[go: up one dir, main page]

CN108462481B - A proportional LMP filtering method based on parameter adjustment under μ-law function - Google Patents

A proportional LMP filtering method based on parameter adjustment under μ-law function Download PDF

Info

Publication number
CN108462481B
CN108462481B CN201810178135.5A CN201810178135A CN108462481B CN 108462481 B CN108462481 B CN 108462481B CN 201810178135 A CN201810178135 A CN 201810178135A CN 108462481 B CN108462481 B CN 108462481B
Authority
CN
China
Prior art keywords
weight vector
lmp
filter
output signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810178135.5A
Other languages
Chinese (zh)
Other versions
CN108462481A (en
Inventor
张静静
石颖
赵集
陈龙
毛翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Uav Intelligent Science & Technology Co ltd
State Grid Zhejiang Electric Power Co Ltd
Original Assignee
Chengdu Uav Intelligent Science & Technology Co ltd
State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Uav Intelligent Science & Technology Co ltd, State Grid Zhejiang Electric Power Co Ltd filed Critical Chengdu Uav Intelligent Science & Technology Co ltd
Priority to CN201810178135.5A priority Critical patent/CN108462481B/en
Publication of CN108462481A publication Critical patent/CN108462481A/en
Application granted granted Critical
Publication of CN108462481B publication Critical patent/CN108462481B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0043Adaptive algorithms

Landscapes

  • Filters That Use Time-Delay Elements (AREA)

Abstract

本发明公开了一种μ律函数下基于参数调整的比例LMP滤波方法,包括以下步骤:将自适应滤波器的输入信号与该滤波器的权值向量期望值相乘,再加上噪声信号,得到期望输出信号;将自适应滤波器的输入信号与该滤波器实时权值向量相乘,得到实际输出信号;将期望输出信号和实时输出信号做差,得到信号误差,计算代价函数;引入μ律函数下随系统稀疏度调整参数的对角矩阵,对权值向量进行调整;将调整后的权值向量作为滤波器新的实时权值向量。本发明使得自适应滤波器既能够在稀疏度较大的系统中保持良好的收敛速度和滤波精度,也能在稀疏度较小的系统中保持良好的收敛速度和滤波精度,提高了自适应滤波器对环境的适应性。

Figure 201810178135

The invention discloses a proportional LMP filtering method based on parameter adjustment under μ-law function. Desired output signal; Multiply the input signal of the adaptive filter by the real-time weight vector of the filter to obtain the actual output signal; Difference between the expected output signal and the real-time output signal to obtain the signal error, calculate the cost function; Introduce μ law Under the function, the diagonal matrix of the parameters is adjusted according to the system sparsity, and the weight vector is adjusted; the adjusted weight vector is used as the new real-time weight vector of the filter. The invention enables the adaptive filter to maintain a good convergence speed and filtering accuracy in a system with a relatively large sparsity, and also maintain a good convergence speed and filtering accuracy in a system with a relatively small sparsity, thereby improving the adaptive filtering. adaptability of the device to the environment.

Figure 201810178135

Description

一种μ律函数下基于参数调整的比例LMP滤波方法A proportional LMP filtering method based on parameter adjustment under μ-law function

技术领域technical field

本发明涉及数字信号处理技术领域,特别是涉及一种μ律函数下基于参数调整的比例LMP滤波方法。The invention relates to the technical field of digital signal processing, in particular to a proportional LMP filtering method based on parameter adjustment under a μ-law function.

背景技术Background technique

自适应滤波器是一种通过自适应算法改变传统滤波器的参数来追踪信号的时变特征的滤波器.传统滤波器需要知道信道结构,然而实际情况中很多信道是未知的,而自适应滤波器能在不知道系统结构的情况下根据信号或者噪声的统计特性,通过迭代的方式自适应的找到最优的滤波器参数.这一特性使得自适应滤波在通信领域的回波消除、信道均衡、滤波与逆滤波、系统辨识、噪声消除等方面得到广泛的应用。An adaptive filter is a filter that tracks the time-varying characteristics of the signal by changing the parameters of the traditional filter through an adaptive algorithm. The traditional filter needs to know the channel structure, but in practice many channels are unknown, while the adaptive filter needs to know the channel structure. The filter can adaptively find the optimal filter parameters in an iterative manner according to the statistical characteristics of the signal or noise without knowing the system structure. This characteristic makes the adaptive filter in the field of communication echo cancellation, channel equalization , filtering and inverse filtering, system identification, noise elimination, etc. have been widely used.

近年来,随着信息化和现代数字技术的发展,许多领域对未知信道的信号特征提取和噪声消除的要求越来越强烈,需要能够对信号进行实时处理。LMP算法是一种自适应处理算法,能够实现信号的滤波、平滑及预测等操作。LMP算法以误差信号绝对值的p次方为代价函数,利用梯度下降法得到权重更新公式。In recent years, with the development of informatization and modern digital technology, the requirements for signal feature extraction and noise elimination of unknown channels in many fields have become stronger and stronger, and it is necessary to be able to process signals in real time. The LMP algorithm is an adaptive processing algorithm that can filter, smooth, and predict signals. The LMP algorithm takes the p-th power of the absolute value of the error signal as the cost function, and uses the gradient descent method to obtain the weight update formula.

在稀疏系统辨识中自适应滤波器的长度会成倍增加,这不仅导致了算法的收敛速度随之降低,而且使得滤波精度也有所下降。然而在这数量众多的自适应滤波器系数中只有很少的系数有显著的值,其余大部分都是零或者很小的数,故有必要采用某种方法以缓解自适应滤波器在这种情况下的性能退化。2000年Donald L.Duttweiler提出了系数比例自适应算法。系数比例自适应指的是引入一个步长控制矩阵,使得当前时刻的步长参数与当前时刻滤波器系数的绝对值成正比,这样处理的话,较大的滤波器系数获得较大的步长参数,较小的滤波器系数获得较小的步长参数,从而提高了算法的收敛速度。比例LMP算法在LMP算法的基础上引入步长控制矩阵,使得不同系数通过不同步长参数来适当调节,有效的提高了算法的收敛速度。然而,比例LMP算法是针对稀疏程度较大的冲激响应提出来的,当系统稀疏度减小时,比例LMP算法的收敛速度会急剧退化,甚至比LMP算法还慢。In sparse system identification, the length of the adaptive filter will increase exponentially, which not only reduces the convergence speed of the algorithm, but also reduces the filtering accuracy. However, in this large number of adaptive filter coefficients, only a few coefficients have significant values, and most of the rest are zero or very small numbers, so it is necessary to adopt some method to alleviate the adaptive filter in this kind of performance degradation in the case. In 2000, Donald L.Duttweiler proposed the coefficient scale adaptive algorithm. Coefficient proportional adaptation refers to the introduction of a step size control matrix, so that the step size parameter at the current moment is proportional to the absolute value of the filter coefficient at the current moment. In this way, a larger filter coefficient can obtain a larger step size parameter , smaller filter coefficients obtain smaller step size parameters, thus improving the convergence speed of the algorithm. The proportional LMP algorithm introduces a step size control matrix on the basis of the LMP algorithm, so that different coefficients can be properly adjusted by different step size parameters, which effectively improves the convergence speed of the algorithm. However, the proportional LMP algorithm is proposed for the impulse response with a large degree of sparsity. When the system sparsity decreases, the convergence speed of the proportional LMP algorithm will deteriorate sharply, even slower than the LMP algorithm.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术的不足,提供一种μ律函数下基于参数调整的比例LMP滤波方法,引入μ律函数下随系统稀疏度调整参数的对角矩阵,并结合代价函数对自适应滤波器的权值向量进行调整,使得自适应滤波器既能够在稀疏度较大的系统中保持良好的收敛速度和滤波精度,也能在稀疏度较小的系统中保持良好的收敛速度和滤波精度,提高了自适应滤波器对环境的适应性。The purpose of the present invention is to overcome the deficiencies of the prior art, provide a proportional LMP filtering method based on parameter adjustment under the μ-law function, introduce a diagonal matrix that adjusts parameters with the system sparsity under the μ-law function, and combine the cost function to adjust the self- The weight vector of the adaptive filter is adjusted, so that the adaptive filter can not only maintain a good convergence speed and filtering accuracy in a system with large sparsity, but also maintain a good convergence speed and filtering accuracy in a system with small sparsity. The filtering accuracy improves the adaptability of the adaptive filter to the environment.

本发明的目的是通过以下技术方案来实现的:一种μ律函数下基于参数调整的比例LMP滤波方法,包括以下步骤:The object of the present invention is to be achieved through the following technical solutions: a proportional LMP filtering method based on parameter adjustment under a μ-law function, comprising the following steps:

S1.将自适应滤波器的输入信号x(n)=[x(n),x(n-1),...,x(n-L+1)]T与该滤波器的权值向量期望值

Figure GDA0001610884480000021
相乘,再加上噪声信号v(n),得到期望输出信号d(n):S1. Combine the input signal of the adaptive filter x(n)=[x(n), x(n-1),...,x(n-L+1)] T with the weight vector of the filter expected value
Figure GDA0001610884480000021
Multiply and add the noise signal v(n) to get the desired output signal d(n):

d(n)=w*Tx(n)+v(n);d(n)=w *T x(n)+v(n);

式中,L表示信道长度;In the formula, L represents the channel length;

S2.将自适应滤波器的输入信号x(n)=[x(n),x(n-1),...,x(n-L+1)]T与该滤波器实时权值向量w(n)=[w1(n),w2(n),...,wL(n)]T相乘,得到实际输出信号y(n):S2. Combine the input signal of the adaptive filter x(n)=[x(n), x(n-1),...,x(n-L+1)] T with the real-time weight vector of the filter w(n)=[w 1 (n),w 2 (n),...,w L (n)] Multiply by T to get the actual output signal y(n):

y(n)=wT(n)x(n);y(n)= wT (n)x(n);

S3.将期望输出信号d(n)和实时输出信号y(n)做差,得到信号误差e(n):S3. Make the difference between the expected output signal d(n) and the real-time output signal y(n) to obtain the signal error e(n):

e(n)=d(n)-y(n);e(n)=d(n)-y(n);

S4.根据信号误差e(n),计算LMP算法的代价函数:S4. Calculate the cost function of the LMP algorithm according to the signal error e(n):

JLMP(n)=|e(n)|pJ LMP (n)=|e(n)| p ;

S5.引入μ律函数下随系统稀疏度调整参数的对角矩阵G(n)=diag(g1(n),g2(n),...,gL(n)),并结合代价函数JLMP(n),对权值向量w(n)进行调整;S5. Introduce the diagonal matrix G(n)=diag(g 1 (n),g 2 (n),...,g L (n)) that adjusts the parameters with the system sparsity under the μ-law function, and combine the cost The function J LMP (n) adjusts the weight vector w(n);

S6.将调整后的权值向量作为滤波器新的实时权值向量,重复进行步骤S1~S5,在每次滤波过程中对自适应滤波器的权值向量进行迭代更新。S6. Use the adjusted weight vector as a new real-time weight vector of the filter, repeat steps S1 to S5, and iteratively update the weight vector of the adaptive filter in each filtering process.

其中,所述步骤S5包括以下子步骤:Wherein, the step S5 includes the following sub-steps:

引入μ律函数下随系统稀疏度调整参数的对角矩阵G(n)=diag(g1(n),g2(n),...,gL(n)),其中对角矩阵G(n)中的步长因子gi(n)为:Introduce a diagonal matrix G(n)=diag(g 1 (n),g 2 (n),...,g L (n)) that adjusts parameters with the system sparsity under the μ-law function, where the diagonal matrix G The step factor g i (n) in (n) is:

Figure GDA0001610884480000022
Figure GDA0001610884480000022

将对角矩阵G(n)与代价函数JLMP(n)结合,对权值向量w(n)进行调整,调整后的权值向量为:The diagonal matrix G(n) is combined with the cost function J LMP (n) to adjust the weight vector w(n). The adjusted weight vector is:

Figure GDA0001610884480000023
Figure GDA0001610884480000023

式中,Q(n)=|e(n)|p-1sgn(e(n))x(n),ηp为全局步长参数。In the formula, Q(n)=|e(n)| p-1 sgn(e(n))x(n), ηp is the global step size parameter.

本发明的有益效果是:本发明引入μ律函数下随系统稀疏度调整参数的对角矩阵,并结合代价函数对自适应滤波器的权值向量进行调整,使得自适应滤波器既能够在稀疏度较大的系统中保持良好的收敛速度和滤波精度,也能在稀疏度较小的系统中保持良好的收敛速度和滤波精度,提高了自适应滤波器对环境的适应性。The beneficial effects of the present invention are as follows: the present invention introduces a diagonal matrix for adjusting parameters with the system sparsity under the μ-law function, and adjusts the weight vector of the adaptive filter in combination with the cost function, so that the adaptive filter can It can maintain a good convergence speed and filtering accuracy in a system with a large degree of sparseness, and can also maintain a good convergence speed and filtering accuracy in a system with a small sparse degree, which improves the adaptability of the adaptive filter to the environment.

附图说明Description of drawings

图1为本发明的系统原理框图;Fig. 1 is the system principle block diagram of the present invention;

图2为本发明的方法所对应的比例LMP滤波模型示意图。FIG. 2 is a schematic diagram of a proportional LMP filtering model corresponding to the method of the present invention.

具体实施方式Detailed ways

下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。The technical solutions of the present invention are further described in detail below with reference to the accompanying drawings, but the protection scope of the present invention is not limited to the following.

如图1所示,一种μ律函数下基于参数调整的比例LMP滤波方法,包括以下步骤:As shown in Figure 1, a proportional LMP filtering method based on parameter adjustment under μ-law function includes the following steps:

S1.将自适应滤波器的输入信号x(n)=[x(n),x(n-1),...,x(n-L+1)]T与该滤波器的权值向量期望值

Figure GDA0001610884480000031
相乘,再加上噪声信号v(n),得到期望输出信号d(n):S1. Combine the input signal of the adaptive filter x(n)=[x(n), x(n-1),...,x(n-L+1)] T with the weight vector of the filter expected value
Figure GDA0001610884480000031
Multiply and add the noise signal v(n) to get the desired output signal d(n):

d(n)=w*Tx(n)+v(n);d(n)=w *T x(n)+v(n);

式中,L表示信道长度;In the formula, L represents the channel length;

S2.将自适应滤波器的输入信号x(n)=[x(n),x(n-1),...,x(n-L+1)]T与该滤波器实时权值向量w(n)=[w1(n),w2(n),...,wL(n)]T相乘,得到实际输出信号y(n):S2. Combine the input signal of the adaptive filter x(n)=[x(n), x(n-1),...,x(n-L+1)] T with the real-time weight vector of the filter w(n)=[w 1 (n),w 2 (n),...,w L (n)] Multiply by T to get the actual output signal y(n):

y(n)=wT(n)x(n);y(n)= wT (n)x(n);

S3.将期望输出信号d(n)和实时输出信号y(n)做差,得到信号误差e(n):S3. Make the difference between the expected output signal d(n) and the real-time output signal y(n) to obtain the signal error e(n):

e(n)=d(n)-y(n);e(n)=d(n)-y(n);

S4.根据信号误差e(n),计算LMP算法的代价函数:S4. Calculate the cost function of the LMP algorithm according to the signal error e(n):

JLMP(n)=|e(n)|pJ LMP (n)=|e(n)| p ;

S5.引入μ律函数下随系统稀疏度调整参数的对角矩阵G(n)=diag(g1(n),g2(n),...,gL(n)),并结合代价函数JLMP(n),对权值向量w(n)进行调整;S5. Introduce the diagonal matrix G(n)=diag(g 1 (n),g 2 (n),...,g L (n)) that adjusts the parameters with the system sparsity under the μ-law function, and combine the cost The function J LMP (n) adjusts the weight vector w(n);

S6.将调整后的权值向量作为滤波器新的实时权值向量,重复进行步骤S1~S5,在每次滤波过程中对自适应滤波器的权值向量进行迭代更新。S6. Use the adjusted weight vector as a new real-time weight vector of the filter, repeat steps S1 to S5, and iteratively update the weight vector of the adaptive filter in each filtering process.

其中,所述步骤S5包括以下子步骤:Wherein, the step S5 includes the following sub-steps:

引入μ律函数下随系统稀疏度调整参数的对角矩阵G(n)=diag(g1(n),g2(n),...,gL(n)),其中对角矩阵G(n)中的步长因子gi(n)为:Introduce a diagonal matrix G(n)=diag(g 1 (n),g 2 (n),...,g L (n)) that adjusts parameters with the system sparsity under the μ-law function, where the diagonal matrix G The step factor g i (n) in (n) is:

Figure GDA0001610884480000041
Figure GDA0001610884480000041

μ表示一个客观的收敛标准,一般取正常数。μ represents an objective convergence criterion, which is generally a positive number.

将对角矩阵G(n)与代价函数JLMP(n)结合,对权值向量w(n)进行调整,调整后的权值向量为:The diagonal matrix G(n) is combined with the cost function J LMP (n) to adjust the weight vector w(n). The adjusted weight vector is:

Figure GDA0001610884480000042
Figure GDA0001610884480000042

式中,Q(n)=|e(n)|p-1sgn(e(n))x(n),ηp为全局步长参数。In the formula, Q(n)=|e(n)| p-1 sgn(e(n))x(n), ηp is the global step size parameter.

如图2所示,为本发明的方法所对应的比例LMP滤波模型示意图,首先计算期望输出信号和实时输出信号的误差,然后在最小均方p范数准则下,设计滤波算法的代价函数:JLMP(n)=|e(n)|p,再引入对角矩阵G(n)=diag(g1(n),g2(n),...,gL(n))结合代价函数JLMP(n),对权值向量w(n)进行调整;As shown in Figure 2, which is a schematic diagram of the proportional LMP filtering model corresponding to the method of the present invention, first calculate the error between the expected output signal and the real-time output signal, and then design the cost function of the filtering algorithm under the minimum mean square p-norm criterion: J LMP (n)=|e(n)| p , and then introduce the diagonal matrix G(n)=diag(g 1 (n),g 2 (n),...,g L (n)) combined cost The function J LMP (n) adjusts the weight vector w(n);

现有的比例LMP算法中,对角矩阵G(n)中的步长因子gi(n)为:In the existing proportional LMP algorithm, the step factor g i (n) in the diagonal matrix G(n) is:

Figure GDA0001610884480000043
Figure GDA0001610884480000043

Figure GDA0001610884480000046
Figure GDA0001610884480000046

γ(n)=max{φ,w1(n),...,|wL(n)|};γ(n)=max{φ,w 1 (n),...,|w L (n)|};

其中

Figure GDA0001610884480000044
和φ是正常数因子,目的是为了防止滤波器系数过小而使算法停滞;χi(n)表示在n时刻第l个滤波器系数绝对值和
Figure GDA0001610884480000045
中最大的一个;in
Figure GDA0001610884480000044
and φ is a constant factor, the purpose is to prevent the filter coefficient from being too small to make the algorithm stagnate; χ i (n) represents the absolute value of the lth filter coefficient at time n and the sum of
Figure GDA0001610884480000045
the largest of the

但是,比例LMP算法是针对稀疏程度较大的冲激响应提出的,然而,在处理稀疏程度较小的冲激响应时比例LMP算法的收敛速度甚至比LMP算法还慢;在本发明中,为解决该问题,将对角矩阵G(n)中的步长因子gi(n)替换为:However, the proportional LMP algorithm is proposed for impulse responses with a relatively large degree of sparseness. However, the convergence speed of the proportional LMP algorithm is even slower than that of the LMP algorithm when dealing with impulse responses with a relatively small degree of sparseness. To solve this problem, replace the step factor g i (n) in the diagonal matrix G(n) with:

Figure GDA0001610884480000051
Figure GDA0001610884480000051

其中-1≤β<1,gi(n)起到一个根据稀疏度调节算法的作用。通过调节β,该算法可以在LMP算法与比例LMP算法之间切换。具体表现为:β越接近-1时,该算法越接近LMP算法,故适应于非稀疏系统,β靠近1时,该算法越接近比例LMP算法,故适应于稀疏系统。β越大时,算法越适应稀疏度大的情况,β越小时,算法越适合稀疏度小的算法。Where -1≤β<1, g i (n) plays a role of adjusting the algorithm according to the sparsity. By adjusting β, the algorithm can be switched between the LMP algorithm and the proportional LMP algorithm. The specific performance is: when β is closer to -1, the algorithm is closer to the LMP algorithm, so it is suitable for non-sparse systems; when β is close to 1, the algorithm is closer to the proportional LMP algorithm, so it is suitable for sparse systems. When β is larger, the algorithm is more suitable for the case of large sparsity, and the smaller β is, the more suitable the algorithm is for the algorithm with small sparsity.

为了更好的对稀疏度进行度量,本发明中又引入了μ律函数,μ律函数可以描述为:In order to better measure the sparsity, the μ-law function is introduced in the present invention, and the μ-law function can be described as:

F(wi(n))=log(1+μ|wi(n)|);F( wi (n))=log(1+μ| wi (n)|);

μ表示一个客观的收敛标准,一般取正常数,将μ律函数的描述结果作为公式

Figure GDA0001610884480000052
中的|wi(n)|、|wj(n)|带入,即可得到对角矩阵G(n)中的最终的步长因子:μ represents an objective convergence criterion, generally a positive number, and the description result of the μ-law function is used as a formula
Figure GDA0001610884480000052
Bring |w i (n)| and |w j (n)| into the diagonal matrix G(n) to get the final step factor in the diagonal matrix G(n):

Figure GDA0001610884480000053
Figure GDA0001610884480000053

利用步长因子所对应的矩阵G(n)结合代价函数对自适应滤波器的权值向量进行调整,即可使得自适应滤波器对稀疏冲激响应和非稀疏冲激响应均能表现出很好的特性,具体地,既能够在稀疏度较大的系统中保持良好的收敛速度和滤波精度,也能在稀疏度较小的系统中保持良好的收敛速度和滤波精度,提高了自适应滤波器对环境的适应性。Using the matrix G(n) corresponding to the step size factor and the cost function to adjust the weight vector of the adaptive filter, the adaptive filter can show good performance for both sparse and non-sparse impulse responses. Good characteristics, specifically, it can not only maintain a good convergence speed and filtering accuracy in a system with large sparsity, but also maintain a good convergence speed and filtering accuracy in a system with small sparsity, which improves the adaptive filtering. adaptability of the device to the environment.

Claims (1)

1. A proportional LMP filtering method based on parameter adjustment under a mu-law function is characterized in that: the method comprises the following steps:
s1, an input signal x (n) = [ x (n), x (n-1),. ], x (n-L + 1) of the adaptive filter] T And the expected value of the weight vector of the filter
Figure FDA0003795268490000011
Multiplying, and adding the noise signal v (n) to obtain the desired output signal d (n):
d(n)=w *T x(n)+v(n);
wherein, L represents the channel length;
s2, an input signal x (n) = [ x (n), x (n-1),.., x (n-L + 1) of the adaptive filter] T With the filter real-time weight vector w (n) = [ w = 1 (n),w 2 (n),…,w L (n)] T Multiplying to obtain an actual output signal y (n):
y(n)=w T (n)x(n);
s3, subtracting the expected output signal d (n) from the real-time output signal y (n) to obtain a signal error e (n):
e(n)=d(n)-y(n);
s4, calculating a cost function of the LMP algorithm according to the signal error e (n):
J LMP (n)=|e(n) | p
s5, introducing a diagonal matrix G (n) = diag (G) of parameters adjusted along with system sparsity under the mu-law function 1 (n),g 2 (n),…,g L (n)), and incorporating a cost function J LMP (n) for the weight directionAdjusting the amount w (n);
wherein the step factor G in the diagonal matrix G (n) i (n) is:
Figure FDA0003795268490000012
wherein beta is more than or equal to-1 and less than 1; mu represents a convergence standard, and a normal number is taken;
the diagonal matrix G (n) is compared with a cost function J LMP (n) combining, adjusting the weight vector w (n), wherein the adjusted weight vector is as follows:
Figure FDA0003795268490000013
wherein Q (n) = | e (n) <withoutcircuit defects p-1 sgn (e (n)) x (n), η p is a global step size parameter;
and S6, taking the adjusted weight vector as a new real-time weight vector of the filter, repeating the steps S1-S5, and carrying out iterative updating on the weight vector of the self-adaptive filter in each filtering process.
CN201810178135.5A 2018-03-05 2018-03-05 A proportional LMP filtering method based on parameter adjustment under μ-law function Active CN108462481B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810178135.5A CN108462481B (en) 2018-03-05 2018-03-05 A proportional LMP filtering method based on parameter adjustment under μ-law function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810178135.5A CN108462481B (en) 2018-03-05 2018-03-05 A proportional LMP filtering method based on parameter adjustment under μ-law function

Publications (2)

Publication Number Publication Date
CN108462481A CN108462481A (en) 2018-08-28
CN108462481B true CN108462481B (en) 2022-10-21

Family

ID=63216696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810178135.5A Active CN108462481B (en) 2018-03-05 2018-03-05 A proportional LMP filtering method based on parameter adjustment under μ-law function

Country Status (1)

Country Link
CN (1) CN108462481B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166024B (en) * 2019-05-23 2022-11-11 哈尔滨工程大学 A method for signal enhancement of weak acoustic beacon
CN110890875B (en) * 2019-09-29 2021-08-10 电子科技大学 Improved proportional affine projection filtering method based on generalized correlation induction measurement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021859A1 (en) * 2001-08-31 2003-03-13 Broadband Physics, Inc. Compensation for non-linear distortion in a modem receiver
JP2004064681A (en) * 2002-07-31 2004-02-26 Japan Science & Technology Corp Adaptive filter
CN101288228A (en) * 2004-11-08 2008-10-15 美商内数位科技公司 Method and apparatus for estimating the step-size of an adaptive equalizer
CN106411290A (en) * 2016-09-22 2017-02-15 安徽师范大学 Variable step size VLMP filtering algorithm based on sigmoid function and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014517B2 (en) * 2007-04-18 2011-09-06 Gas Technology Institute Method and apparatus for enhanced convergence of the normalized LMS algorithm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021859A1 (en) * 2001-08-31 2003-03-13 Broadband Physics, Inc. Compensation for non-linear distortion in a modem receiver
JP2004064681A (en) * 2002-07-31 2004-02-26 Japan Science & Technology Corp Adaptive filter
CN101288228A (en) * 2004-11-08 2008-10-15 美商内数位科技公司 Method and apparatus for estimating the step-size of an adaptive equalizer
CN106411290A (en) * 2016-09-22 2017-02-15 安徽师范大学 Variable step size VLMP filtering algorithm based on sigmoid function and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于GSM语音压缩的小波阈值去噪方法的研究;周伟武等;《浙江理工大学学报(自然科学版)》;20100228;全文 *

Also Published As

Publication number Publication date
CN108462481A (en) 2018-08-28

Similar Documents

Publication Publication Date Title
CN111711584B (en) Sparse underwater acoustic channel estimation method based on proportional normalization minimum mean square error
CN106059531A (en) A Non-Negative Adaptive Filter
CN104283528A (en) A Variable Step Size LMS Adaptive Filtering Method
CN108462481B (en) A proportional LMP filtering method based on parameter adjustment under μ-law function
CN114420147A (en) Echo eliminator based on proportion total adaptive method
CN106411290A (en) Variable step size VLMP filtering algorithm based on sigmoid function and application thereof
CN110191245B (en) An Adaptive Echo Cancellation Method Based on Time-varying Parameters
CN106653043B (en) Adaptive Beamforming Method for Reducing Speech Distortion
CN108512528A (en) A kind of ratio control under CIM functions and normalization LMP filtering methods
CN103716013A (en) Variable parameter proportion self-adaptive filter
CN111884625A (en) A Variable Step Sparse Augmented Complex Adaptive Filter
CN110048694B (en) Random Fourier feature kernel least mean square algorithm based on variable step length
CN113299284A (en) Speech recognition device, method, equipment and medium based on adaptive filtering
CN108471300B (en) A Proportional LMP Filtering Method Based on Parameter Adjustment under CIM Function
CN108512529A (en) Ratio control under a kind of μ rule function and normalization LMP filtering methods
CN110190832B (en) Multi-task Adaptive Filter Networks with Variable Regularization Parameters
CN110190831B (en) Mixed norm non-negative adaptive filter
CN113541649B (en) Variable step length kernel number error self-adaptive filter
CN113452350B (en) Variable step block sparse affine projection self-adaptive filter
CN116341109A (en) An adaptive filtering method and system suitable for aircraft system modeling
CN117544453A (en) A robust estimation method and device for underwater acoustic channels under ice that is resistant to ice sheet noise
CN111181531B (en) Variable regularization deviation compensation symbol sub-band adaptive filter
CN111416595B (en) Big data filtering method based on multi-core fusion
Han et al. A normalized minimum error entropy stochastic algorithm
CN115696361A (en) Parameter setting method and device, electronic equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant