CN108470778A - Solar cell inactivating film and passivating back solar cell and preparation method thereof - Google Patents
Solar cell inactivating film and passivating back solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN108470778A CN108470778A CN201810304090.1A CN201810304090A CN108470778A CN 108470778 A CN108470778 A CN 108470778A CN 201810304090 A CN201810304090 A CN 201810304090A CN 108470778 A CN108470778 A CN 108470778A
- Authority
- CN
- China
- Prior art keywords
- work function
- solar cell
- high work
- semiconductor material
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 230000000415 inactivating effect Effects 0.000 title claims 6
- 239000000463 material Substances 0.000 claims abstract description 82
- 239000004065 semiconductor Substances 0.000 claims abstract description 80
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 29
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000010703 silicon Substances 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000001704 evaporation Methods 0.000 claims description 8
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 8
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 7
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 7
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 6
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 6
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 6
- 238000000231 atomic layer deposition Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 4
- 229910003978 SiClx Inorganic materials 0.000 claims 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 2
- 230000003667 anti-reflective effect Effects 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 238000002161 passivation Methods 0.000 abstract description 71
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 229910004205 SiNX Inorganic materials 0.000 description 10
- 238000006388 chemical passivation reaction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000002207 thermal evaporation Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- YAIQCYZCSGLAAN-UHFFFAOYSA-N [Si+4].[O-2].[Al+3] Chemical compound [Si+4].[O-2].[Al+3] YAIQCYZCSGLAAN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 101001073212 Arabidopsis thaliana Peroxidase 33 Proteins 0.000 description 1
- 101001123325 Homo sapiens Peroxisome proliferator-activated receptor gamma coactivator 1-beta Proteins 0.000 description 1
- 229910019213 POCl3 Inorganic materials 0.000 description 1
- 102100028961 Peroxisome proliferator-activated receptor gamma coactivator 1-beta Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
- H10F77/315—Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
- Formation Of Insulating Films (AREA)
Abstract
本发明提供了一种太阳能电池钝化膜与背面钝化太阳能电池及其制备方法,涉及太阳能电池技术领域,该太阳能电池钝化膜包括依次设置的高功函数半导体材料层和氮化硅层,所述高功函数半导体材料层用于与电池基体接触。利用该太阳能电池钝化膜能够缓解现有技术的局部接触太阳能电池中Al2O3钝化膜制备工艺难度大和成本高的技术问题,达到了降低工艺难度和成本的目的。
The invention provides a solar cell passivation film, a rear passivation solar cell and a preparation method thereof, and relates to the technical field of solar cells. The solar cell passivation film includes a high work function semiconductor material layer and a silicon nitride layer arranged in sequence, The high work function semiconductor material layer is used to be in contact with the battery base. The use of the solar cell passivation film can alleviate the technical problems of difficult and costly preparation of the Al 2 O 3 passivation film in the local contact solar cell in the prior art, and achieve the purpose of reducing the process difficulty and cost.
Description
技术领域technical field
本发明涉及太阳能电池技术领域,尤其是涉及一种太阳能电池钝化膜与背面钝化太阳能电池及其制备方法。The invention relates to the technical field of solar cells, in particular to a solar cell passivation film, a rear passivated solar cell and a preparation method thereof.
背景技术Background technique
局部接触太阳能电池又称为PERC太阳能电池,这种结构的电池目前采用Al2O3/SiNx组成的叠层介质钝化膜来对电池背面进行钝化。 Al2O3/SiNx钝化膜的钝化原理依据不同的制备方法和膜厚而不同,对于较薄的Al2O3/SiNx叠层,其钝化机理是通过Al2O3层自身携带的固定负电荷提供的场钝化和SiNx层提供的H化学钝化相互叠加的结果;而对于较厚的Al2O3层(一般超过10nm),制备方法是通过 PECVD沉积,那么钝化则是通过Al2O3自身提供的固定负电荷形成的场钝化,而其化学钝化则来自于Al2O3薄膜中的H及SiNx中的H 叠加的结果。由于Al2O3带有负电荷,因此可同时在背面实现悬挂键的化学钝化和场效应钝化。虽然这种方法是目前商业化的高效太阳能电池的制造技术,可实现大于21%以上的转换效率,但其存在以下几个缺点:Partial contact solar cells are also called PERC solar cells. Currently, cells with this structure use a laminated dielectric passivation film composed of Al 2 O 3 /SiNx to passivate the back of the cell. The passivation principle of Al 2 O 3 /SiNx passivation film is different according to different preparation methods and film thickness. For the thinner Al 2 O 3 /SiNx stack, the passivation mechanism is carried by the Al 2 O 3 layer itself The field passivation provided by the fixed negative charge and the H chemical passivation provided by the SiNx layer are superimposed on each other; and for the thicker Al 2 O 3 layer (generally exceeding 10nm), the preparation method is deposited by PECVD, then the passivation is It is the field passivation formed by the fixed negative charge provided by Al 2 O 3 itself, and its chemical passivation comes from the superposition of H in Al 2 O 3 film and H in SiNx. Since Al2O3 is negatively charged, the chemical passivation and field - effect passivation of dangling bonds can be realized simultaneously on the backside. Although this method is currently a commercialized high-efficiency solar cell manufacturing technology, which can achieve a conversion efficiency greater than 21%, it has the following disadvantages:
1)Al2O3沉积虽然技术成熟,但是设备昂贵,国产设备约为500 万-1000万,进口设备普遍大于1000万;1) Although Al 2 O 3 deposition technology is mature, the equipment is expensive. The domestic equipment is about 5 million to 10 million, and the imported equipment is generally more than 10 million;
2)额外的工艺步骤不仅是额外的Al2O3、SiNx沉积工艺,此外还需要进行激光开模工艺,这都会增加企业的生产成本;2) The additional process steps are not only the additional Al 2 O 3 and SiNx deposition processes, but also the laser mold opening process, which will increase the production cost of the enterprise;
3)局部接触由于采用更小的接触面积,因此会带来填充因子的降低。3) Due to the use of a smaller contact area in local contact, the fill factor will be reduced.
此外,还有技术批露,以超薄Al2O3作为插入钝化层的同时要求其具备隧穿特性,然后在Al2O3薄膜的外侧采用热蒸发沉积一层高功函数过渡金属氧化物材料来实现载流子的选择性传输,此种结构表面上是一种全新的结构,但是其制备起来难度较大,且不宜实现较高的效率,主要原因如下:In addition, there are technical disclosures that use ultra-thin Al 2 O 3 as an insertion passivation layer and require it to have tunneling properties, and then use thermal evaporation to deposit a layer of high work function transition metal oxide on the outside of the Al 2 O 3 film. The selective transport of carriers is achieved by using material materials. This structure is apparently a brand new structure, but it is difficult to prepare and it is not suitable to achieve high efficiency. The main reasons are as follows:
1)超薄Al2O3隧穿层对厚度要求极为敏感,通常在1-2nm,因此,厚度控制方面本身就是一个技术难点;1) The ultra-thin Al 2 O 3 tunneling layer is extremely sensitive to the thickness requirement, usually 1-2nm, so the thickness control itself is a technical difficulty;
2)要想使Al2O3实现较好的场效应钝化,需要使Al2O3的厚度大于2nm,因此隧穿和良好的钝化不可同时兼得;2) In order to achieve better field effect passivation of Al 2 O 3 , the thickness of Al 2 O 3 needs to be greater than 2nm, so tunneling and good passivation cannot be achieved at the same time;
3)Al2O3需要退火才能发挥其完美的钝化性能,其背电极制备仍以丝网印刷及高温烧结,然而高功函数过渡金属氧化物在高温下其化学特性已失去,因此所得电池效率更低甚至无效率而言;3) Al 2 O 3 requires annealing to exert its perfect passivation performance. The back electrode is still prepared by screen printing and sintering at high temperature. less efficient or even inefficient;
4)Al2O3设备昂贵,增加了电池的制造成本。4) Al 2 O 3 equipment is expensive, which increases the manufacturing cost of the battery.
有鉴于此,特提出本发明。In view of this, the present invention is proposed.
发明内容Contents of the invention
本发明的第一目的在于提供一种太阳能电池钝化膜,以缓解现有技术的局部接触太阳能电池中Al2O3钝化膜制备工艺难度大和成本高的技术问题。The first purpose of the present invention is to provide a solar cell passivation film to alleviate the technical problems of difficult and costly preparation of Al 2 O 3 passivation films in partial contact solar cells in the prior art.
本发明的第二目的在于提供一种背面钝化太阳能电池,该电池中用高功函数半导体材料层和氮化硅层的复合膜作为钝化层,在保证电池转换效率的同时,降低电池的成本。The second object of the present invention is to provide a backside passivation solar cell, in which a composite film of a high work function semiconductor material layer and a silicon nitride layer is used as a passivation layer, so as to ensure the conversion efficiency of the cell while reducing the cost of the cell. cost.
本发明的第三目的在于提供一种背面钝化太阳能电池的制备方法,该方法能够降低电池钝化膜的制造成本。The third object of the present invention is to provide a method for preparing a rear passivated solar cell, which can reduce the manufacturing cost of the passivation film of the cell.
为了实现本发明的上述目的,特采用以下技术方案:In order to realize the above-mentioned purpose of the present invention, special adopt following technical scheme:
一种太阳能电池钝化膜,包括依次设置的高功函数半导体材料层和氮化硅层,所述高功函数半导体材料层用于与电池基体接触。A solar battery passivation film, comprising a high work function semiconductor material layer and a silicon nitride layer arranged in sequence, and the high work function semiconductor material layer is used for contacting with the battery substrate.
进一步的,高功函数半导体材料层中的半导体材料的功函数大于 p型硅的功函数。Further, the work function of the semiconductor material in the high work function semiconductor material layer is greater than that of p-type silicon.
进一步的,高功函数半导体材料层中的半导体材料的功函数大于 5eV。Further, the work function of the semiconductor material in the high work function semiconductor material layer is greater than 5eV.
进一步的,高功函数半导体材料为过渡金属氧化物。Further, the high work function semiconductor material is a transition metal oxide.
进一步的,所述过渡金属氧化物包括氧化钨、氧化钒、氧化锆或氧化钼中的一种或至少两种的组合。Further, the transition metal oxide includes one or a combination of at least two of tungsten oxide, vanadium oxide, zirconium oxide or molybdenum oxide.
进一步的,所述高功函数半导体材料层的厚度为5-100nm。Further, the thickness of the high work function semiconductor material layer is 5-100 nm.
进一步的,所述氮化硅层的厚度为10-150nm。Further, the thickness of the silicon nitride layer is 10-150 nm.
一种背面钝化太阳能电池,包括电池基体、背电极和上述钝化膜,所述钝化膜位于所述电池基体与所述背电极之间,且所述钝化膜设有开孔区域,所述背电极贯通所述开孔区域与所述电池基体接触。A backside passivated solar cell, comprising a battery substrate, a back electrode and the above-mentioned passivation film, the passivation film is located between the battery substrate and the back electrode, and the passivation film is provided with an open area, The back electrode contacts the battery base through the opening area.
进一步的,所述电池基体为P型硅片。Further, the battery substrate is a P-type silicon wafer.
进一步的,所述电池基体正面设有氮化硅减反膜。Further, a silicon nitride anti-reflection film is provided on the front of the battery base.
一种上述背面钝化太阳能电池的制备方法,在电池基体背面依次制备钝化膜和背电极,得到所述背面钝化太阳能电池。A method for preparing the above-mentioned back passivated solar cell, comprising sequentially preparing a passivation film and a back electrode on the back of a cell substrate to obtain the back passivated solar cell.
进一步的,采用热蒸镀、原子层沉积或磁控溅射工艺在电池基体背面制备得到钝化膜的高功函数半导体材料层;Further, a high work function semiconductor material layer of a passivation film is prepared on the back of the battery substrate by thermal evaporation, atomic layer deposition or magnetron sputtering;
优选地,蒸镀过程中的蒸发速率为0.1-10A/s;Preferably, the evaporation rate during the evaporation process is 0.1-10A/s;
优选地,采用沉积工艺在所述高功函数半导体材料层表面制备得到钝化膜的氮化硅层。Preferably, a silicon nitride layer of a passivation film is prepared on the surface of the high work function semiconductor material layer by using a deposition process.
与已有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供的太阳能电池钝化膜,由高功函数半导体材料层和氮化硅层组成,其钝化机理如下:1)高功函数半导体材料属于高功函数材料(大于电池基体Si的功函数),当高功函数半导体材料和硅两种材料实现冶金级接触后,由于功函数(即费米能级)的差别,电子就会从电池基体Si材料中向高功函数半导体材料层中移动,从而在 Si表面产生一个空穴富集层,即p+层,这样,间接地降低了Si表面的少子浓度,从而降低了复合;2)高功函数半导体材料层与Si基体反应形成一层0.1-2nm的SiO2,提供化学钝化。The solar cell passivation film provided by the invention is made up of high work function semiconductor material layer and silicon nitride layer, and its passivation mechanism is as follows: 1) high work function semiconductor material belongs to high work function material (greater than the work function of battery substrate Si ), when the high work function semiconductor material and silicon are in metallurgical contact, due to the difference in work function (ie Fermi level), electrons will move from the battery substrate Si material to the high work function semiconductor material layer, Thus, a hole-rich layer, i.e. p+ layer, is produced on the Si surface, which indirectly reduces the minority carrier concentration on the Si surface, thereby reducing recombination; 2) The high work function semiconductor material layer reacts with the Si matrix to form a layer of 0.1- 2nm SiO 2 , providing chemical passivation.
本发明提供的背面钝化太阳能电池,以高功函数半导体材料层和氮化硅层为钝化膜,高功函数半导体材料层可以在Si基体表面诱导产生一层空穴富集层,SiNx可以提供良好的H钝化;高功函数半导体材料层连续均匀分布在电池基体的硅片表面,SiNx层覆盖在高功函数半导体材料层表面,从而实现对p型Si的有效钝化,进而提高了电池的转换效率。The backside passivation solar cell provided by the present invention uses a high work function semiconductor material layer and a silicon nitride layer as a passivation film, and the high work function semiconductor material layer can induce a layer of hole enrichment layer on the surface of the Si substrate, and SiNx can Provide good H passivation; the high work function semiconductor material layer is continuously and evenly distributed on the surface of the silicon wafer of the battery substrate, and the SiNx layer covers the surface of the high work function semiconductor material layer, thereby realizing effective passivation of p-type Si, thereby improving the The conversion efficiency of the battery.
本发明提供的背面钝化太阳能电池的优点:The advantages of the back passivated solar cell provided by the present invention:
1)本发明提供的面钝化太阳能电池中,对钝化膜的厚度均匀性要求低,降低了制备技术门槛;1) In the surface passivation solar cell provided by the present invention, the requirement for the thickness uniformity of the passivation film is low, which reduces the preparation technical threshold;
2)钝化膜中的高功函数半导体材料本身是半导体,对于一次烧结的金属化工艺,可以缓解因为烧结问题而产生的接触性能不足的现象,有助于降低产品不良率;2) The high work function semiconductor material in the passivation film itself is a semiconductor. For the metallization process of one-time sintering, it can alleviate the phenomenon of insufficient contact performance caused by sintering problems, and help reduce the defective rate of products;
3)高功函数半导体材料本身是半导体材料,具有载流子传输性能,因此高功函数半导体材料层和氮化硅层组成的钝化膜能够降低太阳能电池的接触电阻,从而提升其填充因子;3) The high work function semiconductor material itself is a semiconductor material and has carrier transport properties. Therefore, the passivation film composed of the high work function semiconductor material layer and the silicon nitride layer can reduce the contact resistance of the solar cell, thereby increasing its fill factor;
4)可以与导电薄膜相结合,实现p型双面电池的制备。4) It can be combined with a conductive film to realize the preparation of p-type double-sided batteries.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
图1为本发明实施例1提供的背面钝化太阳能电池的结构示意图。FIG. 1 is a schematic structural view of a rear passivated solar cell provided in Example 1 of the present invention.
图标:10-P型硅片;20-n+扩散层;30-氮化硅减反膜;40-负极; 50-高功函数半导体材料层;60-氮化硅层;70-背电极。Icons: 10-P-type silicon wafer; 20-n+ diffusion layer; 30-silicon nitride antireflection film; 40-negative electrode; 50-high work function semiconductor material layer; 60-silicon nitride layer; 70-back electrode.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, or in a specific orientation. construction and operation, therefore, should not be construed as limiting the invention.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
本发明的一个方面提供了一种太阳能电池钝化膜,包括依次设置的高功函数半导体材料层和氮化硅层,所述高功函数半导体材料层用于与电池基体接触。One aspect of the present invention provides a passivation film for a solar cell, comprising a high work function semiconductor material layer and a silicon nitride layer arranged in sequence, and the high work function semiconductor material layer is used to contact the battery base.
本发明提供的太阳能电池钝化膜,由高功函数半导体材料层和氮化硅层组成,其钝化机理如下:1)高功函数半导体材料属于高功函数材料(大于电池基体Si的功函数),当高功函数半导体材料和硅两种材料实现冶金级接触后,由于功函数(即费米能级)的差别,电子就会从电池基体Si材料中向高功函数半导体材料层中移动,从而在 Si表面产生一个空穴富集层,即p+层,这样,间接地降低了Si表面的少子浓度,从而降低了复合;2)高功函数半导体材料层与Si基体反应形成一层0.1-2nm的SiO2,提供化学钝化。The solar cell passivation film provided by the invention is made up of high work function semiconductor material layer and silicon nitride layer, and its passivation mechanism is as follows: 1) high work function semiconductor material belongs to high work function material (greater than the work function of battery substrate Si ), when the high work function semiconductor material and silicon are in metallurgical contact, due to the difference in work function (ie Fermi level), electrons will move from the battery substrate Si material to the high work function semiconductor material layer, Thus, a hole-rich layer, i.e. p+ layer, is produced on the Si surface, which indirectly reduces the minority carrier concentration on the Si surface, thereby reducing recombination; 2) The high work function semiconductor material layer reacts with the Si matrix to form a layer of 0.1- 2nm SiO 2 , providing chemical passivation.
需要说明的是,本发明中并未对具体的高功函数半导体材料层的层数做出具体限定,其中,高功函数半导体材料层可以是一层也可以是数层。本发明中的开孔区域为通孔,在该开孔区域内基体和背电极直接接触。It should be noted that the number of layers of the specific high work function semiconductor material layer is not specifically limited in the present invention, wherein the high work function semiconductor material layer may be one layer or several layers. The opening area in the present invention is a through hole, and in the opening area, the substrate and the back electrode are in direct contact.
在本发明的一些实施方式中,高功函数半导体材料层中的半导体材料的功函数大于p型硅的功函数;可选地,高功函数半导体材料层中的半导体材料的功函数大于5eV。高功函数半导体材料为过渡金属氧化物。In some embodiments of the present invention, the work function of the semiconductor material in the high work function semiconductor material layer is greater than that of p-type silicon; optionally, the work function of the semiconductor material in the high work function semiconductor material layer is greater than 5eV. High work function semiconductor materials are transition metal oxides.
可以理解的是,上述实施方式中并未对具体的过渡金属氧化物的种类做出具体的限定,只要满足功函数要求即可。It can be understood that, in the above embodiments, there is no specific limitation on the specific type of transition metal oxide, as long as the work function requirement is met.
在本发明的一些实施方式中,所述过渡金属氧化物包括氧化钨、氧化钒、氧化锆或氧化钼中的一种或至少两种的组合。In some embodiments of the present invention, the transition metal oxide includes one or a combination of at least two of tungsten oxide, vanadium oxide, zirconium oxide or molybdenum oxide.
至少两种的组合例如可以是一层氧化钨和一层氧化钒的组合,或一层氧化钨和一层氧化钼的组合,或一层氧化钒和一层氧化钼的组合,或一层氧化钨、一层氧化钒和一层氧化钼的组合。The combination of at least two can be, for example, a combination of a layer of tungsten oxide and a layer of vanadium oxide, or a combination of a layer of tungsten oxide and a layer of molybdenum oxide, or a combination of a layer of vanadium oxide and a layer of molybdenum oxide, or a layer of oxide A combination of tungsten, a layer of vanadium oxide and a layer of molybdenum oxide.
在本发明的一些实施方式中,所述高功函数半导体材料层的厚度为5-100nm。例如,高功函数半导体材料层的厚度可以为5nm、10nm、 20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm或100nm。In some embodiments of the present invention, the thickness of the high work function semiconductor material layer is 5-100 nm. For example, the thickness of the high work function semiconductor material layer may be 5nm, 10nm, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm or 100nm.
在本发明的一些实施方式中,所述氮化硅层的厚度为10-150nm。例如,氮化硅层的厚度可以为10nm、20nm、30nm、40nm、50nm、 60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm 或150nm。In some embodiments of the present invention, the thickness of the silicon nitride layer is 10-150 nm. For example, the silicon nitride layer may have a thickness of 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm or 150 nm.
本发明的第二个方面提供了一种背面钝化太阳能电池,包括电池基体、背电极和上述钝化膜,所述钝化膜位于所述电池基体与所述背电极之间,且所述钝化膜设有开孔区域,所述背电极贯通所述开孔区域与所述电池基体接触。The second aspect of the present invention provides a backside passivated solar cell, comprising a battery base, a back electrode and the above-mentioned passivation film, the passivation film is located between the battery base and the back electrode, and the The passivation film is provided with an open area, and the back electrode passes through the open area and contacts the battery base.
本发明提供的背面钝化太阳能电池,以高功函数半导体材料层和氮化硅层为钝化膜,高功函数半导体材料层可以在Si基体表面诱导产生一层空穴富集层,SiNx可以提供良好的H钝化;高功函数半导体材料层连续均匀分布在电池基体的硅片表面,SiNx层覆盖在高功函数半导体材料层表面,从而实现对p型Si的有效钝化,进而提高了电池的转换效率。The backside passivation solar cell provided by the present invention uses a high work function semiconductor material layer and a silicon nitride layer as a passivation film, and the high work function semiconductor material layer can induce a layer of hole enrichment layer on the surface of the Si substrate, and SiNx can Provide good H passivation; the high work function semiconductor material layer is continuously and evenly distributed on the surface of the silicon wafer of the battery substrate, and the SiNx layer covers the surface of the high work function semiconductor material layer, thereby realizing effective passivation of p-type Si, thereby improving the The conversion efficiency of the battery.
本发明提供的背面钝化太阳能电池的优点:The advantages of the back passivated solar cell provided by the present invention:
1)本发明提供的面钝化太阳能电池中,对钝化膜的厚度均匀性要求低,降低了制备技术门槛;1) In the surface passivation solar cell provided by the present invention, the requirement for the thickness uniformity of the passivation film is low, which reduces the preparation technical threshold;
2)钝化膜中的高功函数半导体材料本身是半导体,对于一次烧结的金属化工艺,可以缓解因为烧结问题而产生的接触性能不足的现象,有助于降低产品不良率;2) The high work function semiconductor material in the passivation film itself is a semiconductor. For the metallization process of one-time sintering, it can alleviate the phenomenon of insufficient contact performance caused by sintering problems, and help reduce the defective rate of products;
3)高功函数半导体材料本身是半导体材料,具有载流子传输性能,因此高功函数半导体材料层和氮化硅层组成的钝化膜能够降低太阳能电池的接触电阻,从而提升其填充因子;3) The high work function semiconductor material itself is a semiconductor material and has carrier transport properties. Therefore, the passivation film composed of the high work function semiconductor material layer and the silicon nitride layer can reduce the contact resistance of the solar cell, thereby increasing its fill factor;
4)可以与导电薄膜相结合,实现p型双面电池的制备。4) It can be combined with a conductive film to realize the preparation of p-type double-sided batteries.
在本发明的一些实施方式中,所述电池基体为P型硅片。In some embodiments of the present invention, the battery substrate is a P-type silicon wafer.
p型硅片,电阻率1-3Ω·cm,作为吸收层,主要作用是将满足条件的光子转化为电子。The p-type silicon chip, with a resistivity of 1-3Ω·cm, acts as an absorbing layer, and its main function is to convert photons that meet the conditions into electrons.
在p型硅片正面进行掺杂形成n+扩散层,又称为发射极,主要作用是与p型硅片形成p-n结,对电子进行选择性传输,深度0.5μ m左右。Doping on the front of the p-type silicon wafer forms an n+ diffusion layer, also known as the emitter, whose main function is to form a p-n junction with the p-type silicon wafer to selectively transport electrons, with a depth of about 0.5 μm.
在本发明的一些实施方式中,所述电池基体正面设有氮化硅减反膜。氮化硅减反膜厚度75nm左右,主要作用:1)提供H原子进行悬挂键饱和;2)起到减反射的作用,增加光的透过率;3)利用自身所带正电荷提供场效应钝化。In some embodiments of the present invention, a silicon nitride anti-reflection film is provided on the front of the battery substrate. The silicon nitride anti-reflection film has a thickness of about 75nm. Its main functions are: 1) Provide H atoms for dangling bond saturation; 2) Play the role of anti-reflection and increase the transmittance of light; 3) Use its own positive charge to provide field effect passivation.
本发明的第三个方面提供了一种上述背面钝化太阳能电池的制备方法,在电池基体背面依次制备钝化膜和背电极,得到所述背面钝化太阳能电池。The third aspect of the present invention provides a method for preparing the above-mentioned back passivated solar cell, wherein a passivation film and a back electrode are sequentially prepared on the back of the cell substrate to obtain the back passivated solar cell.
在本发明的一些实施方式中,采用热蒸镀、原子层沉积或磁控溅射工艺在电池基体背面制备得到钝化膜的高功函数半导体材料层;可选地,根据高功函数半导体材料层的厚度,蒸镀过程中的蒸发速率为 0.1-10A/s。In some embodiments of the present invention, the high work function semiconductor material layer of the passivation film is prepared on the back of the battery substrate by thermal evaporation, atomic layer deposition or magnetron sputtering; optionally, according to the high work function semiconductor material The thickness of the layer, the evaporation rate during the evaporation process is 0.1-10A/s.
可以理解的是,高功函数半导体材料层制备方法多样,例如蒸镀法、磁控溅射法或原子层沉积法等。It can be understood that there are various methods for preparing the high work function semiconductor material layer, such as vapor deposition, magnetron sputtering, or atomic layer deposition.
选用蒸镀法制备高功函数半导体材料层,制备过程中,电池基体温度为室温,实现了低温工艺,减少了高温对晶体缺陷的影响。The evaporation method is used to prepare the high work function semiconductor material layer. During the preparation process, the temperature of the battery substrate is at room temperature, which realizes the low temperature process and reduces the influence of high temperature on crystal defects.
在本发明的一些实施方式中,采用沉积工艺在所述高功函数半导体材料层表面制备得到钝化膜的氮化硅层。In some embodiments of the present invention, a silicon nitride layer of a passivation film is prepared on the surface of the high work function semiconductor material layer by using a deposition process.
可以理解的是,本发明中的背电极起到将空穴传输到外电路的作用。背电极可以是金属电极,也可以是透明导电薄膜TCO,可以利用蒸镀法或磁控溅射法制备得到。It can be understood that the back electrode in the present invention plays a role of transporting holes to an external circuit. The back electrode can be a metal electrode, or a transparent conductive film TCO, which can be prepared by evaporation or magnetron sputtering.
在本发明的一些实施方式中,上述背面钝化太阳能电池的制备方法包括以下步骤:硅片依次经清洗制绒、POCl3扩散、去背结、镀氮化硅减反膜、反面依次制备高功函数半导体材料层和氮化硅层、正反表面丝网印刷烧结得到所述背面钝化太阳能电池。In some embodiments of the present invention, the preparation method of the above-mentioned rear passivated solar cell includes the following steps: the silicon wafer is sequentially cleaned and textured, POCl3 is diffused, the back junction is removed, the silicon nitride anti-reflection film is coated, and the reverse surface is sequentially prepared. A work function semiconductor material layer and a silicon nitride layer, screen printing and sintering on the front and back surfaces to obtain the rear passivated solar cell.
下面将结合实施例对本发明做进一步详细说明。The present invention will be further described in detail below in conjunction with examples.
实施例1Example 1
如图1所示,本实施例是一种背面钝化太阳能电池,包括以下几部分:As shown in Figure 1, this embodiment is a backside passivated solar cell, including the following parts:
1)P型硅片10:电阻率2Ω·cm,作为吸收层,将满足条件的光子转化为电子,P型硅片的大小为2×2cm2;1) P-type silicon wafer 10: resistivity 2Ω·cm, used as an absorbing layer to convert qualified photons into electrons, and the size of the P-type silicon wafer is 2×2cm 2 ;
2)n+扩散层20:又称为发射极,主要作用是与p-Si形成p-n结,对电子进行选择性传输,深度0.5μm左右,采用POCl3作为磷源,在管式炉扩散制备得到;2) n+ diffusion layer 20: also known as the emitter, the main function is to form a pn junction with p-Si to selectively transport electrons, with a depth of about 0.5 μm, using POCl 3 as a phosphorus source, and diffused in a tube furnace. ;
3)氮化硅减反膜30:通过PECVD进行沉积制备,厚度75nm 左右;3) Silicon nitride anti-reflection film 30: deposited by PECVD, with a thickness of about 75nm;
4)负极40:丝网印刷、高温烧结得到;4) Negative electrode 40: obtained by screen printing and high-temperature sintering;
5)高功函数半导体材料层50:通过热蒸发得到,其作用为:通过功函数差异,在si材料中引入一层p+层,间接提供场钝化;同时,与Si基体反应形成一层1nm的SiO2,提供化学钝化;5) High work function semiconductor material layer 50: obtained by thermal evaporation, its function is: through the difference in work function, a p+ layer is introduced into the Si material to indirectly provide field passivation; at the same time, it reacts with the Si matrix to form a layer of 1nm SiO 2 , providing chemical passivation;
本实施例中的高功函数半导体材料层为氧化钒层,其厚度为 9nm,简写为9nm-V2O5;The high work function semiconductor material layer in this embodiment is a vanadium oxide layer with a thickness of 9nm, abbreviated as 9nm-V 2 O 5 ;
6)氮化硅层60:通过PECVD沉积制备得到,厚度100nm,其作用主要为提供H原子,增强钝化膜的化学钝化,同时还具有反射长波段光子和起到保护作用;6) Silicon nitride layer 60: prepared by PECVD deposition, with a thickness of 100nm, its main function is to provide H atoms, enhance the chemical passivation of the passivation film, and also reflect long-wavelength photons and play a protective role;
7)背电极70:为金属电极,通过磁控溅射、热蒸镀或丝网印刷得到,起到将空穴传输到外电路的作用。7) Back electrode 70: it is a metal electrode, which is obtained by magnetron sputtering, thermal evaporation or screen printing, and plays the role of transporting holes to the external circuit.
实施例2Example 2
本实施例是一种背面钝化太阳能电池,与实施例1相比,不同之处在于,高功函数半导体材料层不同。本实施例中的高功函数半导体材料层为9nm-V2O5/3nm-WO3,其他部分与实施例1相同。This embodiment is a back passivated solar cell. Compared with Embodiment 1, the difference lies in that the high work function semiconductor material layer is different. The high work function semiconductor material layer in this embodiment is 9nm-V 2 O 5 /3nm-WO 3 , and other parts are the same as in Embodiment 1.
实施例3Example 3
本实施例是一种背面钝化太阳能电池,与实施例1相比,不同之处在于,高功函数半导体材料层不同。本实施例中的高功函数半导体材料层为9nm-V2O5/6nm-WO3,其他部分与实施例1相同。This embodiment is a back passivated solar cell. Compared with Embodiment 1, the difference lies in that the high work function semiconductor material layer is different. The high work function semiconductor material layer in this embodiment is 9nm-V 2 O 5 /6nm-WO 3 , and other parts are the same as in Embodiment 1.
实施例4Example 4
本实施例是一种背面钝化太阳能电池,与实施例1相比,不同之处在于,高功函数半导体材料层不同。本实施例中的高功函数半导体材料层为9nm-V2O5/9nm-WO3,其他部分与实施例1相同。This embodiment is a back passivated solar cell. Compared with Embodiment 1, the difference lies in that the high work function semiconductor material layer is different. The high work function semiconductor material layer in this embodiment is 9nm-V 2 O 5 /9nm-WO 3 , and other parts are the same as in Embodiment 1.
实施例5Example 5
本实施例是一种背面钝化太阳能电池,与实施例1相比,不同之处在于,高功函数半导体材料层不同。本实施例中的高功函数半导体材料层为9nm-V2O5/12nm-WO3,其他部分与实施例1相同。This embodiment is a back passivated solar cell. Compared with Embodiment 1, the difference lies in that the high work function semiconductor material layer is different. The high work function semiconductor material layer in this embodiment is 9nm-V 2 O 5 /12nm-WO 3 , and other parts are the same as in Embodiment 1.
实施例6Example 6
本实施例是一种背面钝化太阳能电池,与实施例1相比,不同之处在于,高功函数半导体材料层不同。本实施例中的高功函数半导体材料层为9nm-V2O5/12nm-MoO3,其他部分与实施例1相同。This embodiment is a back passivated solar cell. Compared with Embodiment 1, the difference lies in that the high work function semiconductor material layer is different. The high work function semiconductor material layer in this embodiment is 9nm-V 2 O 5 /12nm-MoO 3 , and other parts are the same as in Embodiment 1.
对比例1Comparative example 1
本对比例是一种背面钝化太阳能电池,与实施例1相比,不同之处在于,钝化层不同。本对比例中的钝化层为铝背场。其他与实施例 1相同。This comparative example is a rear passivated solar cell, compared with Example 1, the difference lies in that the passivation layer is different. The passivation layer in this comparative example is an aluminum back field. Others are the same as in Example 1.
对比例2Comparative example 2
本对比例是一种背面钝化太阳能电池,与实施例1相比,不同之处在于,钝化层不同。本对比例中的钝化层由一层氧化铝和一层氮化硅组成,其他与实施例1相同。This comparative example is a rear passivated solar cell, compared with Example 1, the difference lies in that the passivation layer is different. The passivation layer in this comparative example is composed of a layer of aluminum oxide and a layer of silicon nitride, and the others are the same as in the first embodiment.
分别测试实施例1-6和对比例1和2提供的太阳能电池的各项性能,结果列于表1。The performances of the solar cells provided in Examples 1-6 and Comparative Examples 1 and 2 were tested respectively, and the results are listed in Table 1.
表1测试结果Table 1 Test results
由表1的测试结果可知,本发明提供的钝化膜能够具有优异的钝化性能,具有该钝化膜结果的太阳能电池的开压和目前氧化铝-氮化硅的钝化膜相比,相差无几,但具有更高的填充因子,说明本发明提供的钝化膜已经达到了氧化铝-氮化硅钝化膜的钝化水平。As can be seen from the test results in Table 1, the passivation film provided by the present invention can have excellent passivation performance, and the opening pressure of the solar cell with the result of the passivation film is compared with the passivation film of the current aluminum oxide-silicon nitride, The difference is almost the same, but the filling factor is higher, indicating that the passivation film provided by the present invention has reached the passivation level of the aluminum oxide-silicon nitride passivation film.
另外,本发明提供的太阳能电池,与目前具有普通铝背场的太阳能电池相比,具有较高的开压和短路电流,太阳能电池的转换效率能够提高1%-2%。In addition, the solar cell provided by the present invention has higher open voltage and short-circuit current than the current solar cell with an ordinary aluminum back field, and the conversion efficiency of the solar cell can be increased by 1%-2%.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810304090.1A CN108470778A (en) | 2018-03-30 | 2018-03-30 | Solar cell inactivating film and passivating back solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810304090.1A CN108470778A (en) | 2018-03-30 | 2018-03-30 | Solar cell inactivating film and passivating back solar cell and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108470778A true CN108470778A (en) | 2018-08-31 |
Family
ID=63262605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810304090.1A Pending CN108470778A (en) | 2018-03-30 | 2018-03-30 | Solar cell inactivating film and passivating back solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108470778A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109659400A (en) * | 2018-12-29 | 2019-04-19 | 浙江师范大学 | The method that monocrystalline silicon surface is passivated with vanadium oxide |
CN109786503A (en) * | 2018-12-29 | 2019-05-21 | 浙江师范大学 | The method that monocrystalline silicon surface is passivated with molybdenum oxide |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102856328A (en) * | 2012-10-10 | 2013-01-02 | 友达光电股份有限公司 | Solar cell and manufacturing method thereof |
CN104037243A (en) * | 2013-03-05 | 2014-09-10 | Lg电子株式会社 | Solar Cell |
CN106449813A (en) * | 2016-10-24 | 2017-02-22 | 王行柱 | Back passivation crystal silicon solar battery and preparation method thereof |
CN106601588A (en) * | 2016-12-06 | 2017-04-26 | 湖南红太阳光电科技有限公司 | Manufacturing method of silicon oxide passivation layer |
CN107425083A (en) * | 2017-07-26 | 2017-12-01 | 顺德中山大学太阳能研究院 | A kind of lamination back of the body passivation solar cell and preparation method thereof |
-
2018
- 2018-03-30 CN CN201810304090.1A patent/CN108470778A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102856328A (en) * | 2012-10-10 | 2013-01-02 | 友达光电股份有限公司 | Solar cell and manufacturing method thereof |
CN104037243A (en) * | 2013-03-05 | 2014-09-10 | Lg电子株式会社 | Solar Cell |
CN106449813A (en) * | 2016-10-24 | 2017-02-22 | 王行柱 | Back passivation crystal silicon solar battery and preparation method thereof |
CN106601588A (en) * | 2016-12-06 | 2017-04-26 | 湖南红太阳光电科技有限公司 | Manufacturing method of silicon oxide passivation layer |
CN107425083A (en) * | 2017-07-26 | 2017-12-01 | 顺德中山大学太阳能研究院 | A kind of lamination back of the body passivation solar cell and preparation method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109659400A (en) * | 2018-12-29 | 2019-04-19 | 浙江师范大学 | The method that monocrystalline silicon surface is passivated with vanadium oxide |
CN109786503A (en) * | 2018-12-29 | 2019-05-21 | 浙江师范大学 | The method that monocrystalline silicon surface is passivated with molybdenum oxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210926046U (en) | Solar cell | |
CN109065639A (en) | N-type crystalline silicon solar battery and preparation method, photovoltaic module | |
CN104992988B (en) | Crystalline silicon solar cell surface passivation layer having good conductive performance and passivation method | |
CN115020507B (en) | A selectively passivated contact battery and preparation method thereof | |
CN105185851A (en) | Back passivation solar cell and preparation method thereof | |
CN114551606A (en) | A solar cell, photovoltaic module | |
CN102738252A (en) | Double-face passivated metal wrap through (MWT) solar battery and manufacturing method thereof | |
CN108767022A (en) | P-type crystal silicon solar cell and preparation method, photovoltaic module | |
CN106057926A (en) | Passivated emitting electrode solar cell with laminated heterojunction structure and preparation method thereof | |
CN114512551B (en) | Double-sided TOPCON photovoltaic cell based on p-type silicon substrate | |
CN114883421A (en) | Double-sided passivation contact solar cell and manufacturing method thereof | |
WO2022156101A1 (en) | Solar cell stack passivation structure and preparation method therefor | |
CN107978644A (en) | Solar cell | |
CN116705915A (en) | Preparation method of a novel double-sided TOPCon battery | |
CN205985014U (en) | Passivation projecting pole solar battery with stromatolite heterostructure | |
CN108470778A (en) | Solar cell inactivating film and passivating back solar cell and preparation method thereof | |
CN118281087B (en) | Back contact battery, manufacturing method thereof and photovoltaic module | |
WO2022156102A1 (en) | Solar cell stack passivation structure and preparation method therefor | |
CN108389928B (en) | Solar cell and preparation method thereof | |
CN107425083A (en) | A kind of lamination back of the body passivation solar cell and preparation method thereof | |
CN109950354A (en) | Homojunction-heterojunction solar cell and preparation method thereof | |
CN214898453U (en) | Solar cell laminated passivation structure | |
CN115881835A (en) | Solar cell, preparation method thereof and photovoltaic module | |
CN112349791B (en) | Solar cell and preparation method thereof | |
CN115775839A (en) | Solar cell and method for preparing solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180831 |
|
RJ01 | Rejection of invention patent application after publication |