CN108456691A - 双发光报告系统及其用途 - Google Patents
双发光报告系统及其用途 Download PDFInfo
- Publication number
- CN108456691A CN108456691A CN201810114578.8A CN201810114578A CN108456691A CN 108456691 A CN108456691 A CN 108456691A CN 201810114578 A CN201810114578 A CN 201810114578A CN 108456691 A CN108456691 A CN 108456691A
- Authority
- CN
- China
- Prior art keywords
- seqidno
- cell
- promoter fragment
- double
- reporting systems
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/65—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5011—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2503/00—Use of cells in diagnostics
- C12N2503/02—Drug screening
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/106—Plasmid DNA for vertebrates
- C12N2800/107—Plasmid DNA for vertebrates for mammalian
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/10—Screening for compounds of potential therapeutic value involving cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Biophysics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供了一种双发光报告系统及其用途。所述的双发光报告系统,包含ECAD的启动子片段以及VIM的启动子片段,还包含分别与ECAD的启动子片段以及VIM的启动子片段相连的luciferase基因片段和Renilla基因片段,或者,还包含分别与ECAD的启动子片段以及VIM的启动子片段相连的mCherry基因片段和eGFP基因片段。本发明可实现基于EMT或MET的分子靶向药物筛选。
Description
技术领域
本发明涉及一种上皮间质转化双发光报告系统及其用途。
背景技术
在整个全球社会这个大环境中,无论是发达国家亦或是发展中国家,癌症都是一种沉重的负担。逐日增长的人口数量、抽烟酗酒缺乏锻炼等不良生活习惯、以及快速增长的经济发展等原因,使得肿瘤的发病率呈现居高不下的增长率。基于GLOBOCAN评估统计,2012年全球有1410万新增肿瘤病例,820万人死于肿瘤。其中肺癌,乳腺癌,结肠癌,前列腺癌等可以被称为肿瘤中的头号杀手。
目前临床上针对明显肿瘤灶的治疗仍以外科切除为主,游离于血管、没有形成明显病灶以及无法剥离完全的肿瘤细胞则以放疗和化疗为主。放、化疗是利用细胞毒药物以及放射线来抑制细胞增殖从而达到杀死肿瘤细胞的目的,由于没有高效特异性的靶点,放、化疗手段对于处在细胞增殖时期的正常细胞也有杀伤作用,因此毒副作用很大[1]。如何特异性的杀伤肿瘤细胞是如今临床治疗肿瘤急需解决的问题。在此大背景下,分子靶向药物的诞生给靶向治疗肿瘤带来了新的生机。作为新一代的肿瘤药物,分子靶向药物能够特异性作用于肿瘤细胞中异常激活的信号通路或生物学进程,与传统放、化疗相比更高效、副作用更小[2]。要想寻找到合适的分子靶向药物治疗特定的肿瘤,就必须深刻细致的了解在肿瘤发生发展中起到关键作用的信号通路以及相关的生物学进程,进而才能有的放矢,找到特异性药物作用靶点。
肿瘤致死的原因多种多样,可归纳为如下四点:1.合并感染。肿瘤患者免疫力低下导致继发的严重感染甚至死亡;2.营养耗竭,代谢失常。肿瘤细胞相较于正常细胞不受衰老机制调节,增殖快速消耗大量营养物质,并因此代谢失常,代谢产物积累。3.异常出血;4.肿瘤转移[3]。肿瘤转移至其它重要脏器,异位异常增殖从而破坏脏器正常生理结构,引起相关脏器功能损坏甚至衰竭,导致死亡。而在这几点致死原因当中,90%肿瘤死亡病例死于肿瘤转移。肿瘤转移是恶性肿瘤的主要生物学特性之一,肿瘤细胞脱离原发肿瘤灶,经由血管,淋巴管道或者体腔等途径,到达远端其它部位再次生长形成继发转移灶。肿瘤转移由多个步骤组成:1.侵袭。少数肿瘤细胞从原位肿瘤中脱落,穿透基底膜发生侵袭;2.内渗。肿瘤生长需要大量营养成分来满足于自身快速增殖的需求,因此肿瘤中普遍有丰富的毛细血管系统。侵袭出基底膜的肿瘤细胞内渗进毛细血管进入全身循环系统; 3.全身性扩散。进入全身循环系统的肿瘤细胞在体液的帮助下达到全身性扩散; 4.外渗。肿瘤细胞到达合适的继发组织或者器官之后,通过粘附作用锚定在血管壁上并外渗进入周围组织。5.潜伏休眠。外渗到周围组织的肿瘤细胞会进入休眠期,保全自身静待特定信号。6.形成转移灶。在收到外界特定信号激活后,休眠期的肿瘤细胞会大量增殖形成与原发肿瘤性质相似的继发性肿瘤灶[3]。
通过多个科学研究人员研究发现,在整个肿瘤转移过程当中有一个异常激活的生物学进程参与其中,即上皮间质转化。上皮间质转化(Epithelial-Mesenchymaltransition,简称EMT)是上皮细胞通过特定程序转化为具有间质表型细胞的生物学过程。上皮细胞是一群具有细胞极性,细胞间排列紧密连接在细胞外基底膜上的一群细胞,细胞表达细胞粘附分子(比如钙粘蛋白E-cadherin)[4],而间质细胞则是一群没有细胞极性,不与细胞外基底膜连接,迁移、侵袭、细胞能动性高的细胞,细胞不表达或者是少量表达细胞粘附分子并大量表达波形蛋白Vimentin。 EMT是一种动态生物学进程,与之相对应的是间质细胞上皮化 (Mesenchymal-Epithelial transition,简称MET),就是具有间质表型的细胞通过 MET会转化成为具有一系列上皮细胞特性的细胞。在胚胎发育器官形成时期,通过MET使得间充质干细胞转化为次级上皮细胞,实现细胞类型多样化[5]。 EMT也参与到成体时期组织损伤修复,组织再生以及器官纤维化等多种过程。而在大部分上皮细胞形成的肿瘤当中,原发肿瘤部位的上皮肿瘤细胞通过EMT,使得自身丢失细胞极性,失去与基底膜之间的联系,转而获得较高的细胞能动性,抗凋亡能力等间质表型,甚至具有一些干细胞样(Stem cell-like)特性[6],[7]。并且有越来越多研究发现,在继发肿瘤位置的间质表型肿瘤细胞会在特定刺激下发生MET,使得自身从间质表型重获增殖分裂较快的上皮特性,因此形成继发肿瘤转移灶[8]。基于EMT在肿瘤发生发展,以及恶性肿瘤转移过程中所扮演的重要角色,探索研发基于EMT或是MET的分子靶向药物将能为肿瘤治疗带来新的契机。
TGF-β是一个公认的能促进上皮间质转化发生的生长因子,一定浓度的 TGF-β会使得细胞发生上皮间质转化[9],[10]。
参考文献
[1]T.A.Greenhalgh and R.P.Symonds,“Principles of chemotherapy andradiotherapy,” Obstetrics,Gynaecology and Reproductive Medicine,vol.24,no.9.pp.259-265,2014.
[2]R.Ramakrishnan and D.I.Gabrilovich,“Novel mechanism of synergisticeffects of conventional chemotherapy and immune therapy of cancer,”CancerImmunology, Immunotherapy,vol.62,no.3.pp.405-410,2013.
[3]D.Hanahan and R.A.Weinberg,“[130214-1]2011:Hallmarks of cancer:thenext generation.,” Cell,vol.144,no.5,pp.646-674,2011.
[4]B.M.Gumbiner,“Cell adhesion:The molecular basis of tissuearchitecture and morphogenesis,”Cell,vol.84,no.3.pp.345-357,1996.
[5]J.P.Thiery,“Epithelial-mesenchymal transitions in tumourprogression,”Nat.Rev.Cancer, vol.2,no.6,pp.442-454,2002.
[6]T.Brabletz,“EMT and MET in Metastasis:Where Are the Cancer StemCells?,”Cancer Cell, vol.22,no.6.pp.699-701,2012.
[7]A.Singh and J.Settleman,“EMT,cancer stem cells and drugresistance:an emerging axis of evil in the war on cancer,”Oncogene,vol.29,no.34,pp.4741-4751,2010.
[8]J.P.Thiery,H.Acloque,R.Y.J.Huang,and M.A.Nieto,“Epithelial-Mesenchymal Transitions in Development and Disease,”Cell,vol.139,no.5.pp.871-890,2009.
[9]J.Zavadil and E.P.Bo,“TGF-b and epithelial-to-mesenchymaltransitions,”Oncogene,vol. 24,pp.5764-5774,2005.
[10]J.Xu,S.Lamouille,and R.Derynck,“TGF-beta-induced epithelial tomesenchymal transition.,” Cell Res.,vol.19,no.2,pp.156-72,2009.
发明内容
本发明的目的是提供一种双发光报告系统及其用途。
为了达到上述目的,本发明提供了一种双发光报告系统,其特征在于,包括 ECAD的启动子片段以及VIM的启动子片段,还包括分别与ECAD的启动子片段以及VIM的启动子片段相连的luciferase基因片段和Renilla基因片段,或者,还包括分别与ECAD的启动子片段以及VIM的启动子片段相连的mGherry基因片段和eGFP基因片段。
优选地,所述的luciferase基因片段的序列为SEQIDNO:13,Renilla基因片段的序列为SEQIDNO:11,mCherry基因片段的序列为SEQIDNO:6,eGFP 基因片段的序列为SEQIDNO:4。
优选地,所述的ECAD的启动子片段的序列为SEQIDNO:1或SEQIDNO: 8。
优选地,所述的VIM的启动子片段的序列为SEQIDNO:2或SEQIDNO: 9。
优选地,所述的双发光报告系统为 pLenti-EcadPm-luciferase-PA-Spacer-VimPm-Renilla-PA-hPKG-Puro质粒以及pLenti-EcadPm-mCherry-PA-Spacer-VimPm-eGFP-PA-hPKG-Puro质粒中的至少一种。
本发明还提供了一种双发光报告系统,其特征在于,所述的双发光报告系统的序列为SEQIDNO:35或SEQIDNO:36。
本发明还提供了上述的双发光报告系统在基于EMT或MET的分子靶向药物筛选中的应用。
本发明还提供了一种基于EMT或MET的分子靶向药物筛选方法,其特征在于,包括:将上述的双发光报告系统转染到上皮细胞中;加入待筛选药物进行诱导;观察mCherry荧光信号和eGFP荧光信号,或检测Luciferase与Renilla酶活性的比值,以检测EMT或MET的发生过程,实现基于EMT或MET的分子靶向药物筛选。
本发明的双发光报告系统可作为基于上皮间质转化的生物学过程来筛选靶向EMT的药物实现攻克肿瘤转移,治疗肿瘤的临床应用价值。
本发明是基于上皮间质转化中关键蛋白表达量的变化而设计的双化学发光报告系统,通过一系列的DNA序列设计与验证,在转染本发明的细胞处于上皮表型也即表达钙粘蛋白Ecadherin时,细胞中Ecadherin的启动子会启动红色荧光蛋白或萤火虫荧光素酶(mCherry或Luciferase)的表达;在细胞处于间质表型表达波形蛋白Vimentin时,细胞中Vimentin启动子会启动绿色荧光蛋白或海肾荧光素酶(eGFP或Renilla)的表达;而当细胞处于上皮与间质转化或者间质与上皮转化的中间状态时,既有Ecadherin表达又有Vimentin表达时,则细胞同时表达红色荧光蛋白和绿色荧光蛋白或荧火虫荧光素酶和海肾荧光素酶。这两种荧光素酶可作用于不同的底物并产生荧光信号并可由化学发光检测仪定量检测。通过一系列实验证实本发明能通过报告基因如实反映对应基因的表达水平和表达量的变化,例如:Luciferase读数较高的实验组中Ecadherin的表达量明显高于Luciferase读数较低的实验组,同样Renilla读数较高的实验组中Vimentin的表达量也是明显高于Renilla读数较低的实验组。
在本发明中,以前列腺肿瘤细胞系PC3为例,TGF-β处理组作为阳性实验组,未经TGF-β处理组为对照组,TGF-β处理后能够使得已稳定转染本发明的前列腺肿瘤细胞系发生EMT,即Ecadherin表达量减少而Vimentin表达量增加。
与现有技术相比,本发明的有益效果是:
本发明能快速、高效、动态、高通量的用于筛选能促进EMT或者MET发生的分子靶点药物,并以此作为临床上用于治疗肿瘤转移的治疗靶点,可以带来巨大的社会经济利益。
附图说明
图1:双荧光与双化学发光报告系统质粒示意图;
图2:双荧光系统报告基因与表达基因表达量相关性检测;其中,2a为荧光显微镜下观察E-V双荧光报告系统;2b为流式细胞术分析E-V双荧光系统转染后的细胞;2c为Realtime-PCR检测经过E-V双荧光报告系统富集后的细胞Ecad和 Vim的表达;
图3为利用TGF-β验证双化学发光报告系统有效性结果图;其中,3a为TGF- β诱导PC3后表现出间质样表型;3b为TGF-β处理后导致mcherry荧光信号减少,eGFP荧光信号增多;3c为双化学发光系统能精确的反应Ecadherin和Vimentin 的相对表达量的变化。
图4:小分子药物筛选示意图;
图中,***表示p<0.001,**表示p<0.01,*表示p<0.05,实验结果表示为平均值±S.E.M。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
实验材料与设备:
Q5超保真2X Master Mix(NEB#M0494S),内切酶Xhol,BamHI, EcoRI,Nhel,Clal,Xbal(全部来自NEB),T4连接酶(Takara),gDNA提取试剂盒(AxyPrepTM Blood gDNAMiniprep Kit),质粒小量提取试剂盒(AxyPrepTM Plasmid Miniprep Kit),pBlunt-EasyClone vecor(全式金生物科技),Dh5α感受态细菌(全式金生物科技),PC-3细胞系(CRL-1435TM),氨苄青霉素(Sigma),胶回收试剂盒(EZNATM Gel Extraction Kit),转染试剂 (Cat#114-07);TGF-β(PeproTech,Cat.96-100-21C,100ng/ml);pLKO.1 (Addgene#8453)
实验步骤:
步骤1.gDNA提取和质粒小抽
1)取正常人外周血500uL,按照gDNA提取试剂盒的操作说明提取基因组 DNA,用于PCR克隆Ecad和Vim启动子的模板;
2)配置液体LB培养基(胰蛋白胨1%w/v,酵母提取物0.5%w/v,NaCl 1%w/v)与固体LB培养基(胰蛋白胨1%w/v,酵母提取物0.5%w/v,NaCl1%w/v,琼脂1.3%w/v);
构建双荧光报告系统和双化学发光系统以及构建过程中的每一个中间质粒pBlunt-Renilla,pBlunt-Luciferase,pBlunt-eGFP,pBlunt-mCherry, pBlunt-SV40polyA,pBlunt-VimPm,pBlunt-EcadPm按照质粒小量提取试剂盒操作说明进行质粒小抽。
步骤2.克隆双荧光和双化学发光系统所需各个DNA片段
实验材料:内切酶Xhol,BamHI,EcoRI,Nhel,Clal,Xbal,高保真PCR聚合酶Q5,T4连接酶,DNA胶回收试剂盒,pBlunt-Easy Clone vecor,Dh5α感受态细菌,氨苄青霉素;
1)设计克隆所有序列片段的引物,并在引物5’端加酶切位点,引物序列如下表所示:
表一:引物序列表(5`-3`)
2)分别PCR克隆以下各片段:
ECAD(NCBI Gene ID:999)和VIM(NCBI Gene ID:7431)的启动子 EcadPm(SEQIDNO:1,SEQIDNO:8,Cdh1 promoter(369)…(640))(模板human gDNA)和VimPm(SEQIDNO:2,SEQIDNO:9,Vinmentin promoter) (模板human gDNA),以及mcherry(SEQIDNO:6)(模板mcherry2-C1来源Addgene#54563),eGFP(SEQIDNO:4)(模板pcDNA3-EGFP来源 Addgene#13031),luciferase(SEQIDNO:13)(模板pGL3-Basic来源Promega #1751),Renilla的CDS区(SEQIDNO:11)(模板pRL-CMV来源Promega #E2261),SV40 polyA(SEQIDNO:5、SEQIDNO:7、SEQIDNO:12、SEQIDNO: 14)(模板pRL-CMV来源Promega#E2261)序列。
表二:PCR反应体系与运行程序
PCR反应体系 PCR运行程序
3)将以上PCR反应产物通过1%琼脂糖凝胶电泳分离,并使用DNA片段回收试剂盒,按照该试剂盒的操作说明将凝胶中的DNA片段回收,测定浓度之后,分别连接pBlunt-Easycloning Vector,继续将连接产物按照Dh5α感受态细菌转化操作说明进行转化并均匀涂至预添加了100ug/ml氨苄青霉素的固体LB培养基平板上。本实施例中所有酶切和连接条件均参照(表三)方法。挑取单克隆扩增并质粒小抽之后分别构建成pBlunt-Renilla,pBlunt-Luciferase, pBlunt-eGFP,pBlunt-mCherry,pBlunt-SV40polyA,pBlunt-VimPm, pBlunt-EcadPm。
表三:酶切和连接条件
步骤3.双荧光与双化学发光报告系统质粒的构建
1)将SV40 PolyA用BamHI和Xbal酶切后连接到pBlunt-Renilla的BamHI 和Xbal位点,形成pBlunt-Renilla-PA;
2)将SV40 PolyA用Xhol和Xbal酶切后连接到pBlunt-Luciferase的Xhol 与Nhel位点,形成pBlunt-luciferase-PA;
3)将SV40 PolyA用BamHI和Xbal酶切后连接到pBlunt-mCherry的BamHI 和Xbal位点,形成pBlunt-mCherry-PA;
4)将SV40 PolyA用Xhol和Xbal酶切后连接到pBlunt-eGFP的Xhol与 Nhel位点,形成pBlunt-eGFP-PA;
5)将pBlunt-Renilla-PA和pBlunt-luciferase-PA用Clal和BamHI酶切后,将片段Renilla-PA连接到pBlunt-luciferase-PA的Clal和BamHI位点,形成 pBlunt-luciferase-PA-Renilla-PA;
6)将pBlunt-eGFP-PA和pBlunt-mCherry-PA用Clal和BamHI酶切后,将片段eGFP-polyA连接到pBlunt-mCherry-PA的Clal和BamHI位点,形成 pBlunt-mCherry-PA-eGFP-PA;
7)将pBlunt-Vimpm与pBlunt-luciferase-PA-Renilla-PA, pBlunt-mCherry-PA-eGFP-PA分别用Clal和Nhel酶切之后,将片段VimPM分别连接至pBlunt-luciferase-PA-Renilla-PA和pBlunt-mCherry-PA-eGFP-PA的 Clal和Nhel位点之间,分别组成pBlunt-luciferase-PA-VimPm-Renilla-PA和 pBlunt-mCherry-PA-VimPm-eGFP-PA;
8)将pBlunt-luciferase-PA-VimPm-Renilla-PA和 pBlunt-mCherry-PA-VimPm-eGFP-PA及pBlunt-EcadPm分别用BgIII与HindIII 酶切处理,并将片段EcadPm分别连接到以上两个质粒 pBlunt-luciferase-PA-VimPm-Renilla-PA和 pBlunt-mCherry-PA-VimPm-eGFP-PA的BgIII和HindIII的位点,分别组成 pBlunt-EcadPm-luciferase-PA-VimPm-Renilla-PA和 pBlunt-EcadPm-mCherry-PA-VimPm-eGFP-PA,其中PA与VimPm之间有约20bp间隔区,命名为Spacer(序列分别为SEQIDNO:3,SEQIDNO:10);
10)分别将pLko.1、pBlunt-EcadPm-luciferase-PA-VimPm-Renilla-PA和pBlunt-EcadPm-mCherry-PA-VimPm-eGFP-PA用Xhol酶切后,将切下的片段 EcadPm-luciferase-PA-VimPm-Renilla-PA和 EcadPm-mCherry-PA-VimPm-eGFP-PA连接至碱性磷酸酶处理之后的pLko.1 上,最终分别组成如图1所示的 E-V双化学发光报告系统(序列为SEQ NO:35) pLenti-EcadPm-luciferase-PA-Spacer-VimPm-Renilla-PA-hPKG-Puro; E-V双荧光报告系统(序列为SEQ NO:36) pLenti-EcadPm-mCherry-PA-Spacer-VimPm-eGFP-PA-hPKG-Puro。
步骤4.验证双荧光和双化学发光系统工作效率
1)将人前列腺癌细胞系PC-3接种到细胞培养皿,待细胞生长至密度为50%左右时,用转染试剂分别将双化学发光报告系统 pLenti-EcadPm-luciferase-PA-Spacer-VimPm-Renilla-PA-hPKG-Puro和双荧光报告系统 pLenti-EcadPm-mCherry-PA-Spacer-VimPm-eGFP-PA-hPKG-Puro转染到 PC3细胞中,具体转染方法参考转染试剂操作说明。
2)转染24小时后,在荧光显微镜下观察双荧光报告系统的工作效率,并用 2.5%胰酶消化细胞,将细胞悬液通过40um细胞筛后经过流式细胞仪检测并分选mCherry和eGFP阳性的细胞亚群,将分选的细胞用(Quick-RNA MicroPrep kit.ZYMO RESEARCH)按照说明书建议提取总RNA,并使用 (Takara-PrimeScriptTM RT reagent Ki)按照说明书建议将总RNA反转录为 cDNA,之后采用SYBR(Takara)标记法,以cDNA为模板分别通过Real-time PCR检测两群细胞中ECAD与VIM的mRNA相对表达量,β-actin作为内参,引物见表一。
表四:Realtime-PCR条件
3)转染36小时后,向已转染双荧光与双化学发光系统的细胞中加100ng/ml TGF-β进行诱导,使得细胞发生EMT,并在TGF-β处理72小时后,观察 mCherry荧光信号和eGFP荧光信号,或检测Luciferase与Renilla酶活性的比值,以检测EMT或MET的发生过程,实现基于EMT或MET的分子靶向药物筛选(图 4),不经过TGFβ处理组为对照组。
实施例2:动态检测活细胞EMT或MET转化过程
实验材料:实施例1得到的E-V双荧光报告系统,TGF-β(PeproTech,Cat.96-100-21C,100ng/ml),PC3细胞系(CRL-1435TM),流式细胞仪(BD FACSAriaTM II),细胞培养皿,DMEM培养基 (GibcoTM#C11965500BT),FBS(GibcoTM#10099141),P/S (GibcoTM#10378016),Leica活细胞工作站;
实验步骤:
1)将人前列腺癌细胞系PC-3接种在3.5cm玻璃底培养皿,在 10%FBS-DMEM,5%CO2,37℃条件下培养;
2)培养至细胞密度为50%-60%时,参考转染试剂说明将E-V双荧光报告系统质粒转染至PC-3,具体转染方法参考转染试剂操作说明;
3)转染E-V双荧光报告系统12小时后换新培养基,并将培养皿置于活细胞工作站继续培养并观察,
4)更换新培养基12小时后加入100ng/ml的TGFβ,继续培养并观察72 小时;
5)实时观察mCherry荧光信号和eGFP荧光信号,以检测EMT的发生过程,实现基于EMT或MET的分子靶向药物筛选,不经过TGFβ处理组为对照组。
实验结果如图2a所示,转染E-V双荧光报告系统之后,我们能观察到两种颜色标记的细胞。我们将mCherry和eGFP阳性的细胞分选出来之后,将分选的细胞用(Quick-RNAMicroPrep kit.ZYMO RESEARCH)按照说明书建议提取总RNA,并使用(Takara-PrimeScriptTM RT reagent Ki)按照说明书建议将总 RNA反转录为cDNA,之后采用SYBR(Takara)标记法,以cDNA为模板分别通过Real-time PCR检测两群细胞中ECAD与VIM的mRNA相对表达量,β -actin作为内参,引物见表一。如图2b.2c所示,mCherry和eGFP的信号强度如实的反应了ECAD和VIM的mRNA表达量水平,并且加入TGF-β之后能促进细胞EMT的转化,表现为mcherry的表达量减少,eGFP的表达量增加(如图3b),通过E-V双荧光报告系统,我们能在活细胞中实时观察到mCherry信号减弱,eGFP信号增强,也即通过该双荧光报告系统能动态检测EMT的发生过程。
实施例3:快速筛选能影响细胞EMT或MET的药物,化合物及生物大分子
实验材料:PC3细胞系,96孔细胞培养板,实施例1所述的E-V双化学发光报告系统,TGFβ,细胞培养皿,DMEM培养基(GibcoTM#C11965500BT), FBS(GibcoTM#10099141),P/S(GibcoTM#10378016),酶标仪;PC3细胞系(CRL-1435TM);
实验步骤:
1)将PC3细胞种到96孔板,在10%FBS-DMEM,5%CO2,37℃条件下培养;
2)待细胞长至密度为60%-70%时,利用将E-V双化学发光系统转至细胞,继续培养12小时后,更换新鲜培养基,并加入100ng/ml浓度的 TGF-β并继续培养;
3)加入TGF-β24小时后,吸去培养基,并参考 ReporterAssay(Promega Cat:E1960)中的操作说明加入50uL 1x PLB(试剂盒中包含),振荡裂解细胞进行余下步骤并检测荧光素酶活性,以检测EMT的发生过程,实现基于EMT或MET的分子靶向药物筛选,不经过TGFβ处理组为对照组。
4)该实例中的TGF-β可以换成其他不明功能的化合物,生物大分子或者已知功能但不清楚是否能影响细胞EMT/MET的药物或者生物大分子,流程如图 4。
实验结果
转染E-V双化学发光报告系统之后,在PC3细胞中能检测到Luciferase和 Renilla与底物反应后的发光信号。加入TGF-β之后,能够抑制ECAD的表达并促进VIM的表达,如图3a所示,与对照组相比,加入TGF-β之后ECAD与 VIM的mRNA相对表达量比值减小。Luciferase与Renilla酶活性的比值即反应了细胞中ECAD与VIM表达量的比值。加入TGF-β之后Luciferase与Renilla 酶活性的比值减小,如图3c所示,通过本发明的双化学发光系统能准确的反映 ECAD与VIM表达量比值的变化。
该实例中的TGF-β可以换成其他非确定功能的化合物、生物大分子或者已知功能但不清楚是否能影响细胞EMT/MET的药物和生物大分子,通过检测Luciferase和Renilla酶活性比值的变化进行高通量,精确,快速的筛选能够抑制或者促进EMT的化合物,药物和生物大分子。
。
序列表
<110> 上海交通大学医学院附属仁济医院
<120> 双发光报告系统及其用途
<160> 36
<170> SIPOSequenceListing 1.0
<210> 1
<211> 272
<212> DNA
<213> Human sapiens
<400> 1
gctccaggct agagggtcac cgcgtctatg cgaggccggg tgggcgggcc gtcagctccg 60
ccctggggag gggtccgcgc tgctgattgg ctgtggccgg caggtgaacc ctcagccaat 120
cagcggtacg gggggcggtg cctccggggc tcacctggct gcagccacgc accccctctc 180
agtggcgtcg gaactgcaaa gcacctgtga gcttgcggaa gtcagttcag actccagccc 240
gctccagccc ggcccgaccc gaccgcaccc gg 272
<210> 2
<211> 1535
<212> DNA
<213> Human sapiens
<400> 2
agcagcctat cacagcccag agacttcaga atggggacag gtcggaagga ggagctacct 60
atccctgaga tgatgaagag gaccagtgcc cattccagga gacatcaccg cagccctgag 120
gaatcggcta tgggcaccag cagggcacag tgccacacct cgccaatgcc ttgtcctcct 180
tttccatagt gagtcagtca gcaagcgtcg cattgccctg ggatcggcac tgcacgtaga 240
agtgagttcc acactctctt cctcccatag ggagatcact tttctcattc taagggttcc 300
aggcacactc acaatggtgg catttgctga gcagtggctt gaataaaggg ctctcagaaa 360
gcaagatgta actcagagca taggcttgtc ctccagggca cccagcccca ggaatgctct 420
tggggaatga cctgcagcct cccagtgaaa gagagaataa aagaaagccc cagcaggcga 480
gctgggcagt agagagtcct gtaattccac cttggcaagc accatttgca agaacgaact 540
gggataaggt aaacaaaata ttgcctaaaa gaggcttgtc caaagaagtc agaatacgct 600
cttcatttac ctctaaatta tgtttcttaa ataccaagta acctgcagta ccccctgccg 660
ccaccaaaaa aaaagagaga aatacttttt tttctcctat ccactgcaga atcaatttta 720
cagtggttct gcagttaatc ctttcagtac accataaatc taaatactca aaaaaacctg 780
tgccttttca attgctacta aatcacgaga agactgattt acatagtctc cttttatctc 840
ccttggcggg taagtactca gctctgctcg ttactaatat tgaaacaaca gcccttgaat 900
tgagtgattt ccctagaaag gttaaggtga ccgaatctga acactccctc catgtcttgg 960
acacgaagtt ttttgctgcg tagacagttt tatccccctc accccaaggt caattgcacg 1020
aattcttttg gaaaacagga cctatggcat ttcccagaca aatcaccgtg aaccctgtac 1080
tgtgcattgc tgtcctaaaa ttaacacata aatctattgc cgccaaagat tctgtcattt 1140
gtgttacata attgcctttc atttgaactc attaatcaaa ttggggtttt taagcaacac 1200
ctaattaatt ctttaactgg ctcatattat acctttaatg acttccacca gggtaaaaac 1260
cactgatcac tgagttctat tttgaaacta cggacgtcga gtttcctctt tcacccagaa 1320
ttttcagatc ttgtttaaaa agttgggtgt ggtttcatgg ggggaggggg aagagcgaga 1380
ggagaccaga gggacggggg cggggactct gcaagaaaaa ccttcccggt gcaatcgtga 1440
tctgggaggc ccacgtatgg cgcctctcca aaggctgcag aagtttcttg ctaacaaaaa 1500
gtccgcacat tcgagcaaag acaggcttta gcgag 1535
<210> 3
<211> 38
<212> DNA
<213> artificial sequence(人工序列)
<400> 3
aaagcaagta aaacctctac aaatgtggta aaatcgat 38
<210> 4
<211> 720
<212> DNA
<213> artificial sequence(人工序列)
<400> 4
atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60
ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120
ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180
ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240
cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300
ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360
gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420
aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480
ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540
gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600
tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660
ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa 720
<210> 5
<211> 66
<212> DNA
<213> Simian virus 40
<400> 5
cagacatgat aagatacatt gatgagtttg gacaaaccac aactagaatg cagtgaaaaa 60
aatgct 66
<210> 6
<211> 708
<212> DNA
<213> artificial sequence(人工序列)
<400> 6
atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat gcgcttcaag 60
gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga gggcgagggc 120
cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc 180
ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta cgtgaagcac 240
cccgccgaca tccccgacta cttgaagctg tccttccccg agggcttcaa gtgggagcgc 300
gtgatgaact tcgaggacgg cggcgtggtg accgtgaccc aggactcctc cctgcaggac 360
ggcgagttca tctacaaggt gaagctgcgc ggcaccaact tcccctccga cggccccgta 420
atgcagaaga agaccatggg ctgggaggcc tcctccgagc ggatgtaccc cgaggacggc 480
gccctgaagg gcgagatcaa gcagaggctg aagctgaagg acggcggcca ctacgacgct 540
gaggtcaaga ccacctacaa ggccaagaag cccgtgcagc tgcccggcgc ctacaacgtc 600
aacatcaagt tggacatcac ctcccacaac gaggactaca ccatcgtgga acagtacgaa 660
cgcgccgagg gccgccactc caccggcggc atggacgagc tgtacaag 708
<210> 7
<211> 66
<212> DNA
<213> Simian virus 40
<400> 7
cagacatgat aagatacatt gatgagtttg gacaaaccac aactagaatg cagtgaaaaa 60
aatgct 66
<210> 8
<211> 272
<212> DNA
<213> Human sapiens
<400> 8
gctccaggct agagggtcac cgcgtctatg cgaggccggg tgggcgggcc gtcagctccg 60
ccctggggag gggtccgcgc tgctgattgg ctgtggccgg caggtgaacc ctcagccaat 120
cagcggtacg gggggcggtg cctccggggc tcacctggct gcagccacgc accccctctc 180
agtggcgtcg gaactgcaaa gcacctgtga gcttgcggaa gtcagttcag actccagccc 240
gctccagccc ggcccgaccc gaccgcaccc gg 272
<210> 9
<211> 1535
<212> DNA
<213> Human sapiens
<400> 9
agcagcctat cacagcccag agacttcaga atggggacag gtcggaagga ggagctacct 60
atccctgaga tgatgaagag gaccagtgcc cattccagga gacatcaccg cagccctgag 120
gaatcggcta tgggcaccag cagggcacag tgccacacct cgccaatgcc ttgtcctcct 180
tttccatagt gagtcagtca gcaagcgtcg cattgccctg ggatcggcac tgcacgtaga 240
agtgagttcc acactctctt cctcccatag ggagatcact tttctcattc taagggttcc 300
aggcacactc acaatggtgg catttgctga gcagtggctt gaataaaggg ctctcagaaa 360
gcaagatgta actcagagca taggcttgtc ctccagggca cccagcccca ggaatgctct 420
tggggaatga cctgcagcct cccagtgaaa gagagaataa aagaaagccc cagcaggcga 480
gctgggcagt agagagtcct gtaattccac cttggcaagc accatttgca agaacgaact 540
gggataaggt aaacaaaata ttgcctaaaa gaggcttgtc caaagaagtc agaatacgct 600
cttcatttac ctctaaatta tgtttcttaa ataccaagta acctgcagta ccccctgccg 660
ccaccaaaaa aaaagagaga aatacttttt tttctcctat ccactgcaga atcaatttta 720
cagtggttct gcagttaatc ctttcagtac accataaatc taaatactca aaaaaacctg 780
tgccttttca attgctacta aatcacgaga agactgattt acatagtctc cttttatctc 840
ccttggcggg taagtactca gctctgctcg ttactaatat tgaaacaaca gcccttgaat 900
tgagtgattt ccctagaaag gttaaggtga ccgaatctga acactccctc catgtcttgg 960
acacgaagtt ttttgctgcg tagacagttt tatccccctc accccaaggt caattgcacg 1020
aattcttttg gaaaacagga cctatggcat ttcccagaca aatcaccgtg aaccctgtac 1080
tgtgcattgc tgtcctaaaa ttaacacata aatctattgc cgccaaagat tctgtcattt 1140
gtgttacata attgcctttc atttgaactc attaatcaaa ttggggtttt taagcaacac 1200
ctaattaatt ctttaactgg ctcatattat acctttaatg acttccacca gggtaaaaac 1260
cactgatcac tgagttctat tttgaaacta cggacgtcga gtttcctctt tcacccagaa 1320
ttttcagatc ttgtttaaaa agttgggtgt ggtttcatgg ggggaggggg aagagcgaga 1380
ggagaccaga gggacggggg cggggactct gcaagaaaaa ccttcccggt gcaatcgtga 1440
tctgggaggc ccacgtatgg cgcctctcca aaggctgcag aagtttcttg ctaacaaaaa 1500
gtccgcacat tcgagcaaag acaggcttta gcgag 1535
<210> 10
<211> 38
<212> DNA
<213> artificial sequence(人工序列)
<400> 10
aaagcaagta aaacctctac aaatgtggta aaatcgat 38
<210> 11
<211> 936
<212> DNA
<213> artificial sequence(人工序列)
<400> 11
atgacttcga aagtttatga tccagaacaa aggaaacgga tgataactgg tccgcagtgg 60
tgggccagat gtaaacaaat gaatgttctt gattcattta ttaattatta tgattcagaa 120
aaacatgcag aaaatgctgt tattttttta catggtaacg cggcctcttc ttatttatgg 180
cgacatgttg tgccacatat tgagccagta gcgcggtgta ttataccaga ccttattggt 240
atgggcaaat caggcaaatc tggtaatggt tcttataggt tacttgatca ttacaaatat 300
cttactgcat ggtttgaact tcttaattta ccaaagaaga tcatttttgt cggccatgat 360
tggggtgctt gtttggcatt tcattatagc tatgagcatc aagataagat caaagcaata 420
gttcacgctg aaagtgtagt agatgtgatt gaatcatggg atgaatggcc tgatattgaa 480
gaagatattg cgttgatcaa atctgaagaa ggagaaaaaa tggttttgga gaataacttc 540
ttcgtggaaa ccatgttgcc atcaaaaatc atgagaaagt tagaaccaga agaatttgca 600
gcatatcttg aaccattcaa agagaaaggt gaagttcgtc gtccaacatt atcatggcct 660
cgtgaaatcc cgttagtaaa aggtggtaaa cctgacgttg tacaaattgt taggaattat 720
aatgcttatc tacgtgcaag tgatgattta ccaaaaatgt ttattgaatc ggacccagga 780
ttcttttcca atgctattgt tgaaggtgcc aagaagtttc ctaatactga atttgtcaaa 840
gtaaaaggtc ttcatttttc gcaagaagat gcacctgatg aaatgggaaa atatatcaaa 900
tcgttcgttg agcgagttct caaaaatgaa caataa 936
<210> 12
<211> 66
<212> DNA
<213> Simian virus 40
<400> 12
cagacatgat aagatacatt gatgagtttg gacaaaccac aactagaatg cagtgaaaaa 60
aatgct 66
<210> 13
<211> 1653
<212> DNA
<213> artificial sequence(人工序列)
<400> 13
atggaagatg ccaaaaacat taagaagggc ccagcgccat tctacccact cgaagacggg 60
accgccggcg agcagctgca caaagccatg aagcgctacg ccctggtgcc cggcaccatc 120
gcctttaccg acgcacatat cgaggtggac attacctacg ccgagtactt cgagatgagc 180
gttcggctgg cagaagctat gaagcgctat gggctgaata caaaccatcg gatcgtggtg 240
tgcagcgaga atagcttgca gttcttcatg cccgtgttgg gtgccctgtt catcggtgtg 300
gctgtggccc cagctaacga catctacaac gagcgcgagc tgctgaacag catgggcatc 360
agccagccca ccgtcgtatt cgtgagcaag aaagggctgc aaaagatcct caacgtgcaa 420
aagaagctac cgatcataca aaagatcatc atcatggata gcaagaccga ctaccagggc 480
ttccaaagca tgtacacctt cgtgacttcc catttgccac ccggcttcaa cgagtacgac 540
ttcgtgcccg agagcttcga ccgggacaaa accatcgccc tgatcatgaa cagtagtggc 600
agtaccggat tgcccaaggg cgtagcccta ccgcaccgca ccgcttgtgt ccgattcagt 660
catgcccgcg accccatctt cggcaaccag atcatccccg acaccgctat cctcagcgtg 720
gtgccatttc accacggctt cggcatgttc accacgctgg gctacttgat ctgcggcttt 780
cgggtcgtgc tcatgtaccg cttcgaggag gagctattct tgcgcagctt gcaagactat 840
aagattcaat ctgccctgct ggtgcccaca ctatttagct tcttcgctaa gagcactctc 900
atcgacaagt acgacctaag caacttgcac gagatcgcca gcggcggggc gccgctcagc 960
aaggaggtag gtgaggccgt ggccaaacgc ttccacctac caggcatccg ccagggctac 1020
ggcctgacag aaacaaccag cgccattctg atcacccccg aaggggacga caagcctggc 1080
gcagtaggca aggtggtgcc cttcttcgag gctaaggtgg tggacttgga caccggtaag 1140
acactgggtg tgaaccagcg cggcgagctg tgcgtccgtg gccccatgat catgagcggc 1200
tacgttaaca accccgaggc tacaaacgct ctcatcgaca aggacggctg gctgcacagc 1260
ggcgacatcg cctactggga cgaggacgag cacttcttca tcgtggaccg gctgaagagc 1320
ctgatcaaat acaagggcta ccaggtagcc ccagccgaac tggagagcat cctgctgcaa 1380
caccccaaca tcttcgacgc cggggtcgcc ggcctgcccg acgacgatgc cggcgagctg 1440
cccgccgcag tcgtcgtgct ggaacacggt aaaaccatga ccgagaagga gatcgtggac 1500
tatgtggcca gccaggttac aaccgccaag aagctgcgcg gtggtgttgt gttcgtggac 1560
gaggtgccta aaggactgac cggcaagttg gacgcccgca agatccgcga gattctcatt 1620
aaggccaaga agggcggcaa gatcgccgtg taa 1653
<210> 14
<211> 66
<212> DNA
<213> Simian virus 40
<400> 14
cagacatgat aagatacatt gatgagtttg gacaaaccac aactagaatg cagtgaaaaa 60
aatgct 66
<210> 15
<211> 35
<212> DNA
<213> Human sapiens
<400> 15
gaagatctct cgaggctcca ggctagaggg tcacc 35
<210> 16
<211> 30
<212> DNA
<213> Human sapiens
<400> 16
ccaagcttcc atggtggcag tactgttaac 30
<210> 17
<211> 44
<212> DNA
<213> Human sapiens
<400> 17
ccatcgatcg gctagcgcca ccatggtgag caagggcgag gagg 44
<210> 18
<211> 36
<212> DNA
<213> Human sapiens
<400> 18
gcggatcctc tagagttaac cttgtacagc tcgtcc 36
<210> 19
<211> 29
<212> DNA
<213> Human sapiens
<400> 19
ccatcgatag cagcctatca cagcccaga 29
<210> 20
<211> 30
<212> DNA
<213> Human sapiens
<400> 20
ggctagccgc taaagcctgt ctttgctcga 30
<210> 21
<211> 30
<212> DNA
<213> Human sapiens
<400> 21
tgctctagaa ctcctcaggt gcaggctgcc 30
<210> 22
<211> 36
<212> DNA
<213> Human sapiens
<400> 22
cgggatccct cgagcttggg ctgcaggtcg agggat 36
<210> 23
<211> 41
<212> DNA
<213> Human sapiens
<400> 23
gaagatctaa gcttagtact gccaccatgg agagcgacga g 41
<210> 24
<211> 45
<212> DNA
<213> Human sapiens
<400> 24
cgggatccct cgagtctaga gttaacgcga gatccggtgg agccg 45
<210> 25
<211> 38
<212> DNA
<213> Human sapiens
<400> 25
gaagatctaa gcttgccacc atggaagatg ccaaaaac 38
<210> 26
<211> 44
<212> DNA
<213> Human sapiens
<400> 26
cgggatccct cgagtctaga ttacacggcg atcttgccgc cctt 44
<210> 27
<211> 39
<212> DNA
<213> Human sapiens
<400> 27
ccatcgatcg gctagcgcca ccatgacttc gaaagttta 39
<210> 28
<211> 39
<212> DNA
<213> Human sapiens
<400> 28
gcggatcctc tagattattg ttcatttttg agaactcgc 39
<210> 29
<211> 18
<212> DNA
<213> Human sapiens
<400> 29
ctgagaacga ggctaacg 18
<210> 30
<211> 18
<212> DNA
<213> Human sapiens
<400> 30
ttcacatcca gcacatcc 18
<210> 31
<211> 20
<212> DNA
<213> Human sapiens
<400> 31
attgccacct acaggaagct 20
<210> 32
<211> 20
<212> DNA
<213> Human sapiens
<400> 32
gcagaaaggc acttgaaagc 20
<210> 33
<211> 20
<212> DNA
<213> Human sapiens
<400> 33
ataagtggtt acaggaagtc 20
<210> 34
<211> 19
<212> DNA
<213> Human sapiens
<400> 34
tgaagtatta aggcggaag 19
<210> 35
<211> 5328
<212> DNA
<213> artificial sequence(人工序列)
<400> 35
gaaggaatag aagaagaagg tggagagaga gacagagaca gatccattcg attagtgaac 60
ggatcggcac tgcgtgcgcc aattctgcag acaaatggca gtattcatcc acaattttaa 120
aagaaaaggg gggattgggg ggtacagtgc aggggaaaga atagtagaca taatagcaac 180
agacatacaa actaaagaat tacaaaaaca aattacaaaa attcaaaatt ttcgggttta 240
ttacagggac agcagagatc cagtttggtt agatcttcta gcgactgatt cgcctgggcg 300
cgcccgcctg tacaggctta attaacggcg cgtcgacggc caccggtatc tcgaggatat 360
caagatctgc tccaggctag agggtcaccg cgtctatgcg aggccgggtg ggcgggccgt 420
cagctccgcc ctggggaggg gtccgcgctg ctgattggct gtggccggca ggtgaaccct 480
cagccaatca gcggtacggg gggcggtgcc tccggggctc acctggctgc agccacgcac 540
cccctctcag tggcgtcgga actgcaaagc acctgtgagc ttgcggaagt cagttcagac 600
tccagcccgc tccagcccgg cccgacccga ccgcacccgg aagcttggca atccggtact 660
gttggtaaag ccaccatgga agatgccaaa aacattaaga agggcccagc gccattctac 720
ccactcgaag acgggaccgc cggcgagcag ctgcacaaag ccatgaagcg ctacgccctg 780
gtgcccggca ccatcgcctt taccgacgca catatcgagg tggacattac ctacgccgag 840
tacttcgaga tgagcgttcg gctggcagaa gctatgaagc gctatgggct gaatacaaac 900
catcggatcg tggtgtgcag cgagaatagc ttgcagttct tcatgcccgt gttgggtgcc 960
ctgttcatcg gtgtggctgt ggccccagct aacgacatct acaacgagcg cgagctgctg 1020
aacagcatgg gcatcagcca gcccaccgtc gtattcgtga gcaagaaagg gctgcaaaag 1080
atcctcaacg tgcaaaagaa gctaccgatc atacaaaaga tcatcatcat ggatagcaag 1140
accgactacc agggcttcca aagcatgtac accttcgtga cttcccattt gccacccggc 1200
ttcaacgagt acgacttcgt gcccgagagc ttcgaccggg acaaaaccat cgccctgatc 1260
atgaacagta gtggcagtac cggattgccc aagggcgtag ccctaccgca ccgcaccgct 1320
tgtgtccgat tcagtcatgc ccgcgacccc atcttcggca accagatcat ccccgacacc 1380
gctatcctca gcgtggtgcc atttcaccac ggcttcggca tgttcaccac gctgggctac 1440
ttgatctgcg gctttcgggt cgtgctcatg taccgcttcg aggaggagct attcttgcgc 1500
agcttgcaag actataagat tcaatctgcc ctgctggtgc ccacactatt tagcttcttc 1560
gctaagagca ctctcatcga caagtacgac ctaagcaact tgcacgagat cgccagcggc 1620
ggggcgccgc tcagcaagga ggtaggtgag gccgtggcca aacgcttcca cctaccaggc 1680
atccgccagg gctacggcct gacagaaaca accagcgcca ttctgatcac ccccgaaggg 1740
gacgacaagc ctggcgcagt aggcaaggtg gtgcccttct tcgaggctaa ggtggtggac 1800
ttggacaccg gtaagacact gggtgtgaac cagcgcggcg agctgtgcgt ccgtggcccc 1860
atgatcatga gcggctacgt taacaacccc gaggctacaa acgctctcat cgacaaggac 1920
ggctggctgc acagcggcga catcgcctac tgggacgagg acgagcactt cttcatcgtg 1980
gaccggctga agagcctgat caaatacaag ggctaccagg tagccccagc cgaactggag 2040
agcatcctgc tgcaacaccc caacatcttc gacgccgggg tcgccggcct gcccgacgac 2100
gatgccggcg agctgcccgc cgcagtcgtc gtgctggaac acggtaaaac catgaccgag 2160
aaggagatcg tggactatgt ggccagccag gttacaaccg ccaagaagct gcgcggtggt 2220
gttgtgttcg tggacgaggt gcctaaagga ctgaccggca agttggacgc ccgcaagatc 2280
cgcgagattc tcattaaggc caagaagggc ggcaagatcg ccgtgtaata attctagagt 2340
cggggcggcc ggccgcttcg agcagacatg ataagataca ttgatgagtt tggacaaacc 2400
acaactagaa tgcagtgaaa aaaatgcttt atttgtgaaa tttgtgatgc tattgcttta 2460
tttgtaacca ttataagctg caataaacaa gttaacaaca acaattgcat tcattttatg 2520
tttcaggttc agggggaggt gtgggaggtt ttttaaagca agtaaaacct ctacaaatgt 2580
ggtaaaatcg atagcagcct atcacagccc agagacttca gaatggggac aggtcggaag 2640
gaggagctac ctatccctga gatgatgaag aggaccagtg cccattccag gagacatcac 2700
cgcagccctg aggaatcggc tatgggcacc agcagggcac agtgccacac ctcgccaatg 2760
ccttgtcctc cttttccata gtgagtcagt cagcaagcgt cgcattgccc tgggatcggc 2820
actgcacgta gaagtgagtt ccacactctc ttcctcccat agggagatca cttttctcat 2880
tctaagggtt ccaggcacac tcacaatggt ggcatttgct gagcagtggc ttgaataaag 2940
ggctctcaga aagcaagatg taactcagag cataggcttg tcctccaggg cacccagccc 3000
caggaatgct cttggggaat gacctgcagc ctcccagtga aagagagaat aaaagaaagc 3060
cccagcaggc gagctgggca gtagagagtc ctgtaattcc accttggcaa gcaccatttg 3120
caagaacgaa ctgggataag gtaaacaaaa tattgcctaa aagaggcttg tccaaagaag 3180
tcagaatacg ctcttcattt acctctaaat tatgtttctt aaataccaag taacctgcag 3240
taccccctgc cgccaccaaa aaaaaagaga gaaatacttt tttttctcct atccactgca 3300
gaatcaattt tacagtggtt ctgcagttaa tcctttcagt acaccataaa tctaaatact 3360
caaaaaaacc tgtgcctttt caattgctac taaatcacga gaagactgat ttacatagtc 3420
tccttttatc tcccttggcg ggtaagtact cagctctgct cgttactaat attgaaacaa 3480
cagcccttga attgagtgat ttccctagaa aggttaaggt gaccgaatct gaacactccc 3540
tccatgtctt ggacacgaag ttttttgctg cgtagacagt tttatccccc tcaccccaag 3600
gtcaattgca cgaattcttt tggaaaacag gacctatggc atttcccaga caaatcaccg 3660
tgaaccctgt actgtgcatt gctgtcctaa aattaacaca taaatctatt gccgccaaag 3720
attctgtcat ttgtgttaca taattgcctt tcatttgaac tcattaatca aattggggtt 3780
tttaagcaac acctaattaa ttctttaact ggctcatatt atacctttaa tgacttccac 3840
cagggtaaaa accactgatc actgagttct attttgaaac tacggacgtc gagtttcctc 3900
tttcacccag aattttcaga tcttgtttaa aaagttgggt gtggtttcat ggggggaggg 3960
ggaagagcga gaggagacca gagggacggg ggcggggact ctgcaagaaa aaccttcccg 4020
gtgcaatcgt gatctgggag gcccacgtat ggcgcctctc caaaggctgc agaagtttct 4080
tgctaacaaa aagtccgcac attcgagcaa agacaggctt tagcgagcta gcgccaccat 4140
gacttcgaaa gtttatgatc cagaacaaag gaaacggatg ataactggtc cgcagtggtg 4200
ggccagatgt aaacaaatga atgttcttga ttcatttatt aattattatg attcagaaaa 4260
acatgcagaa aatgctgtta tttttttaca tggtaacgcg gcctcttctt atttatggcg 4320
acatgttgtg ccacatattg agccagtagc gcggtgtatt ataccagacc ttattggtat 4380
gggcaaatca ggcaaatctg gtaatggttc ttataggtta cttgatcatt acaaatatct 4440
tactgcatgg tttgaacttc ttaatttacc aaagaagatc atttttgtcg gccatgattg 4500
gggtgcttgt ttggcatttc attatagcta tgagcatcaa gataagatca aagcaatagt 4560
tcacgctgaa agtgtagtag atgtgattga atcatgggat gaatggcctg atattgaaga 4620
agatattgcg ttgatcaaat ctgaagaagg agaaaaaatg gttttggaga ataacttctt 4680
cgtggaaacc atgttgccat caaaaatcat gagaaagtta gaaccagaag aatttgcagc 4740
atatcttgaa ccattcaaag agaaaggtga agttcgtcgt ccaacattat catggcctcg 4800
tgaaatcccg ttagtaaaag gtggtaaacc tgacgttgta caaattgtta ggaattataa 4860
tgcttatcta cgtgcaagtg atgatttacc aaaaatgttt attgaatcgg acccaggatt 4920
cttttccaat gctattgttg aaggtgccaa gaagtttcct aatactgaat ttgtcaaagt 4980
aaaaggtctt catttttcgc aagaagatgc acctgatgaa atgggaaaat atatcaaatc 5040
gttcgttgag cgagttctca aaaatgaaca ataattctag agcggccgct tcgagcagac 5100
atgataagat acattgatga gtttggacaa accacaacta gaatgcagtg aaaaaaatgc 5160
tttatttgtg aaatttgtga tgctattgct ttatttgtaa ccattataag ctgcaataaa 5220
caagttaaca acaacaattg cattcatttt atgtttcagg ttcaggggga ggtgtgggag 5280
gttttttaaa gcaagtaaaa cctctacaaa tgtgtaaatc gcccagtg 5328
<210> 36
<211> 4167
<212> DNA
<213> artificial sequence(人工序列)
<400> 36
gaaggaatag aagaagaagg tggagagaga gacagagaca gatccattcg attagtgaac 60
ggatcggcac tgcgtgcgcc aattctgcag acaaatggca gtattcatcc acaattttaa 120
aagaaaaggg gggattgggg ggtacagtgc aggggaaaga atagtagaca taatagcaac 180
agacatacaa actaaagaat tacaaaaaca aattacaaaa attcaaaatt ttcgggttta 240
ttacagggac agcagagatc cagtttggtt agatcttcta gcgactgatt cgcctgggcg 300
cgcccgcctg tacaggctta attaacggcg cgtcgacggc caccggtatc tcgaggatat 360
caagatctgc tccaggctag agggtcaccg cgtctatgcg aggccgggtg ggcgggccgt 420
cagctccgcc ctggggaggg gtccgcgctg ctgattggct gtggccggca ggtgaaccct 480
cagccaatca gcggtacggg gggcggtgcc tccggggctc acctggctgc agccacgcac 540
cccctctcag tggcgtcgga actgcaaagc acctgtgagc ttgcggaagt cagttcagac 600
tccagcccgc tccagcccgg cccgacccga ccgcacccgg aagcttggca atccggtact 660
gttggtaaag ccaccatggt gagcaagggc gaggaggata acatggccat catcaaggag 720
ttcatgcgct tcaaggtgca catggagggc tccgtgaacg gccacgagtt cgagatcgag 780
ggcgagggcg agggccgccc ctacgagggc acccagaccg ccaagctgaa ggtgaccaag 840
ggtggccccc tgcccttcgc ctgggacatc ctgtcccctc agttcatgta cggctccaag 900
gcctacgtga agcaccccgc cgacatcccc gactacttga agctgtcctt ccccgagggc 960
ttcaagtggg agcgcgtgat gaacttcgag gacggcggcg tggtgaccgt gacccaggac 1020
tcctccctgc aggacggcga gttcatctac aaggtgaagc tgcgcggcac caacttcccc 1080
tccgacggcc ccgtaatgca gaagaagacc atgggctggg aggcctcctc cgagcggatg 1140
taccccgagg acggcgccct gaagggcgag atcaagcaga ggctgaagct gaaggacggc 1200
ggccactacg acgctgaggt caagaccacc tacaaggcca agaagcccgt gcagctgccc 1260
ggcgcctaca acgtcaacat caagttggac atcacctccc acaacgagga ctacaccatc 1320
gtggaacagt acgaacgcgc cgagggccgc cactccaccg gcggcatgga cgagctgtac 1380
aagtaattct agagtcgggg cggccggccg cttcgagcag acatgataag atacattgat 1440
gagtttggac aaaccacaac tagaatgcag tgaaaaaaat gctttatttg tgaaatttgt 1500
gatgctattg ctttatttgt aaccattata agctgcaata aacaagttaa caacaacaat 1560
tgcattcatt ttatgtttca ggttcagggg gaggtgtggg aggtttttta aagcaagtaa 1620
aacctctaca aatgtggtaa aatcgatagc agcctatcac agcccagaga cttcagaatg 1680
gggacaggtc ggaaggagga gctacctatc cctgagatga tgaagaggac cagtgcccat 1740
tccaggagac atcaccgcag ccctgaggaa tcggctatgg gcaccagcag ggcacagtgc 1800
cacacctcgc caatgccttg tcctcctttt ccatagtgag tcagtcagca agcgtcgcat 1860
tgccctggga tcggcactgc acgtagaagt gagttccaca ctctcttcct cccataggga 1920
gatcactttt ctcattctaa gggttccagg cacactcaca atggtggcat ttgctgagca 1980
gtggcttgaa taaagggctc tcagaaagca agatgtaact cagagcatag gcttgtcctc 2040
cagggcaccc agccccagga atgctcttgg ggaatgacct gcagcctccc agtgaaagag 2100
agaataaaag aaagccccag caggcgagct gggcagtaga gagtcctgta attccacctt 2160
ggcaagcacc atttgcaaga acgaactggg ataaggtaaa caaaatattg cctaaaagag 2220
gcttgtccaa agaagtcaga atacgctctt catttacctc taaattatgt ttcttaaata 2280
ccaagtaacc tgcagtaccc cctgccgcca ccaaaaaaaa agagagaaat actttttttt 2340
ctcctatcca ctgcagaatc aattttacag tggttctgca gttaatcctt tcagtacacc 2400
ataaatctaa atactcaaaa aaacctgtgc cttttcaatt gctactaaat cacgagaaga 2460
ctgatttaca tagtctcctt ttatctccct tggcgggtaa gtactcagct ctgctcgtta 2520
ctaatattga aacaacagcc cttgaattga gtgatttccc tagaaaggtt aaggtgaccg 2580
aatctgaaca ctccctccat gtcttggaca cgaagttttt tgctgcgtag acagttttat 2640
ccccctcacc ccaaggtcaa ttgcacgaat tcttttggaa aacaggacct atggcatttc 2700
ccagacaaat caccgtgaac cctgtactgt gcattgctgt cctaaaatta acacataaat 2760
ctattgccgc caaagattct gtcatttgtg ttacataatt gcctttcatt tgaactcatt 2820
aatcaaattg gggtttttaa gcaacaccta attaattctt taactggctc atattatacc 2880
tttaatgact tccaccaggg taaaaaccac tgatcactga gttctatttt gaaactacgg 2940
acgtcgagtt tcctctttca cccagaattt tcagatcttg tttaaaaagt tgggtgtggt 3000
ttcatggggg gagggggaag agcgagagga gaccagaggg acgggggcgg ggactctgca 3060
agaaaaacct tcccggtgca atcgtgatct gggaggccca cgtatggcgc ctctccaaag 3120
gctgcagaag tttcttgcta acaaaaagtc cgcacattcg agcaaagaca ggctttagcg 3180
agctagcgcc accatggtga gcaagggcga ggagctgttc accggggtgg tgcccatcct 3240
ggtcgagctg gacggcgacg taaacggcca caagttcagc gtgtccggcg agggcgaggg 3300
cgatgccacc tacggcaagc tgaccctgaa gttcatctgc accaccggca agctgcccgt 3360
gccctggccc accctcgtga ccaccctgac ctacggcgtg cagtgcttca gccgctaccc 3420
cgaccacatg aagcagcacg acttcttcaa gtccgccatg cccgaaggct acgtccagga 3480
gcgcaccatc ttcttcaagg acgacggcaa ctacaagacc cgcgccgagg tgaagttcga 3540
gggcgacacc ctggtgaacc gcatcgagct gaagggcatc gacttcaagg aggacggcaa 3600
catcctgggg cacaagctgg agtacaacta caacagccac aacgtctata tcatggccga 3660
caagcagaag aacggcatca aggtgaactt caagatccgc cacaacatcg aggacggcag 3720
cgtgcagctc gccgaccact accagcagaa cacccccatc ggcgacggcc ccgtgctgct 3780
gcccgacaac cactacctga gcacccagtc cgccctgagc aaagacccca acgagaagcg 3840
cgatcacatg gtcctgctgg agttcgtgac cgccgccggg atcactctcg gcatggacga 3900
gctgtacaag taattctaga gcggccgctt cgagcagaca tgataagata cattgatgag 3960
tttggacaaa ccacaactag aatgcagtga aaaaaatgct ttatttgtga aatttgtgat 4020
gctattgctt tatttgtaac cattataagc tgcaataaac aagttaacaa caacaattgc 4080
attcatttta tgtttcaggt tcagggggag gtgtgggagg ttttttaaag caagtaaaac 4140
ctctacaaat gtgtaaatcg cccagtg 4167
Claims (7)
1.一种双发光报告系统,其特征在于,包含ECAD的启动子片段以及VIM的启动子片段,还包含分别与ECAD的启动子片段以及VIM的启动子片段相连的luciferase基因片段和Renilla基因片段,或者,还包含分别与ECAD的启动子片段以及VIM的启动子片段相连的mCherry基因片段和eGFP基因片段。
2.如权利要求1所述的双发光报告系统,其特征在于,所述的luciferase基因片段的序列为SEQIDNO:13,Renilla基因片段的序列为SEQIDNO:11,mCherry基因片段的序列为SEQIDNO:6,eGFP基因片段的序列为SEQIDNO:4。
3.如权利要求1所述的双发光报告系统,其特征在于,所述的ECAD的启动子片段的序列为SEQIDNO:1或SEQIDNO:8;所述的VIM的启动子片段的序列为SEQIDNO:2或SEQIDNO:9。
4.如权利要求1所述的双发光报告系统,其特征在于,所述的双发光报告系统为pLenti-EcadPm-luciferase-PA-Spacer-VimPm-Renilla-PA-hPKG-Puro质粒以及pLenti-EcadPm-mCherry-PA-Spacer-VimPm-eGFP-PA-hPKG-Puro质粒中的至少一种。
5.一种双发光报告系统,其特征在于,所述的双发光报告系统的序列为SEQIDNO:35或SEQIDNO:36。
6.权利要求1-5中任一项所述的双发光报告系统在基于EMT或MET的分子靶向药物筛选中的应用。
7.一种基于EMT或MET的分子靶向药物筛选方法,其特征在于,包括:将权利要求1-5中任一项所述的双发光报告系统转染到上皮细胞中,继续培养;加入待筛选药物,继续培养;实时观察mCherry荧光信号和eGFP荧光信号,或Luciferase与Renilla酶活性的比值,以检测EMT或MET的发生过程,实现基于EMT或MET的分子靶向药物筛选。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810114578.8A CN108456691A (zh) | 2018-02-05 | 2018-02-05 | 双发光报告系统及其用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810114578.8A CN108456691A (zh) | 2018-02-05 | 2018-02-05 | 双发光报告系统及其用途 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108456691A true CN108456691A (zh) | 2018-08-28 |
Family
ID=63239453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810114578.8A Pending CN108456691A (zh) | 2018-02-05 | 2018-02-05 | 双发光报告系统及其用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108456691A (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101260408A (zh) * | 2008-03-27 | 2008-09-10 | 武汉大学 | 一种双色荧光报告载体的构建方法和应用 |
WO2010099363A1 (en) * | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
WO2010099138A2 (en) * | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
WO2010101793A2 (en) * | 2009-03-06 | 2010-09-10 | University Of South Alabama | Methods and compositions for the diagnosis, prognosis and treatment of cancer |
US20140057352A1 (en) * | 2009-02-27 | 2014-02-27 | OSI Pharmaceuticals, LLC | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
-
2018
- 2018-02-05 CN CN201810114578.8A patent/CN108456691A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101260408A (zh) * | 2008-03-27 | 2008-09-10 | 武汉大学 | 一种双色荧光报告载体的构建方法和应用 |
WO2010099363A1 (en) * | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
WO2010099138A2 (en) * | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
US20140057352A1 (en) * | 2009-02-27 | 2014-02-27 | OSI Pharmaceuticals, LLC | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
WO2010101793A2 (en) * | 2009-03-06 | 2010-09-10 | University Of South Alabama | Methods and compositions for the diagnosis, prognosis and treatment of cancer |
Non-Patent Citations (1)
Title |
---|
马萍: "构建双荧光可视化TGF-β诱导的细胞模型", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111448318B (zh) | 修饰在真核细胞中用于沉默基因表达的非编码rna分子的特异性的方法 | |
EP4421167A2 (en) | Enhanced hat family transposon-mediated gene transfer and associated compositions, systems, and methods | |
WO2017054647A1 (zh) | 一种高效安全的转座子整合系统及其用途 | |
CA2932439A1 (en) | Crispr-cas systems and methods for altering expression of gene products, structural information and inducible modular cas enzymes | |
CN102803508B (zh) | 用于干细胞成像的组合物和方法 | |
TW200817512A (en) | Human artificial chromosome (hac) vector, and human cell pharmaceutical comprising human artificial chromosome (hac) vector | |
US20220017894A1 (en) | Compositions and methods for in vivo screening of therapeutics | |
KR20160145814A (ko) | 세포 생산성을 향상시키는 마이크로rna | |
CA3004665C (en) | Transposon system, kit comprising the same, and uses thereof | |
WO2019039962A1 (en) | VTVAF17 GENE THERAPY DNA VECTOR, METHOD OF PRODUCTION; ESCHERICHIA COLI SCS110-AF STRAIN, PROCESS FOR PRODUCTION; VECTOR VTVAF17 GENE THERAPY DNA CARRYING THE ESCHERICHIA COLI SCS110-AF / VTVAF17 STRAIN, PRODUCTION PROCESS | |
JP2021527427A (ja) | 強化されたhATファミリーのトランスポゾンが介在する遺伝子導入ならびに関連する組成物、システム、及び方法 | |
KR102409077B1 (ko) | 프로그램 가능한 항암 바이러스 백신 시스템 및 이의 적용 | |
JP2022521486A (ja) | トランスポゾンに基づく免疫細胞の改変 | |
EP3359676B1 (en) | Transposon system, kit comprising the same, and uses thereof | |
CN108285891A (zh) | Luc-GFP标记的高转移性人肝癌细胞株及其在原位肝癌模型中的应用 | |
JP2024133642A (ja) | 活性dnaトランスポゾンシステム及びその使用方法 | |
CN107012158B (zh) | 一种端粒酶启动基因表达方法及其应用 | |
Capin et al. | An engineered baculoviral protein and DNA co-delivery system for CRISPR-based mammalian genome editing | |
CN108456691A (zh) | 双发光报告系统及其用途 | |
JP6469371B2 (ja) | 人工多能性幹細胞(iPS細胞)から成る胚様体に複数の外来遺伝子を発現させる方法 | |
KR20200132740A (ko) | 요산분해효소를 과발현하는 줄기세포를 유효성분으로 포함하는 통풍의 예방 또는 치료용 조성물 | |
US20220298509A1 (en) | Multi-input mirna sensing with constitutive erns to regulate multi-output gene expression in mammalian cells | |
Simion et al. | LentiRILES, a miRNA-ON sensor system for monitoring the functionality of miRNA in cancer biology and therapy | |
CN114807364A (zh) | YRNA片段hY4F作为分子标志物在制备肺癌诊断试剂中的应用及抗肺癌药物 | |
CN114908089B (zh) | 3’utr的构建方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180828 |
|
RJ01 | Rejection of invention patent application after publication |