[go: up one dir, main page]

CN108484201B - 一种低收缩率多孔氮化硅陶瓷及其制备方法 - Google Patents

一种低收缩率多孔氮化硅陶瓷及其制备方法 Download PDF

Info

Publication number
CN108484201B
CN108484201B CN201810612020.2A CN201810612020A CN108484201B CN 108484201 B CN108484201 B CN 108484201B CN 201810612020 A CN201810612020 A CN 201810612020A CN 108484201 B CN108484201 B CN 108484201B
Authority
CN
China
Prior art keywords
silicon nitride
porous silicon
ceramic
microspheres
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810612020.2A
Other languages
English (en)
Other versions
CN108484201A (zh
Inventor
叶枫
侯赵平
张标
叶健
刘强
高晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201810612020.2A priority Critical patent/CN108484201B/zh
Publication of CN108484201A publication Critical patent/CN108484201A/zh
Application granted granted Critical
Publication of CN108484201B publication Critical patent/CN108484201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种低收缩率多孔氮化硅陶瓷及其制备方法,以α‑氮化硅、氧化铝、氧化钇为主要原料,制备水基陶瓷浆料,先在油相中乳化形成球型液滴,而后通过冷冻、油‑陶瓷微球分离、冷冻干燥获得多孔陶瓷微球坯体,然后通过烧结获得多孔氮化硅陶瓷微球,进行粒径分级配比,并经过再模具成型、固化、干燥、烧结,最终获得多孔氮化硅陶瓷,与现有技术相比,本发明的有益效果在于,本发明采用油中滴液与冷冻成型相结合制备不同粒径的多孔氮化硅微球,利用冷冻成型工艺优势实现了孔结构及气孔率的可控;可用于制备大型的多孔氮化硅异形构件,消除了冷冻成型过程中引起的孔结构的方向性;同时,大大降低了烧结过程中收缩过大引起的结构缺陷的可能性。

Description

一种低收缩率多孔氮化硅陶瓷及其制备方法
技术领域
本发明涉及多孔陶瓷材料的成型技术领域,具体涉及一种低收缩率多孔氮化硅陶瓷及其制备方法。
背景技术
多孔氮化硅陶瓷材料,具有高比强、耐高温、抗氧化和耐磨损以及抗热震等优良的综合性能的同时,还具有相对较低的密度和低的介电常数、介电损耗等优良的介电性能,因其能够充分发挥氮化硅陶瓷和多孔陶瓷两者的优异性能,广泛应用于机械、化工、海洋工程、航空航天等重要领域。
制备孔隙率和孔隙结构可控、高强度、低介电常数的氮化硅基多孔陶瓷是实现氮化硅基多孔陶瓷应用的关键。氮化硅基多孔陶瓷的制备技术主要有部分烧结法、造孔法(有机物、碳粉)、注模成型以及自蔓延烧结法等。Fukasawa等人通过冷冻使Si3N4陶瓷浆料凝固,并经冷冻干燥、无压烧结,获得了了孔隙率大于50%的多孔Si3N4陶瓷。然而,在冷冻成型过程中冰晶生长的方向性导致烧结后的多孔陶瓷孔结构具有一定取向性,这一孔结构特征限制了多孔氮化硅陶瓷在某些特定环境下的应用。
另外,氮化硅是一种共价键化合物,且Si-N键具有很高的键强,氮原子和硅原子的自扩散系数很小。烧结过程中,致密化所必需的体积扩散及晶界扩散速度、烧结驱动力很小,常规固相烧结很难实现其致密化。因此需要添加烧结助剂在高温过程中生成液相,利用液相烧结原理促进α-β相转变的同时进行致密化。然而,致密化的过程伴随着试样有较大收缩率,对于异形结构件,会由于收缩率不一致形成应力从而使烧结后试件出现裂纹,这极大影响到了异性结构多孔氮化硅陶瓷的发展与应用。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践提出了本发明。
发明内容
本发明为了在获得气孔率可控的多孔氮化硅陶瓷的同时,解决现有技术中存在的烧结过程中收缩较大的问题,提供一种低收缩率多孔氮化硅陶瓷的制备方法,其包括以下步骤:
第一步:将α-氮化硅、氧化铝、氧化钇混合后,湿混、氮烘干过筛,得到均匀的混合粉末;
第二步:将第一步所述混合粉末中加入去离子水和分散剂A,得到均匀稳定的水基陶瓷浆料;
第三步:将第二步所述水基陶瓷浆料通过震动滴液进入油相中,使所述水基陶瓷浆料在油相形成微球型液滴;并通过冷冻介质进行冷冻处理后,从所述油相中过滤分离凝固的陶瓷微球,采用乙酸乙酯在-20℃下反复低温清洗;
第四步:将第三步所述陶瓷微球在冷冻干燥机进行干燥,并在石墨坩埚中氮化硼埋粉,搅拌,在氮气气氛保护下进行第一次无压烧结,获得多孔氮化硅微球;
第五步:将第四步所述多孔氮化硅微球进行过筛分级;
第六步:将氧化铝、氧化钇、有机单体和分散剂B溶解于溶剂中,获得稳定氧化铝-氧化钇陶瓷浆料;
第七步:将第五步所述分级后的多孔氮化硅微球按一定配比装入模具,并将第六步所述的氧化铝-氧化钇陶瓷浆料注入模具中震动,去掉上层多余陶瓷浆料,固化12小时候后取出,干燥后获得陶瓷坯体;
第八步:将第七步所述干燥后的陶瓷坯体,在氮气气氛保护下进行第二次无压烧结,获得多孔氮化硅陶瓷。
较佳的,第二步所述分散剂A为聚丙烯酸钠或聚乙烯醇,且所述分散剂A占所述混合粉末质量的0.5%-1%。
较佳的,第二步所述水基陶瓷浆料中浆料固含量为10-40vol%。
较佳的,第三步所述冷冻处理条件为,所述冷冻介质为酒精,所述冷冻温度为-30℃--10℃。
较佳的,第三步所述震动滴液的条件为,震动频率为100-1000次/min,滴头孔径为Φ0.16-0.51mm。
较佳的,第四步所述第一次无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1700℃-1850℃,保温2h;第八步所述第二次无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1500℃-1850℃。
较佳的,第五步所述过筛分级的条件为,当所述多孔氮化硅微球的粒径小于100μm是为I级,当所述多孔氮化硅微球的粒径介于100-400μm之间时为Ⅱ级,当所述多孔氮化硅微球的粒径大于400μm时为Ⅲ级。
较佳的,第六步所述有机单体为海因环氧树脂,且所述有机单体质量为所述陶瓷粉末质量的2wt%;所述的分散剂B为聚丙烯酸,且所述分散剂B的质量为所述陶瓷粉末质量的0.6wt%。
较佳的,第七步所述Ⅰ级、所述Ⅱ级和所述Ⅲ级的多孔氮化硅微球的质量配比为2:10:0或2:10:10或0:3:10。
利用上述方法制备的一种低收缩率多孔氮化硅陶瓷。
与现有技术比较,本发明的有益效果在于:
1、采用油中滴液与冷冻成型相结合制备不同粒径的多孔氮化硅微球,利用冷冻成型工艺优势实现了孔结构及气孔率的可控;
2、采用多孔微球粒径配比及二次烧结突破了烧结过程收缩过大的问题,制备出的多孔氮化硅陶瓷气孔率为30-60%,且线收缩率小于3%。
3、本发明的低收缩率多孔氮化硅陶瓷的制备方法可用于制备大型的多孔氮化硅异形构件,消除了冷冻成型过程中引起的孔结构的方向性;同时,大大降低了烧结过程中收缩过大引起的结构缺陷的可能性。
具体实施方式
以下结合实施例,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例1
第一步:将α-氮化硅、氧化铝、氧化钇按质量比93:2:5混合,并以氮化硅球和无水乙醇为球磨介质,湿混12小时后,氮烘干过筛,得到均匀的混合粉末;
第二步:将第一步所述混合粉末中加入去离子水和分散剂A,得到均匀稳定的水基陶瓷浆料,其中所述分散剂A为聚丙烯酸钠,且所述分散剂A占所述混合粉末质量的0.5%,所述水基陶瓷浆料中浆料固含量为20vol%;
第三步:将第二步所述水基陶瓷浆料通过震动滴液进入油相中,使所述水基陶瓷浆料在油相形成微球型液滴,并通过冷冻介质进行冷冻处理后,从所述油相中过滤分离凝固的陶瓷微球,采用乙酸乙酯在-20℃下反复低温清洗,其中所述油相为玉米油;所述震动滴液的条件为,震动频率为100次/min,滴头孔径为Φ0.16mm;所述冷冻处理条件为,所述冷冻介质为酒精,所述冷冻温度为-30℃;
第四步:将第三步所述陶瓷微球在冷冻干燥机进行干燥,并在石墨坩埚中氮化硼埋粉,适当搅拌使微球坯体无相互接触,在氮气气氛保护下进行无压烧结,获得多孔氮化硅微球,所述无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1700℃,保温2h;
第五步:将第四步所述多孔氮化硅微球进行过筛分级,所述过筛分级的条件为,当所述多孔氮化硅微球的粒径小于100μm是为I级,当所述多孔氮化硅微球的粒径介于100-400μm之间时为Ⅱ级,当所述多孔氮化硅微球的粒径大于400μm时为Ⅲ级;
第六步:将氧化铝、氧化钇、有机单体和分散剂B溶解于溶剂中,获得固含量为20vol%的稳定氧化铝-氧化钇陶瓷浆料,其中,所述氧化铝和氧化钇的质量分数比为1:2;所述有机单体为海因环氧树脂,且所述有机单体质量为所述陶瓷粉末质量的2wt%;所述的分散剂B为聚丙烯酸,且所述分散剂B的质量为所述陶瓷粉末质量的0.6wt%;
第七步:将第五步所述Ⅰ级、所述Ⅱ级和所述Ⅲ级的多孔氮化硅微球按质量配比为2:10:0装入模具,并将第六步所述的氧化铝-氧化钇陶瓷浆料注入模具中震动,去掉上层多余陶瓷浆料,固化12小时候后取出,干燥后获得陶瓷坯体;
第八步:将第七步所述干燥后的陶瓷坯体,在氮气气氛保护下进行无压烧结,所述无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1500℃,保温2h,最终获得多孔氮化硅陶瓷。
本发明采用油中滴液与冷冻成型相结合制备不同粒径的多孔氮化硅微球,利用冷冻成型工艺优势实现了孔结构及气孔率的可控;采用多孔微球粒径配比及二次烧结突破了烧结过程收缩过大的问题,制备出的多孔氮化硅陶瓷气孔率为30-60%,且线收缩率小于3%,主要原因是第一阶段制备出的多孔陶瓷球已经过高温烧结,第二阶段采用多孔微球粒径配比制备多孔陶瓷材料时,烧结的过程中的固液相反应主要在陶瓷球接触点进行,从而导致收缩率较低。因此,本发明的低收缩率多孔氮化硅陶瓷的制备方法可用于制备大型的多孔氮化硅异形构件,消除了冷冻成型过程中引起的孔结构的方向性;同时,大大降低了烧结过程中收缩过大引起的结构缺陷的可能性。
实施例2
本实施例与实施例1的不同之处在于,所述第一步为,将α-氮化硅、氧化铝、氧化钇混合后,按质量比90:3:7湿混12小时后,氮烘干过筛,得到均匀的混合粉,其它与实施例1相同。
实施例3
本实施例与实施例1的不同之处在于,第二步所述分散剂A为聚乙烯醇,且所述分散剂A占所述混合粉末质量的1%,其它与实施例1相同。
实施例4
本实施例与实施例1的不同之处在于,第二步所述水基陶瓷浆料中浆料固含量为10vol%。,其它与实施例1相同。
实施例5
本实施例与实施例1的不同之处在于,第二步所述水基陶瓷浆料中浆料固含量为40vol%,其它与实施例1相同。
实施例6
本实施例与实施例1的不同之处在于,第三步所述震动滴液的条件为,震动频率为1000次/min,滴头孔径为Φ0.51mm,其它与实施例1相同。
实施例7
本实施例与实施例1的不同之处在于,第三步所述震动滴液的条件为,震动频率为400次/min,滴头孔径为Φ0.34mm,其它与实施例1相同。
实施例8
本实施例与实施例1的不同之处在于,第四步所述第一次无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1800℃,保温2h;第八步所述第二次无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1700℃,其它与实施例1相同。
实施例9
本实施例与实施例1的不同之处在于,第四步所述第一次无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1850℃,保温2h;第八步所述第二次无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1850℃,其它与实施例1相同。
实施例10
本实施例与实施例1的不同之处在于,第七步所述Ⅰ级、所述Ⅱ级和所述Ⅲ级的多孔氮化硅微球的质量配比为2:10:10或0:3:10。
实施例11
本实施例与实施例1的不同之处在于,第七步所述Ⅰ级、所述Ⅱ级和所述Ⅲ级的多孔氮化硅微球的质量配比为0:3:10。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (10)

1.一种低收缩率多孔氮化硅陶瓷的制备方法,其特征在于,其包括以下步骤:
第一步:将α-氮化硅、氧化铝、氧化钇混合后,湿混、氮烘干过筛,得到均匀的混合粉末;
第二步:将第一步所述混合粉末中加入去离子水和分散剂A,得到均匀稳定的水基陶瓷浆料;
第三步:将第二步所述水基陶瓷浆料通过振动滴液进入油相中,使所述水基陶瓷浆料在油相形成微球型液滴;并通过冷冻介质进行冷冻处理后,从所述油相中过滤分离凝固的陶瓷微球,采用乙酸乙酯在-20℃下反复低温清洗;
第四步:将第三步所述陶瓷微球在冷冻干燥机进行干燥,并在石墨坩埚中氮化硼埋粉,搅拌,在氮气气氛保护下进行第一次无压烧结,获得多孔氮化硅微球;
第五步:将第四步所述多孔氮化硅微球进行过筛分级;
第六步:将氧化铝、氧化钇、有机单体和分散剂B溶解于溶剂中,获得稳定氧化铝-氧化钇陶瓷浆料;
第七步:将第五步所述分级后的多孔氮化硅微球按一定配比装入模具,并将第六步所述的氧化铝-氧化钇陶瓷浆料注入模具中振动,去掉上层多余陶瓷浆料,固化12小时后取出,干燥后获得陶瓷坯体;
第八步:将第七步所述干燥后的陶瓷坯体,在氮气气氛保护下进行第二次无压烧结,获得多孔氮化硅陶瓷。
2.根据权利要求1所述的低收缩率多孔氮化硅陶瓷的制备方法,其特征在于,第二步所述分散剂A为聚丙烯酸钠或聚乙烯醇,且所述分散剂A占所述混合粉末质量的0.5%-1%。
3.根据权利要求2所述的低收缩率多孔氮化硅陶瓷的制备方法,其特征在于,第二步所述水基陶瓷浆料中浆料固含量为10-40vol%。
4.根据权利要求1所述的低收缩率多孔氮化硅陶瓷的制备方法,其特征在于,第三步所述冷冻处理条件为,所述冷冻介质为酒精,所述冷冻温度为-30℃--10℃。
5.根据权利要求1所述的低收缩率多孔氮化硅陶瓷的制备方法,其特征在于,第三步所述振动滴液的条件为,振动频率为100-1000次/min,滴头孔径为Φ0.16-0.51mm。
6.根据权利要求1所述的低收缩率多孔氮化硅陶瓷的制备方法,其特征在于,第四步所述第一次无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1700℃-1850℃,保温2h;第八步所述第二次无压烧结的工艺条件为,以20℃/min的升温速率升温至500℃,保温1h,然后升温至1500℃-1850℃。
7.根据权利要求1所述的低收缩率多孔氮化硅陶瓷的制备方法,其特征在于,第五步所述过筛分级的条件为,当所述多孔氮化硅微球的粒径小于100μm是为I级,当所述多孔氮化硅微球的粒径介于100-400μm之间时为Ⅱ级,当所述多孔氮化硅微球的粒径大于400μm时为Ⅲ级。
8.根据权利要求1所述的低收缩率多孔氮化硅陶瓷的制备方法,其特征在于,第六步所述有机单体为海因环氧树脂,且所述有机单体质量为所述陶瓷粉末质量的2wt%;所述的分散剂B为聚丙烯酸,且所述分散剂B的质量为所述陶瓷粉末质量的0.6wt%。
9.根据权利要求7所述的低收缩率多孔氮化硅陶瓷的制备方法,其特征在于,所述Ⅰ级、所述Ⅱ级和所述Ⅲ级的多孔氮化硅微球的质量配比为2:10:0或2:10:10或0:3:10。
10.根据利用权利要求1-9任一项所述的方法制备的一种低收缩率多孔氮化硅陶瓷。
CN201810612020.2A 2018-06-14 2018-06-14 一种低收缩率多孔氮化硅陶瓷及其制备方法 Active CN108484201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810612020.2A CN108484201B (zh) 2018-06-14 2018-06-14 一种低收缩率多孔氮化硅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810612020.2A CN108484201B (zh) 2018-06-14 2018-06-14 一种低收缩率多孔氮化硅陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN108484201A CN108484201A (zh) 2018-09-04
CN108484201B true CN108484201B (zh) 2020-07-31

Family

ID=63342589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810612020.2A Active CN108484201B (zh) 2018-06-14 2018-06-14 一种低收缩率多孔氮化硅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN108484201B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484351A (zh) * 2019-12-31 2020-08-04 新兴远建(天津)新材料科技有限公司 一种轻质多孔陶瓷空心微球的制备方法和应用
CN111196729B (zh) * 2020-01-09 2021-08-06 中国科学院上海硅酸盐研究所 一种超低含量烧结助剂制备多孔氮化硅陶瓷的方法
CN111470870B (zh) * 2020-03-26 2021-06-22 清华大学 复合陶瓷微球及其制备方法
CN111559918B (zh) * 2020-05-27 2021-10-01 中国科学院上海硅酸盐研究所 一种微乳液结合冷冻干燥制备多孔陶瓷坯体的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329459A (ja) * 1993-05-26 1994-11-29 Mitsubishi Heavy Ind Ltd 難焼結性セラミックス焼結体の製造方法
CN1554616A (zh) * 2003-12-24 2004-12-15 浙江大学 一种制备轻质高强氧化铝空心球陶瓷的制备方法
EP2133317A1 (en) * 2007-02-21 2009-12-16 National Institute Of Advanced Industrial Science and Technology Ceramic porous body with communication macropores and process for producing the ceramic porous body
CN103408319A (zh) * 2013-07-26 2013-11-27 中南大学 制备不同孔结构的多孔陶瓷微球的方法及喷雾冷冻装置
CN103496999A (zh) * 2013-09-18 2014-01-08 清华大学 一种采用陶瓷空心球制备多孔陶瓷的方法
CN104628410A (zh) * 2015-01-22 2015-05-20 太原理工大学 一种多孔莫来石微球的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329459A (ja) * 1993-05-26 1994-11-29 Mitsubishi Heavy Ind Ltd 難焼結性セラミックス焼結体の製造方法
CN1554616A (zh) * 2003-12-24 2004-12-15 浙江大学 一种制备轻质高强氧化铝空心球陶瓷的制备方法
EP2133317A1 (en) * 2007-02-21 2009-12-16 National Institute Of Advanced Industrial Science and Technology Ceramic porous body with communication macropores and process for producing the ceramic porous body
CN103408319A (zh) * 2013-07-26 2013-11-27 中南大学 制备不同孔结构的多孔陶瓷微球的方法及喷雾冷冻装置
CN103496999A (zh) * 2013-09-18 2014-01-08 清华大学 一种采用陶瓷空心球制备多孔陶瓷的方法
CN104628410A (zh) * 2015-01-22 2015-05-20 太原理工大学 一种多孔莫来石微球的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《冷冻干燥法制备多孔Si3N4陶瓷及性能研究》;孙孟勇;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20170315(第3期);第B015-836页 *
Effect of solid content on pore structure and mechanical properties of porous silicon nitride ceramics produced by freeze casting;Feng Ye等;《Materials Science and Engineering A》;20110125;第528卷;第1421-1424页 *
Novel porous Si3N4ceramics prepared by aqueous gelcasting using Si3N4poly-hollow microspheres as pore-forming agent;Jia-Min Wu等;《Journal of the European Ceramic Society》;20131212;第34卷;第1089-1096页 *
Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process;Fukasawa, T等;《JOURNAL OF MATERIALS SCIENCE》;20011231;第36卷(第10期);第2523-2527页 *

Also Published As

Publication number Publication date
CN108484201A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN108484201B (zh) 一种低收缩率多孔氮化硅陶瓷及其制备方法
CN107200599B (zh) 多孔氧化铝陶瓷及其制备方法和应用
US4840763A (en) Method for the production of reinforced composites
CN105645967B (zh) 一种高度定向通孔多孔氮化硅陶瓷材料的制备方法
CN110732672B (zh) 一种梯度金属基多孔材料及其制备方法和应用
Moritz et al. Ceramic bodies with complex geometries and ceramic shells by freeze casting using ice as mold material
JPH01172290A (ja) 耐熱性複合体及びその製造方法
CN103274693A (zh) 一种具有新型孔壁结构的多孔碳化硅陶瓷及其制备方法
CN103819197B (zh) 一种异形陶瓷的制备方法
CN108178656A (zh) 一种高孔隙率多孔陶瓷微球及其制备方法
US5340532A (en) Method for forming ceramic powders by temperature induced flocculation
EP3652266B1 (en) Phase-change material and method for producing same
CN104496522A (zh) 一种制备氧化铝/莫来石泡沫陶瓷的方法
CN109219575B (zh) 碳纳米管结构体及其制造方法
CN110698186B (zh) 均质化氧化铝陶瓷及其制备方法
KR100434830B1 (ko) 다중 입도분포 분말의 균일 원심성형체 제조방법
US8425809B2 (en) Deformable granule production
CN111138203A (zh) 原位固化的高固含量陶瓷浆料的制备方法及其应用
Xu et al. Temperature‐Induced Gelation of Concentrated Sialon Suspensions
CN1206069C (zh) 静磁场中功能梯度材料压滤成型制备方法
CN117486615A (zh) 一种真空微重力悬浮烧结制备SiC陶瓷及复合材料的方法
Li et al. Rapid coagulation of silicon carbide slurry via direct coagulation casting
CN101423379B (zh) 磷酸盐定向排列孔结构多孔陶瓷的制备方法
CN106866157A (zh) 一种大尺寸塞隆陶瓷制品的成形方法
CN111410540A (zh) 一种定向孔结构多孔氮化硅陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant