shown in Table 1 (there is a certain difference from the actual value error).
表1样品的元素种类及组成成分Table 1 Element types and composition of samples
本发明中含O2-和F-离子的LISICON型固体电解质材料的电化学性能采用电化学工作站测试。测量半电池Ag/Li10GeP2S12-x-yOXFy/Ag三明治结构的交流阻抗谱,根据谱图中的阻抗值,结合固体电解质的厚度,可以计算离子电导率,平行测试三次。The electrochemical performance of the LISICON solid electrolyte material containing O 2 - and F - ions in the present invention is tested by an electrochemical workstation. Measure the AC impedance spectrum of the half-cell Ag/Li 10 GeP 2 S 12-xy O X F y /Ag sandwich structure. According to the impedance value in the spectrum and the thickness of the solid electrolyte, the ionic conductivity can be calculated and tested three times in parallel.
下面结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
(1)在手套箱中将原料硫化锂、五硫化二磷、二硫化锗、氧化锂和氟化锂按照摩尔比例(5-x-y)Li2S:P2S5:GeS2:xLi2O:yLiF称量,其中x=1,y=0.5。称量后置于玛瑙研钵中,然后均匀研磨1h。(1) In the glove box, weigh the raw materials lithium sulfide, phosphorus pentasulfide, germanium disulfide, lithium oxide and lithium fluoride according to the molar ratio (5-xy) Li 2 S:P 2 S 5 :GeS 2 :xLi 2 O:yLiF amount, where x=1, y=0.5. After weighing, place it in an agate mortar and grind it uniformly for 1h.
(2)将步骤(1)中球磨好的粉体装入坩埚中,密封转移至真空气氛管式电阻炉,通入氩气作为保护气体,煅烧温度600℃,保温24h,然后自然冷却,即得到含O2-和F-离子的LISICON型固体电解质材料。(2) Put the ball-milled powder in step (1) into a crucible, seal it and transfer it to a tube-type resistance furnace with a vacuum atmosphere, pass in argon as a protective gas, calcine at a temperature of 600°C, keep it warm for 24 hours, and then cool it naturally, that is A LISICON-type solid electrolyte material containing O 2- and F- ions is obtained.
(3)将上述固体电解质材料在手套箱中压片,在固体电解质片的两面涂覆导电胶,然后进行煅烧,温度200℃,保温2h。所得到的电解质片为测试时使用。(3) The above solid electrolyte material was pressed into a tablet in a glove box, coated with conductive glue on both sides of the solid electrolyte sheet, and then calcined at a temperature of 200° C. for 2 hours. The obtained electrolyte sheets were used for testing.
经XRD检测分析,本实施例所得的固体电解质为Li10GeP2S10.5OF0.5。对该电解质片的离子电导率平行测试三次的结果分别为2.34×10-4S/cm,2.18×10-4S/cm,2.26×10-4S/cm。According to XRD detection and analysis, the solid electrolyte obtained in this example is Li 10 GeP 2 S 10.5 OF 0.5 . The ion conductivity of the electrolyte sheet was tested three times in parallel and the results were 2.34×10 -4 S/cm, 2.18×10 -4 S/cm, 2.26×10 -4 S/cm, respectively.
实施例2Example 2
(1)在手套箱中将原料硫化锂、五硫化二磷、二硫化锗、氧化锂和氟化锂按照摩尔比例(5-x-y)Li2S:P2S5:GeS2:xLi2O:yLiF称量,其中x=2,y=1。称量后置于玛瑙研钵中,然后均匀研磨1h。(1) In the glove box, weigh the raw materials lithium sulfide, phosphorus pentasulfide, germanium disulfide, lithium oxide and lithium fluoride according to the molar ratio (5-xy) Li 2 S:P 2 S 5 :GeS 2 :xLi 2 O:yLiF Quantity, where x=2, y=1. Place it in an agate mortar after weighing, and then grind it uniformly for 1h.
(2)将步骤(1)中球磨好的粉体装入坩埚中,密封转移至真空气氛管式电阻炉,通入氩气作为保护气体,煅烧温度600℃,保温24h,然后自然冷却,即得到含O2-和F-离子的LISICON型固体电解质材料。(2) Put the ball-milled powder in step (1) into a crucible, seal it and transfer it to a tube-type resistance furnace with a vacuum atmosphere, pass in argon as a protective gas, calcine at a temperature of 600°C, keep it warm for 24 hours, and then cool it naturally, that is A LISICON-type solid electrolyte material containing O 2- and F- ions is obtained.
(3)将上述固体电解质材料在手套箱中压片,在固体电解质片的两面涂覆导电胶,然后进行煅烧,温度200℃,保温2h。所得到的电解质片为测试时使用。(3) Press the solid electrolyte material into a tablet in a glove box, coat the two sides of the solid electrolyte sheet with conductive glue, and then calcine the solid electrolyte sheet at a temperature of 200° C. for 2 hours. The obtained electrolyte sheets were used for testing.
图1~3为本实施例所得固体电解质材料的SEM图,可以看出晶粒之间结合紧密,没有气孔存在,致密度较好。图4为本实施例所得固体电解质材料的X射线衍射图谱,表明烧结后得到的固体电解质材料为Li10GeP2S9O2F,晶体形态,呈四方相。图5为本实施例的固体电解质材料室温条件下的电化学阻抗谱图,根据谱图中的阻抗值,结合固体电解质的厚度,可以计算离子电导率,平行测试三次的结果分别为5.41×10-4S/cm,5.24×10-4S/cm,5.16×10- 4S/cm。Figures 1 to 3 are SEM images of the solid electrolyte material obtained in this example. It can be seen that the grains are closely bonded, no pores exist, and the density is good. Fig. 4 is an X-ray diffraction spectrum of the solid electrolyte material obtained in this example, which shows that the solid electrolyte material obtained after sintering is Li 10 GeP 2 S 9 O 2 F, and the crystal form is tetragonal. Figure 5 is the electrochemical impedance spectrum of the solid electrolyte material of this embodiment at room temperature. According to the impedance value in the spectrum and the thickness of the solid electrolyte, the ionic conductivity can be calculated. The results of three parallel tests are 5.41×10 -4 S/cm, 5.24×10 -4 S/cm, 5.16× 10 -4 S/cm.
实施例3Example 3
(1)在手套箱中将原料硫化锂、五硫化二磷、二硫化锗、氧化锂和氟化锂按照摩尔比例(5-x-y)Li2S:P2S5:GeS2:xLi2O:yLiF称量,其中x=3,y=1.5。称量后置于玛瑙研钵中,然后均匀研磨1h。(1) In the glove box, weigh the raw materials lithium sulfide, phosphorus pentasulfide, germanium disulfide, lithium oxide and lithium fluoride according to the molar ratio (5-xy) Li 2 S:P 2 S 5 :GeS 2 :xLi 2 O:yLiF amount, where x=3, y=1.5. Place it in an agate mortar after weighing, and then grind it uniformly for 1h.
(2)将步骤(1)中球磨好的粉体装入坩埚中,密封转移至真空气氛管式电阻炉,通入氩气作为保护气体,煅烧温度600℃,保温24h,然后自然冷却,即得到含O2-和F-离子的LISICON型固体电解质材料。(2) Put the ball-milled powder in step (1) into a crucible, seal it and transfer it to a tube-type resistance furnace with a vacuum atmosphere, pass in argon as a protective gas, calcine at a temperature of 600°C, keep it warm for 24 hours, and then cool it naturally, that is A LISICON-type solid electrolyte material containing O 2- and F- ions is obtained.
(3)将上述固体电解质材料在手套箱中压片,在固体电解质片的两面涂覆导电胶,然后进行煅烧,温度200℃,保温2h。所得到的电解质片为测试时使用。(3) The above solid electrolyte material was pressed into a tablet in a glove box, coated with conductive glue on both sides of the solid electrolyte sheet, and then calcined at a temperature of 200° C. for 2 hours. The obtained electrolyte sheets were used for testing.
经XRD检测分析,本实施例所得的固体电解质为Li10GeP2S7.5O3F1.5。对该电解质片的离子电导率平行测试三次的结果分别为1.89×10-4S/cm,1.96×10-4S/cm,2.06×10-4S/cm。According to XRD detection and analysis, the solid electrolyte obtained in this example is Li 10 GeP 2 S 7.5 O 3 F 1.5 . The ionic conductivity of the electrolyte sheet was tested three times in parallel and the results were 1.89×10 -4 S/cm, 1.96×10 -4 S/cm, 2.06×10 -4 S/cm, respectively.
表2为本发明三种实施例与现有固体电解质Li10GeP2S12(另增加其他新方案Li10GeP2S11.6O0.4也作为对照组)的离子电导率和电化学稳定性的测试结果。Table 2 is the test of the ion conductivity and electrochemical stability of three examples of the present invention and the existing solid electrolyte Li 10 GeP 2 S 12 (other new scheme Li 10 GeP 2 S 11.6 O 0.4 is also added as a control group) result.
表2样品的离子电导率与电化学稳定性Ionic conductivity and electrochemical stability of table 2 samples
由表2可以看出,本发明制备的固体电解质Li10GeP2S12-x-yOXFy,在离子电导率和电化学稳定性方面较现有的固态电解质Li10GeP2S12均有显著的提高。It can be seen from Table 2 that the solid electrolyte Li 10 GeP 2 S 12-xy O X F y prepared by the present invention has better ionic conductivity and electrochemical stability than the existing solid electrolyte Li 10 GeP 2 S 12 Improved significantly.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810284292.4A CN108511795B (en) | 2018-04-02 | 2018-04-02 | A kind of O2- and F- co-doped LISICON type solid electrolyte material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810284292.4A CN108511795B (en) | 2018-04-02 | 2018-04-02 | A kind of O2- and F- co-doped LISICON type solid electrolyte material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108511795A true CN108511795A (en) | 2018-09-07 |
CN108511795B CN108511795B (en) | 2020-09-22 |
Family
ID=63379968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810284292.4A Active CN108511795B (en) | 2018-04-02 | 2018-04-02 | A kind of O2- and F- co-doped LISICON type solid electrolyte material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108511795B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109755547A (en) * | 2019-03-13 | 2019-05-14 | 天津巴莫科技股份有限公司 | Aluminium coats rich lithium tertiary cathode material and preparation method thereof |
CN111370755A (en) * | 2020-03-18 | 2020-07-03 | 溧阳天目先导电池材料科技有限公司 | Anion-doped ion conductor material, preparation method and application thereof |
CN115280425A (en) * | 2020-03-31 | 2022-11-01 | 松下知识产权经营株式会社 | Solid electrolyte material and battery using the same |
CN115298753A (en) * | 2020-03-31 | 2022-11-04 | 松下知识产权经营株式会社 | Solid electrolyte material and battery using the same |
CN118841623A (en) * | 2024-06-21 | 2024-10-25 | 四川新能源汽车创新中心有限公司 | Sulfide electrolyte, preparation method thereof and all-solid-state battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105576289A (en) * | 2016-02-05 | 2016-05-11 | 中国科学院西安光学精密机械研究所 | F-And N3+Ion-synergistically-doped lithium ion solid electrolyte and preparation method thereof |
CN106129465A (en) * | 2016-08-10 | 2016-11-16 | 中国科学院西安光学精密机械研究所 | Fluorine-doped lithium ion solid electrolyte and preparation method thereof |
CN106169607A (en) * | 2016-08-10 | 2016-11-30 | 中国科学院西安光学精密机械研究所 | Oxygen-doped lithium ion solid electrolyte and preparation method thereof |
-
2018
- 2018-04-02 CN CN201810284292.4A patent/CN108511795B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105576289A (en) * | 2016-02-05 | 2016-05-11 | 中国科学院西安光学精密机械研究所 | F-And N3+Ion-synergistically-doped lithium ion solid electrolyte and preparation method thereof |
CN106129465A (en) * | 2016-08-10 | 2016-11-16 | 中国科学院西安光学精密机械研究所 | Fluorine-doped lithium ion solid electrolyte and preparation method thereof |
CN106169607A (en) * | 2016-08-10 | 2016-11-30 | 中国科学院西安光学精密机械研究所 | Oxygen-doped lithium ion solid electrolyte and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
YULONG SUN等: "Oxygen substitution effects in Li10GeP2S12 solid electrolyte", 《JOURNAL OF POWER SOURCES》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109755547A (en) * | 2019-03-13 | 2019-05-14 | 天津巴莫科技股份有限公司 | Aluminium coats rich lithium tertiary cathode material and preparation method thereof |
CN111370755A (en) * | 2020-03-18 | 2020-07-03 | 溧阳天目先导电池材料科技有限公司 | Anion-doped ion conductor material, preparation method and application thereof |
CN115280425A (en) * | 2020-03-31 | 2022-11-01 | 松下知识产权经营株式会社 | Solid electrolyte material and battery using the same |
CN115298753A (en) * | 2020-03-31 | 2022-11-04 | 松下知识产权经营株式会社 | Solid electrolyte material and battery using the same |
CN115298753B (en) * | 2020-03-31 | 2025-02-14 | 松下知识产权经营株式会社 | Solid electrolyte material and battery using the same |
CN118841623A (en) * | 2024-06-21 | 2024-10-25 | 四川新能源汽车创新中心有限公司 | Sulfide electrolyte, preparation method thereof and all-solid-state battery |
Also Published As
Publication number | Publication date |
---|---|
CN108511795B (en) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113471521B (en) | Inorganic sulfide solid electrolyte and preparation method thereof | |
CN108511795B (en) | A kind of O2- and F- co-doped LISICON type solid electrolyte material and preparation method thereof | |
CN100502111C (en) | Lithium-sulfur system solid electrolyte material and preparation method for all-solid-state lithium battery | |
CN113363569B (en) | High-stability inorganic sulfide solid electrolyte and preparation method thereof | |
JP2022502341A (en) | Inorganic sulfide solid electrolyte with high atmospheric stability, its manufacturing method and its application | |
Liu et al. | Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte | |
CN112777632B (en) | Sulfide lithium ion solid electrolyte and preparation method and application thereof | |
CN101114718A (en) | Design Criteria and Preparation Methods of Li-ion Inorganic Composite Solid Electrolyte Materials | |
CN108390094B (en) | A kind of air-stable sodium sulfide solid electrolyte and preparation method thereof | |
CN114933331B (en) | Sulfide solid electrolyte and preparation method thereof | |
CN107046149B (en) | Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material | |
CN107732298A (en) | A kind of Gd for all-solid lithium-ion battery adulterates Li7La3Zr2O12Garnet-type solid electrolyte | |
CN101013761A (en) | Solid electrolyte material system for all solid state lithium battery and preparation method | |
CN113937351B (en) | Sulfur silver germanium ore type sulfide lithium ion solid electrolyte and preparation method and application thereof | |
CN108793987B (en) | Lithium ion conductive oxide solid electrolyte and preparation method thereof | |
CN114744287A (en) | A kind of preparation method of sulfide solid state electrolyte and its application | |
CN106785016B (en) | A kind of lithium sulfide system solid electrolyte material for adding Li-Si alloy powder and preparation method thereof | |
Wu et al. | Preparation and electrochemical properties of LLZO co-doping with Al and Ti for all solid-state battery | |
CN111354972B (en) | A kind of composite solid electrolyte material and its preparation method and application | |
CN109888376B (en) | A kind of sodium sulfide ion solid electrolyte and preparation method thereof | |
CN116154273A (en) | Binary co-doped sulfur silver germanium ore type solid electrolyte and preparation and application thereof | |
CN112259786B (en) | A LiBH4-LiI-P2S5 ternary composite solid electrolyte and preparation method thereof | |
CN100486024C (en) | Lithium-lanthanum-silicon-sulfur solid electrolyte material for secondary lithium cell and its preparing method | |
CN108428936A (en) | A kind of doping O2-Lithium ion solid electrolyte material of ion and preparation method thereof | |
WO2025123458A1 (en) | Halide solid electrolyte, and preparation method therefor and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |