CN108456797B - A kind of Cu-Ag-Fe-C alloy and its preparation method - Google Patents
A kind of Cu-Ag-Fe-C alloy and its preparation method Download PDFInfo
- Publication number
- CN108456797B CN108456797B CN201810259998.5A CN201810259998A CN108456797B CN 108456797 B CN108456797 B CN 108456797B CN 201810259998 A CN201810259998 A CN 201810259998A CN 108456797 B CN108456797 B CN 108456797B
- Authority
- CN
- China
- Prior art keywords
- alloy
- preparation
- treatment
- smelting
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 93
- 239000000956 alloy Substances 0.000 title claims abstract description 93
- 229910017112 Fe—C Inorganic materials 0.000 title claims abstract description 71
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 229910052802 copper Inorganic materials 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 28
- 238000003723 Smelting Methods 0.000 claims abstract description 22
- 229910052709 silver Inorganic materials 0.000 claims abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 13
- 229910017770 Cu—Ag Inorganic materials 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 238000007712 rapid solidification Methods 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims description 66
- 239000000843 powder Substances 0.000 claims description 36
- 238000003756 stirring Methods 0.000 claims description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 10
- 238000005266 casting Methods 0.000 claims description 8
- 230000006698 induction Effects 0.000 claims description 6
- 238000010907 mechanical stirring Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000012768 molten material Substances 0.000 claims 1
- 229910017827 Cu—Fe Inorganic materials 0.000 abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 40
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 239000006104 solid solution Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 7
- 229910001316 Ag alloy Inorganic materials 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 229910000881 Cu alloy Inorganic materials 0.000 description 5
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 229910000640 Fe alloy Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 238000012733 comparative method Methods 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001417490 Sillaginidae Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Conductive Materials (AREA)
Abstract
本发明公开了一种Cu‑Ag‑Fe‑C系合金及其制备方法,该Cu‑Ag‑Fe‑C系合金按质量百分比由如下组分组成:Ag,0.5‑3%;Fe‑C预合金,10‑15%,余量为Cu。其制备方法包括:Cu和Ag的熔炼步骤,Fe‑C预合金的加入步骤,快速凝固步骤,以得到Fe‑C预合金颗粒均匀分布于Cu‑Ag基体中的Cu‑Ag‑Fe‑C系合金。本发明方法可以提高Cu‑Fe系合金的导电率和抗拉强度,得到的铸态合金的抗拉强度为420‑500MPa,导电率为40‑55%IACS。The invention discloses a Cu-Ag-Fe-C alloy and a preparation method thereof. The Cu-Ag-Fe-C alloy is composed of the following components according to mass percentage: Ag, 0.5-3%; Fe-C pre alloy, 10‑15%, the balance being Cu. Its preparation method comprises: the smelting step of Cu and Ag, the addition step of Fe-C pre-alloy, the rapid solidification step, to obtain the Cu-Ag-Fe-C system in which the Fe-C pre-alloy particles are evenly distributed in the Cu-Ag matrix alloy. The method of the invention can improve the electrical conductivity and tensile strength of the Cu-Fe alloy, and the tensile strength of the obtained cast alloy is 420-500MPa, and the electrical conductivity is 40-55% IACS.
Description
技术领域technical field
本发明涉及一种铜合金的制备方法,更具体地,本发明涉及一种Cu-Ag-Fe-C系合金及其制备方法。The invention relates to a method for preparing a copper alloy, more specifically, the invention relates to a Cu-Ag-Fe-C alloy and a method for preparing the same.
背景技术Background technique
铜合金具有良好的导电导热性、延展性和力学性能,是电子信息、电力、能源、船舶和机械等重要产业发展的关键功能材料。与其它体系的高强高导铜合金相比,Cu-Fe系中合金元素Fe的熔点相对较低、较易熔炼,且Fe与Cu的不溶混间隙小,合金的变形能力较好,可加工性较好,所以关于Cu-Fe系合金的研究受到了重视,成为高强高导铜合金发展的重要方向之一。Copper alloy has good electrical and thermal conductivity, ductility and mechanical properties, and is a key functional material for the development of important industries such as electronic information, electric power, energy, ships and machinery. Compared with high-strength and high-conductivity copper alloys of other systems, the melting point of the alloying element Fe in the Cu-Fe system is relatively low, and it is easier to melt, and the immiscible gap between Fe and Cu is small, and the alloy has better deformability and machinability. It is better, so the research on Cu-Fe alloys has been paid attention to, and it has become one of the important directions for the development of high-strength and high-conductivity copper alloys.
目前,高强高导Cu-Fe系合金主要利用常规熔铸法制备初合金,然后对初合金进行后续的热处理、变形等加工,获得最终使用状态的Cu-Fe系合金。在熔铸制备初合金时,由于凝固冷却速度较快,很容易导致Cu基体中固溶大量的Fe元素,严重降低Cu-Fe合金的导电性。虽然在后续热处理、形变热处理等过程中过饱和的Fe不断析出,但低温下Fe的扩散速度很慢,很难将Cu中固溶的Fe完全析出,而Fe在Cu中的固溶是降低Cu-Fe合金的最主要影响因素。所以为了提高Cu-Fe合金的导电性,需要降低Fe在Cu中的固溶量。At present, the primary alloys of high-strength and high-conductivity Cu-Fe alloys are mainly prepared by conventional melting and casting methods, and then the primary alloys are subjected to subsequent heat treatment, deformation and other processing to obtain Cu-Fe alloys in the final use state. When the primary alloy is prepared by melting and casting, due to the fast solidification and cooling rate, it is easy to cause a large amount of Fe element to dissolve in the Cu matrix, which seriously reduces the conductivity of the Cu-Fe alloy. Although supersaturated Fe is continuously precipitated during subsequent heat treatment, deformation heat treatment, etc., the diffusion rate of Fe is very slow at low temperature, and it is difficult to completely precipitate Fe in solid solution in Cu, and the solid solution of Fe in Cu is to reduce Cu. -The most important influencing factor of Fe alloy. Therefore, in order to improve the conductivity of Cu-Fe alloy, it is necessary to reduce the solid solution amount of Fe in Cu.
已有的方法常采用形变、热处理、强磁场、多元合金化等,但都不能很好地解决此问题。例如:Ag被认为是损害Cu合金导电性作用最小的元素,可是利用Ag对Cu-Fe合金进行合金化制备的Cu-Fe-Ag合金,其铸态Cu基体中仍然固溶2.5%以上的Fe。由于低温下Fe的扩散速度很慢,所以其他方法虽然可以降低Cu中Fe的固溶量,但同样无法将Cu中固溶的Fe减少到很低的状态。Existing methods often use deformation, heat treatment, strong magnetic field, multi-element alloying, etc., but none of them can solve this problem well. For example: Ag is considered to be the element that has the least effect on the conductivity of Cu alloys, but Cu-Fe-Ag alloys prepared by alloying Cu-Fe alloys with Ag still have more than 2.5% Fe in the as-cast Cu matrix. . Since the diffusion rate of Fe is very slow at low temperature, although other methods can reduce the solid solution amount of Fe in Cu, they cannot reduce the solid solution Fe in Cu to a very low state.
因此,急需一种可以更加有效地降低Cu中固溶的Fe的方法。Therefore, there is an urgent need for a method that can more effectively reduce the solid-dissolved Fe in Cu.
发明内容Contents of the invention
为了克服现有技术中的缺陷,本发明的目的在于提供一种Cu-Ag-Fe-C系合金及其制备方法。In order to overcome the defects in the prior art, the object of the present invention is to provide a Cu-Ag-Fe-C alloy and a preparation method thereof.
一种Cu-Ag-Fe-C系合金,按质量百分比,所述Cu-Ag-Fe-C系合金由如下组分组成:Ag,0.5-3%;Fe-C预合金,10-15%,余量为Cu。A Cu-Ag-Fe-C alloy, according to mass percentage, the Cu-Ag-Fe-C alloy is composed of the following components: Ag, 0.5-3%; Fe-C pre-alloyed, 10-15% , the balance being Cu.
在上述Cu-Ag-Fe-C系合金中,作为一种优选实施方式,所述Fe-C预合金中C含量为0.8~1.8wt%(比如:0.9wt%、1.0wt%、1.1wt%、1.2wt%、1.3wt%、1.4wt%、1.5wt%、1.6wt%、1.7wt%)。In the above-mentioned Cu-Ag-Fe-C alloy, as a preferred embodiment, the C content in the Fe-C pre-alloy is 0.8-1.8wt% (such as: 0.9wt%, 1.0wt%, 1.1wt%) , 1.2wt%, 1.3wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.7wt%).
一种Cu-Ag-Fe-C系合金的制备方法,包括:A method for preparing a Cu-Ag-Fe-C alloy, comprising:
Cu和Ag的熔炼步骤,将固体原料Cu和Ag进行熔炼处理,得到液态Cu-Ag合金液;Cu and Ag smelting step, the solid raw materials Cu and Ag are smelted to obtain liquid Cu-Ag alloy liquid;
Fe-C预合金的加入步骤,将Fe-C预合金粉加入所述液态Cu-Ag合金液中进行搅拌处理,得到混合均匀的熔炼料;The step of adding Fe-C pre-alloy, adding Fe-C pre-alloy powder into the liquid Cu-Ag alloy liquid for stirring treatment, to obtain a uniformly mixed smelting material;
快速凝固步骤,将所述熔炼料进行快速凝固处理,得到Fe-C预合金颗粒均匀分布于Cu-Ag基体中的Cu-Ag-Fe-C系合金。In the rapid solidification step, the melting material is subjected to rapid solidification treatment to obtain a Cu-Ag-Fe-C alloy in which Fe-C pre-alloyed particles are uniformly distributed in a Cu-Ag matrix.
本发明是先将铜和Ag熔炼成液态,然后将熔炼温度保持在比铜和银的熔点略高些但没有达到Fe-C预合金粉的熔点,再在该熔炼温度下加入Fe-C预合金粉并搅拌混合均匀以使固态的Fe-C预合金粉均匀分散在液态的铜-银合金液中,最后快冷,本发明利用了C和Cu在Fe-Cu-C三元体系中的互相排斥作用,利用了Ag比Fe先在Cu中固溶,对Fe固溶的抑制作用,利用了低温下Fe在Cu中扩散速度低的特点,将Fe以固态形式加入Cu-Ag合金液体中,然后迅速降温,控制Fe向Cu基体中的扩散,从而使Fe均匀分散在铜银合金基体中,降低固溶于Cu中的Fe量;在该过程中,Fe-C预合金粉未发生熔化,这样也有利于降低溶于Cu液中的Fe量,有利于提高合金的导电性。The present invention first smelts copper and Ag into a liquid state, then keeps the smelting temperature slightly higher than the melting point of copper and silver but does not reach the melting point of Fe-C pre-alloy powder, and then adds Fe-C pre-alloy powder at the smelting temperature. alloy powder and stir and mix evenly so that the solid Fe-C pre-alloy powder is evenly dispersed in the liquid copper-silver alloy liquid, and finally cooled rapidly. The present invention utilizes the C and Cu in the Fe-Cu-C ternary system Mutual repulsion, taking advantage of the solid solution of Ag in Cu before Fe, the inhibition of Fe solid solution, taking advantage of the low diffusion rate of Fe in Cu at low temperature, adding Fe to the Cu-Ag alloy liquid in solid form , and then rapidly lower the temperature to control the diffusion of Fe into the Cu matrix, so that Fe is evenly dispersed in the copper-silver alloy matrix, and the amount of Fe dissolved in Cu is reduced; during this process, the Fe-C pre-alloyed powder does not melt , This is also beneficial to reduce the amount of Fe dissolved in the Cu solution and to improve the conductivity of the alloy.
在上述制备方法中,作为一种优选实施方式,在所述Cu和Ag的熔炼步骤中,所述熔炼处理是在真空中频感应炉中进行的。In the above preparation method, as a preferred embodiment, in the Cu and Ag smelting step, the smelting treatment is carried out in a vacuum intermediate frequency induction furnace.
在上述制备方法中,作为一种优选实施方式,在所述Cu和Ag的熔炼步骤中,所述熔炼处理的熔炼温度为1090~1200℃,更优选为1100~1180℃(比如1110℃、1120℃、1130℃、1140℃、1150℃、1160℃、1170℃、1175℃)。熔炼温度过高不利于与下一步骤的衔接。In the above preparation method, as a preferred embodiment, in the smelting step of Cu and Ag, the smelting temperature of the smelting treatment is 1090-1200°C, more preferably 1100-1180°C (such as 1110°C, 1120°C ℃, 1130℃, 1140℃, 1150℃, 1160℃, 1170℃, 1175℃). Too high melting temperature is not conducive to the connection with the next step.
在上述制备方法中,作为一种优选实施方式,在所述Cu和Ag的熔炼步骤中,所述熔炼处理时的真空度为10Pa以下(比如9Pa、7Pa、5Pa、、3Pa、1Pa、0.5Pa、0.1Pa、0.05Pa)。In the above preparation method, as a preferred embodiment, in the smelting step of Cu and Ag, the vacuum degree during the smelting treatment is below 10Pa (such as 9Pa, 7Pa, 5Pa, 3Pa, 1Pa, 0.5Pa , 0.1Pa, 0.05Pa).
在上述制备方法中,作为一种优选实施方式,在所述Fe-C预合金的加入步骤,所述搅拌处理时的温度为1100~1180℃(比如1110℃、1120℃、1130℃、1140℃、1150℃、1160℃、1170℃、1175℃),更优选地,所述搅拌处理是在1100℃的条件下进行的。搅拌处理时的温度过高或过低都不利于Fe-C预合金粉未在铜-银合金熔液中的均匀分散,对合金性能产生不利影响。In the above preparation method, as a preferred embodiment, in the step of adding the Fe-C pre-alloy, the temperature during the stirring treatment is 1100-1180°C (such as 1110°C, 1120°C, 1130°C, 1140°C , 1150°C, 1160°C, 1170°C, 1175°C), more preferably, the stirring treatment is carried out at 1100°C. Too high or too low temperature during stirring treatment is not conducive to the uniform dispersion of Fe-C pre-alloyed powder in the copper-silver alloy melt, which will have an adverse effect on the properties of the alloy.
在上述制备方法中,作为一种优选实施方式,在所述Fe-C预合金的加入步骤,所述搅拌处理为机械搅拌或电磁搅拌,所述搅拌处理的时间为1~5min(比如1.5min、2min、2.5min、3min、4min、4.5min);更优选地,所述机械搅拌的搅拌速度为240-400rpm(比如250rpm、280rpm、300rpm、320rpm、350rpm、370rpm、390rpm),所述电磁搅拌的励磁电压为180-220V(比如185V、190V、200V、210V、220V)。电磁搅拌的效果要优于机械搅拌,在本发明的电磁搅拌参数下进行搅拌处理可以使Fe-C预合金粉未的分散更加均匀,可以进一步提高合金的性能。In the above preparation method, as a preferred embodiment, in the step of adding the Fe-C pre-alloy, the stirring process is mechanical stirring or electromagnetic stirring, and the time of the stirring process is 1-5min (such as 1.5min , 2min, 2.5min, 3min, 4min, 4.5min); more preferably, the stirring speed of the mechanical stirring is 240-400rpm (such as 250rpm, 280rpm, 300rpm, 320rpm, 350rpm, 370rpm, 390rpm), the electromagnetic stirring The excitation voltage is 180-220V (such as 185V, 190V, 200V, 210V, 220V). The effect of electromagnetic stirring is better than that of mechanical stirring. Stirring treatment under the electromagnetic stirring parameters of the present invention can make the dispersion of Fe-C pre-alloyed powder more uniform, and can further improve the performance of the alloy.
在上述制备方法中,作为一种优选实施方式,在所述快速凝固步骤中,所述快速凝固处理为水冷铜模浇铸法或单辊甩带法;更优选地,所述水冷铜模浇铸法的冷却速度为50℃/s~1000℃/s(比如55℃/s、100℃/s、200℃/s、300℃/s、400℃/s、500℃/s、600℃/s、700℃/s、800℃/s、900℃/s、950℃/s)。In the above preparation method, as a preferred embodiment, in the rapid solidification step, the rapid solidification treatment is a water-cooled copper mold casting method or a single-roller stripping method; more preferably, the water-cooled copper mold casting method The cooling rate is 50°C/s~1000°C/s (such as 55°C/s, 100°C/s, 200°C/s, 300°C/s, 400°C/s, 500°C/s, 600°C/s, 700°C/s, 800°C/s, 900°C/s, 950°C/s).
在上述制备方法中,作为一种优选实施方式,所述固体原料Cu和Ag为纯度99.9wt%以上的电解铜和Ag单质;或者所述固体原料Cu和Ag为Cu-Ag预合金粉。Cu-Ag预合金粉为市售产品,当然也可以按照常规方法制备,其可以通过真空雾化炉制备,将所需配比的原料电解铜和单质铝熔炼后雾化成粉末颗粒。Ag的加入量过少起不到降低基体中Fe固溶量的作用,Ag加入量过多,不仅增加成本,更重要的是会导致铁相粗化,降低合金的使用温度。In the above preparation method, as a preferred embodiment, the solid raw materials Cu and Ag are electrolytic copper and Ag with a purity of 99.9 wt% or more; or the solid raw materials Cu and Ag are Cu-Ag pre-alloyed powders. Cu-Ag pre-alloyed powder is a commercially available product, and of course it can also be prepared according to a conventional method. It can be prepared by a vacuum atomization furnace, and the raw materials electrolytic copper and elemental aluminum in the required ratio are smelted and atomized into powder particles. The addition of too little Ag will not reduce the solid solution content of Fe in the matrix. Too much Ag addition will not only increase the cost, but more importantly, it will lead to coarsening of the iron phase and reduce the service temperature of the alloy.
在上述制备方法中,作为一种优选实施方式,所述Fe-C预合金粉的颗粒尺寸为60~220nm(比如70nm、80nm、100nm、120nm、150nm、180nm、190nm、210nm或上述具体点值形成的任何尺寸范围)。所述Fe-C预合金粉为市售产品,当然也可以按照常规方法制备,其可以通过真空雾化炉制备,将所需配比的原料纯铁和增碳剂熔炼后雾化成粉末颗粒,然后再通过高能球磨制备成所需粒度的Fe-C预合金粉。本发明中使用的Fe-C预合金粉颗粒尺寸为60~220nm,颗粒过大,强化效果差,过小则容易使Fe溶于Cu中,导电性变差,而且还容易发生团聚。In the above preparation method, as a preferred embodiment, the particle size of the Fe-C pre-alloyed powder is 60-220nm (such as 70nm, 80nm, 100nm, 120nm, 150nm, 180nm, 190nm, 210nm or the above-mentioned specific point value any size range formed). The Fe-C pre-alloyed powder is a commercially available product, and of course it can also be prepared according to a conventional method. It can be prepared by a vacuum atomization furnace, and the raw material pure iron and carburant of the required ratio are smelted and atomized into powder particles. Then prepare Fe-C pre-alloyed powder with required particle size by high-energy ball milling. The particle size of the Fe-C pre-alloyed powder used in the present invention is 60-220nm. If the particle size is too large, the strengthening effect will be poor. If the particle size is too small, Fe will be easily dissolved in Cu, the conductivity will be poor, and agglomeration will easily occur.
在上述制备方法中,作为一种优选实施方式,以所述Fe-C预合金粉以及所述固体原料Cu和Ag的总质量为基准,所述Fe-C预合金粉的用量为10wt%~15wt%(比如11%、12%、13%、14%),所述固体原料Cu的用量为82wt%~89.5wt%(比如86%、87%、88%、89%),所述固体原料Ag的用量为0.5wt%~3wt%(比如0.6wt%、0.8wt%、1.2wt%、1.5wt%、1.8wt%、2.3wt%、2.8wt%)。In the above preparation method, as a preferred embodiment, based on the total mass of the Fe-C pre-alloy powder and the solid raw materials Cu and Ag, the amount of the Fe-C pre-alloy powder is 10wt%~ 15wt% (such as 11%, 12%, 13%, 14%), the amount of the solid raw material Cu is 82wt% ~ 89.5wt% (such as 86%, 87%, 88%, 89%), the solid raw material The amount of Ag used is 0.5wt%-3wt% (such as 0.6wt%, 0.8wt%, 1.2wt%, 1.5wt%, 1.8wt%, 2.3wt%, 2.8wt%).
在上述制备方法中,作为一种优选实施方式,所述Fe-C预合金粉中,C含量为0.8~1.8wt%(比如:0.9wt%、1.0wt%、1.1wt%、1.2wt%、1.3wt%、1.4wt%、1.5wt%、1.6wt%、1.7wt%)。In the above preparation method, as a preferred embodiment, in the Fe-C pre-alloyed powder, the C content is 0.8-1.8wt% (such as: 0.9wt%, 1.0wt%, 1.1wt%, 1.2wt%, 1.3wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.7wt%).
在本发明的合金中,C含量过低将导致有更多的Fe溶入Cu中,对合金的导电性不利,C含量过高可能会形成石墨或者Fe3C等。In the alloy of the present invention, if the C content is too low, more Fe will be dissolved into Cu, which is detrimental to the conductivity of the alloy. If the C content is too high, graphite or Fe3C may be formed.
在上述制备方法中,作为一种优选实施方式,所述制备方法还包括合金后处理步骤,将所述快速凝固步骤得到的Cu-Ag-Fe-C系合金进行后处理,得到Cu-Ag-Fe-C系合金成品。更优选地,所述后处理为热处理、变形处理、磁场处理中的一种或多种;所述后处理为常规处理。In the above preparation method, as a preferred embodiment, the preparation method also includes an alloy post-treatment step, and the Cu-Ag-Fe-C alloy obtained in the rapid solidification step is post-treated to obtain Cu-Ag- Fe-C alloy finished products. More preferably, the post-treatment is one or more of heat treatment, deformation treatment, and magnetic field treatment; the post-treatment is conventional treatment.
相比现有技术,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
为了更为有效地减少Cu-Fe合金基体中固溶的Fe含量,本专利提出利用C和Cu在Fe-Cu-C三元体系中的互相排斥作用,向Cu中添加Fe-C;利用了Ag比Fe先在Cu中固溶,对Fe固溶的抑制作用,同时利用低温下Fe在Cu中扩散速度低的特点,将Fe以固态形式Fe-C加入Cu液体中,然后迅速降温,控制Fe向Cu基体中的扩散,大幅降低Cu-Ag基体中Fe的固溶量。本发明方法可以提高Cu-Fe合金的导电率和抗拉强度,得到的铸态合金的抗拉强度为420-500MPa,导电率为40-55%IACS。In order to more effectively reduce the solid solution Fe content in the Cu-Fe alloy matrix, this patent proposes to use the mutual repulsion of C and Cu in the Fe-Cu-C ternary system to add Fe-C to Cu; Ag is solid-dissolved in Cu earlier than Fe, and it inhibits the solid-solution of Fe. At the same time, taking advantage of the low diffusion rate of Fe in Cu at low temperature, Fe is added into Cu liquid in the form of Fe-C in solid form, and then rapidly cooled to control The diffusion of Fe into the Cu matrix greatly reduces the amount of solid solution of Fe in the Cu-Ag matrix. The method of the invention can improve the electrical conductivity and tensile strength of the Cu-Fe alloy, and the tensile strength of the obtained cast alloy is 420-500MPa, and the electrical conductivity is 40-55% IACS.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于本发明而不用于限制本发明的范围。对外应理解,在阅读了本发明的内容之后,本领域技术人员对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only for the present invention and are not intended to limit the scope of the present invention. It should be understood that after reading the contents of the present invention, those skilled in the art may make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
实施例1Example 1
本实施例制备的合金为Cu-2.0wt%Ag-15wt%(Fe-C)合金,即:在该合金中,Fe-C的含量为15wt%,Cu的含量为83wt%,Ag的含量为2wt%,其中,Fe-C合金粉末中C的质量百分比为1wt%。具体制备方法如下:The alloy prepared in this embodiment is Cu-2.0wt%Ag-15wt% (Fe-C) alloy, that is: in this alloy, the content of Fe-C is 15wt%, the content of Cu is 83wt%, and the content of Ag is 2wt%, wherein, the mass percentage of C in the Fe-C alloy powder is 1wt%. The specific preparation method is as follows:
在真空中频感应炉内将99.9wt%的电解高纯Cu和单质Ag进行熔炼,熔炼温度控制在1100±5℃,真空度为10Pa,待固体铜和银全部变为液态后将颗粒尺寸为80-120nm的Fe-C合金粉加入到铜银熔液中,仍然在1100±5℃条件下以300rpm的搅拌速度机械搅拌3min,使固态Fe-C粉合金均匀分布在铜银合金液中,然后将其浇注在水冷铜模内快速冷却,冷却速度为100℃/s,浇注后获得的Cu-2.0wt%Ag-15wt%(Fe-C)合金。Melt 99.9wt% electrolytic high-purity Cu and elemental Ag in a vacuum intermediate frequency induction furnace. The melting temperature is controlled at 1100±5°C and the vacuum degree is 10Pa. -120nm Fe-C alloy powder is added to the copper-silver alloy liquid, and mechanically stirred at a stirring speed of 300rpm under the condition of 1100±5°C for 3 minutes, so that the solid Fe-C powder alloy is evenly distributed in the copper-silver alloy liquid, and then It is poured into a water-cooled copper mold for rapid cooling at a cooling rate of 100°C/s, and the obtained Cu-2.0wt%Ag-15wt% (Fe-C) alloy is obtained after pouring.
对该实施例方法制备的铸态合金产品进行性能测试,其抗拉强度为465MPa,导电率为50%IACS。The performance test of the as-cast alloy product prepared by the method of this embodiment shows that its tensile strength is 465 MPa, and its electrical conductivity is 50% IACS.
实施例2-4Example 2-4
实施例2-4除了Fe-C合金粉末中C的质量百分比不同于实施例1以外,其他工艺参数同实施例1。实施例2-4的Fe-C合金粉末中C的质量百分比以及得到的合金的性能参见表1。Examples 2-4 are the same as Example 1 except that the mass percentage of C in the Fe-C alloy powder is different from Example 1. See Table 1 for the mass percentage of C in the Fe—C alloy powders of Examples 2-4 and the properties of the obtained alloys.
表1实施例2-4的工艺参数和性能结果Process parameter and performance result of table 1 embodiment 2-4
实施例5-6和对比例1Embodiment 5-6 and comparative example 1
实施例5-6和对比例1除了熔炼温度和搅拌时温度(熔炼温度等于搅拌时温度)不同于实施例1以外,其他工艺参数同实施例1。实施例5-6和对比例1的熔炼温度以及得到的合金的性能参见表2。Embodiment 5-6 and comparative example 1 are different from embodiment 1 except that melting temperature and temperature during stirring (melting temperature is equal to temperature during stirring) are different from embodiment 1, and other process parameters are the same as embodiment 1. See Table 2 for the melting temperatures of Examples 5-6 and Comparative Example 1 and the properties of the obtained alloys.
表2实施例5-6和对比例1的工艺参数和性能结果Table 2 embodiment 5-6 and the process parameter and performance result of comparative example 1
实施例7-8和对比例2Embodiment 7-8 and comparative example 2
实施例7-8和对比例2除了Fe-C预合金粉的颗粒尺寸不同于实施例1以外,其他工艺参数同实施例1。实施例7-8和对比例2的Fe-C预合金粉的颗粒尺寸以及得到的合金的性能参见表3。Examples 7-8 and Comparative Example 2 are the same as Example 1 except that the particle size of the Fe-C pre-alloyed powder is different from Example 1. See Table 3 for the particle size of the Fe-C pre-alloyed powders of Examples 7-8 and Comparative Example 2 and the properties of the obtained alloys.
表3实施例7-8和对比例2的工艺参数和性能结果Table 3 embodiment 7-8 and the process parameter and performance result of comparative example 2
实施例9-10和对比例3Embodiment 9-10 and comparative example 3
实施例9-10和对比例3除了合金中Ag单质的含量不同于实施例1以外,其他工艺参数同实施例1。实施例9-10和对比例3的合金中Ag单质的含量以及得到的合金的性能参见表4。Examples 9-10 and Comparative Example 3 are the same as Example 1 except that the content of Ag in the alloy is different from Example 1. See Table 4 for the contents of Ag elemental substance in the alloys of Examples 9-10 and Comparative Example 3 and the properties of the obtained alloys.
表4实施例9-10和对比例3的工艺参数和性能结果Table 4 embodiment 9-10 and the process parameter and performance result of comparative example 3
实施例11-14Examples 11-14
实施例11-14除了搅拌方式和参数不同于实施例1以外,其他工艺参数同实施例1。实施例11-14的搅拌参数以及得到的合金的性能参见表5。Embodiment 11-14 is different from embodiment 1 except stirring mode and parameter, and other process parameters are the same as embodiment 1. See Table 5 for the stirring parameters of Examples 11-14 and the properties of the obtained alloys.
表5实施例11-14的工艺参数和性能结果Process parameter and performance result of table 5 embodiment 11-14
对比例4Comparative example 4
本对比例制备的合金为Cu-15wt%Fe合金(即在合金中Fe的含量为15wt%,Cu的含量为85wt%;也即原料中电解铜的用量为电解铜和Fe粉末总质量的85wt%,Fe粉末的用量为电解铜和Fe粉末总质量的15wt%),具体制备方法如下:The alloy prepared in this comparative example is a Cu-15wt% Fe alloy (that is, the content of Fe in the alloy is 15wt%, and the content of Cu is 85wt%; that is, the consumption of electrolytic copper in the raw material is 85wt of the total mass of electrolytic copper and Fe powder %, the consumption of Fe powder is 15wt% of electrolytic copper and Fe powder gross mass), and concrete preparation method is as follows:
在真空中频感应炉内将99.9wt%的电解高纯Cu和Fe进行熔炼,熔炼温度控制在1600℃左右,真空度为10Pa,熔炼完成后将其浇注在水冷铜模内快速冷却,冷却速度为100℃/s,浇注后获得的Cu-15wt%Fe合金。Melt 99.9wt% electrolytic high-purity Cu and Fe in a vacuum intermediate frequency induction furnace. The melting temperature is controlled at about 1600°C and the vacuum degree is 10Pa. After the melting is completed, it is poured into a water-cooled copper mold for rapid cooling. 100°C/s, Cu-15wt% Fe alloy obtained after pouring.
对该对比例方法制备的铸态合金产品进行性能测试,其抗拉强度为310MPa,导电率为15%IACS。Performance tests were carried out on the cast alloy product prepared by the comparative method, and its tensile strength was 310 MPa, and its electrical conductivity was 15% IACS.
对比例5Comparative example 5
本对比例制备的合金为Cu-15wt%(Fe-C)合金(即在合金中Fe-C的含量为15wt%,Cu的含量为85wt%,Fe-C中C含量为1wt%,具体制备方法如下:The alloy prepared in this comparative example is a Cu-15wt% (Fe-C) alloy (that is, the content of Fe-C in the alloy is 15wt%, the content of Cu is 85wt%, and the content of C in Fe-C is 1wt%. Methods as below:
在真空中频感应炉内将99.9wt%的电解高纯Cu和Fe-C粉末进行熔炼,熔炼温度控制在1600℃左右,真空度为10Pa,熔炼完成后将其浇注在水冷铜模内快速冷却,冷却速度为100℃/s,浇注后获得的Cu-15wt%(Fe-C)合金。Melting 99.9wt% electrolytic high-purity Cu and Fe-C powder in a vacuum intermediate frequency induction furnace, the melting temperature is controlled at about 1600°C, and the vacuum degree is 10Pa. After the melting is completed, it is poured into a water-cooled copper mold for rapid cooling. The cooling rate is 100°C/s, and the Cu-15wt% (Fe-C) alloy obtained after casting.
对该对比例方法制备的铸态合金产品进行性能测试,其抗拉强度为315MPa,导电率为17%IACS。Performance tests were carried out on the cast alloy product prepared by the comparative method, and its tensile strength was 315 MPa, and its electrical conductivity was 17% IACS.
对比例6Comparative example 6
本对比例制备的合金为Cu-2.0wt%Ag-15wt%(Fe-C)合金(即在合金中Fe-C的含量为15wt%,Cu的含量为83wt%,Ag的含量为2wt%,Fe-C中C含量为1wt%,具体制备方法如下:The alloy prepared in this comparative example is Cu-2.0wt%Ag-15wt% (Fe-C) alloy (that is, the content of Fe-C in the alloy is 15wt%, the content of Cu is 83wt%, and the content of Ag is 2wt%. The C content in Fe-C is 1wt%, and the specific preparation method is as follows:
在真空中频感应炉内将99.9wt%的电解高纯Cu、银单质和Fe-C粉末进行熔炼,熔炼温度控制在1600℃左右,真空度为10Pa,熔炼完成后将其浇注在水冷铜模内快速冷却,冷却速度为100℃/s,浇注后获得的Cu-2.0wt%Ag-15wt%(Fe-C)合金。Melting 99.9wt% electrolytic high-purity Cu, silver element and Fe-C powder in a vacuum intermediate frequency induction furnace. The melting temperature is controlled at about 1600°C and the vacuum degree is 10Pa. After the melting is completed, it is poured into a water-cooled copper mold. Rapid cooling, the cooling rate is 100°C/s, and the Cu-2.0wt%Ag-15wt% (Fe-C) alloy obtained after casting.
对该对比例方法制备的铸态合金产品进行性能测试,其抗拉强度为318MPa,导电率为24%IACS。Performance tests were carried out on the cast alloy product prepared by the comparative method, and its tensile strength was 318 MPa, and its electrical conductivity was 24% IACS.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810259998.5A CN108456797B (en) | 2018-03-27 | 2018-03-27 | A kind of Cu-Ag-Fe-C alloy and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810259998.5A CN108456797B (en) | 2018-03-27 | 2018-03-27 | A kind of Cu-Ag-Fe-C alloy and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108456797A CN108456797A (en) | 2018-08-28 |
CN108456797B true CN108456797B (en) | 2019-08-30 |
Family
ID=63237680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810259998.5A Expired - Fee Related CN108456797B (en) | 2018-03-27 | 2018-03-27 | A kind of Cu-Ag-Fe-C alloy and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108456797B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109868388B (en) * | 2019-04-15 | 2020-10-02 | 太原科技大学 | A kind of Cu-Fe-C alloy and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57110642A (en) * | 1980-12-26 | 1982-07-09 | Tanaka Kikinzoku Kogyo Kk | Electrical contact material for sealing and its manufacture |
CN104263985A (en) * | 2014-09-24 | 2015-01-07 | 西安理工大学 | Preparation method of self-hard reinforced Cu-FeC composite material |
CN107201461A (en) * | 2017-05-24 | 2017-09-26 | 北京科技大学 | A kind of high-strength high-plastic biphase cooperative precipitation type Cu alloy material and preparation method thereof |
-
2018
- 2018-03-27 CN CN201810259998.5A patent/CN108456797B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57110642A (en) * | 1980-12-26 | 1982-07-09 | Tanaka Kikinzoku Kogyo Kk | Electrical contact material for sealing and its manufacture |
CN104263985A (en) * | 2014-09-24 | 2015-01-07 | 西安理工大学 | Preparation method of self-hard reinforced Cu-FeC composite material |
CN107201461A (en) * | 2017-05-24 | 2017-09-26 | 北京科技大学 | A kind of high-strength high-plastic biphase cooperative precipitation type Cu alloy material and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
Effect of Ag addition on the as-cast microstructure of Cu-8wt%Fe in situ composites;Zhixiong Xie等;《Journal of Alloys and Compounds》;20100826;第320-323页 * |
新型Cu-Fe-C 复相合金的制备及其变形行为;王斐等;《稀有金属材料与工程》;20170930;第46卷(第9期);第2688-2694页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108456797A (en) | 2018-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101775520B (en) | Method for preparing high-performance Cu-Fe deformation in-situ composite material by magnetic field treatment | |
CN105839038B (en) | A kind of preparation method of high-strength high-conductivity Cu Ag Fe alloys | |
CN110229971B (en) | Preparation method of novel Cu-nano WC composite material | |
CN105950931B (en) | The high-strength high hard magnesium alloy of controllable reaction and its manufacturing method of component occurs with water | |
CN110872659B (en) | A high-performance copper alloy | |
CN108342609A (en) | A kind of acid bronze alloy blank of graphene-containing | |
CN102534330A (en) | High-strength cast magnesium alloy and preparation method thereof | |
CN110273081A (en) | A kind of Cu-Fe-Ti electrical conductivity alloy and preparation method thereof | |
Yuan et al. | Upward continuous casting in the manufacture of Cu-Cr-Ag alloys: potential for enhancing strength whilst maintaining ductility | |
CN105154729B (en) | Cast aluminum-zinc-magnesium-copper-tantalum alloy and manufacturing method thereof | |
CN108456797B (en) | A kind of Cu-Ag-Fe-C alloy and its preparation method | |
CN106048342B (en) | A particle-mixed aluminum-based self-lubricating composite material and its preparation method | |
CN108425031B (en) | A kind of Cu-Fe-C alloy and preparation method thereof | |
CN107794405B (en) | Fine-grain copper-tin alloy and preparation method thereof | |
CN105603237A (en) | Scandium-containing casting conductive aluminum alloy and preparation process thereof | |
CN114000005A (en) | Based on TiB2pLow-sag large-span power transmission conductor made of/Al composite material and preparation method thereof | |
CN102277521A (en) | High-temperature high-tenacity single-phase solid-solution magnesium rare earth base alloy and preparation method thereof | |
CN101724798A (en) | Multiplex heat treatment method for Cu-12 percent Fe alloy | |
JP2024171514A (en) | Super Thermal Conductive Aluminum Alloy | |
CN116287848A (en) | Low-beryllium multicomponent copper alloy for crystallizer and preparation method thereof | |
CN108048679A (en) | A kind of preparation method for the high Fe contents aluminium alloy for refining richness Fe precipitated phases | |
CN114182134A (en) | Cu-Cr-Zr alloy material, heat treatment process and application | |
CN108425028B (en) | A kind of no Al3The preparation method of Ti phase Al-Ti-C intermediate alloy | |
CN108193077B (en) | Cu-Fe-C alloy | |
CN111334683A (en) | Micro-alloying method for improving comprehensive mechanical property of Cu-Fe alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190830 |
|
CF01 | Termination of patent right due to non-payment of annual fee |