CN108473428B - Preparation method of pyridine derivative compound, intermediate and crystal form thereof - Google Patents
Preparation method of pyridine derivative compound, intermediate and crystal form thereof Download PDFInfo
- Publication number
- CN108473428B CN108473428B CN201780005142.9A CN201780005142A CN108473428B CN 108473428 B CN108473428 B CN 108473428B CN 201780005142 A CN201780005142 A CN 201780005142A CN 108473428 B CN108473428 B CN 108473428B
- Authority
- CN
- China
- Prior art keywords
- compound
- acid
- solvent
- sodium
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- -1 pyridine derivative compound Chemical group 0.000 title claims abstract description 22
- 239000013078 crystal Chemical group 0.000 title abstract description 32
- 150000001875 compounds Chemical class 0.000 claims abstract description 122
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 73
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 60
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 52
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 48
- 238000006243 chemical reaction Methods 0.000 claims description 48
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 34
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 33
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 27
- 239000002904 solvent Substances 0.000 claims description 27
- 239000002585 base Substances 0.000 claims description 18
- 239000012046 mixed solvent Substances 0.000 claims description 17
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 17
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 16
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical group [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 claims description 16
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 15
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 claims description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 14
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical group [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 10
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 10
- 239000007810 chemical reaction solvent Substances 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N NMP Substances CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 claims description 8
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 7
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052794 bromium Inorganic materials 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 125000005842 heteroatom Chemical group 0.000 claims description 6
- 229910052740 iodine Inorganic materials 0.000 claims description 6
- 230000035484 reaction time Effects 0.000 claims description 6
- 150000002576 ketones Chemical class 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 5
- 235000011181 potassium carbonates Nutrition 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- QSLPNSWXUQHVLP-UHFFFAOYSA-N $l^{1}-sulfanylmethane Chemical compound [S]C QSLPNSWXUQHVLP-UHFFFAOYSA-N 0.000 claims description 4
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 claims description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 4
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims description 4
- 229910000024 caesium carbonate Inorganic materials 0.000 claims description 4
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000005453 ketone based solvent Substances 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 claims description 4
- LZWQNOHZMQIFBX-UHFFFAOYSA-N lithium;2-methylpropan-2-olate Chemical compound [Li+].CC(C)(C)[O-] LZWQNOHZMQIFBX-UHFFFAOYSA-N 0.000 claims description 4
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 4
- 150000007524 organic acids Chemical group 0.000 claims description 4
- 125000002524 organometallic group Chemical group 0.000 claims description 4
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 4
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 4
- 239000011736 potassium bicarbonate Substances 0.000 claims description 4
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 4
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000006467 substitution reaction Methods 0.000 claims description 4
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical group [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 3
- 239000001530 fumaric acid Substances 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 3
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 claims description 3
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical group C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 claims description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 claims description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 2
- 239000005456 alcohol based solvent Substances 0.000 claims description 2
- 150000001298 alcohols Chemical group 0.000 claims description 2
- 239000003513 alkali Substances 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 150000001277 beta hydroxy acids Chemical class 0.000 claims description 2
- 239000004210 ether based solvent Substances 0.000 claims description 2
- 125000001072 heteroaryl group Chemical group 0.000 claims description 2
- JCIVHYBIFRUGKO-UHFFFAOYSA-N lithium;2,2,6,6-tetramethylpiperidine Chemical compound [Li].CC1(C)CCCC(C)(C)N1 JCIVHYBIFRUGKO-UHFFFAOYSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 2
- 239000011976 maleic acid Substances 0.000 claims description 2
- IWYDHOAUDWTVEP-UHFFFAOYSA-N mandelic acid Chemical compound OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 claims description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 2
- 125000001624 naphthyl group Chemical group 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 229910000105 potassium hydride Inorganic materials 0.000 claims description 2
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 claims description 2
- 229910000104 sodium hydride Inorganic materials 0.000 claims description 2
- 239000012312 sodium hydride Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims 2
- 230000001476 alcoholic effect Effects 0.000 claims 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 claims 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims 1
- 235000017557 sodium bicarbonate Nutrition 0.000 claims 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 abstract description 8
- 150000003839 salts Chemical class 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 53
- 239000007787 solid Substances 0.000 description 33
- 238000003756 stirring Methods 0.000 description 30
- 201000008827 tuberculosis Diseases 0.000 description 22
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 20
- 238000012360 testing method Methods 0.000 description 19
- 239000003814 drug Substances 0.000 description 15
- 239000000725 suspension Substances 0.000 description 15
- 229940079593 drug Drugs 0.000 description 14
- 239000012043 crude product Substances 0.000 description 13
- 238000001914 filtration Methods 0.000 description 13
- 239000012074 organic phase Substances 0.000 description 12
- 238000005160 1H NMR spectroscopy Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 230000001580 bacterial effect Effects 0.000 description 11
- 239000012065 filter cake Substances 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 9
- 238000010992 reflux Methods 0.000 description 9
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 201000009671 multidrug-resistant tuberculosis Diseases 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 8
- 229920000053 polysorbate 80 Polymers 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-Tetramethylpiperidine Substances CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 description 5
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- YNSLQXQEESPPMZ-UHFFFAOYSA-N 3-benzyl-5-(4-chlorophenyl)-2-methoxypyridine Chemical compound C(C1=CC=CC=C1)C=1C(=NC=C(C=1)C1=CC=C(C=C1)Cl)OC YNSLQXQEESPPMZ-UHFFFAOYSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000012295 chemical reaction liquid Substances 0.000 description 4
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 229960003350 isoniazid Drugs 0.000 description 4
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 229960001225 rifampicin Drugs 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 238000013112 stability test Methods 0.000 description 4
- RHMZJQYDQWHPFQ-FQLXRVMXSA-N (1R,2S)-1-[5-(4-chlorophenyl)pyridin-2-yl]-2-(3,5-dichlorophenyl)-4-(dimethylamino)-1-phenylbutan-2-ol Chemical compound ClC1=CC=C(C=C1)C=1C=CC(=NC=1)[C@H]([C@](CCN(C)C)(O)C1=CC(=CC(=C1)Cl)Cl)C1=CC=CC=C1 RHMZJQYDQWHPFQ-FQLXRVMXSA-N 0.000 description 3
- SXFDISZTCVCLOG-UHFFFAOYSA-N 1-(3,5-dichlorophenyl)-3-(dimethylamino)propan-1-one Chemical compound ClC=1C=C(C=C(C=1)Cl)C(CCN(C)C)=O SXFDISZTCVCLOG-UHFFFAOYSA-N 0.000 description 3
- CXDXSNWZXJVDMC-UHFFFAOYSA-N 3-(dimethylamino)-1-naphthalen-1-ylpropan-1-one Chemical compound C1=CC=C2C(C(=O)CCN(C)C)=CC=CC2=C1 CXDXSNWZXJVDMC-UHFFFAOYSA-N 0.000 description 3
- BBLCKTDXTBTHFR-UHFFFAOYSA-N 3-bromo-5-(4-chlorophenyl)-2-methoxypyridine Chemical compound BrC=1C(=NC=C(C=1)C1=CC=C(C=C1)Cl)OC BBLCKTDXTBTHFR-UHFFFAOYSA-N 0.000 description 3
- MFGIPJHITFHLDJ-UHFFFAOYSA-N 5-(4-chlorophenyl)-2-methoxypyridine Chemical compound C1=NC(OC)=CC=C1C1=CC=C(Cl)C=C1 MFGIPJHITFHLDJ-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- 229910002483 Cu Ka Inorganic materials 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- UNKQVRFPUYCEJA-UHFFFAOYSA-N [Zn]CC1=CC=CC=C1 Chemical compound [Zn]CC1=CC=CC=C1 UNKQVRFPUYCEJA-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 239000002054 inoculum Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000012452 mother liquor Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000003880 polar aprotic solvent Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001757 thermogravimetry curve Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- MMUCHWPQRGEHDV-TWJUONSBSA-N (1S,2R)-1-[5-(4-chlorophenyl)-2-methoxypyridin-3-yl]-4-(dimethylamino)-2-naphthalen-1-yl-1-phenylbutan-2-ol Chemical compound ClC1=CC=C(C=C1)C=1C=C(C(=NC=1)OC)[C@@H]([C@@](CCN(C)C)(O)C1=CC=CC2=CC=CC=C12)C1=CC=CC=C1 MMUCHWPQRGEHDV-TWJUONSBSA-N 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- MMUCHWPQRGEHDV-UHFFFAOYSA-N 1-[5-(4-chlorophenyl)-2-methoxypyridin-3-yl]-4-(dimethylamino)-2-naphthalen-1-yl-1-phenylbutan-2-ol Chemical compound ClC1=CC=C(C=C1)C=1C=C(C(=NC=1)OC)C(C(CCN(C)C)(O)C1=CC=CC2=CC=CC=C12)C1=CC=CC=C1 MMUCHWPQRGEHDV-UHFFFAOYSA-N 0.000 description 2
- QQLIGMASAVJVON-UHFFFAOYSA-N 1-naphthalen-1-ylethanone Chemical compound C1=CC=C2C(C(=O)C)=CC=CC2=C1 QQLIGMASAVJVON-UHFFFAOYSA-N 0.000 description 2
- XADICJHFELMBGX-UHFFFAOYSA-N 5-bromo-2-methoxypyridine Chemical compound COC1=CC=C(Br)C=N1 XADICJHFELMBGX-UHFFFAOYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 241001093575 Alma Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- MMUCHWPQRGEHDV-ZFEZZJPFSA-N ClC1=CC=C(C=C1)C=1C=C(C(=NC=1)OC)[C@H]([C@](CCN(C)C)(O)C1=CC=CC2=CC=CC=C12)C1=CC=CC=C1 Chemical compound ClC1=CC=C(C=C1)C=1C=C(C(=NC=1)OC)[C@H]([C@](CCN(C)C)(O)C1=CC=CC2=CC=CC=C12)C1=CC=CC=C1 MMUCHWPQRGEHDV-ZFEZZJPFSA-N 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- 241000187480 Mycobacterium smegmatis Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- RBHJBMIOOPYDBQ-UHFFFAOYSA-N carbon dioxide;propan-2-one Chemical compound O=C=O.CC(C)=O RBHJBMIOOPYDBQ-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000011981 development test Methods 0.000 description 2
- XHFGWHUWQXTGAT-UHFFFAOYSA-N dimethylamine hydrochloride Natural products CNC(C)C XHFGWHUWQXTGAT-UHFFFAOYSA-N 0.000 description 2
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229960000285 ethambutol Drugs 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 2
- 238000004537 pulping Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 239000005051 trimethylchlorosilane Substances 0.000 description 2
- ZTGDNLUYSNURKE-VMPREFPWSA-N (1S,2R)-1-[5-(4-chlorophenyl)pyridin-2-yl]-2-(3,5-difluorophenyl)-4-(dimethylamino)-1-phenylbutan-2-ol Chemical compound CN(C)CC[C@](C1=CC(=CC(=C1)F)F)([C@@H](C2=CC=CC=C2)C3=NC=C(C=C3)C4=CC=C(C=C4)Cl)O ZTGDNLUYSNURKE-VMPREFPWSA-N 0.000 description 1
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 1
- VCOPTHOUUNAYKQ-WBTCAYNUSA-N (3s)-3,6-diamino-n-[[(2s,5s,8e,11s,15s)-15-amino-11-[(6r)-2-amino-1,4,5,6-tetrahydropyrimidin-6-yl]-8-[(carbamoylamino)methylidene]-2-(hydroxymethyl)-3,6,9,12,16-pentaoxo-1,4,7,10,13-pentazacyclohexadec-5-yl]methyl]hexanamide;(3s)-3,6-diamino-n-[[(2s,5s,8 Chemical compound N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](C)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1.N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1 VCOPTHOUUNAYKQ-WBTCAYNUSA-N 0.000 description 1
- CAYQIZIAYYNFCS-UHFFFAOYSA-N (4-chlorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(Cl)C=C1 CAYQIZIAYYNFCS-UHFFFAOYSA-N 0.000 description 1
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- JGMBBKVZFUHCJC-UHFFFAOYSA-N 1-(3,5-dichlorophenyl)ethanone Chemical compound CC(=O)C1=CC(Cl)=CC(Cl)=C1 JGMBBKVZFUHCJC-UHFFFAOYSA-N 0.000 description 1
- VSTXCZGEEVFJES-UHFFFAOYSA-N 1-cycloundecyl-1,5-diazacycloundec-5-ene Chemical compound C1CCCCCC(CCCC1)N1CCCCCC=NCCC1 VSTXCZGEEVFJES-UHFFFAOYSA-N 0.000 description 1
- WBJWXIQDBDZMAW-UHFFFAOYSA-N 2-hydroxynaphthalene-1-carbonyl chloride Chemical compound C1=CC=CC2=C(C(Cl)=O)C(O)=CC=C21 WBJWXIQDBDZMAW-UHFFFAOYSA-N 0.000 description 1
- UTFLWXYUEKSZSN-UHFFFAOYSA-N 5-(4-chlorophenyl)-2-methoxy-3-phenylpyridine Chemical compound COC1=C(C=C(C=N1)C2=CC=C(C=C2)Cl)C3=CC=CC=C3 UTFLWXYUEKSZSN-UHFFFAOYSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- 108010065839 Capreomycin Proteins 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 241000867607 Chlorocebus sabaeus Species 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- 241001646725 Mycobacterium tuberculosis H37Rv Species 0.000 description 1
- 108700035964 Mycobacterium tuberculosis HsaD Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- PYHXGXCGESYPCW-UHFFFAOYSA-N alpha-phenylbenzeneacetic acid Natural products C=1C=CC=CC=1C(C(=O)O)C1=CC=CC=C1 PYHXGXCGESYPCW-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000001355 anti-mycobacterial effect Effects 0.000 description 1
- 239000003926 antimycobacterial agent Substances 0.000 description 1
- 229940124976 antitubercular drug Drugs 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 229960000508 bedaquiline Drugs 0.000 description 1
- QUIJNHUBAXPXFS-XLJNKUFUSA-N bedaquiline Chemical compound C1([C@H](C2=CC3=CC(Br)=CC=C3N=C2OC)[C@@](O)(CCN(C)C)C=2C3=CC=CC=C3C=CC=2)=CC=CC=C1 QUIJNHUBAXPXFS-XLJNKUFUSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- 229960004602 capreomycin Drugs 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- QVFWZNCVPCJQOP-UHFFFAOYSA-N chloralodol Chemical compound CC(O)(C)CC(C)OC(O)C(Cl)(Cl)Cl QVFWZNCVPCJQOP-UHFFFAOYSA-N 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- GKIRPKYJQBWNGO-OCEACIFDSA-N clomifene Chemical compound C1=CC(OCCN(CC)CC)=CC=C1C(\C=1C=CC=CC=1)=C(\Cl)C1=CC=CC=C1 GKIRPKYJQBWNGO-OCEACIFDSA-N 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 1
- 229960003077 cycloserine Drugs 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 229940072185 drug for treatment of tuberculosis Drugs 0.000 description 1
- 208000015355 drug-resistant tuberculosis Diseases 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 229960002001 ethionamide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005558 fluorometry Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- GEVPUGOOGXGPIO-UHFFFAOYSA-N oxalic acid;dihydrate Chemical compound O.O.OC(=O)C(O)=O GEVPUGOOGXGPIO-UHFFFAOYSA-N 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229940049413 rifampicin and isoniazid Drugs 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Substances C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000814 tuberculostatic agent Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
- C07D213/127—Preparation from compounds containing pyridine rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
- C07D213/16—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
- C07D213/16—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
- C07D213/18—Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/36—Radicals substituted by singly-bound nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/64—One oxygen atom attached in position 2 or 6
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pyridine Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A preparation method, a crystal form, an intermediate compound and preparation methods of a salt of a compound (1R,2S) -1- (5- (4-chlorphenyl) -2-methoxypyridine-3-yl) -4-dimethylamino-2-aryl-1-phenylbutan-2-ol in a formula (I) for resisting mycobacterium tuberculosis.
Description
Technical Field
The invention relates to a preparation method and a crystal form of a salt of high-purity (1R,2S) -1- (5- (4-chlorphenyl) -2-methoxypyridine-3-yl) -4-dimethylamino-2-aryl-1-phenylbutan-2-ol, and also relates to an intermediate compound for preparing a compound shown in a formula (I) and a preparation method thereof.
Background
Mycobacterium tuberculosis is the causative agent of tuberculosis. As a globally widespread and life-threatening infectious disease, according to the statistics of the world health organization, about more than 800 million people are infected each year, and 200 million people die from tuberculosis. Over the past decade, tuberculosis cases have grown worldwide at a rate of 20%, with this rising amplitude being particularly pronounced in poverty-stricken areas. If this trend progresses as such, cases of tuberculosis will likely continue to grow at 41% rise in the next two decades. Tuberculosis has been second only to aids for fifty years after the initial application of chemotherapy, the leading infectious disease that causes death in adults. Tuberculosis causes the appearance of a plurality of drug-resistant strains, and simultaneously achieves a symbiotic relationship with AIDS. People who are positive in the HIV test and infected with tuberculosis have 30 times more probability of developing activated tuberculosis than people who are negative in the HIV test. On average, one of every three patients who die of aids is caused by tuberculosis.
Current treatments for tuberculosis employ a combination of multiple agents. For example, one formulation recommended by the U.S. public health agency involves first using isoniazid, rifampin, pyrazinamide and ethambutol in combination for two months, and then using isoniazid and rifampin alone in combination for four months. For patients infected with AIDS, the use of the pharmaceutical composition needs to be delayed to seven months. For patients infected with multi-drug resistant tuberculosis, the pharmaceutical composition also needs to be added with other medicaments, such as ethambutol tablet, streptomycin, kanamycin, amikacin, capreomycin, ethionamide, cycloserine, ciprofloxacin and ofloxacin.
New therapies that could improve current treatments are highly desirable, such as shorter treatment cycles, and fewer supervised treatment modalities for the benefit of the patient and the provider. In the first two months of treatment, the combined four drugs collectively inhibited the bacteria, thereby greatly reducing the number of bacteria and rendering the patient non-infectious. In the next 4-6 months, the bacteria existing in the patient are eliminated, and the possibility of relapse is reduced. A potent bactericidal agent that can shorten the treatment period to two months or less would be of great benefit. At the same time, the drug should require less supervision. Clearly, drugs that both shorten treatment time and reduce frequency of supervision may provide the greatest benefit.
The complications of infectious tuberculosis cause multidrug-resistant tuberculosis. Worldwide, 4% of cases are associated with multidrug-resistant tuberculosis. Multi-drug resistant tuberculosis is resistant to isoniazid and rifampin, among the four standard therapeutic drugs. If no treatment is available, or if the common standard therapy for tuberculosis is used, multidrug-resistant tuberculosis can be fatal. Therefore, the treatment of this disease requires the use of second-line drugs for up to two years. Most of these second-line drugs are toxic, expensive, and have little efficacy. Patients with infectious drug-resistant tuberculosis continue to spread the disease due to the lack of effective treatment. Therefore, for multi-drug resistant tuberculosis, a new drug having a novel mechanism of action is highly demanded.
Application No.: the 201410335196.X patent describes a new class of pyridine derivatives and their use as antimycobacterial agents for the treatment of tuberculosis, especially multi-drug resistant tuberculosis. The structure is shown as formula (B-1):
disclosure of Invention
The invention provides a process for the preparation of a compound of formula (I),
which comprises the following steps:
wherein,
R1selected from the group consisting of optionally substituted by 0, 1, 2 or 3R01Substituted 6-to 12-membered aryl, 6-to 12-membered heteroaryl, 6-to 12-membered aryl-alkylene, and 6-to 12-membered heteroaryl-alkylene;
HX is selected from organic or inorganic acid;
the base A is selected from an alkali metal base, an alkaline earth metal base, or an organometallic base;
the molar use ratio of the compound (II) to the alkali A is 1: 1-5;
the molar use ratio of the compound (II) to the compound (III) is 1: 1-2;
the reaction solvent is selected from a single ether solvent or a mixed solvent of several ether solvents;
the amount of the reaction solvent is 3-20 times of the weight of the compound (IV);
the reaction temperature is-80-0 ℃;
the reaction time is 1-24 hours;
R01selected from F, Cl, Br, I, CN, OH, CH (CH)3)2、C(CH3)3、N(CH3)2、NH(CH3)、NH2、CHO、COOH、C(=O)NH2、S(=O)NH2、S(=O)2NH2、CF3、CF3O、(NH2)CH2、(HO)CH2、CH3C(=O)、CH3OC(=O)、CH3S(=O)2、CH3S(=O);
Said "hetero" represents a heteroatom selected from N, O or S;
the number of heteroatoms is independently selected from 1, 2 or 3.
In some embodiments of the invention, R is as defined above1Optionally substituted by 0, 1, 2 or 3R01Substituted naphthyl or phenyl.
In some embodiments of the present invention, the alkali metal base is selected from lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, and/or potassium bicarbonate.
In some embodiments of the present invention, the alkaline earth metal base is selected from sodium hydride, potassium hydride, and/or calcium hydride.
In some embodiments of the present invention, the organometallic base is selected from n-butyllithium, lithium diisopropylamide, lithium 2,2,6, 6-tetramethylpiperidine, lithium bis (trimethylsilyloxy) amide, sodium methoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium ethoxide, and/or aluminum isopropoxide.
In some embodiments of the present invention, the molar ratio of the compound (II) to the base a is 1: 1.2-2.
In some embodiments of the present invention, the reaction temperature is-80 to-60 ℃.
In some embodiments of the present invention, the reaction time is 2 to 12 hours.
In some embodiments of the present invention, the reaction time is 4 to 8 hours.
In some embodiments of the present invention, the reaction solvent is selected from tetrahydrofuran, diethyl ether and/or isopropyl ether.
In some embodiments of the present invention, the amount of the reaction solvent is 5 to 10 times of the weight of the compound (IV).
In some embodiments of the present invention, the above preparation method further comprises the following reaction scheme:
in some embodiments of the present invention, the above preparation method further comprises the following reaction scheme:
in some embodiments of the present invention, the above preparation method further comprises the following reaction scheme:
wherein,
the base B is selected from lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, sodium methoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium ethoxide and aluminum isopropoxide;
the reaction solvent is selected from a mixed solvent of a ketone solvent, an alcohol solvent or an ester solvent and a polar aprotic solvent.
The molar ratio of the chiral acid to the compound (IV) is 0.5-1.5;
the chiral acid is selected from alpha-hydroxy propionic acid, alpha-hydroxy succinic acid, alpha, beta-dihydroxy succinic acid, alpha-hydroxy phenylacetic acid, beta-hydroxy acid and a compound (VI);
n is 0, 1 or 2;
R2、R4each independently selected from H, F, Cl, Br, I, or optionally substituted by 0, 1, 2 or 3R01Substituted: c1-8Alkoxy radical, C1-8Alkyl, Si (Ph)36-12 membered aryl;
R3、R5each independently selected from H, F, Cl, Br, I, NO2OH, or selected from optionally substituted by 0, 1, 2 or 3R01Substituted: c1-8Alkoxy radical, C1-8Alkyl, 6-12 membered aryl;
optionally, R substituted at positions 13 and 143Or R substituted in positions 14 and 153Can be linked together to form a 6-to 12-membered aryl ring;
optionally substituted in positions 8 and 9R5Or R substituted in positions 9 and 105Can be linked together to form a 6-to 12-membered aryl ring.
In some embodiments of the invention, the molar ratio of the chiral acid to the compound (IV) is 0.8 to 1.2.
In some embodiments of the invention, the molar ratio of the chiral acid to compound (IV) is 1.0.
In some embodiments of the present invention, in the above method for preparing compound (V), the ketone solvent is selected from acetone and/or methyl ethyl ketone.
In some embodiments of the present invention, in the above method for preparing compound (V), the alcohol solvent is selected from ethanol, methanol, isopropanol and/or tert-butanol.
In some embodiments of the present invention, in the above method for preparing compound (V), the ester solvent is selected from ethyl acetate and/or tert-butyl acetate.
In some embodiments of the present invention, in the above method for preparing compound (V), the polar aprotic solvent is selected from DMF, DMSO, DMA, and/or NMP.
In some embodiments of the present invention, the above method for preparing compound (V), wherein the mixed solvent combination is a mixed solvent of ethanol and DMF or a mixed solvent of ethanol and DMSO.
In some embodiments of the invention, the solvent for preparing compound (V) from compound (IV) is selected from: acetone, methyl ethyl ketone, ethanol, methanol, isopropanol, tert-butanol, ethyl acetate, tert-butyl acetate, DMF, DMSO, DMA and/or NMP, or a mixture thereof.
In some embodiments of the present invention, in the method for preparing the compound (V), the volume ratio of the ketone, alcohol or ester solvent to the polar aprotic solvent is 1: 0.03-0.1.
In some embodiments of the present invention, the amount of the solvent used in the method for preparing compound (V) is 15 to 50 times the weight of compound (IV).
In some embodiments of the invention, R is as defined above3、R5Each independently selected from H.
In some embodiments of the invention, R is as defined above2Substitution is in the 2 position.
In some embodiments of the invention, R is as defined above4The substitution is in position 6.
In some embodiments of the invention, R is as defined above2、R4Each independently selected from: H. si (Ph)3、
In some embodiments of the present invention, the above preparation method further comprises the following reaction scheme:
wherein HX is selected from organic or inorganic acids.
In some embodiments of the invention, the HX is selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, citric acid, maleic acid, and fumaric acid
In some embodiments of the present invention, the above preparation method further comprises the following reaction scheme:
the present invention provides compounds of the formula:
the invention also provides a compound I-1 shown in the following formula,
the invention provides a crystal form I of a compound I-1, and an XRPD pattern of the crystal form I is shown as a figure 1.
In some embodiments of the invention, XRPD pattern analysis data for form I is shown in table-1.
Table-1 form I XRPD pattern analysis data
The invention provides a crystal form II of a compound I-1, and an XRPD pattern of the crystal form II is shown in figure 4.
In some embodiments of the invention, the XRPD pattern analysis data for the above form II is shown in table-2.
Table-2 XRPD pattern analysis data for crystalline form II
NO. | 2-Theta | d(A) | I% | NO. | 2-Theta | d(A) | I% |
1 | 4.903 | 18.0073 | 22.0 | 5 | 12.263 | 7.2114 | 12.2 |
2 | 8.595 | 10.2792 | 100.0 | 6 | 12.778 | 6.9219 | 24.8 |
3 | 10.959 | 8.0665 | 12.5 | 7 | 15.560 | 5.6902 | 15.7 |
4 | 11.906 | 7.4269 | 14.1 | 8 | 21.700 | 4.0920 | 7.0 |
The invention provides a III crystal form of compound I-1, and an XRPD pattern is shown as figure 7.
In some embodiments of the invention, the XRPD pattern analysis data for the crystalline form III above is shown in table-3.
Table-3 XRPD pattern analysis data for form III
The invention provides a preparation method of the crystal form I, which comprises the steps of adding any one form of a compound I-1 into a solvent for crystallization, wherein the solvent is selected from alcohols, ketone solvents or a mixed solvent of the alcohol solvents and the ketone solvents; the dosage of the solvent is 3-50 times of the weight of the compound I-1.
In some embodiments of the present invention, in the above method for preparing form I, the alcohol solvent is selected from methanol, ethanol, isopropanol and/or n-butanol.
In some embodiments of the present invention, in the above method for preparing crystalline form I, the ketone solvent is selected from acetone and/or methyl ethyl ketone.
In some embodiments of the present invention, in the preparation method of the crystal form I, the mixed solvent is a mixed solvent of methanol and acetone.
In some schemes of the invention, in the preparation method of the crystal form I, the volume ratio of the mixed solvent of methanol and acetone is 1: 5-30.
Definitions and description:
as used herein, the following terms and phrases are intended to have the following meanings unless otherwise indicated. A particular phrase or term should not be considered as ambiguous or unclear without special definition, but rather construed in a generic sense. When a trade name appears herein, it is intended to refer to its corresponding commodity or its active ingredient.
The intermediate compounds of the present invention may be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, embodiments formed by combinations thereof with other chemical synthetic methods, and equivalents thereof well known to those skilled in the art, with preferred embodiments including, but not limited to, the examples of the present invention.
The chemical reactions of the embodiments of the present invention are carried out in a suitable solvent that is compatible with the chemical changes of the present invention and the reagents and materials required therefor. In order to obtain the compounds of the present invention, it is sometimes necessary for a person skilled in the art to modify or select the synthesis steps or reaction schemes based on the existing embodiments.
The present invention will be specifically described below by way of examples, which are not intended to limit the present invention in any way.
All solvents used in the present invention are commercially available and can be used without further purification. The reaction is generally carried out under inert nitrogen in an anhydrous solvent. Proton NMR data were recorded on a Bruker Avance III 400(400MHz) spectrometer with chemical shifts expressed as (ppm) at the low field of tetramethylsilane. Mass spectra were measured on an agilent 1200 series plus 6110(& 1956A). LC/MS or Shimadzu MS contain a DAD: SPD-M20A (LC) and Shimadzu Micromass 2020 detector. The mass spectrometer was equipped with an electrospray ion source (ESI) operating in either positive or negative mode.
The invention employs the following abbreviations: DMF represents N, N-dimethylformamide; DMA represents N, N-dimethylacetamide; DMSO represents dimethyl sulfoxide; NMP stands for N-methylpyrrolidone; pd (OAc)2Represents palladium acetate; pd (dppf) Cl2Represents [1, 1' -bis (diphenylphosphino) ferrocene]Palladium dichloride; pd2(dba)3Represents tris (dibenzylideneacetone) dipalladium; pd (PPh)3)4Represents a tetra-triphenylphosphine bar; pd (PP)h3)2Cl2Represents dichlorobistriphenylphosphine palladium; et (Et)3N represents triethylamine; DIPEA stands for diisopropylethylamine; DBU represents 1, 8-diazabicycloundec-7-ene; AcOH represents glacial acetic acid; na (Na)2SO3Represents sodium sulfite; MeOH represents methanol; TMP represents 2,2,6, 6-tetramethylpiperidine; the pH represents the hydrogen ion concentration index.
The compound is made by hand orThe software names, and the commercial compounds are under the supplier catalog name.
Powder X-ray diffraction (X-ray powder diffractometer, XRPD)
The instrument model is as follows: bruker D8 advanced X-ray diffractometer
And (3) testing conditions are as follows: the detailed XRPD parameters are as follows:
tube voltage: 40kV, tube current: 40mA.
Emission slit: 1deg.
Height limiting slit: 10mm
Scattering slit: 1deg.
Receiving a slit: 0.15mm
A monochromator: fixed monochromator
Scanning range: 4-40deg.
Scanning speed: 10deg/min
Differential thermal analysis (DSC)
The instrument model is as follows: TA Q2000 differential scanning calorimeter
And (3) testing conditions are as follows: a sample (-1 mg) was placed in a DSC aluminum pan for testing by the method: the temperature is 25-300 ℃, and the heating rate is 10 ℃/min.
Thermogravimetric analysis (Thermal Gravimetric Analyzer, TGA)
The instrument model is as follows: TA Q5000IR thermogravimetric analyzer
And (3) testing conditions are as follows: a sample (2-5 mg) is placed in a TGA platinum pan for testing, and the method comprises the following steps: the room temperature is 300 ℃ below zero, and the heating rate is 10 ℃/min.
Has the advantages that:
the crystal form I, the crystal form II and the crystal form III of the compound I-1 provided by the invention have stable properties, good solubility and good hygroscopicity, and have good pharmaceutical prospects.
The process for synthesizing the compound I-1 and the intermediate thereof overcomes the defects of high price of starting raw materials, high toxicity of used reagents, harsh reaction conditions, difficult separation and purification, difficult industrialization and the like in the prior art.
Specifically, the method comprises the following steps:
1) the raw materials of the method for preparing the compound I-1 are conventional or common reagents, are easily available in the market and have low price;
2) the intermediate compound (II) can be obtained from the compound (b) through two-step conventional reaction with higher total yield, the post-treatment is simple, and any column chromatography purification is not needed;
3) the compound (IV) is subjected to kinetic resolution by adopting organic acid, and the obtained compound (I) has high optical purity;
4) reagents used in the reactions in all the steps are small molecules, so that the purification is easy;
5) the palladium metal catalytic cross coupling is put in the former step, which is beneficial to controlling the palladium metal residue in the final product.
Drawings
FIG. 1 is an XRPD spectrum of form I Cu-Ka radiation of compound I-1.
FIG. 2 is a DSC of form I of compound I-1.
FIG. 3 is a TGA profile of crystalline form I of Compound I-1.
FIG. 4 is an XRPD spectrum of form II Cu-Ka radiation of compound I-1.
FIG. 5 is a DSC of form II of Compound I-1.
FIG. 6 is a TGA profile of the crystalline form II of Compound I-1.
FIG. 7 is an XRPD spectrum of form III Cu-Ka radiation of compound I-1.
FIG. 8 is a DSC of form III of Compound I-1.
FIG. 9 is a TGA profile of the crystalline form III of Compound I-1.
Detailed Description
For better understanding of the present invention, the following description is given with reference to specific examples, but the present invention is not limited to the specific embodiments.
The compound 1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbutan-2-ol has the following structure:
the compound has two chiral centers, as indicated by the formula (IV-1), and thus has four stereoisomers, namely (1R,2S) 1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbutan-2-ol, (1S, 2R)1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbutan-2-ol, (1R, 2R)1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbut-2-ol and (1S, 2S)1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbut-2-ol. The four stereoisomers consist of two sets of diastereomers, with the racemic mixture (1R,2S) 1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbutan-2-ol and (1S, 2R)1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbutan-2-ol being indicated as "a" in the examples section that follows; and the racemic mixture of (1R, 2R)1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbut-2-ol and (1S, 2S)1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbut-2-ol will be designated "B" in the subsequent example section.
The examples set forth below are all prepared, isolated and characterized by the methods described herein. The following examples are merely representative of the scope of the invention, and are not intended to be exhaustive. Having described the invention in detail and having disclosed specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
Example 1: preparation of Compound I-1
Scheme 1:
step 1: synthesis of 5- (4-chlorophenyl) -2-methoxypyridine
Potassium carbonate (5.51 kg, 39.89 mol, 1.5 eq) and Pd (dppf) Cl were added successively with stirring2(48.64 g, 66.48 mmol, 0.0025 equiv.) was added to a mixed solution of dioxane (25 l) and water (5 l) of 5-bromo-2-methoxypyridine (5.0 kg, 26.59 mol, 1.0 equiv.) and 4-chlorobenzeneboronic acid (4.49 kg, 28.72 mol, 1.08 equiv.), the nitrogen gas was replaced three times, and then the reaction system was heated to 95 to 100 ℃ and refluxed at this temperature for 16 hours. Stopping the reaction after HPLC (high performance liquid chromatography) detection of 5-bromo-2-methoxypyridine consumption is finished, cooling the reaction liquid to 25-30 ℃, removing dioxane through reduced pressure concentration, extracting residues twice (10L multiplied by 2) with ethyl acetate, combining organic phases, washing with saturated saline solution (5L multiplied by 2), and concentrating under reduced pressure at 35-40 ℃ to obtain a crude product of 5- (4-chlorophenyl) -2-methoxypyridine (6.5kg, which is a dark brown needle-shaped solid after cooling), wherein the crude product is directly used for the next reaction.1H NMR(400MHz,CDCl3)δ:8.37(d,J=2.1Hz,1H),7.75(dd,J=8.6,2.6Hz,1H),7.48-7.39(m,4H),6.83(d,J=8.6Hz,1H),4.00(s,3H)。
Step 2: synthesis of 3-bromo-5- (4-chlorophenyl) -2-methoxypyridine
5- (4-chlorophenyl) -2-methoxypyridine (6.5kg, 29.59 mol, 1.00 eq) was dissolved in DMF (21 l) at 25 ℃ and slowly added dropwise over a period of 4-5 hours to a solution of liquid bromine (11.82kg, 73.97mol, 2.50eq) in AcOH (7 l). After the addition was complete, the reaction mixture was stirred at 25 ℃ for 72 hours, TLC (petroleum ether) checked for about 20% of the starting material remaining, liquid bromine (2.5 kg, 0.5 eq.) was added further to the reaction system, stirring was continued for 48 hours, and HPLC checked for the presence of a small amount of starting material (about 7-9%) which was not fully reacted. The reaction was stopped and the reaction mixture was slowly added to saturated Na with stirring2SO3(6 kg) in aqueous solution, the temperature of the quenching process is controlled below 30 ℃. A large amount of pale yellow solid precipitated, filtered, and the filter cake was washed twice with water (20L. times.2), and the resulting crude product was slurried twice with MeOH (15L. times.2), filtered, and the filter cake was vacuum dried (50 ℃ C.) to give 3-bromo-5- (4-chlorophenyl) -2-methoxypyridine (6.7 kg, white solid, 84% of two-step total yield).1H NMR(400MHz,CDCl3)δ:8.28(d,J=2.3Hz,1H),8.00(d,J=2.3Hz,1H),7.43(s,4H),4.06(s,3H)。
And step 3: synthesis of 3-benzyl-5- (4-chlorophenyl) -2-methoxypyridine
Preparation of a benzyl zinc reagent: zinc powder (2.85 kg, 43.56 mol, 2.00 eq) was suspended in anhydrous tetrahydrofuran (21.78 l) under nitrogen, 1, 2-dibromoethane (33 ml, 0.02 eq) was added in one portion at room temperature, then heated to reflux, trimethylchlorosilane (28 ml, 0.01 eq) was added slowly (note: after addition, a large amount of bubbles were observed and the reflux was vigorous, if no bubbles were observed, trimethylchlorosilane was added), and refluxed at 66 ℃ for 30 minutes. Then the reaction solution was cooled to 25 ℃ and benzyl bromide (3.73 kg, 2.59 l, 21.78 mol, 1.00 eq) was slowly added dropwise to the reaction system (the dropping rate was such that the temperature of the system did not exceed 30 ℃) and stirring was continued at this temperature for 3 hours to obtain a tetrahydrofuran solution (concentration: 1 mol/l) of the benzyl zinc reagent, which was used directly in the next reaction.
A tetrahydrofuran solution (16L) of 3-bromo-5- (4-chlorophenyl) -2-methoxypyridine (5 kg, 16.75 moles, 1.00 eq) was added to the freshly prepared benzyl zinc reagent tetrahydrofuran solution (1 mol/L, 21.78L, 1.3 eq) at room temperature over 30-45 minutes under nitrogen, followed by Pd (PPh)3)2Cl2(59 g, 83.75 mmol, 0.005 eq.) the reaction was stirred at room temperature for 16 hours under nitrogen atmosphere (the reaction system self-exothermed, the temperature rose to 50 ℃ at the maximum, and then slowly cooled, the reaction became grayish black). TLC (petroleum ether/ethyl acetate) ═ 20/1) detection reaction was complete, the reaction solution was filtered over celite and silica gel, the filtrate was spin-dried to give a dark brown oil, then the crude product was extracted with ethyl acetate (15 l × 2), the suspended organic phase was filtered again, the filtrate was washed twice with saturated brine (10 l × 2), dried over anhydrous sodium sulfate, filtered, and concentrated at 35-40 ℃ under reduced pressure to give a brown oil, then the crude product was poured slowly into methanol (10 l) with vigorous stirring, a large amount of white precipitate was precipitated, filtered, and the filter cake was slurried with methanol (2 l × 2) to give 3-benzyl-5- (4-chlorophenyl) -2-methoxypyridine (3.0 kg, white solid, yield 58%).1H NMR(400MHz,CDCl3)δ:8.23(d,J=2.4Hz,1H),7.47(d,J=2.4Hz,1H),7.42-7.35(m,4H),7.35-7.29(m,2H),7.27-7.21(m,3H),4.02(s,3H),3.98(s,2H)。
And (2) a flow scheme:
and 4, step 4: synthesis of 3-dimethylamino-1- (naphthalen-1-yl) propan-1-one oxalate
Paraformaldehyde (2.67 kg, 29.67 mol) and dimethylamine hydrochloride (4.00 kg, 49.06 mol) were added sequentially to a solution of 1-acetonaphthone (5.00 kg, 29.38 mol) in ethanol (25 l) at 20-30 deg.c, a catalytic amount of hydrochloric acid (139.23 g, 3.82 mol, 136.5 ml) was added, the reaction mixture was heated to 78-80 deg.c for reflux reaction for 48 hours, and 1-acetonaphthone was substantially reacted to completion (content less than 5%) by HPLC. The reaction mixture was concentrated under reduced pressure to remove ethanol, the residue was dissolved in water (25 l), extracted twice with ethyl acetate (5 l × 2), the aqueous phase was adjusted to pH 9 to 10 with 1 mol/l aqueous sodium hydroxide solution, then extracted twice with ethyl acetate (15 l × 2), the organic phases of the second extraction were combined, washed with saturated brine (10 l × 2), and concentrated under reduced pressure to give crude 3- (dimethylamino) -1- (1-naphthyl) propan-1-one (7.41 kg, yellow oil). The above crude product was dissolved in ethyl acetate (25L), and then an ethanol solution (20L) of oxalic acid dihydrate (4.2 kg, 33.3 mol) was added dropwise to the above solution, stirred at room temperature for 1 hour, and a large amount of white solid was formed, followed by filtration and washing twice with ethyl acetate (5L × 2) to obtain the oxalate salt of 3- (dimethylamino) -1- (1-naphthyl) propan-1-one (6.5kg, 22.18 mol, yield 56%, white solid).1H NMR(400MHz,CDCl3)δ:8.59(d,J=8.5Hz,1H),8.00(d,J=8.3Hz,1H),7.89(d,J=7.3Hz,2H),7.64-7.48(m,3H),3.25(t,J=7.3Hz,2H),2.83(t,J=7.3Hz,2H),2.31(s,6H)。
And 5: synthesis of 3-dimethylamino-1- (naphthalen-1-yl) propan-1-one
3- (dimethylamino) -1- (naphthalen-1-yl) propyl-1-one oxalate (6.5kg, 20.4 mol) was added to water (20l) with stirring. Keeping the temperature at 0-10 ℃ and the rotating speed at 160-190 r/min to obtain white suspension. Cooled sodium hydroxide (1.8 kg, 45.0 mol)) Slowly adding a water (10 liters) solution into the suspension, and keeping the temperature at 0-10 ℃. The white suspension was gradually dissolved and a yellow oil was formed. After the addition of the sodium hydroxide solution was completed, stirring was continued for 1 hour. The reaction solution was extracted with ethyl acetate (15 l), the aqueous phase was extracted with ethyl acetate (10 l), and the combined organic phases were washed with saturated brine (20 l). The organic phase was concentrated under reduced pressure to constant weight to give 3- (dimethylamino) -1- (naphthalen-1-yl) propyl-1-one (3.4 kg, yellow oil, yield 70%).1H NMR(400MHz,CDCl3)δ:8.59(d,J=8.8Hz,1H),8.00(d,J=8.4Hz,1H),7.90(d,J=8.4Hz,2H),7.60-7.28(m,3H),3.26(t,J=7.2Hz,2H),2.83(t,J=7.2Hz,2H),2.31(s,6H)。
And (3) a flow path:
and 5: synthesis of 1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbutan-2-ol
N-butyl lithium titration: diphenylacetic acid (1.00 g, Alfa, 4.71 mmol) was added to tetrahydrofuran (10 mL) under nitrogen to form a colorless clear solution. The n-hexane solution of butyl lithium was slowly added dropwise to the above solution by a syringe. The phenomenon was observed, and the solution was partly yellow but quickly disappeared during the dropping. When a yellow solution was formed by dropping one drop and discoloration did not occur within half a minute, the volume of n-butyllithium was recorded (1.927 ml and 1.985 ml in the two cases, respectively, and the average volume was 1.95 ml), so that the n-butyllithium n-hexane solution was used at a concentration of 2.42 mol/l.
TMP (2.74 kg, 19.3 mol) was dissolved in anhydrous tetrahydrofuran (12 l), and n-butyllithium (8 l, 19.3 mol, 2.42 mol/l n-hexane solution) was added dropwise starting with cooling the reaction temperature to-65 ℃ with a dry ice acetone bath. Controlling the temperatureThe temperature is between-20 ℃ and-78 ℃, the color of the reaction system can be observed to gradually change from light yellow to dark red to finally form yellow suspension, and the stirring is continued for 30 minutes at the temperature. Then the reaction temperature was lowered to-75 ℃ to-80 ℃ and a solution of 3-benzyl-5- (4-chlorophenyl) -2-methoxypyridine (4.08 kg, 12.9 mol) in anhydrous tetrahydrofuran (6 l) was slowly added dropwise over 4 to 6 hours. The temperature is maintained between-65 ℃ and-78 ℃, and the color is dark red when the heat release is not intense. After the dropwise addition is completed, the anhydrous tetrahydrofuran (2.0 liters) solution of 3- (dimethylamino) -1- (naphthalene-1-yl) propyl-1-ketone (3.26 kg, 12.9 mol and 90% purity) is slowly dropwise added over 2-4 hours, the system heat release is obvious, and the flow rate is controlled to keep the temperature between minus 65 ℃ and minus 78 ℃. After the dripping is completed, the temperature is maintained between minus 65 ℃ and minus 78 ℃ and the stirring is continued for half an hour. HPLC detection shows that the content of 3-benzyl-5- (4-chlorophenyl) -2-methoxypyridine is less than 10%, the reaction solution is slowly added into saturated ammonium chloride solution (40L) to be quenched, separated, and the aqueous phase is extracted by ethyl acetate (30L). The combined organic phases are washed and separated by saturated saline (30L), the organic phases are concentrated under reduced pressure at 40-50 ℃ to obtain yellow oily crude products (13.5 kg), and the crude products are stirred for 16 hours at 5-15 ℃ by using an ethyl acetate/n-heptane (4L, 1/4) mixed solvent to separate out white solids. Filtering, pulping the filter cake with ethanol (4L. times.2), filtering, drying the filter cake under vacuum to constant weight (50 ℃, 24-48 hours) to obtain the target compound 1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbut-2-ol (1.83 kg, yield 23.23%) as a white solid, and determining by HPLC that the content of the isomer A is 88.3% and the content of the isomer B is 4.8%.1H NMR(400MHz,CDCl3)δ:8.85(d,J=2.3Hz,1H),8.64(d,J=8.7Hz,1H),8.32(d,J=2.4Hz,1H),7.98-7.86(m,2H),7.72-7.61(m,2H),7.57(d,J=8.4Hz,2H),7.54-7.43(m,3H),7.33(t,J=7.8Hz,1H),7.20-7.17(m,2H),6.95-6.87(m,3H),5.85(s,1H),4.17(s,3H),2.60-2.51(m,1H),2.19-2.04(m,2H),2.01-1.97(m,7H)。
Step 6: synthesis of (1R,2S) -1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalen-1-yl) -1-phenylbut-2-ol Compound I-2
The method comprises the following steps:
two parallel batches were fed: r- (-) -binaphthol phosphate (519.3 g, 1.49 mol) was suspended in DMSO (1.0 l), heated to 50 ℃ and dissolved with stirring until clear. 1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalenemethanol-1-yl) -1-phenylbutyl-2-ol (910 g, 1.49 mol, 88.3% isomer A) is added to a solution of ethanol (24 l) and a solution of the R- (-) -binaphthol phosphate prepared above in DMSO (1.0 l) is added dropwise over a period of 1 to 2 hours with stirring (196 rpm). It was observed that the insoluble particulate compounds began to dissolve, but a more viscous emulsion was formed. After the addition, the reaction solution is continuously stirred for 16 hours at 15-35 ℃. And heating the reaction liquid by using an oil bath until the reaction liquid is refluxed for 1 hour, stopping heating, cooling the reaction liquid to 15-35 ℃, and stirring for 16 hours. The reaction solution was filtered (two batches were combined), the viscosity of the solid was high, the filtration was slow, and the filter cake was slurried three times with ethanol (20 liters). The combined organic phases were concentrated to constant weight to give a yellow oil (5 kg), to this crude product were added water (10 l) and ethyl acetate (5 l), the system was adjusted to pH 11 with 10% cold aqueous sodium hydroxide solution, stirring was continued for 1 hour, then liquid separation was carried out, a large amount of solid precipitated in the system, and the solid obtained by filtration was isomer a (350 g, 97% purity, white solid). Concentrating the filtrate at 50 deg.C under reduced pressure to constant weight, adding ethanol (1.0L), stirring at 15-35 deg.C for 16 hr, filtering, washing the filter cake with ethanol (400 mL) for three times to obtain white solid, vacuum drying, and drying to constant weight (50 deg.C, 24-48 hr) to obtain compound I-2(400 g, purity 95%, ee value greater than 99.5%, yield 24%) as white solid.1H NMR(400MHz,CDCl3)δ:8.85(d,J=2.3Hz,1H),8.64(d,J=8.7Hz,1H),8.32(d,J=2.4Hz,1H),7.98-7.86(m,2H),7.72-7.61(m,2H),7.57(d,J=8.4Hz,2H),7.54-7.43(m,3H),7.33(t,J=7.8Hz,1H),7.20-7.17(m,2H),6.95-6.87(m,3H),5.85(s,1H),4.17(s,3H),2.60-2.51(m,1H),2.19-2.04(m,2H),2.01-1.97(m,7H)。
The method 2 comprises the following steps:
s-binaphthol phosphate (473 g, 1.35 mol) was suspended in DMSO (1.1L) and dissolved with stirring at 50 ℃ until clear. 1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalenemethanol-1-yl) -1-phenylbutyl-2-ol (780 g, 1.35 mol, isomer A content 93.5%) was suspended in a solution of ethanol (22 l). A DMSO (1.1 l) solution of the S-binaphthol phosphate prepared above was added dropwise with stirring (196 rpm) over a period of 1 hour. It was observed that the insoluble particulate compounds began to dissolve, but a more viscous emulsion was formed. After the addition, the reaction mixture was stirred at 15-35 ℃ for 16 hours. The reaction was heated to reflux with an oil bath and reflux was continued for 1 hour. Stopping heating the reaction solution, cooling to 15-35 ℃, and continuing stirring for 16 hours. The reaction solution is filtered, and the filtering is slow due to the high viscosity of the solid. Pulping the filter cake twice with ethanol (20L multiplied by 2), filtering to obtain a white solid, mixing the solid in water (3L) and ethyl acetate (3L), adding 10% sodium hydroxide aqueous solution to adjust the pH of the system to 10-11, continuing to stir for 1 hour, separating liquid, concentrating the organic phase to constant weight, adding ethanol (1L) and stirring for one hour, filtering, recrystallizing the obtained solid in ethanol (8L) (heating to 80 ℃, continuing to stir until clarifying and cooling to 15-35 ℃, continuing to stir for 16 hours), cooling and filtering, and drying the obtained white solid in vacuum to constant weight (50 ℃, 24-48 hours) to obtain a compound I-2(280 g, 99.2% purity, 99.1% ee value, 38% yield and white solid).1H NMR(400MHz,CDCl3)δ:8.85(d,J=2.3Hz,1H),8.64(d,J=8.7Hz,1H),8.32(d,J=2.4Hz,1H),7.98-7.86(m,2H),7.72-7.61(m,2H),7.57(d,J=8.4Hz,2H),7.54-7.43(m,3H),7.33(t,J=7.8Hz,1H),7.20-7.17(m,2H),6.95-6.87(m,3H),5.85(s,1H),4.17(s,3H),2.60-2.51(m,1H),2.19-2.04(m,2H),2.01-1.97(m,7H)。
And 7: (1R,2S) -1- (5- (4-chlorophenyl) -2-methoxypyridin-3-yl) -4- (dimethylamino) -2- (naphthalenemethanol-1-yl) -1-phenylbutyl-2-ol fumarate Compound I-1
Compound I-2(395 g, 0.735 mol) was added to a solution of fumaric acid (89.6 g, 0.772 mol) in isopropanol (7 l) over 1-2 hours, followed by activated carbon (10 g) and isopropanol (1.0 l). Heating to reflux and continuing to reflux for 0.5-1 hour, and dissolving the solid until the solid is clear. Heating the colorless clear solution obtained by hot filtration to reflux, keeping the reflux for 1 hour, stopping heating, slowly cooling to 60 ℃, beginning to precipitate solids, keeping the temperature unchanged, continuously stirring for 2 hours, then cooling to 15-35 ℃ for 4-6 hours, and continuously stirring for 16 hours, wherein a large amount of solids are precipitated. The reaction solution is filtered, and a filter cake is dried to constant weight (50 ℃ for 24-48 hours) in vacuum to obtain a target compound (1R,2S) -1- (5- (4-chlorphenyl) -2-methoxypyridine-3-yl) -4- (dimethylamino) -2- (naphthalenemethanol-1-yl) -1-phenylbutyl-2-ol fumarate, namely a compound I-1(398 g, the purity is 98.8%, the ee value is more than 99.5%, the yield is 82.9%, and white solid).1H NMR(400MHz,DMSO-d6)δ:8.61(d,J=8.2Hz,1H),8.50(br.s.,1H),8.40(br.s,1H),7.91(br.s.,2H),7.71(d,J=8.0Hz,2H),7.66(d,J=8.5Hz,2H),7.56-7.54(m,3H),7.35(t,J=7.7Hz,1H),7.17(d,J=6.3Hz,2H),6.92-6.80(m,3H),6.53(s,2H),5.73(s,1H),4.13(s,3H),2.37(m,1H),2.13(m,7H),2.07-1.97(m,1H),1.90(d,J=8.9Hz,1H)。
Example 2: preparation of Crystal form I of Compound I-1
365 g of the compound I-1 obtained in the step 7 is suspended in a mixed solvent of acetone/methanol (20/1, 730 ml), the mixture is pulped and stirred for 16-20 hours at the temperature of 15-35 ℃, the filtering is carried out, and the filter cake is dried in vacuum to constant weight (50 ℃, 24-48 hours) to obtain the I crystal form (265 g, the purity is 99.7%, the ee value is more than 99.5%, the yield is 72.6%, and white solid) of the compound I-1.
Example 3: preparation of Crystal form II of Compound I-1
Approximately 50mg of Compound I-1 form I was taken and 0.1mL tetrahydrofuran was added to make a suspension. The suspension sample was shaken on a homomixer (40 ℃) for 2 days (protected from light). The residual solid was centrifuged and dried in a vacuum oven at 40 ℃ overnight to give compound I-1 as crystalline form II.
Example 4: preparation of crystalline form III of Compound I-1
The preparation process of the crystal form III is the same as that of the crystal form II, and only the solvent tetrahydrofuran is changed into 0.2mL of acetone-water (2: 1).
Example 5: preparation of Compound 2
Step 11: 1- (3, 5-dichlorophenyl) -3- (dimethylamino) propan-1-one
3, 5-dichloroacetophenone (25.0 g, 132.25 mmol), dimethylamine hydrochloride (43.13 g, 529 mmol) and paraformaldehyde (15.49 g, 171.93 mmol) were mixed in ethanol (300 ml) at room temperature, concentrated hydrochloric acid (4.73 ml) was added, and the reaction mixture was heated to 80 ℃ and stirred for 48 to 52 hours. The reaction solution was concentrated under reduced pressure to give a yellow solid, which was dissolved with water (500 ml) and then extracted with dichloromethane (300 ml × 3). The aqueous phase was adjusted to pH-12 with 10% aqueous sodium hydroxide solution, then extracted with dichloromethane (200 ml × 3), the organic phases of the second extraction were combined and dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give the title compound 1- (3, 5-dichlorophenyl) -3- (dimethylamino) propan-1-one (24 g, purity 83%) as a yellow oily liquid.
Step 12: 1- (5- (4-chlorophenyl) -2-pyridyl) -2- (3, 5-dichlorophenyl) -4- (dimethylamino) -1-phenyl-butan-2-ol
TMP (16.41 g, 116.2 mmol) is dissolved in tetrahydrofuran (200 ml) under stirring at normal temperature, nitrogen is replaced, the temperature is reduced to-78 ℃ by a dry ice-acetone bath, n-butyllithium (46.48 ml, 116.2 mmol, 2.5 mol/l n-hexane solution) is slowly added dropwise, and the temperature is maintained between-78 ℃ and-20 ℃ for further stirring for 30 minutes. The temperature of the reaction system is reduced to-78 to-65 ℃, a tetrahydrofuran (200 ml) solution of 3-phenyl-5- (4-chlorophenyl) -2-methoxy-pyridine (24.0 g, 77.4 mmol) is added, stirring is continued for 10 minutes after the dropwise addition is finished, a tetrahydrofuran (100 mmol) solution of 1- (3, 5-dichlorophenyl) -3- (dimethylamino) propan-1-one (23.84 g, 77.47 mmol) is slowly added into the reaction system, and after the addition is finished, the reaction solution is continuously stirred for 20 minutes at-78 to-65 ℃. Quenched with saturated aqueous ammonium chloride (100 ml), then extracted with ethyl acetate (150 ml × 2), the organic phases were combined and washed with saturated brine (150 ml × 2), dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give the crude product. The crude product was subjected to column chromatography (petroleum ether/ethyl acetate. cndot. 10/1 to 1/1) to give a mixture of the title compound (1R,2S) -1- (5- (4-chlorophenyl) -2-pyridyl) -2- (3, 5-dichlorophenyl) -4- (dimethylamino) -1-phenyl-butan-2-ol and (1S, 2R) -1- (5- (4-chlorophenyl) -2-pyridyl) -2- (3, 5-dichlorophenyl) -4- (dimethylamino) -1-phenyl-butan-2-ol) (5.0 g, 99% purity, yield 11.5%, white solid).1H NMR(400MHz,CDCl3)δ:8.66(d,J=2.51Hz,1H),8.39(br.s.,1H),8.25(d,J=2.51Hz,1H),7.50-7.48(m,2H),7.42-7.40(m,2H),7.40-7.30(m,4H),7.11-7.02(m,4H),4.76(s,1H),4.06(s,3H),2.26-2.23(m,1H),2.12-2.04(m,8H),1.73-1.70(m,1H)。
Step 13: (1R,2S) -1- (5- (4-chlorophenyl) -2-pyridyl) -2- (3, 5-dichlorophenyl) -4- (dimethylamino) -1-phenyl-butan-2-ol
The corresponding isomer (1R,2S) -1- (5- (4-chlorophenyl) -2-pyridyl group) obtained in step 10 was reacted at 0 deg.C) -2- (3, 5-difluorophenyl) -4- (dimethylamino) -1-phenyl-butan-2-ol and (1S, 2R) -1- (5- (4-chlorophenyl) -2-pyridyl) -2- (3, 5-difluorophenyl) -4- (dimethylamino) -1-phenyl-butan-2-ol (8.0 g, 14.39 mmol) were suspended in ethanol (240 ml) and then a solution of R- (-) -binaphthol phosphate (5.01 g, 14.39 mmol) in dimethylsulfoxide (24 ml) was slowly added dropwise to the substrate solution and the reaction was stirred at 20 ℃ for 8 h. And then heating the reaction solution to 80 ℃ and stirring for 1 hour, slowly cooling (2-4 hours) to 20 ℃ and continuously stirring for 16 hours. The reaction solution was filtered, the filtrate was concentrated under reduced pressure, then dissolved in ethyl acetate (40 ml), adjusted to alkaline with 10% sodium hydroxide (pH greater than 12), separated, the organic phase was dried over anhydrous sodium sulfate, and concentrated to give the crude product. Adding the crude product into ethanol (100 ml), stirring for 1-2 hours at 20-30 ℃, filtering, and drying a filter cake in vacuum to constant weight (50 ℃, 24-48 hours) to obtain a target product (1R,2S) -1- (5- (4-chlorophenyl) -2-pyridyl) -2- (3, 5-dichlorophenyl) -4- (dimethylamino) -1-phenyl-butane-2-ol (3.1 g, purity 98.9%, ee value 98.1%, yield 38.8%, white solid).1H NMR(400MHz,CDCl3)δ:8.66(d,J=2.51Hz,1H),8.39(br.s.,1H),8.25(d,J=2.51Hz,1H),7.50-7.48(m,2H),7.42-7.40(m,2H),7.40-7.30(m,4H),7.11-7.02(m,4H),4.76(s,1H),4.06(s,3H),2.26-2.23(m,1H),2.12-2.04(m,8H),1.73-1.70(m,1H)。
Example (b): 6: stability test of form I in non-solvent
Taking a proper amount of multiple crystal forms I, respectively adding 0.1-0.3mL of single or mixed solvent in the following table, stirring for 2 days at 40 ℃, and centrifuging. The solid was collected from all samples, dried overnight in a vacuum oven (40 ℃) and its crystalline state was detected by XRPD. The results are shown in Table-4.
TABLE-4 stability test of the crystalline modification I without solvent
Serial number | Solvent(s) | Appearance (2 days) | |
1 | Methanol | Suspension | Crystal form I |
2 | Ethanol | Suspension | Crystal form I |
3 | Acetone (II) | Suspension | Crystal form I |
4 | Ethyl acetate | Suspension | Crystal form I |
5 | Tetrahydrofuran (THF) | Suspension | Crystal form I |
6 | Methanol-water (3: 1) | Suspension | Crystal form I |
7 | Ethanol-water (3: 1) | Suspension | Crystal form I/ |
8 | Acetone-water (2: 1) | Suspension | III crystal form |
Example 7: solid stability test of crystal form I under conditions of high temperature, high humidity and strong illumination
About 10mg of the crystal form I sample is weighed, placed at the bottom of a glass sample bottle and spread into a thin layer. Sealing the bottle mouth of a sample placed at 60 ℃ and 92.5% RH by using aluminum foil paper, and pricking small holes on the aluminum foil paper to ensure that the sample can be fully contacted with ambient air; samples placed under intense light (5Klux) were sealed with a screw cap. Samples placed under different conditions were sampled and tested on days 5 and 10, the test results were compared with the initial test results of day 0, and the test results are shown in the following table-5:
TABLE-5 solid stability test of crystalline form I
Pharmacological moieties
A first part: in vitro efficacy of anti-M.tuberculosis compounds using M.smegmatis strain ATCC19420
On the day of testing, the dissolved compound was dissolved in pure DMSO (Sigma 276855-2L) to a concentration of 12.8mg/ml as compound stock. Mu.l DMSO was added to all wells of a v-bottom 96 well plate (Axygen-wipp 02280). And adding 30 mu l of compound mother liquor into the 1 st hole, uniformly blowing, adding 30 mu l of compound mother liquor into the 2 nd hole from the 1 st hole, and uniformly blowing. Thereby operating to column 11. Column 12 contained no drug, 30. mu.l DMSO only. This is the compound "master". From column 1 to column 12, the corresponding compound concentrations were 6.4, 3.2, 1.6, 0.8, 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0 mg/ml. For compounds with good efficacy, the test concentration was appropriately reduced. A u-bottom 96-well plate (Costar 3788) was used as a "daughter plate". 98 μ l of CA-MHB (BD-212322) medium containing 0.02% Tween 80 was added to the wells of all the daughter plates. 2 μ l of compound was pipetted from the master plate into the daughter plate at the corresponding position.
The bacteria were inoculated two days in advance on Roche modified slant medium (Difco-244420) and incubated in an incubator at 37 ℃ for 48 hours. Bacterial colonies were harvested from the media slant on the day of testing and suspended in sterile saline containing 0.02% tween 80. 7-10 sterile glass beads with a diameter of 3mm were added to the bacterial solution and the bacteria were broken up using a vortex apparatus at maximum rotation speed. The turbidity of the bacterial liquid was adjusted to 0.10 using a Siemens MicroScan turbidity meter (Siemens MicroScan turbidity meter) corresponding to a bacterial concentration of-1.5X 108cfu/ml. The bacterial solution was diluted 20 times and then 25 times (500 times) with CA-MHB + 0.02% Tween 80 medium. The diluted bacterial solution will be used to inoculate the daughter plates.
100. mu.l of the bacterial suspension was added to each well of the daughter plate. Each well will contain: 3.0X 104cfu bacteria, 1% DMSO, and a gradient of diluted compounds in 200. mu.l CA-MHB + 0.02% Tween 80 medium. The completed daughter plate was placed in a 30 ℃ incubator for cultivation. The Minimum Inhibitory Concentration (MIC) was read after 72 hours.
The standard reference for MIC reading is defined by CLSI method M7-a7 as: the lowest concentration of drug that completely or significantly inhibits bacterial growth. The results of compound detection are shown in Table-6.
A second part: in vitro efficacy of anti-mycobacterium tuberculosis compounds using strain H37Rv
On the day of testing, the compound was dissolved in pure DMSO (Sigma 276855-2L) to a concentration of 10mg/ml as compound stock. Mu.l DMSO was added to the wells from column 2 to column 11 of a v-bottom 96 well plate (Axygen-wipp 02280). Adding 30 μ l of compound mother liquor into the 2 nd row of holes, mixing uniformly, taking 30 μ l from the 2 nd row of holes, adding into the 3 rd row of holes, and blowing, beating and mixing uniformly. Thereby operating on column 10. Column 11 contains no drug, 30. mu.l DMSO only. This is the compound "master". From column 2 to column 11, the corresponding compound concentrations were 5, 2.5, 1.25, 0.625, 0.3125, 0.156, 0.078, 0.039, 0.02, 0 mg/ml. For compounds with good efficacy, the test concentration was appropriately reduced. Flat-bottomed 96-well plates (Greiner 655090) were used as "daughter plates". 98. mu.l of 7H9(SigmaM0178) medium was added to the wells of all the daughter plates. 2 μ l of compound was pipetted from the master plate into the daughter plate at the corresponding position. Daughter plate A and H rows, columns 1 and 12 contained only 7H9 medium.
The H37Rv strain in the glycerol vial was inoculated into 7H9 medium containing 0.05% Tween 80 and cultured at 37 ℃ for 4 weeks on a shaker at 200 rpm. The broth was washed twice with 7H9 medium containing 0.05% tween 80 and resuspended in the same medium. The absorbance of the bacterial solution was adjusted to OD using the same medium5500.4-0.5. The bacterial solution was dispensed into a microcentrifuge tube and stored at-80 ℃. The storage time is not more than 1 month. On the day of testing, the dispensed bacterial solution was thawed. The thawed bacteria solution was diluted 20-fold with 7H9 medium and then 50-fold and 1000-fold, and was used to inoculate daughter plates. Mu.l of the inoculum was inoculated into each well of the daughter plate, and 100. mu.l of 7H9 medium was added to column 12 without the inoculum.
The test daughter plates were incubated in an incubator at 37 ℃ with humidity maintained at > 80%. Starting after one week, 12.5. mu.l of 7H9 medium containing 20 % Tween 80 and 20. mu.l of Alamar blue (Invitrogen DAL1100) were added to one row of wells 1 containing bacteria and one row of wells 12 containing no bacteria daily and observed after further culturing for 24 hours. When the added Alamar blue was reduced to pink within 24 hours by the inoculum from the well in column 1, the fluorescence was measured after adding 7H9 medium containing 20% Tween 80 and Alamar blue to all wells on the test plate and incubating for a further 24 hours at 37 ℃.
The Minimum Inhibitory Concentration (MIC) was defined as: the minimum drug concentration that completely inhibits Alamar blue discoloration by visual observation or that inhibits more than 90% of reduced Alamar blue production as measured by fluorometry. The results of compound detection are shown in Table-6.
TABLE-6 in vitro screening results
Note: ATCC-american type culture collection; MABA- -microplate Alma blue color development test; LORA-recovery test under anaerobic conditions; vero Cell-african green monkey kidney Cell; IC 50-median inhibitory concentration; hela-human cervical cancer cells; CC 50-half cytotoxic concentration.
And (4) analyzing results: the compound I-2 has good inhibitory activity to mycobacterium smegmatis, and the inhibitory activity of the compound I-2 to mycobacterium tuberculosis under aerobic (MABA) or anaerobic (LORA) conditions is superior to or equal to that of the marketed antituberculosis drug bedaquiline. Moreover, the compound I-2 has no obvious cytotoxicity to Vero and Hela cells.
And a third part: in vitro efficacy evaluation of compound against drug-resistant mycobacterium tuberculosis
We performed activity tests on Compound I-2 using the same procedure as mentioned in the second section, using drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis, and the results are shown in Table-7.
TABLE-7: some of the compounds tested for drug sensitive and resistant Mycobacterium tuberculosis Activity MIC (uM)
Note: MIC-minimum inhibitory concentration; MABA- -microplate Alma blue color development test; vs- -pair, relative; h37Rv — wild-type H37Rv strain; rRMP- -rifampicin resistant Mycobacterium tuberculosis strain; rINH- -an isoniazid resistant Mycobacterium tuberculosis strain.
And (4) analyzing results: the compound I-2 has better inhibition effect on wild mycobacterium tuberculosis H37Rv and rifampicin and isoniazid resistant strains, wherein the inhibition activity of the compound I-2 on the three tested strains is equivalent to that of the marketed antitubercular drug Bedaquin.
Claims (16)
1. A process for the preparation of a compound of formula (I),
which comprises the following steps:
wherein,
R1selected from the group consisting of optionally substituted by 0, 1, 2 or 3R01Substituted 6-to 12-membered aryl, 6-to 12-membered heteroaryl, 6-to 12-membered aryl-alkylene, and 6-to 12-membered heteroaryl-alkylene;
HX is selected from organic or inorganic acid;
the base A is selected from an alkali metal base, an alkaline earth metal base, or an organometallic base;
the molar use ratio of the compound (II) to the alkali A is 1: 1-5;
the molar use ratio of the compound (II) to the compound (III) is 1: 1-2;
the reaction solvent is selected from a single ether solvent or a mixed solvent of several ether solvents;
the amount of the reaction solvent is 3-20 times of the weight of the compound (IV);
the reaction temperature is-80-0 ℃;
the reaction time is 1-24 hours;
R01selected from F, Cl, Br, I, CN, OH, CH (CH)3)2、C(CH3)3、N(CH3)2、NH(CH3)、NH2、CHO、COOH、C(=O)NH2、S(=O)NH2、S(=O)2NH2、CF3、CF3O、(NH2)CH2、(HO)CH2、CH3C(=O)、CH3OC(=O)、CH3S(=O)2、CH3S(=O);
Said "hetero" represents a heteroatom selected from N, O or S;
the number of heteroatoms is independently selected from 1, 2 or 3.
2. The method of claim 1, wherein R1Optionally substituted by 0, 1, 2 or 3R01Substituted naphthyl or phenyl.
4. The production method according to claim 1, wherein the alkali metal base is selected from lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogencarbonate, sodium hydride, potassium hydride and/or potassium hydrogencarbonate;
the alkaline earth metal base is selected from calcium hydride;
the organometallic base is selected from n-butyllithium, lithium diisopropylamide, lithium 2,2,6, 6-tetramethylpiperidine, lithium bis (trimethylsilyloxy) amide, sodium methoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium ethoxide and/or aluminum isopropoxide.
5. The preparation method according to claim 1, wherein the molar ratio of the compound (II) to the base A is 1: 1.2-2;
the reaction temperature is-80 to-60 ℃;
the reaction time is 2-12 hours;
the reaction solvent is selected from tetrahydrofuran, diethyl ether and/or isopropyl ether; and/or
The amount of the reaction solvent is 5-10 times of the weight of the compound (IV).
6. The method according to claim 5, wherein the reaction time is 4 to 8 hours.
7. The preparation method according to any one of claims 1 to 6, comprising the following reaction scheme:
wherein,
the base B is selected from lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, sodium methoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium ethoxide or aluminum isopropoxide;
the chiral acid is selected from alpha-hydroxypropionic acid, alpha-hydroxysuccinic acid, alpha, beta-dihydroxysuccinic acid, alpha-hydroxyphenylacetic acid, beta-hydroxy acid and a compound (VI);
n is 0, 1 or 2;
R2、R4each independently selected from H, F, Cl, Br, I, or optionally substituted by 0, 1, 2 or 3R01Substituted: c1-8Alkoxy radical, C1-8Alkyl, Si (Ph)36-12 membered aryl;
R3、R5each independently selected from H, F, Cl, Br, I, NO2OH, or selected from optionally substituted by 0, 1, 2 or 3R01Substituted: c1-8Alkoxy radical, C1-8Alkyl, 6-12 membered aryl;
optionally, R substituted at positions 13 and 143Or R substituted in positions 14 and 153Can be linked together to form a 6-to 12-membered aryl ring;
optionally, R substituted in position 8 and position 95Or in position 9 andr substituted in position 105Can be linked together to form a 6-to 12-membered aryl ring;
the solvent for preparing compound (v) from compound (iv) is selected from: acetone, methyl ethyl ketone, ethanol, methanol, isopropanol, tert-butanol, ethyl acetate, tert-butyl acetate, DMF, DMSO, DMA and/or NMP, or a mixture of several solvents;
the molar ratio of the chiral acid to the compound (IV) is 0.5-1.5;
HX is selected from hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, citric acid, maleic acid or fumaric acid.
9. The preparation method according to claim 7, wherein the molar ratio of the chiral acid to the compound (IV) is 0.8 to 1.2.
10. The production method according to claim 7, wherein the molar ratio of the chiral acid to the compound (IV) is 1.0.
14. the compound of claim 13, wherein the compound i-1 is in form i, form ii and form iii, wherein the XRPD patterns are shown in figure 1, figure 4 and figure 7, respectively.
15. The process for preparing the crystalline form I according to claim 14, which comprises crystallizing compound I-1 in any one of its forms by adding it to a solvent,
the solvent is selected from alcohols, ketone solvents or mixed solvents of the alcohol solvents and the ketone solvents;
the dosage of the solvent is 3-50 times of the weight of the compound I-1.
16. A process for preparing the crystalline form i according to claim 15, wherein the alcoholic solvent is selected from methanol, ethanol, isopropanol and/or n-butanol;
the ketone solvent is selected from acetone and/or methyl ethyl ketone;
the mixed solvent is a mixed solvent of methanol and acetone; or
The volume ratio of the mixed solvent of the methanol and the acetone is 1: 5-30.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610021998 | 2016-01-13 | ||
CN2016100219982 | 2016-01-13 | ||
PCT/CN2017/070835 WO2017121323A1 (en) | 2016-01-13 | 2017-01-11 | Preparation method for pyridine derivative compound, intermediate and crystal form thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108473428A CN108473428A (en) | 2018-08-31 |
CN108473428B true CN108473428B (en) | 2021-07-23 |
Family
ID=59310815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780005142.9A Active CN108473428B (en) | 2016-01-13 | 2017-01-11 | Preparation method of pyridine derivative compound, intermediate and crystal form thereof |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108473428B (en) |
TW (1) | TWI714702B (en) |
WO (1) | WO2017121323A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020047596A1 (en) * | 2018-09-04 | 2020-03-12 | Monash University | Antibacterial compounds and methods of use |
CN117050006A (en) * | 2022-05-13 | 2023-11-14 | 广州嘉越医药科技有限公司 | Pyridine derivative, intermediate, preparation method and application |
CN117122595A (en) * | 2022-05-27 | 2023-11-28 | 广州嘉越医药科技有限公司 | Use of pyridine derivatives |
CN120379693A (en) * | 2023-09-21 | 2025-07-25 | 广州嘉越医药科技有限公司 | A drug combination and application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1671667A (en) * | 2002-07-25 | 2005-09-21 | 詹森药业有限公司 | Quinoline derivatives and their use as mycobacterial inhibitors |
CN102249935A (en) * | 2010-05-17 | 2011-11-23 | 中国人民解放军军事医学科学院毒物药物研究所 | Aromatic 2-butanols compound and medical application thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2306146T3 (en) * | 2004-05-28 | 2008-11-01 | Janssen Pharmaceutica Nv | USE OF SUBSTITUTED QUINOLINE DERIVATIVES FOR THE TREATMENT OF MICOBACTERIAL DISEASES RESISTANT TO PHARMACOS. |
CA2528849C (en) * | 2005-06-08 | 2014-01-14 | Janssen Pharmaceutica N.V. | Quinoline derivatives as antibacterial agents |
JO2684B1 (en) * | 2006-12-06 | 2013-03-03 | جانسين فارماسوتيكا ان في | Antibacterial Quinoline Derivatives |
JO3271B1 (en) * | 2006-12-06 | 2018-09-16 | Janssen Pharmaceutica Nv | Antibacterial Quinoline Derivatives |
CN105330595B (en) * | 2014-07-14 | 2019-12-10 | 上海嘉坦医药科技有限公司 | pyridine derivatives and their use as antimycobacterial agents |
WO2016008381A1 (en) * | 2014-07-14 | 2016-01-21 | 辰欣药业股份有限公司 | Pyridine derivatives and anti-mycobacterial use thereof |
-
2017
- 2017-01-11 CN CN201780005142.9A patent/CN108473428B/en active Active
- 2017-01-11 WO PCT/CN2017/070835 patent/WO2017121323A1/en active Application Filing
- 2017-01-13 TW TW106101104A patent/TWI714702B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1671667A (en) * | 2002-07-25 | 2005-09-21 | 詹森药业有限公司 | Quinoline derivatives and their use as mycobacterial inhibitors |
CN102249935A (en) * | 2010-05-17 | 2011-11-23 | 中国人民解放军军事医学科学院毒物药物研究所 | Aromatic 2-butanols compound and medical application thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI714702B (en) | 2021-01-01 |
TW201725198A (en) | 2017-07-16 |
WO2017121323A1 (en) | 2017-07-20 |
CN108473428A (en) | 2018-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2958625C (en) | Crystal of pyrrole derivative and method for producing the same | |
CN108473428B (en) | Preparation method of pyridine derivative compound, intermediate and crystal form thereof | |
WO2018024208A1 (en) | Ido1 inhibitor and preparation method and application thereof | |
JP7017801B2 (en) | Inhibition of CREB-binding protein (CBP) | |
CN120265621A (en) | Spiro derivatives as KIF18A inhibitors | |
TW201738236A (en) | Method for preparing tyrosine kinase inhibitor and derivative thereof | |
CN114787142B (en) | Compounds as cyclin dependent kinase 9 inhibitors and uses thereof | |
KR20240021239A (en) | Compounds used as CDK kinase inhibitors and their uses | |
CN110746396B (en) | Selenium-containing isoxazolidine compound and preparation method and application thereof | |
US5180746A (en) | Aralkylamine compounds | |
CN104610168B (en) | Cyclohexane barbituric acid chirality spiro-compound as well as preparation method and application thereof | |
CN104557559B (en) | Indandione chirality hexamethylene spiro-compound and preparation method thereof and purposes | |
JPWO2019059344A1 (en) | Chemically activated water-soluble prodrug | |
CN114736203A (en) | Heterocyclic compounds as BCL-2 inhibitors | |
CN107602518B (en) | Coumarin-dithiocarbamate derivative and synthesis method thereof | |
JP2020531592A (en) | Deuterated indoleamine 2,3-dioxygenase inhibitor and its use | |
CN108329297A (en) | Fluorobenzene quinoline substitution carbinol derivatives with anti-tumor activity and its synthetic method and application | |
RU2819762C1 (en) | Compound as cyclin-dependent kinase 9 inhibitor and use thereof | |
WO2016034637A1 (en) | Derivatives of macrocyclic n-aryl-tricyclopyrimidine-2-amine polyethers as inhibitors of ftl3 and jak | |
HK1215436A1 (en) | Substituted (r)-3-(4-methylcarbamoyl-3-fluorophenylam acid (variants) and ester thereof, method for producing and using same | |
CN119462648A (en) | Tetrahydropyridopyrimidine compounds and preparation methods and applications thereof | |
CN119306683A (en) | A 10H-phenoxazine ferroptosis inhibitor and its preparation method and application | |
HK40021355B (en) | Compound and ester thereof, method for producing and using same | |
HK40021355A (en) | Compound and ester thereof, method for producing and using same | |
CN112661751A (en) | Heterocyclic compounds as BCL-2 inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |