CN108500292B - 一种链状金属镍纳米粉体的制备方法 - Google Patents
一种链状金属镍纳米粉体的制备方法 Download PDFInfo
- Publication number
- CN108500292B CN108500292B CN201810308304.2A CN201810308304A CN108500292B CN 108500292 B CN108500292 B CN 108500292B CN 201810308304 A CN201810308304 A CN 201810308304A CN 108500292 B CN108500292 B CN 108500292B
- Authority
- CN
- China
- Prior art keywords
- solution
- template
- chain
- preparation
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 239000011858 nanopowder Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 21
- 108010010803 Gelatin Proteins 0.000 claims abstract description 12
- 239000008273 gelatin Substances 0.000 claims abstract description 12
- 229920000159 gelatin Polymers 0.000 claims abstract description 12
- 235000019322 gelatine Nutrition 0.000 claims abstract description 12
- 235000011852 gelatine desserts Nutrition 0.000 claims abstract description 12
- 238000006722 reduction reaction Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 7
- 229920001661 Chitosan Polymers 0.000 claims abstract description 6
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 6
- 150000002815 nickel Chemical class 0.000 claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000004090 dissolution Methods 0.000 claims abstract description 3
- 239000000047 product Substances 0.000 claims description 31
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical group OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 10
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 10
- 239000012467 final product Substances 0.000 claims description 2
- 239000002086 nanomaterial Substances 0.000 abstract description 9
- 239000002105 nanoparticle Substances 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 25
- 241000080590 Niso Species 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007885 magnetic separation Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0553—Complex form nanoparticles, e.g. prism, pyramid, octahedron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
一种链状金属镍纳米粉体的制备方法,涉及一维金属镍纳米粉体制备技术领域。制备方法包括反应溶液的配制、软模板溶解和快速还原反应3个过程,1)、将可溶性镍盐溶解到去离子水中配成溶液a;2)、将还原剂缓慢滴加到上述溶液a中形成溶液b;3)、将模板加入到上述溶液b中,缓慢加热使其溶解得到胶体溶液c;4)、在快速搅拌情况下,向上述c溶液中快速加入NaOH溶液,进行还原反应,再用磁铁分离出磁性产物,并用去离子水洗涤若干次后经烘干便可。本发明使用的明胶或壳聚糖等软模板可以有效组装Ni纳米颗粒,从而获得了高质量链状Ni纳米粉体,为一维Ni纳米材料的制备提供了新技术。
Description
技术领域
本发明涉及一维金属镍纳米粉体制备技术领域,具体是涉及一种链状金属镍纳米粉体的制备方法。
背景技术
—维纳米材料是三维空间中有一维尺寸处于纳米尺度。例如:纳米线、纳米棒和纳米管等。目前,一维Ni纳米材料因其具有较大长径比,磁各向异性,巨大的磁矫顽力等受到人们的关注。在电池、高密度储存、传感器、生物医学等各个领域有广泛应用前景。
硬模板法是制备一维Ni纳米材料的常见方法,常用的模板有多孔阳极氧化铝膜(AAO)、碳纳米管(CNTs)、分子筛(SAB-15)和聚合物等。该方法需要去除硬模板,工艺复杂。化学气相沉积法(CVD)也是一种制备一维Ni纳米材料的重要方法,尽管可以获得Ni阵列,但一般需要特殊设备,且产物量不高。为此,人们发展了利用软模板组装技术来宏量制备一维Ni纳米材料,即利用水合肼、硼氢化钠和白磷等还原剂将Ni2+还原成Ni,然后利用反应体系中的软模板组装效应来获得一维Ni纳米材料。其中,已报道使用的软模板中主要有三辛基氧膦(TOPO)、聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)、十六烷基胺(HAD)和聚乳酸(PAA)等。该方法具有制备成本低廉、获得的产物质量高、量大和效率高等优点,是一种非常有发展前途的方法。
发明内容
针对现有技术中所存在的不足之处,本发明提供了一种链状金属镍纳米粉体的制备方法,使用明胶或壳聚糖生物大分子为软模板,以水合肼为还原剂,采用液相合成技术成功制备出了链状Ni纳米粉体。该方法制备工艺简单,成本低廉,应用前景可观。
为了实现上述目的,本发明所采用的技术方案为:一种链状金属镍纳米粉体的制备方法,包括反应溶液的配制、软模板溶解和快速还原反应3个过程,具体步骤如下:
1)、将可溶性镍盐溶解到去离子水中配成溶液a;
2)、将还原剂缓慢滴加到上述溶液a中形成溶液b;
3)、将模板加入到上述溶液b中,缓慢加热使其溶解得到胶体溶液c;
4)、在快速搅拌情况下,向上述c溶液中快速加入NaOH溶液,进行还原反应,再用磁铁分离出磁性产物,并用去离子水洗涤若干次后经烘干便可获得最终产物链状金属镍纳米粉体。
作为本发明的链状金属镍纳米粉体的制备方法的优选技术方案,步骤1)中可溶性镍盐为NiSO4.6H2O或Ni(NO3)2.6H2O,其Ni2+浓度为0.1~1mol/L。步骤2)中还原剂为水合肼,水合肼与溶液a体积比为1~6:200。步骤3)中模板为明胶或壳聚糖,每200mL溶液b中添加0.2~1.2g模板,加热溶液c温度至80~90℃。步骤4)中NaOH溶液必须在溶液c的温度达到80~90℃后快速滴加,加入的时间控制在2min以内;每200mL溶液c中加入20~60mL浓度为2~5mol/L的NaOH溶液。还原反应温度为80~90℃,反应时间为1~5min。
本发明以普通镍盐(NiSO4.6H2O或Ni(NO3)2.6H2O等)、水合肼和明胶等原料,采用液相还原技术成功获得了链状Ni纳米粉体。和已有制备一维Ni纳米粉体方法相比,本发明具有以下优点:
1)、使用的明胶或壳聚糖等软模板可以有效组装Ni纳米颗粒,从而获得了高质量链状Ni纳米粉体,为一维Ni纳米材料的制备提供了新技术。
2)、本发明用于制备链状Ni纳米粉体方法操作简单、无需昂贵设备,反应后无需去除软模板即可获得高质量的产物,且产量大。
3)、本发明获得的链状Ni纳米粉体具有多孔结构,活性高,可作为高效催化剂材料。
附图说明
图1为实施例1中得到的产物的XRD谱图;
图2为实施例1中得到的产物的SEM照片(a、b分别对应低、高倍率);
图3为实施例1中到的产物的TEM(a)和HRTEM(b)照片;
图4为软模板使用量对产物形态的形态。
具体实施方式
以下结合实施例和附图对本发明的一种链状金属镍纳米粉体的制备方法作出进一步的详述。本发明方法所得产物用X射线衍射仪(XRD,Philips X’Pert,Cu Kαline,λ=0.15419nm)来分析物相;产物的形貌观察是用场发射电子显微镜(FE-SEM,FEI Sirion200);产物的结晶和微结构用透射电子显微镜(TEM,JEOL 2010)来分析。
实施例1:链状Ni纳米粉体的制备与表征。
1)、在室温和搅拌条件下,将4mL水合肼缓慢加入到200mL浓度为0.5mol/L的NiSO4.6H2O水溶液中,并称取1g明胶放入到上述溶液中,并开始加热使其完全溶解。
2)、控制加热上述溶液,当其温度达到90℃时,将事先配好的40mL浓度为4mol/L的NaOH溶液快速加入进去,搅拌和还原反应2min后,用磁分离方法将产物分离出来,并经过洗涤和烘干处理后即可获得目标产物。
图1为在该实例下得到的产物的XRD谱图,和块体Ni的XRD标准谱图卡(JCPDSNo.87-0712)对比后可知,该实例获得的产物为Ni金属粉体。图2为产物的SEM照片,可以看出,获得的Ni粉体的形状多为长链状,长度约为十几微米,直径约为100nm。由图2b进一步可以看出,长链状的Ni是由无数颗粒所构成。图3为产物的TEM和HRTEM分析结果,综合分析可以得出,长链状的Ni为多晶结构。
实施例2:明胶软模板使用量对产物形态的影响。
本实施例在实施例1实验条件的基础上,改变其中明胶的使用量后,发现产物Ni的形态也就将发生较大变化:研究发现,不使用明胶软模板时,最后获得的Ni粉体的形态为无规则的纳米颗粒(如图4a所示);当在反应体系中使用一定量明胶模板后,获得的产物为链状的Ni纳米粉体。需要指出的是,反应体系中合适的软模板使用量约为0.2~1.2g。体系中软模板量超过1.2g后,得到的产物为复合聚集体(如图4b所示),这是,软模板将起不到有效的组装作用,从而也就获得不了高质量的链状Ni纳米粉体。
实施例3:链状Ni纳米粉体的制备。
1)、在室温和搅拌条件下,将1mL水合肼缓慢加入到200mL浓度为0.1mol/L的NiSO4.6H2O水溶液中,并称取0.2g壳聚糖放入到上述溶液中,并开始加热使其完全溶解。
2)、控制加热上述溶液,当其温度达到80℃时,将事先配好的60mL浓度为2mol/L的NaOH溶液快速加入进去,搅拌和还原反应2min后,用磁分离方法将产物分离出来,并经过洗涤和烘干处理后即可获得目标产物。
实施例4:链状Ni纳米粉体的制备。
1)、在室温和搅拌条件下,将6mL水合肼缓慢加入到200mL浓度为1mol/L的Ni(NO3)2.6H2O水溶液中,并称取1.2g明胶放入到上述溶液中,并开始加热使其完全溶解。
2)、控制加热上述溶液,当其温度达到85℃时,将事先配好的20mL浓度为5mol/L的NaOH溶液快速加入进去,搅拌和还原反应2min后,用磁分离方法将产物分离出来,并经过洗涤和烘干处理后即可获得目标产物。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
Claims (1)
1.一种链状金属镍纳米粉体的制备方法,其特征在于,包括反应溶液的配制、软模板溶解和快速还原反应3个过程,具体步骤如下:
1)、将可溶性镍盐溶解到去离子水中配成溶液a,可溶性镍盐为NiSO4.6H2O或Ni(NO3)2.6H2O,其Ni2+浓度为0.1~1 mol/L;
2)、将还原剂缓慢滴加到上述溶液a中形成溶液b,还原剂为水合肼,水合肼与溶液a体积比为1~6:200;
3)、将模板加入到上述溶液b中,缓慢加热使其溶解得到胶体溶液c,模板为明胶或壳聚糖,每200 mL溶液b中添加0.2~1.2 g模板,加热溶液c温度至80~90 ℃;
4)、在快速搅拌情况下,向上述c溶液中快速加入NaOH溶液;NaOH溶液必须在溶液c的温度达到80 ~90 ℃后快速滴加,加入的时间控制在2 min以内;每200 mL溶液c中加入20~60mL浓度为2~5 mol/L的NaOH溶液;
加入后进行还原反应,还原反应温度为80~90 ℃,反应时间为1~5 min;再用磁铁分离出磁性产物,并用去离子水洗涤若干次后经烘干便可获得最终产物链状金属镍纳米粉体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810308304.2A CN108500292B (zh) | 2018-04-08 | 2018-04-08 | 一种链状金属镍纳米粉体的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810308304.2A CN108500292B (zh) | 2018-04-08 | 2018-04-08 | 一种链状金属镍纳米粉体的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108500292A CN108500292A (zh) | 2018-09-07 |
CN108500292B true CN108500292B (zh) | 2021-03-23 |
Family
ID=63381174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810308304.2A Active CN108500292B (zh) | 2018-04-08 | 2018-04-08 | 一种链状金属镍纳米粉体的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108500292B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109880112B (zh) * | 2019-02-01 | 2021-07-16 | 广西民族大学 | 原位定向排列一维结构zif-67及其制备方法 |
CN110449597A (zh) * | 2019-09-06 | 2019-11-15 | 哈尔滨工业大学 | 一种链状铁纳米线及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1773638A (zh) * | 2005-11-10 | 2006-05-17 | 北京科技大学 | 模板法制备磁性粉末的方法 |
CN101007357A (zh) * | 2007-01-22 | 2007-08-01 | 中山大学 | 一种线状纳米镍粉及其制备方法 |
CN101028653A (zh) * | 2007-04-10 | 2007-09-05 | 北京科技大学 | 一种金属镍纳米线的化学制备方法 |
CN101421032A (zh) * | 2006-04-15 | 2009-04-29 | 拜尔技术服务有限责任公司 | 用于生产金属颗粒的方法,由其制备的金属颗粒及其用途 |
CN101758242A (zh) * | 2009-03-09 | 2010-06-30 | 宁波大学 | 一种用在胶体晶体制备中的超高单分散镍溶胶的制备方法 |
CN102515282A (zh) * | 2011-12-08 | 2012-06-27 | 上海交通大学 | 一种基于生物模板制备磁性的光子晶体的方法 |
KR101239386B1 (ko) * | 2010-12-13 | 2013-03-05 | 한국지질자원연구원 | 수열합성법을 이용한 니켈 분말 직접 제조 방법 |
CN107309439A (zh) * | 2017-07-19 | 2017-11-03 | 清华大学深圳研究生院 | 一种三维金属纳米线及其制备方法 |
-
2018
- 2018-04-08 CN CN201810308304.2A patent/CN108500292B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1773638A (zh) * | 2005-11-10 | 2006-05-17 | 北京科技大学 | 模板法制备磁性粉末的方法 |
CN101421032A (zh) * | 2006-04-15 | 2009-04-29 | 拜尔技术服务有限责任公司 | 用于生产金属颗粒的方法,由其制备的金属颗粒及其用途 |
CN101007357A (zh) * | 2007-01-22 | 2007-08-01 | 中山大学 | 一种线状纳米镍粉及其制备方法 |
CN101028653A (zh) * | 2007-04-10 | 2007-09-05 | 北京科技大学 | 一种金属镍纳米线的化学制备方法 |
CN101758242A (zh) * | 2009-03-09 | 2010-06-30 | 宁波大学 | 一种用在胶体晶体制备中的超高单分散镍溶胶的制备方法 |
KR101239386B1 (ko) * | 2010-12-13 | 2013-03-05 | 한국지질자원연구원 | 수열합성법을 이용한 니켈 분말 직접 제조 방법 |
CN102515282A (zh) * | 2011-12-08 | 2012-06-27 | 上海交通大学 | 一种基于生物模板制备磁性的光子晶体的方法 |
CN107309439A (zh) * | 2017-07-19 | 2017-11-03 | 清华大学深圳研究生院 | 一种三维金属纳米线及其制备方法 |
Non-Patent Citations (4)
Title |
---|
Facile and rapid synthesis of nickel nanowires and their magnetic properties;Tang S.C.等;《JOURNAL OF NANOPARTICLE RESEARCH》;20111231;第13卷(第12期);全文 * |
Ma Fei 等.Morphology control and characterizations of nickel sea-urchin-like and chain-like nanostructures.《JOURNAL OF CRYSTAL GROWTH 》.2008,第310卷(第15期), * |
Morphology control and characterizations of nickel sea-urchin-like and chain-like nanostructures;Ma Fei 等;《JOURNAL OF CRYSTAL GROWTH 》;20081231;第310卷(第15期);实验部分 * |
纳米银的软模板制备方法及形成机理研究;宋吉明等;《贵金属》;20061231;第27卷(第4期);摘要,第2节,图1 * |
Also Published As
Publication number | Publication date |
---|---|
CN108500292A (zh) | 2018-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Cu 2 O-templated strategy for synthesis of definable hollow architectures | |
Gao et al. | Seeded growth route to noble metal nanostructures | |
Bornamehr et al. | Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies | |
Wang et al. | One‐Pot Solution Synthesis of Cubic Cobalt Nanoskeletons | |
US9539643B2 (en) | Making metal and bimetal nanostructures with controlled morphology | |
Liu et al. | Shape-and size-dependent catalysis activities of iron-terephthalic acid metal-organic frameworks | |
CN101698234B (zh) | 一种金属钴纳米线的化学制备方法 | |
CN103397387B (zh) | 一种铑钯合金纳米枝晶的制备方法及其制备的铑钯合金纳米枝晶 | |
Gao et al. | Novel tunable hierarchical Ni–Co hydroxide and oxide assembled from two-wheeledunits | |
Krajewski | Magnetic-field-induced synthesis of magnetic wire-like micro-and nanostructures | |
CN101342598A (zh) | 金属镍纳米线的化学制备方法 | |
CN108620601B (zh) | 一种室温条件下制备片状Cu纳米晶的方法 | |
Xu et al. | Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobaltnanoparticles | |
CN106807380B (zh) | 一种铜基三元复合金属氧化物空心纳米材料、制备方法及应用 | |
CN105328202A (zh) | 一种钴纳米材料的制备方法 | |
CN108500292B (zh) | 一种链状金属镍纳米粉体的制备方法 | |
CN102389949A (zh) | 一种海胆状纳米铜颗粒的制备方法 | |
CN102601384A (zh) | 一种钴镍纳米合金粉体的化学制备方法 | |
CN105458295A (zh) | 一种多孔微米铜球及其制备方法 | |
Lu et al. | Synthesis and property studies of hollow nanostructures | |
Li et al. | Controlled synthesis of three-dimensional CoNi microstructures composed of single crystal CoNi nanoleaves | |
CN102873334B (zh) | 一种菊花状纳米钯聚集体材料的超声辐射制备方法 | |
CN102941355B (zh) | 一种钴纳米纤维的溶剂热制备方法 | |
CN107098394B (zh) | 一种具有纳米三维多孔结构的含铁氧化物及其制备方法 | |
CN102583495B (zh) | 一种稀土金属离子掺杂氧化铈纳米材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211229 Address after: 231139 Gangji Town Industrial Park, Changfeng County, Hefei City, Anhui Province Patentee after: HEFEI ZHONGHANG NANOMETER TECHNOLOGY DEVELOPMENT Co.,Ltd. Address before: No.99, Jinxiu Avenue, Jingkai District, Hefei City, Anhui Province Patentee before: HEFEI University |