CN108489014A - A kind of indoor environment intelligence kinetic-control system and its control method - Google Patents
A kind of indoor environment intelligence kinetic-control system and its control method Download PDFInfo
- Publication number
- CN108489014A CN108489014A CN201810167099.2A CN201810167099A CN108489014A CN 108489014 A CN108489014 A CN 108489014A CN 201810167099 A CN201810167099 A CN 201810167099A CN 108489014 A CN108489014 A CN 108489014A
- Authority
- CN
- China
- Prior art keywords
- humidity
- temperature
- control
- value
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
- F24F2110/12—Temperature of the outside air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/20—Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/30—Velocity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/40—Pressure, e.g. wind pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/50—Air quality properties
- F24F2110/64—Airborne particle content
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/50—Air quality properties
- F24F2110/65—Concentration of specific substances or contaminants
- F24F2110/70—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2130/00—Control inputs relating to environmental factors not covered by group F24F2110/00
- F24F2130/20—Sunlight
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本发明提供了一种室内环境智能化动态控制系统及其控制方法,所述系统包括:控制子系统、分别与所述控制子系统通讯连接的数据采集子系统、气象子系统、调节子系统和人机交互界面。本发明提供的技术方案,系统简单、实施方便、控制效果良好、节能效果显著;通过气象子系统采集微气候数据,并与数据采集子系统采集的室内参数相比对,控制子系统通过分析得到环境的各种舒适性参数,调节子系统调节室内温度、湿度、通风等参数,为室内居民提供了最为舒适的环境;并且能够达到时时控制、时时调节,既保证了舒适程度,又避免了不必要的能耗;且每户、每室分别调节,空间小,调节效率高。
The present invention provides an intelligent dynamic control system for an indoor environment and a control method thereof. The system includes: a control subsystem, a data acquisition subsystem respectively communicated with the control subsystem, a meteorological subsystem, an adjustment subsystem and Interactive interface. The technical scheme provided by the present invention has simple system, convenient implementation, good control effect, and remarkable energy-saving effect; the microclimate data is collected through the meteorological subsystem, and compared with the indoor parameters collected by the data collection subsystem, the control subsystem obtains through analysis Various comfort parameters of the environment, the adjustment subsystem adjusts indoor temperature, humidity, ventilation and other parameters to provide the most comfortable environment for indoor residents; and it can achieve constant control and adjustment, which not only ensures comfort, but also avoids discomfort Necessary energy consumption; and each household and each room are adjusted separately, the space is small, and the adjustment efficiency is high.
Description
技术领域technical field
本发明涉及一种室内环境控制系统,具体涉及一种室内环境智能化动态控制系统及其控制方法。The invention relates to an indoor environment control system, in particular to an indoor environment intelligent dynamic control system and a control method thereof.
背景技术Background technique
随着城市化的飞速发展,建筑已从保障居住的基本功能,提升到高质量的生活品质,而建筑的功能恰是体现居住品质的一项重要因素,对于室内环境参数的控制已经越来越趋向于智能化、个性化。With the rapid development of urbanization, buildings have been upgraded from the basic functions of guaranteeing living to high-quality life, and the function of buildings is an important factor reflecting the quality of living, and the control of indoor environmental parameters has become more and more It tends to be intelligent and personalized.
目前的室内环境控制一般有两种形式。一种是“多联机+新风机”的户式独立空调和新风系统;另一种是以“恒温、恒湿、恒氧”为概念的“辐射末端+集中新风”式的集中空调新风系统。两种系统普遍存在能耗高、效率低、舒适度差、运行管理困难等问题,且不能随着室外气象参数的变化以及室内不同人员的状态需求,进行实时动态调节,不能满足用户对室内环境的个性化需求:采用辐射末端的集中空调系统,可调节性差、系统反馈迟钝,与人体的热感知有差距,舒适性差;长期生活在“恒温、恒湿、恒氧”的温度下,会造导致人体的耐热性较差,会伴随神经系统、消化系统、呼吸系统、皮肤黏膜等各类的不适;传统的“多联机+新风机”户式独立系统,温度调节、湿度调节与通风调节三者间难于适配,很难设置到最优状态点,难于获得舒适感。There are generally two forms of current indoor environmental control. One is a household-style independent air-conditioning and fresh air system of "multi-connection + fresh air blower"; the other is a centralized air-conditioning fresh air system of the "radiation end + centralized fresh air" type based on the concept of "constant temperature, constant humidity, and constant oxygen". The two systems generally have problems such as high energy consumption, low efficiency, poor comfort, and difficult operation and management, and cannot perform real-time dynamic adjustments in accordance with changes in outdoor meteorological parameters and the status needs of different indoor personnel, and cannot satisfy users' requirements for indoor environments. Personalized needs: the central air-conditioning system at the radiation end has poor adjustability, slow system feedback, and a gap with the human body’s thermal perception, resulting in poor comfort; living at a temperature of “constant temperature, constant humidity, and constant oxygen” for a long time will cause The heat resistance of the human body is poor, and it will be accompanied by various discomforts in the nervous system, digestive system, respiratory system, skin and mucous membranes; the traditional "multi-connection + fresh air" household independent system, temperature adjustment, humidity adjustment and ventilation adjustment It is difficult to adapt among the three, it is difficult to set to the optimal state point, and it is difficult to obtain a sense of comfort.
因此需要提供一种室内环境度智能化动态控制系统及其控制方法,以使其能够随着室外环境度的变化而调节室内温度参数,以降能耗、提高效。Therefore, it is necessary to provide an intelligent dynamic control system for indoor environment and its control method, so that it can adjust the indoor temperature parameters with the change of outdoor environment, so as to reduce energy consumption and improve efficiency.
发明内容Contents of the invention
针对现有技术的不足,本申请人设计了一种室内环境智能化动态控制系统;该系统能够随着室外环境的变化而调节室内环境参数,且节能低耗、调解高效。Aiming at the deficiencies of the prior art, the applicant designed an intelligent dynamic control system for the indoor environment; the system can adjust the parameters of the indoor environment as the outdoor environment changes, and is energy-saving, low-consumption, and highly efficient.
本发明的目的是通过下述技术方案进行实现的:The purpose of the present invention is achieved through the following technical solutions:
本发明的提供了一种室内环境智能化动态控制系统,所述系统包括:The present invention provides an intelligent dynamic control system for indoor environment, said system comprising:
控制子系统、分别与所述控制子系统通讯连接的数据采集子系统、气象子系统、调节子系统和人机交互界面。A control subsystem, a data acquisition subsystem, a meteorological subsystem, an adjustment subsystem and a human-computer interaction interface respectively communicated with the control subsystem.
优选的,所述控制子系统包括:自动设定模块、温度调控模块、湿度调控模块、存储模块、人机交互模块、参数输出模块;Preferably, the control subsystem includes: an automatic setting module, a temperature control module, a humidity control module, a storage module, a human-computer interaction module, and a parameter output module;
所述人机交互模块分别与所述自动设定模块、所述温度调控模块和所述湿度调控模块连接;The human-computer interaction module is respectively connected with the automatic setting module, the temperature control module and the humidity control module;
所述存储交互模块分别与所述自动设定模块、所述温度调控模块和所述湿度调控模块连接;The storage interaction module is respectively connected with the automatic setting module, the temperature control module and the humidity control module;
所述参数输出模块分别与所述自动设定模块、所述温度调控模块和所述湿度调控模块连接。The parameter output module is respectively connected with the automatic setting module, the temperature control module and the humidity control module.
优选的,preferred,
所述温度调控模块包括传统调控单元、智能调控单元和评价调控单元;The temperature control module includes a traditional control unit, an intelligent control unit and an evaluation control unit;
所述参数输出模块包括温度输出单元、湿度输出单元和新风输出单元;The parameter output module includes a temperature output unit, a humidity output unit and a fresh air output unit;
所述自动设定模块、所述传统调控单元、智能调控单元和评价调控单元分别与所述温度输出单元连接;The automatic setting module, the traditional control unit, the intelligent control unit and the evaluation control unit are respectively connected to the temperature output unit;
所述自动设定模块、所述湿度调控模块分别与所述湿度输出单元连接。The automatic setting module and the humidity control module are respectively connected to the humidity output unit.
优选的,所述数据采集子系统包括温度传感器、湿度传感器、PM2.5传感器和CO2传感器。Preferably, the data acquisition subsystem includes a temperature sensor, a humidity sensor, a PM2.5 sensor and a CO 2 sensor.
优选的,所述温度传感器分别与所述自动设定模块和所述温度调控模块连接。Preferably, the temperature sensor is connected to the automatic setting module and the temperature regulation module respectively.
优选的,所述湿度传感器与所述湿度调控模块连接。Preferably, the humidity sensor is connected to the humidity control module.
优选的,所述PM2.5传感器和所述CO2传感器分别与所述新风输出单元连接。Preferably, the PM2.5 sensor and the CO 2 sensor are respectively connected to the fresh air output unit.
优选的,所述调节子系统包括温度调节设备、湿度调节设备、新风设备;Preferably, the regulating subsystem includes temperature regulating equipment, humidity regulating equipment, and fresh air equipment;
所述温度调节设备与所述温度输出单元连接;The temperature adjustment device is connected to the temperature output unit;
所述湿度调节设备与所述湿度调节单元连接;The humidity adjustment device is connected to the humidity adjustment unit;
所述新风设备与所述新风输出单元连接。The fresh air device is connected to the fresh air output unit.
优选的,所述温度调节设备、所述湿度调节设备、所述新风设备在共用室内分别设有数目大于1的调节单元。Preferably, the temperature adjustment equipment, the humidity adjustment equipment, and the fresh air equipment are respectively provided with a number of adjustment units greater than one in the shared room.
优选的,所述气象子系统包括:Preferably, the meteorological subsystem includes:
温度传感器、湿度传感器、PM2.5传感器、太阳辐射度传感器、风速传感器、风压传感器、降雨传感器;Temperature sensor, humidity sensor, PM2.5 sensor, solar radiation sensor, wind speed sensor, wind pressure sensor, rainfall sensor;
所述温度传感器分别与所述存储模块、所述温度调控模块连接;The temperature sensor is respectively connected with the storage module and the temperature control module;
所述湿度传感器与所述湿度调控模块连接。The humidity sensor is connected to the humidity control module.
基于同一发明构思,本发明还提供了一种上述的室内环境智能化动态控制系统的控制方法,所述方法包括下述步骤:Based on the same inventive concept, the present invention also provides a control method for the above-mentioned indoor environment intelligent dynamic control system, the method includes the following steps:
(1)通过人机交互界面向所述控制子系统发送操作指令;(1) sending an operation instruction to the control subsystem through the human-computer interaction interface;
(2)所述控制子系统根据所述操作指令确定控制参数;(2) The control subsystem determines control parameters according to the operation instructions;
(3)所述控制子系统将所述控制参数发送至调节子系统。(3) The control subsystem sends the control parameters to the regulation subsystem.
优选的,所述步骤(1)中的操作指令包括:Preferably, the operation instructions in the step (1) include:
自动设定指令、温度调控指令和湿度调控指令;Automatic setting command, temperature control command and humidity control command;
所述温度调控指令包括、智能调控指令和评价调控指令。The temperature regulation instruction includes an intelligent regulation instruction and an evaluation regulation instruction.
优选的,所述步骤(2)包括:Preferably, said step (2) includes:
当所述操作指令为传统调控指令,所述传统调控单元将所述人机交互界面输入的温度值作为温度控制值并分别发送至温度输出单元和存储模块;When the operation command is a traditional control command, the traditional control unit uses the temperature value input by the man-machine interface as the temperature control value and sends it to the temperature output unit and the storage module respectively;
当所述操作指令为智能调控指令,所述智能调控单元根据所述人机交互界面输入的参数确定温度控制值并分别发送至温度输出单元和存储模块;When the operation instruction is an intelligent control instruction, the intelligent control unit determines the temperature control value according to the parameters input by the man-machine interface and sends it to the temperature output unit and the storage module respectively;
当所述操作指令为评价调控指令,所述评价调控单元根据所述人机交互界面输入的评价值确定温度控制值并分别发送至温度输出单元和存储模块;When the operation instruction is an evaluation control instruction, the evaluation control unit determines the temperature control value according to the evaluation value input by the man-machine interface and sends it to the temperature output unit and the storage module respectively;
当所述操作指令为自动设定指令,所述自动设定模块根据所述自动设定指令确定温度控制值并分别发送至温度输出单元和存储模块;或When the operation instruction is an automatic setting instruction, the automatic setting module determines the temperature control value according to the automatic setting instruction and sends it to the temperature output unit and the storage module respectively; or
当所述操作指令为湿度调控指令,所述湿度调控模块根据所述人机交互界面输入的湿度评价等级确定湿度控制参数并发送至湿度输出单元。When the operation command is a humidity control command, the humidity control module determines a humidity control parameter according to the humidity evaluation level input by the man-machine interface and sends it to the humidity output unit.
优选的,当所述操作指令为智能调控指令,所述智能调控单元根据所述人机交互界面输入的参数确定温度控制值包括:Preferably, when the operation instruction is an intelligent regulation instruction, determining the temperature control value by the intelligent regulation unit according to the parameters input by the human-computer interaction interface includes:
所述智能调控单元按照按下述平均热感觉指数PMV公式计算人体周围空气温度ta:The intelligent control unit calculates the air temperature t a around the human body according to the following average thermal sensation index PMV formula:
PMV=(0.303e-0.036M+0.0275)×{M-W-3.05[5.733-0.007(M-W)-Pa]PMV=(0.303e -0.036M +0.0275)×{MW-3.05[5.733-0.007(MW)-P a ]
-0.42(M-W-58.15)-1.73×10-2M(5.867-Pa)-fclhc(tcl-ta)-0.42(MW-58.15)-1.73×10 -2 M(5.867-P a )-f cl h c (t cl -t a )
-0.0014M(34-ta)-3.96×10-8fcl[tcl+273)4-(tr+273)4]}-0.0014M(34-t a )-3.96×10 -8 f cl [t cl +273) 4 -(t r +273) 4 ]}
式中:式中,M为人体新陈代谢率,W/m2;W为人体对外做的机械功,W/m2;hc为对流换热系数,W/m2·℃;Pa为人体周围空气的水蒸气分压力,Pa;fcl为服装面积系数;tr为室内平均辐射温度,℃;tcl为服装外表面温度,℃;In the formula: In the formula, M is the metabolic rate of the human body, W/m 2 ; W is the mechanical work done by the human body, W/m 2 ; h c is the convective heat transfer coefficient, W/m 2 ·℃; P a is the human body Partial pressure of water vapor in the surrounding air, P a ; f cl is the clothing area coefficient; t r is the average indoor radiation temperature, ℃; t cl is the outer surface temperature of the clothing, ℃;
将所述人体周围空气温度ta作为该日的温度控制值Tset(n);Using the air temperature t a around the human body as the temperature control value T set(n) of the day;
所述智能调控单元根据所述人机交互界面输入的参数包括:用户的年龄和服装的品种;The parameters input by the intelligent control unit according to the human-computer interaction interface include: the age of the user and the type of clothing;
所述服装的种类包括:羽绒服、棉服、风衣、运动休闲外套、西服上衣夹克、毛衣、毛背心、秋衣、线衣、长袖衬衣、T恤、牛仔裤、西裤、毛裤、绒裤、秋裤、线裤、短裤、短裙、连衣裙、短袜、长袜、皮鞋、运动鞋、凉鞋;The types of clothing include: down jackets, cotton clothes, windbreakers, sports and leisure jackets, suit jackets, sweaters, woolen vests, autumn clothes, sweaters, long-sleeved shirts, T-shirts, jeans, trousers, wool pants, fleece pants, autumn Pants, line pants, shorts, skirts, dresses, socks, stockings, leather shoes, sneakers, sandals;
通过加和每一种服装的热阻得到整套服装的服装热阻;各种服装的热阻包括:The clothing thermal resistance of the entire clothing is obtained by adding the thermal resistance of each clothing; the thermal resistance of various clothing includes:
羽绒服0.55、棉服0.5、风衣0.4、运动休闲外套0.3、西服上衣夹克0.25、毛衣0.28、毛背心0.12、秋衣/线衣0.2、长袖衬衣/T恤0.2、短袖衬衣/T恤0.09、牛仔裤/西裤0.2、毛裤0.28、绒裤0.25、秋裤/线裤0.2、短裤0.06、短裙0.14、连衣裙0.2、短袜0.02、长袜0.05、皮鞋/运动鞋0.1、凉鞋0.02。Down jacket 0.55, cotton clothing 0.5, windbreaker 0.4, sports and leisure jacket 0.3, suit jacket jacket 0.25, sweater 0.28, woolen vest 0.12, autumn clothes/line clothes 0.2, long-sleeved shirt/T-shirt 0.2, short-sleeved shirt/T-shirt 0.09, jeans / trousers 0.2, wool trousers 0.28, fleece trousers 0.25, long johns/line trousers 0.2, shorts 0.06, skirts 0.14, dresses 0.2, socks 0.02, stockings 0.05, leather shoes/sports shoes 0.1, sandals 0.02.
优选的,所述人体新陈代谢率M按下式计算得到:Preferably, the metabolic rate M of the human body is calculated according to the following formula:
M=(M’-0.8)+[72.91-2.03A+0.0437A2-0.00031A3]/58.2;M=(M'-0.8)+[72.91-2.03A+0.0437A 2 -0.00031A 3 ]/58.2;
式中:M’为人体在不同活动类型下的代谢率、A为参数中的年龄。In the formula: M' is the metabolic rate of the human body under different types of activities, and A is the age in the parameters.
优选的,所述PMV的取值包括:Preferably, the value of the PMV includes:
统计所在城市的室外滑移平均温度的最大值和最小值,并将所述最小值至所述最大值组成的温度区间与PMV取值区间[-1,1]建立对应关系:Calculate the maximum and minimum values of the average outdoor sliding temperature in the city where the city is located, and establish a corresponding relationship between the temperature range from the minimum value to the maximum value and the PMV value range [-1, 1]:
当室外温度达到所述最大值时,PMV取1;When the outdoor temperature reaches the maximum value, PMV takes 1;
当室外温度达到所述最小值时,PMV取-1;When the outdoor temperature reaches the minimum value, PMV takes -1;
当室外温度处于最大值与最小值之间的温度时,PMV取该温度对应的PMV取值区间[-1,1]中的值。When the outdoor temperature is between the maximum value and the minimum value, the PMV takes a value in the PMV range [-1, 1] corresponding to the temperature.
优选的,所述评价调控单元根据所述人机交互界面输入的评价值确定温度控制值包括:Preferably, the evaluation and control unit determining the temperature control value according to the evaluation value input by the human-computer interaction interface includes:
(1)从所述存储模块获取其内部存储的(a',T',TSV')、从所述采集子系统获取室内温度;(1) Obtain its internal storage (a', T', TSV') from the storage module, and obtain the indoor temperature from the acquisition subsystem;
(2)根据所述评价值、所述(a',T',TSV')和所述室内温度确定所述温度控制值。(2) Determine the temperature control value based on the evaluation value, the (a', T', TSV') and the indoor temperature.
优选的,所述评价调控单元首次调控时,所述步骤(2)包括:Preferably, when the evaluation control unit is regulated for the first time, the step (2) includes:
第一、将(a1,T1,TSV1)信号发送至所述存储模块,所述储存模块将(a1,T1,TSV1)以(a',T',TSV')的形式存储;First, the (a 1 , T 1 , TSV 1 ) signal is sent to the storage module, and the storage module sends (a 1 , T 1 , TSV 1 ) in the form of (a', T', TSV') storage;
式中:T1为首次调控时的室内温度;TSV1为首次调控的评价值,其取值范围为2至-2,人体感觉热时对应的评价值范围为0至2;人体感觉冷时对应的评价值范围为-2至0;a1为Griffith系数,a1=0.33;In the formula: T 1 is the indoor temperature when the first adjustment is made; TSV 1 is the evaluation value of the first adjustment, and its value ranges from 2 to -2, and the corresponding evaluation value ranges from 0 to 2 when the human body feels hot; when the human body feels cold The corresponding evaluation value ranges from -2 to 0; a 1 is the Griffith coefficient, a 1 =0.33;
第二、按下式计算温度控制值Tset1:Second, calculate the temperature control value T set1 according to the following formula:
Tset1=T1-TSV1/a1。T set1 =T 1 -TSV 1 /a 1 .
优选的,所述评价调控单元非首次调控时,所述步骤(2)包括:Preferably, when the evaluation regulation unit is not regulated for the first time, the step (2) includes:
按下式计算判断参数B:Calculate the judgment parameter B according to the following formula:
式中:TSV'为存储模块中存储的评价值、T'为存储模块中存储的室内温度、TSV(n)为第n次调控时的评价值、T(n)为第n次调控时的室内温度;n≥2;In the formula: TSV' is the evaluation value stored in the storage module, T' is the indoor temperature stored in the storage module, TSV (n) is the evaluation value of the nth regulation, T (n) is the temperature of the nth regulation Indoor temperature; n≥2;
若B∈[0.2,0.5],则按下述方法计算温度控制值Tset(n):If B∈[0.2,0.5], then calculate the temperature control value T set(n) as follows:
第一、按下述公式对Griffith系数、室内温度和评价值进行修正:First, modify the Griffith coefficient, indoor temperature and evaluation value according to the following formula:
an=[0.2(TSV(n)-TSV')/(T(n)-T')+0.8a'];a n = [0.2(TSV (n) -TSV')/(T (n) -T')+0.8a'];
T(n)’=(T'+T(n))/2;T (n) '=(T'+T (n) )/2;
TSV(n)'=[TSV'+TSV(n)]/2;TSV (n) '=[TSV'+TSV (n) ]/2;
式中:an为修正之后的Griffith系数、T(n)’为修正之后的第n次调控时的室温、TSV(n)'为修正之后的第n次调控时的评价值;In the formula: a n is the Griffith coefficient after correction, T (n) ' is the room temperature during the nth regulation after correction, and TSV (n) ' is the evaluation value during the nth regulation after correction;
第二、将(an,T(n)',TSV(n)')发送至所述存储模块,所述储存模块用(an,T(n)',TSV(n)')的值更新(a',T',TSV'),并进行存储;Second, send (a n , T (n) ', TSV (n) ') to the storage module, and the storage module uses the value of (a n , T (n) ', TSV (n) ') update(a', T', TSV'), and store it;
第三、按下式计算第n次调控的温度控制值Tset(n):Third, calculate the temperature control value T set(n) of the nth regulation according to the following formula:
Tset(n)=T(n)'-TSV(n)'/an;T set (n) = T (n) '-TSV (n) '/a n ;
若按下式得到第n次调控的温度控制值Tset(n):like The temperature control value T set(n) of the nth regulation is obtained according to the following formula:
Tset(n)=T(n)-TSV(n)/a'。T set (n) = T (n) - TSV (n) /a'.
优选的,当所述操作指令为自动设定指令,所述自动设定模块根据所述自动设定指令确定温度控制值包括:Preferably, when the operation instruction is an automatic setting instruction, the automatic setting module determining the temperature control value according to the automatic setting instruction includes:
所述自动设定模块从所述存储模块获取当天的室外滑移平均温度Tomn、前一天的室外滑移平均温度Tom(n-1)和前一天同时间段内的室内滑移平均温度Tim(n-1);The automatic setting module acquires the outdoor average temperature T omn of the day, the average outdoor temperature T om(n-1) of the previous day, and the average indoor temperature of the same time period of the previous day from the storage module T im(n-1) ;
所述自动设定单元按下式计算温度控制值Tset(n):The automatic setting unit calculates the temperature control value T set(n) according to the following formula:
Tset(n)=Tim(n-1)+0.3[Tom(n)-Tom(n-1)]。T set(n) =T im(n-1) +0.3[T om(n) -T om(n-1) ].
优选的,所述室内滑移平均温度的确定,包括:Preferably, the determination of the indoor sliding average temperature includes:
将每天的24小时按照预设数目均分为若干时间段;Divide the 24 hours of each day into several time periods according to the preset number;
安装所述智能化动态控制系统的第一天中各时间段内的室内滑移平均温度分别用相应时间段内实际室内平均温度代替;The indoor sliding average temperature in each time period in the first day of installing the intelligent dynamic control system is replaced by the actual indoor average temperature in the corresponding time period respectively;
其余每天的各时间段内的室内滑移平均温度分别按下式计算:The average temperature of indoor sliding in each time period of other days is calculated according to the following formula:
Tim(n)=0.2Tset(n)+0.8Tim(n-1);T im(n) = 0.2T set(n) +0.8T im(n-1) ;
式中:Tset(n)为该时段内的最后一次设置的温度控制值;Tim(n-1)为第(n-1)天的相同时段内的室内滑移平均温度;In the formula: T set (n) is the last set temperature control value in this period; T im (n-1) is the indoor sliding average temperature in the same period of the (n-1) day;
存储模块在每个时间段的终点计算该时间段内的室内滑移平均温度并存储计算结果。The storage module calculates the indoor sliding average temperature in the time period at the end of each time period and stores the calculation result.
优选的,所述室外滑移平均温度的确定包括:Preferably, the determination of the outdoor sliding average temperature includes:
安装所述智能化动态控制系统的第一天的室外滑移温度Tom(1)用当日天气预报数据计算的室外平均温度代替;The outdoor sliding temperature T om(1) of the first day of installing the intelligent dynamic control system is replaced by the outdoor average temperature calculated by the weather forecast data of the day;
其余每天的室外滑移温度Tom(n)按下式计算:The other daily outdoor sliding temperature T om(n) is calculated according to the following formula:
Tom(n)=0.8Tout(n)+0.2Tom(n-1);T om(n) = 0.8T out(n) +0.2T om(n-1) ;
式中:Tout(n)为根据第n天的天气预报数据计算的当日室外平均温度;In the formula: T out (n) is the average outdoor temperature of the day calculated according to the weather forecast data of the nth day;
存储模块在每天的00:00时计算该日的室外滑移平均温度并存储计算结果。The storage module calculates the outdoor sliding average temperature of the day at 00:00 every day and stores the calculation result.
优选的,当所述操作指令为湿度调控指令,所述湿度调控模块根据所述人机交互界面输入的湿度评价等级确定湿度控制参数包括:Preferably, when the operation instruction is a humidity control instruction, the humidity control module determines the humidity control parameters according to the humidity evaluation level input by the human-computer interaction interface, including:
从所述采集子系统的湿度传感器获取室内的湿度值、从所述温度调控模块获取温度控制值;Acquiring the indoor humidity value from the humidity sensor of the collection subsystem, and obtaining the temperature control value from the temperature control module;
根据所述温度控制值计算湿度阈值;calculating a humidity threshold according to the temperature control value;
根据所述湿度值与湿度阈值之间的关系和所述湿度评价等级确定湿度控制参数。A humidity control parameter is determined according to the relationship between the humidity value and the humidity threshold and the humidity evaluation level.
优选的,所述评价等级包括:非常干燥、干燥、舒适、潮湿、非常潮湿。Preferably, the evaluation grades include: very dry, dry, comfortable, wet, and very wet.
优选的,所述湿度调控模块根据所述湿度值与湿度阈值之间的关系和所述湿度评价等级确定湿度控制参数包括:Preferably, the humidity control module determines the humidity control parameters according to the relationship between the humidity value and the humidity threshold and the humidity evaluation level includes:
所述湿度值低于所述湿度下限阈值,无评价信息或评价信息为非常干燥、干燥、舒适、潮湿、非常潮湿,则所述控制指令为额定功率加湿至所述湿度下限阈值之上;If the humidity value is lower than the lower humidity threshold, and there is no evaluation information or the evaluation information is very dry, dry, comfortable, damp, or very humid, then the control instruction is to humidify with rated power to above the lower humidity threshold;
所述湿度值高于所述湿度上限阈值,无评价信息或评价信息为非常干燥、干燥、舒适、潮湿、非常潮湿,则所述控制指令为额定功率除湿至所述湿度上限阈值之下;If the humidity value is higher than the humidity upper threshold, and there is no evaluation information or the evaluation information is very dry, dry, comfortable, humid, or very humid, then the control instruction is to dehumidify the rated power to below the humidity upper threshold;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,无湿度评价信息,则所述控制指令为无动作;The humidity value is between the humidity lower threshold and the humidity upper threshold, and there is no humidity evaluation information, then the control instruction is no action;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,所述湿度评价信息为干燥,则50%功率加湿;The humidity value is between the humidity lower threshold and the humidity upper threshold, and the humidity evaluation information is dry, then 50% power humidification;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,所述湿度评价信息为非常干燥,则额定功率加湿;The humidity value is between the humidity lower threshold and the humidity upper threshold, and the humidity evaluation information is very dry, then the rated power is used for humidification;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,所述湿度评价信息为潮湿,则50%功率除湿;The humidity value is between the lower humidity threshold and the upper humidity threshold, and the humidity evaluation information is wet, then 50% power dehumidification;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,所述湿度评价信息为非常潮湿,则额定功率潮湿。If the humidity value is between the lower humidity threshold and the upper humidity threshold, and the humidity evaluation information is very humid, the rated power is humid.
优选的,所述湿度上限阈值为所述温度控制值对应的饱和蒸气压的70%。Preferably, the humidity upper threshold is 70% of the saturated vapor pressure corresponding to the temperature control value.
优选的,所述湿度下限阈值为所述温度控制值对应的饱和蒸气压的40%。Preferably, the humidity lower limit threshold is 40% of the saturated vapor pressure corresponding to the temperature control value.
优选的,所述温度设定值Tset对应的饱和蒸气压Pws按下式计算:Preferably, the saturated vapor pressure P ws corresponding to the temperature set point T set is calculated as follows:
与最接近现有技术相比,本发明的有益效果在于:Compared with the closest prior art, the beneficial effects of the present invention are:
1、本发明提供的技术方案,系统简单、实施方便、控制效果良好、节能效果显著;通过气象子系统采集微气候数据,并与数据采集子系统采集的室内参数相比对,控制子系统通过分析得到环境的各种舒适性参数,调节子系统调节室内温度、湿度、通风等参数,为室内居民提供了最为舒适的环境;并且能够达到时时控制、时时调节,既保证了舒适程度,又避免了了不必要的能耗;且每户、每室分别调节,空间小,调节效率高。1. The technical solution provided by the present invention has simple system, convenient implementation, good control effect, and remarkable energy-saving effect; the microclimate data is collected through the meteorological subsystem, and compared with the indoor parameters collected by the data collection subsystem, the control subsystem passes The various comfort parameters of the environment are analyzed, and the adjustment subsystem adjusts indoor temperature, humidity, ventilation and other parameters to provide the most comfortable environment for indoor residents; and it can achieve constant control and adjustment, which not only ensures comfort, but also avoids Eliminate unnecessary energy consumption; and each household and each room are adjusted separately, the space is small, and the adjustment efficiency is high.
2、本发明提供的技术方案,根据用户的选择,控制子系统的温度调控模块可以进行传统调控、智能调控和评价调控三种模式,能够结合室内、室外的温度和用户的参数以及用户的习惯等作出不同的调控;各种调控都能为用户调控至最舒适健康的温度;且三种模式相互独立,能够灵活切换。2. In the technical solution provided by the present invention, according to the user's choice, the temperature control module of the control subsystem can perform three modes of traditional control, intelligent control and evaluation control, and can combine indoor and outdoor temperatures with user parameters and user habits Various adjustments can be made to the most comfortable and healthy temperature for the user; and the three modes are independent of each other and can be switched flexibly.
3、本发明提供的技术方案,控制子系统能够根据湿度的客观值和用户对湿度的主观评价对湿度作出合理的调控,此调控既考虑湿度对人体健康和舒适性的客观影响,也兼顾了人的主观感觉;使用户既得到了舒适的湿度环境,又得到了心理的调控满足感,个性化程度大大提高,为用户提供了最大程度的舒适。3. In the technical solution provided by the present invention, the control subsystem can make reasonable adjustments to the humidity according to the objective value of the humidity and the user's subjective evaluation of the humidity. This adjustment not only considers the objective impact of humidity on human health and comfort, but also takes into account the People's subjective feeling; so that users can not only get a comfortable humidity environment, but also get a sense of satisfaction in psychological regulation, the degree of personalization is greatly improved, and the maximum degree of comfort is provided for users.
附图说明Description of drawings
下面结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with accompanying drawing:
图1:本发明提供的控制系统的示意图。Figure 1: Schematic diagram of the control system provided by the present invention.
具体实施方式Detailed ways
下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present application are clearly and completely described below in conjunction with the drawings in the embodiments of the present application.
实施例1Example 1
本发明的提供了一种室内环境智能化动态控制系统,所述系统包括:The present invention provides an intelligent dynamic control system for indoor environment, said system comprising:
控制子系统、分别与所述控制子系统通讯连接的数据采集子系统、气象子系统、调节子系统和人机交互界面。A control subsystem, a data acquisition subsystem, a meteorological subsystem, an adjustment subsystem and a human-computer interaction interface respectively communicated with the control subsystem.
所述控制子系统包括:自动设定模块、温度调控模块、湿度调控模块、存储模块、人机交互模块、参数输出模块;The control subsystem includes: an automatic setting module, a temperature control module, a humidity control module, a storage module, a human-computer interaction module, and a parameter output module;
所述人机交互模块分别与所述自动设定模块、所述温度调控模块和所述湿度调控模块连接;The human-computer interaction module is respectively connected with the automatic setting module, the temperature control module and the humidity control module;
所述存储交互模块分别与所述自动设定模块、所述温度调控模块和所述湿度调控模块连接;The storage interaction module is respectively connected with the automatic setting module, the temperature control module and the humidity control module;
所述参数输出模块分别与所述自动设定模块、所述温度调控模块和所述湿度调控模块连接。The parameter output module is respectively connected with the automatic setting module, the temperature control module and the humidity control module.
所述温度调控模块包括传统调控单元、智能调控单元和评价调控单元;The temperature control module includes a traditional control unit, an intelligent control unit and an evaluation control unit;
所述参数输出模块包括温度输出单元、湿度输出单元和新风输出单元;The parameter output module includes a temperature output unit, a humidity output unit and a fresh air output unit;
所述自动设定模块、所述传统调控单元、智能调控单元和评价调控单元分别与所述温度输出单元连接;The automatic setting module, the traditional control unit, the intelligent control unit and the evaluation control unit are respectively connected to the temperature output unit;
所述自动设定模块、所述湿度调控模块分别与所述湿度输出单元连接。The automatic setting module and the humidity control module are respectively connected to the humidity output unit.
所述数据采集子系统包括温度传感器、湿度传感器、PM2.5传感器和CO2传感器。The data acquisition subsystem includes a temperature sensor, a humidity sensor, a PM2.5 sensor and a CO 2 sensor.
所述温度传感器分别与所述自动设定模块和所述温度调控模块连接。The temperature sensor is respectively connected with the automatic setting module and the temperature regulation module.
所述湿度传感器与所述湿度调控模块连接。The humidity sensor is connected to the humidity control module.
所述PM2.5传感器和所述CO2传感器分别与所述新风输出单元连接。The PM2.5 sensor and the CO 2 sensor are respectively connected to the fresh air output unit.
所述调节子系统包括温度调节设备、湿度调节设备、新风设备;The regulating subsystem includes temperature regulating equipment, humidity regulating equipment, and fresh air equipment;
所述温度调节设备与所述温度输出单元连接;The temperature adjustment device is connected to the temperature output unit;
所述湿度调节设备与所述湿度调节单元连接;The humidity adjustment device is connected to the humidity adjustment unit;
所述新风设备与所述新风输出单元连接。The fresh air device is connected to the fresh air output unit.
所述温度调节设备、所述湿度调节设备、所述新风设备在共用室内分别设有数目大于1的调节单元。The temperature adjustment equipment, the humidity adjustment equipment, and the fresh air equipment are respectively provided with adjustment units with a number greater than one in the shared room.
所述气象子系统包括:The meteorological subsystem includes:
温度传感器、湿度传感器、PM2.5传感器、太阳辐射度传感器、风速传感器、风压传感器、降雨传感器;Temperature sensor, humidity sensor, PM2.5 sensor, solar radiation sensor, wind speed sensor, wind pressure sensor, rainfall sensor;
所述温度传感器分别与所述存储模块、所述温度调控模块连接;The temperature sensor is respectively connected with the storage module and the temperature control module;
所述湿度传感器与所述湿度调控模块连接。The humidity sensor is connected to the humidity control module.
实施例2Example 2
基于同一发明构思,本发明还提供了一种上述的室内环境智能化动态控制系统的控制方法,所述方法包括下述步骤:Based on the same inventive concept, the present invention also provides a control method for the above-mentioned indoor environment intelligent dynamic control system, the method includes the following steps:
(1)通过人机交互界面向所述控制子系统发送操作指令;(1) sending an operation instruction to the control subsystem through the human-computer interaction interface;
(2)所述控制子系统根据所述操作指令确定控制参数;(2) The control subsystem determines control parameters according to the operation instructions;
(3)所述控制子系统将所述控制参数发送至调节子系统。(3) The control subsystem sends the control parameters to the regulation subsystem.
所述步骤(1)中的操作指令包括:The operating instructions in the step (1) include:
自动设定指令、温度调控指令和湿度调控指令;Automatic setting command, temperature control command and humidity control command;
所述温度调控指令包括、智能调控指令和评价调控指令。The temperature regulation instruction includes an intelligent regulation instruction and an evaluation regulation instruction.
所述步骤(2)包括:Described step (2) comprises:
当所述操作指令为传统调控指令,所述传统调控单元将所述人机交互界面输入的温度值作为温度控制值并分别发送至温度输出单元和存储模块;When the operation command is a traditional control command, the traditional control unit uses the temperature value input by the man-machine interface as the temperature control value and sends it to the temperature output unit and the storage module respectively;
当所述操作指令为智能调控指令,所述智能调控单元根据所述人机交互界面输入的参数确定温度控制值并分别发送至温度输出单元和存储模块;When the operation instruction is an intelligent control instruction, the intelligent control unit determines the temperature control value according to the parameters input by the man-machine interface and sends it to the temperature output unit and the storage module respectively;
当所述操作指令为评价调控指令,所述评价调控单元根据所述人机交互界面输入的评价值确定温度控制值并分别发送至温度输出单元和存储模块;When the operation instruction is an evaluation control instruction, the evaluation control unit determines the temperature control value according to the evaluation value input by the man-machine interface and sends it to the temperature output unit and the storage module respectively;
当所述操作指令为自动设定指令,所述自动设定模块根据所述自动设定指令确定温度控制值并分别发送至温度输出单元和存储模块;或When the operation instruction is an automatic setting instruction, the automatic setting module determines the temperature control value according to the automatic setting instruction and sends it to the temperature output unit and the storage module respectively; or
当所述操作指令为湿度调控指令,所述湿度调控模块根据所述人机交互界面输入的湿度评价等级确定湿度控制参数并发送至湿度输出单元。When the operation command is a humidity control command, the humidity control module determines a humidity control parameter according to the humidity evaluation level input by the man-machine interface and sends it to the humidity output unit.
优选的,当所述操作指令为智能调控指令,所述智能调控单元根据所述人机交互界面输入的参数确定温度控制值包括:Preferably, when the operation instruction is an intelligent regulation instruction, determining the temperature control value by the intelligent regulation unit according to the parameters input by the human-computer interaction interface includes:
所述智能调控单元按照按下述平均热感觉指数PMV公式计算人体周围空气温度ta:The intelligent control unit calculates the air temperature t a around the human body according to the following average thermal sensation index PMV formula:
PMV=(0.303e-0.036M+0.0275)×{M-W-3.05[5.733-0.007(M-W)-Pa]PMV=(0.303e -0.036M +0.0275)×{MW-3.05[5.733-0.007(MW)-P a ]
-0.42(M-W-58.15)-1.73×10-2M(5.867-Pa)-fclhc(tcl-ta)-0.42(MW-58.15)-1.73×10 -2 M(5.867-P a )-f cl h c (t cl -t a )
-0.0014M(34-ta)-3.96×10-8fcl[tcl+273)4-(tr+273)4]}-0.0014M(34-t a )-3.96×10 -8 f cl [t cl +273) 4 -(t r +273) 4 ]}
式中:式中,M为人体新陈代谢率,W/m2;W为人体对外做的机械功,W/m2;hc为对流换热系数,W/m2·℃;Pa为人体周围空气的水蒸气分压力,Pa;fcl为服装面积系数;tr为室内平均辐射温度,℃;tcl为服装外表面温度,℃;In the formula: In the formula, M is the metabolic rate of the human body, W/m 2 ; W is the mechanical work done by the human body, W/m 2 ; h c is the convective heat transfer coefficient, W/m 2 ·℃; P a is the human body Partial pressure of water vapor in the surrounding air, P a ; f cl is the clothing area coefficient; t r is the average indoor radiation temperature, ℃; t cl is the outer surface temperature of the clothing, ℃;
将所述人体周围空气温度ta作为该日的温度控制值Tset(n);Using the air temperature t a around the human body as the temperature control value T set(n) of the day;
所述智能调控单元根据所述人机交互界面输入的参数包括:用户的年龄和服装的品种;The parameters input by the intelligent control unit according to the human-computer interaction interface include: the age of the user and the type of clothing;
所述服装的种类包括:羽绒服、棉服、风衣、运动休闲外套、西服上衣夹克、毛衣、毛背心、秋衣、线衣、长袖衬衣、T恤、牛仔裤、西裤、毛裤、绒裤、秋裤、线裤、短裤、短裙、连衣裙、短袜、长袜、皮鞋、运动鞋、凉鞋;The types of clothing include: down jackets, cotton clothes, windbreakers, sports and leisure jackets, suit jackets, sweaters, woolen vests, autumn clothes, sweaters, long-sleeved shirts, T-shirts, jeans, trousers, wool pants, fleece pants, autumn Pants, line pants, shorts, skirts, dresses, socks, stockings, leather shoes, sneakers, sandals;
通过加和每一种服装的热阻得到整套服装的服装热阻;各种服装的热阻包括:The clothing thermal resistance of the entire clothing is obtained by adding the thermal resistance of each clothing; the thermal resistance of various clothing includes:
羽绒服0.55、棉服0.5、风衣0.4、运动休闲外套0.3、西服上衣夹克0.25、毛衣0.28、毛背心0.12、秋衣/线衣0.2、长袖衬衣/T恤0.2、短袖衬衣/T恤0.09、牛仔裤/西裤0.2、毛裤0.28、绒裤0.25、秋裤/线裤0.2、短裤0.06、短裙0.14、连衣裙0.2、短袜0.02、长袜0.05、皮鞋/运动鞋0.1、凉鞋0.02。Down jacket 0.55, cotton clothing 0.5, windbreaker 0.4, sports and leisure jacket 0.3, suit jacket jacket 0.25, sweater 0.28, woolen vest 0.12, autumn clothes/line clothes 0.2, long-sleeved shirt/T-shirt 0.2, short-sleeved shirt/T-shirt 0.09, jeans / trousers 0.2, wool trousers 0.28, fleece trousers 0.25, long johns/line trousers 0.2, shorts 0.06, skirts 0.14, dresses 0.2, socks 0.02, stockings 0.05, leather shoes/sports shoes 0.1, sandals 0.02.
所述人体新陈代谢率M按下式计算得到:Described human body metabolic rate M is calculated as follows:
M=(M’-0.8)+[72.91-2.03A+0.0437A2-0.00031A3]/58.2;M=(M'-0.8)+[72.91-2.03A+0.0437A 2 -0.00031A 3 ]/58.2;
式中:M’为人体在不同活动类型下的代谢率、A为参数中的年龄。In the formula: M' is the metabolic rate of the human body under different types of activities, and A is the age in the parameters.
所述PMV的取值包括:The values of the PMV include:
统计所在城市的室外滑移平均温度的最大值和最小值,并将所述最小值至所述最大值组成的温度区间与PMV取值区间[-1,1]建立对应关系:Calculate the maximum and minimum values of the average outdoor sliding temperature in the city where the city is located, and establish a corresponding relationship between the temperature range from the minimum value to the maximum value and the PMV value range [-1, 1]:
当室外温度达到所述最大值时,PMV取1;When the outdoor temperature reaches the maximum value, PMV takes 1;
当室外温度达到所述最小值时,PMV取-1;When the outdoor temperature reaches the minimum value, PMV takes -1;
当室外温度处于最大值与最小值之间的温度时,PMV取该温度对应的PMV取值区间[-1,1]中的值。When the outdoor temperature is between the maximum value and the minimum value, the PMV takes a value in the PMV range [-1, 1] corresponding to the temperature.
所述评价调控单元根据所述人机交互界面输入的评价值确定温度控制值包括:The evaluation control unit determining the temperature control value according to the evaluation value input by the man-machine interface includes:
(1)从所述存储模块获取其内部存储的(a',T',TSV')、从所述采集子系统获取室内温度;(1) Obtain its internal storage (a', T', TSV') from the storage module, and obtain the indoor temperature from the acquisition subsystem;
(2)根据所述评价值、所述(a',T',TSV')和所述室内温度确定所述温度控制值。(2) Determine the temperature control value based on the evaluation value, the (a', T', TSV') and the indoor temperature.
所述评价调控单元首次调控时,所述步骤(2)包括:When the evaluation control unit is first regulated, the step (2) includes:
第一、将(a1,T1,TSV1)信号发送至所述存储模块,所述储存模块将(a1,T1,TSV1)以(a',T',TSV')的形式存储;First, the (a 1 , T 1 , TSV 1 ) signal is sent to the storage module, and the storage module sends (a 1 , T 1 , TSV 1 ) in the form of (a', T', TSV') storage;
式中:T1为首次调控时的室内温度;TSV1为首次调控的评价值,其取值范围为2至-2,人体感觉热时对应的评价值范围为0至2;人体感觉冷时对应的评价值范围为-2至0;a1为Griffith系数,a1=0.33;In the formula: T 1 is the indoor temperature when the first adjustment is made; TSV 1 is the evaluation value of the first adjustment, and its value ranges from 2 to -2, and the corresponding evaluation value ranges from 0 to 2 when the human body feels hot; when the human body feels cold The corresponding evaluation value ranges from -2 to 0; a 1 is the Griffith coefficient, a 1 =0.33;
第二、按下式计算温度控制值Tset1:Second, calculate the temperature control value T set1 according to the following formula:
Tset1=T1-TSV1/a1。T set1 =T 1 -TSV 1 /a 1 .
所述评价调控单元非首次调控时,所述步骤(2)包括:When the evaluation regulation unit is not the first regulation, the step (2) includes:
按下式计算判断参数B:Calculate the judgment parameter B according to the following formula:
式中:TSV'为存储模块中存储的评价值、T'为存储模块中存储的室内温度、TSV(n)为第n次调控时的评价值、T(n)为第n次调控时的室内温度;n≥2;In the formula: TSV' is the evaluation value stored in the storage module, T' is the indoor temperature stored in the storage module, TSV (n) is the evaluation value of the nth regulation, T (n) is the temperature of the nth regulation Indoor temperature; n≥2;
若B∈[0.2,0.5],则按下述方法计算温度控制值Tset(n):If B∈[0.2,0.5], then calculate the temperature control value T set(n) as follows:
第一、按下述公式对Griffith系数、室内温度和评价值进行修正:First, modify the Griffith coefficient, indoor temperature and evaluation value according to the following formula:
an=[0.2(TSV(n)-TSV')/(T(n)-T')+0.8a'];a n = [0.2(TSV (n) -TSV')/(T (n) -T')+0.8a'];
T(n)’=(T'+T(n))/2;T (n) '=(T'+T (n) )/2;
TSV(n)'=[TSV'+TSV(n)]/2;TSV (n) '=[TSV'+TSV (n) ]/2;
式中:an为修正之后的Griffith系数、T(n)’为修正之后的第n次调控时的室温、TSV(n)'为修正之后的第n次调控时的评价值;In the formula: a n is the Griffith coefficient after correction, T (n) ' is the room temperature during the nth regulation after correction, and TSV (n) ' is the evaluation value during the nth regulation after correction;
第二、将(an,T(n)',TSV(n)')发送至所述存储模块,所述储存模块用(an,T(n)',TSV(n)')的值更新(a',T',TSV'),并进行存储;Second, send (a n , T (n) ', TSV (n) ') to the storage module, and the storage module uses the value of (a n , T (n) ', TSV (n) ') update(a', T', TSV'), and store it;
第三、按下式计算第n次调控的温度控制值Tset(n):Third, calculate the temperature control value T set(n) of the nth regulation according to the following formula:
Tset(n)=T(n)'-TSV(n)'/an;T set (n) = T (n) '-TSV (n) '/a n ;
若按下式得到第n次调控的温度控制值Tset(n):like The temperature control value T set(n) of the nth regulation is obtained according to the following formula:
Tset(n)=T(n)-TSV(n)/a'。T set (n) = T (n) - TSV (n) /a'.
当所述操作指令为自动设定指令,所述自动设定模块根据所述自动设定指令确定温度控制值包括:When the operation instruction is an automatic setting instruction, the automatic setting module determines the temperature control value according to the automatic setting instruction including:
所述自动设定模块从所述存储模块获取当天的室外滑移平均温度Tomn、前一天的室外滑移平均温度Tom(n-1)和前一天同时间段内的室内滑移平均温度Tim(n-1);The automatic setting module acquires the outdoor average temperature T omn of the day, the average outdoor temperature T om(n-1) of the previous day, and the average indoor temperature of the same time period of the previous day from the storage module T im(n-1) ;
所述自动设定单元按下式计算温度控制值Tset(n):The automatic setting unit calculates the temperature control value T set(n) according to the following formula:
Tset(n)=Tim(n-1)+0.3[Tom(n)-Tom(n-1)]。T set(n) =T im(n-1) +0.3[T om(n) -T om(n-1) ].
所述室内滑移平均温度的确定,包括:The determination of the indoor sliding average temperature includes:
将每天的24小时按照预设数目均分为若干时间段,所述数目大于1,本实施例中的数目为5;Divide 24 hours per day into several time periods according to the preset number, the number is greater than 1, and the number in this embodiment is 5;
安装所述智能化动态控制系统的第一天中各时间段内的室内滑移平均温度分别用相应时间段内实际室内平均温度代替;The indoor sliding average temperature in each time period in the first day of installing the intelligent dynamic control system is replaced by the actual indoor average temperature in the corresponding time period respectively;
其余每天的各时间段内的室内滑移平均温度分别按下式计算:The average temperature of indoor sliding in each time period of other days is calculated according to the following formula:
Tim(n)=0.2Tset(n)+0.8Tim(n-1);T im(n) = 0.2T set(n) +0.8T im(n-1) ;
式中:Tset(n)为该时段内的最后一次设置的温度控制值;Tim(n-1)为第(n-1)天的相同时段内的室内滑移平均温度;In the formula: T set (n) is the last set temperature control value in this period; T im (n-1) is the indoor sliding average temperature in the same period of the (n-1) day;
存储模块在每个时间段的终点计算该时间段内的室内滑移平均温度并存储计算结果。The storage module calculates the indoor sliding average temperature in the time period at the end of each time period and stores the calculation result.
所述室外滑移平均温度的确定包括:The determination of the outdoor sliding average temperature includes:
安装所述智能化动态控制系统的第一天的室外滑移温度Tom(1)用当日天气预报数据计算的室外平均温度代替;The outdoor sliding temperature T om(1) of the first day of installing the intelligent dynamic control system is replaced by the outdoor average temperature calculated by the weather forecast data of the day;
其余每天的室外滑移温度Tom(n)按下式计算:The other daily outdoor sliding temperature T om(n) is calculated according to the following formula:
Tom(n)=0.8Tout(n)+0.2Tom(n-1);T om(n) = 0.8T out(n) +0.2T om(n-1) ;
式中:Tout(n)为根据第n天的天气预报数据计算的当日室外平均温度;In the formula: T out (n) is the average outdoor temperature of the day calculated according to the weather forecast data of the nth day;
存储模块在每天的00:00时计算该日的室外滑移平均温度并存储计算结果。当所述操作指令为湿度调控指令,所述湿度调控模块根据所述人机交互界面输入的湿度评价等级确定湿度控制参数包括:The storage module calculates the outdoor sliding average temperature of the day at 00:00 every day and stores the calculation result. When the operation instruction is a humidity control instruction, the humidity control module determines the humidity control parameters according to the humidity evaluation level input by the human-computer interaction interface, including:
从所述采集子系统的湿度传感器获取室内的湿度值、从所述温度调控模块获取温度控制值;Acquiring the indoor humidity value from the humidity sensor of the collection subsystem, and obtaining the temperature control value from the temperature control module;
根据所述温度控制值计算湿度阈值;calculating a humidity threshold according to the temperature control value;
根据所述湿度值与湿度阈值之间的关系和所述湿度评价等级确定湿度控制参数。A humidity control parameter is determined according to the relationship between the humidity value and the humidity threshold and the humidity evaluation level.
所述评价等级包括:非常干燥、干燥、舒适、潮湿、非常潮湿。The evaluation scale includes: very dry, dry, comfortable, wet, very wet.
所述湿度调控模块根据所述湿度值与湿度阈值之间的关系和所述湿度评价等级确定湿度控制参数包括:The humidity control module determines the humidity control parameters according to the relationship between the humidity value and the humidity threshold and the humidity evaluation level, including:
所述湿度值低于所述湿度下限阈值,无评价信息或评价信息为非常干燥、干燥、舒适、潮湿、非常潮湿,则所述控制指令为额定功率加湿至所述湿度下限阈值之上;If the humidity value is lower than the lower humidity threshold, and there is no evaluation information or the evaluation information is very dry, dry, comfortable, damp, or very humid, then the control instruction is to humidify with rated power to above the lower humidity threshold;
所述湿度值高于所述湿度上限阈值,无评价信息或评价信息为非常干燥、干燥、舒适、潮湿、非常潮湿,则所述控制指令为额定功率除湿至所述湿度上限阈值之下;If the humidity value is higher than the humidity upper threshold, and there is no evaluation information or the evaluation information is very dry, dry, comfortable, humid, or very humid, then the control instruction is to dehumidify the rated power to below the humidity upper threshold;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,无湿度评价信息,则所述控制指令为无动作;The humidity value is between the humidity lower threshold and the humidity upper threshold, and there is no humidity evaluation information, then the control instruction is no action;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,所述湿度评价信息为干燥,则50%功率加湿;The humidity value is between the humidity lower threshold and the humidity upper threshold, and the humidity evaluation information is dry, then 50% power humidification;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,所述湿度评价信息为非常干燥,则额定功率加湿;The humidity value is between the humidity lower threshold and the humidity upper threshold, and the humidity evaluation information is very dry, then the rated power is used for humidification;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,所述湿度评价信息为潮湿,则50%功率除湿;The humidity value is between the lower humidity threshold and the upper humidity threshold, and the humidity evaluation information is wet, then 50% power dehumidification;
所述湿度值处于所述湿度下限阈值和所述湿度上限阈值之间,所述湿度评价信息为非常潮湿,则额定功率潮湿。If the humidity value is between the lower humidity threshold and the upper humidity threshold, and the humidity evaluation information is very humid, the rated power is humid.
所述湿度上限阈值为所述温度控制值对应的饱和蒸气压的70%。The humidity upper threshold is 70% of the saturated vapor pressure corresponding to the temperature control value.
所述湿度下限阈值为所述温度控制值对应的饱和蒸气压的40%。The humidity lower limit threshold is 40% of the saturated vapor pressure corresponding to the temperature control value.
所述温度设定值Tset对应的饱和蒸气压Pws按下式计算:The saturated vapor pressure P ws corresponding to the temperature set point T set is calculated according to the following formula:
最后应该说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实施例,基于本申请中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。Finally, it should be noted that the described embodiments are only some of the embodiments of the present application, rather than all of them. Based on the embodiments of the present application, those skilled in the art have obtained the results without creative work. All other embodiments belong to the protection scope of this application.
Claims (28)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810167099.2A CN108489014B (en) | 2018-02-28 | 2018-02-28 | Indoor environment intelligent dynamic control system and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810167099.2A CN108489014B (en) | 2018-02-28 | 2018-02-28 | Indoor environment intelligent dynamic control system and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108489014A true CN108489014A (en) | 2018-09-04 |
CN108489014B CN108489014B (en) | 2024-10-11 |
Family
ID=63340964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810167099.2A Active CN108489014B (en) | 2018-02-28 | 2018-02-28 | Indoor environment intelligent dynamic control system and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108489014B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110298128A (en) * | 2019-07-04 | 2019-10-01 | 香港城市大学成都研究院 | A kind of adaptive thermal comfort prediction model construction method |
CN112034716A (en) * | 2020-09-27 | 2020-12-04 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Individual customized cabin environment control method and system |
CN112032971A (en) * | 2020-09-14 | 2020-12-04 | 重庆大学 | An indoor thermal environment regulation method based on heart rate monitoring |
CN116149199A (en) * | 2023-04-17 | 2023-05-23 | 深圳市多美达数码科技有限公司 | Intelligent household equipment control method, intelligent gateway and intelligent equipment |
CN117055667A (en) * | 2023-09-27 | 2023-11-14 | 美显信息科技(上海)有限公司 | Intelligent control method and system for multifunctional mirror cabinet |
CN118757825A (en) * | 2024-06-18 | 2024-10-11 | 广州柯兰特热能科技有限公司 | A new type of heat pump heating system using a refrigerant circulation system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4852363A (en) * | 1987-11-20 | 1989-08-01 | Sueddeutsche Kuehlerfabrik, Julius Fr., Behr Gmbh & Co. Kg | Air conditioner humidity control system |
TW201205007A (en) * | 2010-07-16 | 2012-02-01 | Ind Tech Res Inst | Apparatus and method for controlling flow and thermal condition |
CN103398451A (en) * | 2013-07-12 | 2013-11-20 | 清华大学 | Multi-dimensional indoor environment controlling method and system based on learning of user behaviors |
CN104456841A (en) * | 2014-11-13 | 2015-03-25 | 重庆大学 | Thermal and humid environment integrated control air-conditioning system and method based on thermal comfort evaluation |
CN105509264A (en) * | 2015-12-30 | 2016-04-20 | 重庆大学 | Air conditioning system startup and shutdown control device based on indoor heat comfort state and method |
US20160116178A1 (en) * | 2014-10-23 | 2016-04-28 | Vivint, Inc. | Real-time temperature management |
US20160161137A1 (en) * | 2014-12-04 | 2016-06-09 | Delta Electronics, Inc. | Controlling system for environmental comfort degree and controlling method of the controlling system |
CN106225163A (en) * | 2016-07-29 | 2016-12-14 | 北京同衡能源技术研究院有限公司 | A kind of indoor environment test and appraisal control method and system |
CN106240286A (en) * | 2015-06-12 | 2016-12-21 | 福特全球技术公司 | For avoiding the method and apparatus of glass pane atomization in vehicle |
CN208398335U (en) * | 2018-02-28 | 2019-01-18 | 清华大学 | A kind of indoor environment intelligence kinetic-control system |
-
2018
- 2018-02-28 CN CN201810167099.2A patent/CN108489014B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4852363A (en) * | 1987-11-20 | 1989-08-01 | Sueddeutsche Kuehlerfabrik, Julius Fr., Behr Gmbh & Co. Kg | Air conditioner humidity control system |
TW201205007A (en) * | 2010-07-16 | 2012-02-01 | Ind Tech Res Inst | Apparatus and method for controlling flow and thermal condition |
CN103398451A (en) * | 2013-07-12 | 2013-11-20 | 清华大学 | Multi-dimensional indoor environment controlling method and system based on learning of user behaviors |
US20160116178A1 (en) * | 2014-10-23 | 2016-04-28 | Vivint, Inc. | Real-time temperature management |
CN104456841A (en) * | 2014-11-13 | 2015-03-25 | 重庆大学 | Thermal and humid environment integrated control air-conditioning system and method based on thermal comfort evaluation |
US20160161137A1 (en) * | 2014-12-04 | 2016-06-09 | Delta Electronics, Inc. | Controlling system for environmental comfort degree and controlling method of the controlling system |
CN106240286A (en) * | 2015-06-12 | 2016-12-21 | 福特全球技术公司 | For avoiding the method and apparatus of glass pane atomization in vehicle |
CN105509264A (en) * | 2015-12-30 | 2016-04-20 | 重庆大学 | Air conditioning system startup and shutdown control device based on indoor heat comfort state and method |
CN106225163A (en) * | 2016-07-29 | 2016-12-14 | 北京同衡能源技术研究院有限公司 | A kind of indoor environment test and appraisal control method and system |
CN208398335U (en) * | 2018-02-28 | 2019-01-18 | 清华大学 | A kind of indoor environment intelligence kinetic-control system |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110298128A (en) * | 2019-07-04 | 2019-10-01 | 香港城市大学成都研究院 | A kind of adaptive thermal comfort prediction model construction method |
CN110298128B (en) * | 2019-07-04 | 2023-05-30 | 香港城市大学成都研究院 | Construction method of adaptive thermal comfort prediction model |
CN112032971A (en) * | 2020-09-14 | 2020-12-04 | 重庆大学 | An indoor thermal environment regulation method based on heart rate monitoring |
CN112034716A (en) * | 2020-09-27 | 2020-12-04 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Individual customized cabin environment control method and system |
CN112034716B (en) * | 2020-09-27 | 2022-12-02 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Individual customized cabin environment control method and system |
CN116149199A (en) * | 2023-04-17 | 2023-05-23 | 深圳市多美达数码科技有限公司 | Intelligent household equipment control method, intelligent gateway and intelligent equipment |
CN117055667A (en) * | 2023-09-27 | 2023-11-14 | 美显信息科技(上海)有限公司 | Intelligent control method and system for multifunctional mirror cabinet |
CN117055667B (en) * | 2023-09-27 | 2024-03-26 | 美显信息科技(上海)有限公司 | Intelligent control method and system for multifunctional mirror cabinet |
CN118757825A (en) * | 2024-06-18 | 2024-10-11 | 广州柯兰特热能科技有限公司 | A new type of heat pump heating system using a refrigerant circulation system |
Also Published As
Publication number | Publication date |
---|---|
CN108489014B (en) | 2024-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108444051B (en) | Indoor temperature intelligent dynamic control system and control method thereof | |
CN108489014B (en) | Indoor environment intelligent dynamic control system and control method thereof | |
CN105588275B (en) | A kind of comfort of air conditioner control method and device | |
TWI290026B (en) | Air-conditioning suit | |
CN104896663A (en) | Adjusting method, adjusting system for air supply mode of air conditioner and air conditioner | |
US20160061472A1 (en) | Method and device for controlling room temperature and humidity | |
CN108458441A (en) | A kind of indoor thermal environment regulating system based on human body body-sensing | |
CN208154729U (en) | A kind of room temperature intelligence kinetic-control system | |
CN114061038B (en) | Temperature and humidity comprehensive regulation control method, regulation equipment, regulation system and medium | |
CN105605726B (en) | A kind of air conditioner energy saving control method and device | |
CN108317692A (en) | Warm creeping chill air-conditioner control method based on compensation of wearing the clothes and air conditioner | |
CN103836770A (en) | Air conditioner with temperature regulated based on indoor relative humidity and control method thereof | |
CN105841317A (en) | Intelligent air condition wristband and air condition control method | |
CN106765986B (en) | Air conditioner and air outlet control method thereof | |
CN116659047A (en) | Adjustment method of air supply parameters of air conditioner in office environment based on user behavior feature recognition | |
CN107084490A (en) | The control method and air conditioner of air conditioner | |
Yin et al. | Research on residential thermal environment differences in relation to transition and heating periods in Beijing | |
CN110925990A (en) | Wind power following intelligent air outlet method and system in multi-person scene | |
CN212901931U (en) | Intelligent joint control technology for realizing dynamic comfort based on independent temperature and humidity control of air conditioner | |
CN208398335U (en) | A kind of indoor environment intelligence kinetic-control system | |
CN109739093A (en) | A hybrid control method for residential electrical appliances based on PMV model | |
CN212901932U (en) | Intelligent integrated control system for realizing dynamic comfort by utilizing pipeline air supply type air conditioner | |
CN205493349U (en) | A smart bed sheet | |
CN208114000U (en) | A kind of hot air heating vest | |
CN110608516B (en) | Air conditioner operation control method, device and system and readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |