CN108448059A - A kind of silicon negative electrode for lithium ion battery and preparation method thereof - Google Patents
A kind of silicon negative electrode for lithium ion battery and preparation method thereof Download PDFInfo
- Publication number
- CN108448059A CN108448059A CN201810344840.8A CN201810344840A CN108448059A CN 108448059 A CN108448059 A CN 108448059A CN 201810344840 A CN201810344840 A CN 201810344840A CN 108448059 A CN108448059 A CN 108448059A
- Authority
- CN
- China
- Prior art keywords
- silicon
- negative electrode
- array
- substrate
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 239000010703 silicon Substances 0.000 title claims abstract description 74
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 74
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 17
- 239000002210 silicon-based material Substances 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 9
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 6
- 238000005530 etching Methods 0.000 claims abstract description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 22
- 239000010439 graphite Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 abstract description 10
- 239000011248 coating agent Substances 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 6
- 238000001947 vapour-phase growth Methods 0.000 abstract 1
- 239000002070 nanowire Substances 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 229910003472 fullerene Inorganic materials 0.000 description 5
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000002071 nanotube Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000011218 binary composite Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种锂离子电池用硅负极及其制备方法,所述硅负极,包括阵列化排布在基板上的硅材料,其特征在于:在所述硅材料的表面包覆有石墨烯层。其制备方法包括下列步骤:采用化学气相沉积法或磁控溅射镀膜法在基板正反两面上形成硅薄膜;通过掩膜版进行各向同性腐蚀,形成阵列化排布的硅材料;通过化学气相沉积法形成包覆于硅材料表面的石墨烯层。本发明通过在硅阵列表面包覆石墨烯,既可以束缚硅的膨胀、提高导电性、避免电解液与硅直接接触、利用石墨烯与电解液形成的良好SEI膜,从而延长材料充放电循环寿命;本发明提高了首次效率、改善了循环性能、提高了倍率性能与最大化能量密度,给商业化应用硅系材料提供了非常好的方法。
The invention discloses a silicon negative electrode for a lithium ion battery and a preparation method thereof. The silicon negative electrode includes a silicon material arranged in an array on a substrate, and is characterized in that: the surface of the silicon material is coated with graphene Floor. The preparation method includes the following steps: forming a silicon film on the front and back sides of the substrate by chemical vapor deposition or magnetron sputtering coating method; carrying out isotropic etching through a mask plate to form an array of silicon materials; The vapor phase deposition method forms a graphene layer covering the surface of the silicon material. By coating graphene on the surface of the silicon array, the invention can restrain the expansion of silicon, improve the conductivity, avoid the direct contact between electrolyte and silicon, and utilize the good SEI film formed by graphene and electrolyte, thereby prolonging the charge-discharge cycle life of the material ; The invention improves the initial efficiency, improves the cycle performance, increases the rate performance and maximizes the energy density, and provides a very good method for the commercial application of silicon-based materials.
Description
技术领域technical field
本发明涉及一种锂离子电池,具体涉及一种用于锂离子电池的负极极板,尤其是一种硅负极。The invention relates to a lithium ion battery, in particular to a negative electrode plate for the lithium ion battery, especially a silicon negative electrode.
背景技术Background technique
随着电动汽车对续航里程要求的增长,电池系统对单体锂离子电池的能量密度提出了更高要求。对于电池内部,要求具有更高克容量的正负极材料。其中,正极材料由磷酸铁锂向三元过渡,在三元体系中高镍成为趋势,而负极材料,则在传统常规的石墨类负极材料基础之上,开始研发硅负极材料。对硅负极的开发逐渐成为研发应用的热点。With the increase in the mileage requirements of electric vehicles, the battery system puts forward higher requirements on the energy density of single lithium-ion batteries. For the inside of the battery, positive and negative electrode materials with higher gram capacity are required. Among them, the positive electrode material is transitioning from lithium iron phosphate to ternary, and high nickel in the ternary system has become a trend, while negative electrode materials are based on traditional graphite negative electrode materials, and silicon negative electrode materials have been developed. The development of silicon anodes has gradually become a hot spot in research and development applications.
石墨类负极材料的放电容量为372mAh/g,而硅的放电容量为4200mAh/g,是石墨的10倍以上。如果能将传统石墨类负极材料替换为硅负极,那么单体电池的能量密度将有相当大的提升。石墨类负极已商业化将近30年,其作为常规材料仍然未被硅所替代,其原因主要是硅在充放电时的体积膨胀变化为300%~400%,而石墨仅为10%。体积的剧烈变化会导致活性物质脱落并且不断重复消耗电解液形成SEI膜,最终体现为容量衰减。另外硅负极与电解液直接接触会被氢氟酸腐蚀产生气体,对电池产生安全隐患。The discharge capacity of graphite-based anode materials is 372mAh/g, while the discharge capacity of silicon is 4200mAh/g, more than 10 times that of graphite. If the traditional graphite-based anode material can be replaced by a silicon anode, the energy density of a single battery will be greatly improved. Graphite negative electrodes have been commercialized for nearly 30 years, but they have not been replaced by silicon as a conventional material. The main reason is that the volume expansion of silicon is 300% to 400% during charge and discharge, while graphite is only 10%. The drastic change in volume will lead to the shedding of active materials and repeated consumption of electrolyte to form SEI film, which is finally reflected in capacity fading. In addition, the direct contact between the silicon negative electrode and the electrolyte will be corroded by hydrofluoric acid to generate gas, which will pose a safety hazard to the battery.
中国发明专利CN102208632A公开了一种锂离子电池用硅纳米线-富勒烯综合体负极材料,富勒烯柔性导电颗粒和硅纳米线共同组成二元综合体复合体;硅纳米线作为储锂的主体,富勒烯柔性导电颗粒负载在硅纳米线表面,形成一个由硅纳米线阵列和富勒烯构成的拓扑网状结构。该发明利用富勒烯的优异弹性缓冲硅的体积膨胀,从而阻碍相邻硅纳米线的融合。但是其并不能解决硅纳米线柱体积的剧烈变化导致的SEI膜重复形成问题,也不能阻止硅负极与电解液的直接接触。Chinese invention patent CN102208632A discloses a silicon nanowire-fullerene composite negative electrode material for lithium-ion batteries, fullerene flexible conductive particles and silicon nanowires together form a binary composite composite; silicon nanowires are used as lithium storage In the main body, fullerene flexible conductive particles are loaded on the surface of silicon nanowires to form a topological network structure composed of silicon nanowire arrays and fullerenes. The invention utilizes the excellent elasticity of fullerenes to buffer the volume expansion of silicon, thereby hindering the fusion of adjacent silicon nanowires. However, it cannot solve the problem of repeated formation of the SEI film caused by the drastic change in the volume of the silicon nanowire column, nor can it prevent the direct contact between the silicon anode and the electrolyte.
中国发明专利申请CN106784607A公开了一种锂电用二氧化钛纳米管阵列固载硅负极材料,首先制备二氧化钛纳米管阵列,再利用磁控溅射在纳米管口形成一定形状结构的硅。该方案利用纳米管的特殊结构使得在二维方向上抑制硅的膨胀收缩导致的破碎,但整体工艺过程复杂,并且,随着充放电次数的增加,电池的容量衰减速度较快,同时,硅材料与电解液同样直接接触。Chinese invention patent application CN106784607A discloses a titanium dioxide nanotube array immobilized silicon negative electrode material for lithium batteries. First, the titanium dioxide nanotube array is prepared, and then magnetron sputtering is used to form silicon with a certain shape at the nanotube mouth. This scheme uses the special structure of nanotubes to suppress the breakage caused by the expansion and contraction of silicon in the two-dimensional direction, but the overall process is complicated, and, with the increase of charge and discharge times, the capacity of the battery decays faster. At the same time, silicon The material is likewise in direct contact with the electrolyte.
发明内容Contents of the invention
本发明的发明目的是提供一种锂离子电池用硅负极,通过结构设计,减少硅的体积变化,提高首次效率、改善循环性能、提高倍率性能与最大化能量密度。本发明的另一发明目的是提供这种硅负极的制备方法。The object of the present invention is to provide a silicon negative electrode for lithium-ion batteries, through structural design, the volume change of silicon can be reduced, the initial efficiency can be improved, the cycle performance can be improved, the rate performance can be improved and the energy density can be maximized. Another object of the present invention is to provide a method for preparing such a silicon negative electrode.
为达到上述发明目的,本发明采用的技术方案是:一种锂离子电池用硅负极,包括阵列化排布在基板上的硅材料,在所述硅材料的表面包覆有石墨烯层。In order to achieve the purpose of the above invention, the technical solution adopted in the present invention is: a silicon negative electrode for lithium-ion batteries, comprising silicon materials arranged in an array on a substrate, and a graphene layer is coated on the surface of the silicon materials.
上述技术方案中,通过对硅材料进行石墨烯包覆,既可以束缚硅的膨胀、提高导电性、避免电解液与硅直接接触、利用石墨烯与电解液形成的良好SEI膜,从而延长材料充放电循环寿命。In the above technical solution, by coating the silicon material with graphene, the expansion of silicon can be restrained, the conductivity can be improved, the direct contact between the electrolyte and silicon can be avoided, and the good SEI film formed by graphene and electrolyte can be used to prolong the charge of the material. Discharge cycle life.
上述技术方案中,所述石墨烯层的厚度为0.335~3.35nm。In the above technical solution, the thickness of the graphene layer is 0.335-3.35 nm.
由于硅材料在充放电过程中有巨大体积变化,虽然采用了石墨烯包覆,仍然存在体积膨胀,而另一方面,电池对能量密度的需要要求有一定的堆积排布密度。因此,本发明给出了硅材料的阵列化排布的优选方案。Due to the huge volume change of the silicon material during the charge and discharge process, even though it is coated with graphene, there is still volume expansion. On the other hand, the energy density of the battery requires a certain packing density. Therefore, the present invention provides a preferred solution for the array arrangement of silicon materials.
优选方案一,所述阵列化排布为在基板表面构成圆柱状硅阵列,相邻圆柱之间中心轴间距L、圆柱截面圆半径R、圆柱高度h同时满足如下条件:①;②,其中r为石墨颗粒D50半径。Preferred option 1, the array arrangement is to form a cylindrical silicon array on the surface of the substrate, the distance L between the central axes of adjacent cylinders, the radius R of the circular cylinder section, and the height h of the cylinders simultaneously satisfy the following conditions: ① ;② , where r is the D50 radius of graphite particles.
r为10~20μm。一般地,能量型石墨D50为20μm左右,功率型石墨D50为10μm左右。r is 10 to 20 μm. Generally, the D50 of energy type graphite is about 20 μm, and the D50 of power type graphite is about 10 μm.
优选方案二,所述阵列化排布为在基板表面构成棱锥状硅阵列,棱锥底面为正N边形,相邻正N边形的内切圆圆心间距L、正N边形边长a、棱锥高度h同时满足如下条件:①;②,其中r为石墨颗粒D50半径。Preferred option two, the array arrangement is to form a pyramid-shaped silicon array on the surface of the substrate, the bottom surface of the pyramid is a regular N-gon, the distance L between the centers of the inscribed circles of adjacent regular N-gons, the side lengths of the regular N-gons a, The pyramid height h satisfies the following conditions at the same time: ① ;② , where r is the D50 radius of graphite particles.
r为10~20μm。r is 10 to 20 μm.
为实现本发明的另一发明目的,提供一种锂离子电池用硅负极的制备方法,包括下列步骤:In order to realize another object of the invention of the present invention, a kind of preparation method of silicon negative electrode for lithium ion battery is provided, comprising the following steps:
(1) 采用化学气相沉积法或磁控溅射镀膜法在基板正反两面上形成硅薄膜;(1) Form a silicon film on the front and back of the substrate by chemical vapor deposition or magnetron sputtering coating method;
(2) 通过掩膜版进行各向同性腐蚀,形成阵列化排布的硅材料;(2) Carry out isotropic etching through the mask to form an array of silicon materials;
(3) 通过化学气相沉积法形成包覆于硅材料表面的石墨烯层。(3) A graphene layer coated on the surface of the silicon material is formed by chemical vapor deposition.
其中,步骤(2)中,所述阵列化排布为在基板表面构成圆柱状硅阵列,相邻圆柱之间中心轴间距L、圆柱截面圆半径R、圆柱高度h同时满足如下条件:①;②,其中r为石墨颗粒D50半径。Wherein, in step (2), the array arrangement is to form a cylindrical silicon array on the surface of the substrate, and the distance L between the central axes of adjacent cylinders, the radius R of the circular cylinder section, and the height h of the cylinders simultaneously satisfy the following conditions: ① ;② , where r is the D50 radius of graphite particles.
或者,步骤(2)中,所述阵列化排布为在基板表面构成棱锥状硅阵列,棱锥底面为正N边形,相邻正N边形的内切圆圆心间距L、正N边形边长a、棱锥高度h同时满足如下条件:①;②,其中r为石墨颗粒D50半径。Alternatively, in step (2), the array arrangement is to form a pyramid-shaped silicon array on the surface of the substrate, the bottom surface of the pyramid is a regular N-gon, the distance L between the centers of the inscribed circles of adjacent regular N-gons, and the regular N-gons Side length a and pyramid height h satisfy the following conditions at the same time: ① ;② , where r is the D50 radius of graphite particles.
上述技术方案中,基板可以选用铜箔。In the above technical solution, copper foil may be used as the substrate.
由于上述技术方案运用,本发明与现有技术相比具有下列优点:Due to the use of the above-mentioned technical solutions, the present invention has the following advantages compared with the prior art:
1、本发明通过在硅阵列表面包覆石墨烯,既可以束缚硅的膨胀、提高导电性、避免电解液与硅直接接触、利用石墨烯与电解液形成的良好SEI膜,从而延长材料充放电循环寿命。1. By coating graphene on the surface of the silicon array, the present invention can restrain the expansion of silicon, improve the conductivity, avoid direct contact between the electrolyte and silicon, and use the good SEI film formed by graphene and electrolyte to prolong the charge and discharge of the material. cycle life.
2、本发明给出了不同阵列结构下硅排布的规则,极大减少硅的体积变化、提高首次效率、改善循环性能、提高倍率性能与最大化能量密度,给商业化应用硅系材料提供了非常好的方法。2. The present invention provides the rules for the arrangement of silicon under different array structures, which greatly reduces the volume change of silicon, improves the first-time efficiency, improves the cycle performance, improves the rate performance and maximizes the energy density, and provides silicon-based materials for commercial applications. very good method.
附图说明Description of drawings
图1是实施例一的硅阵列排布示意图;Fig. 1 is a schematic diagram of the arrangement of silicon arrays in Embodiment 1;
图2是实施例二的硅阵列排布示意图。FIG. 2 is a schematic diagram of the arrangement of silicon arrays in the second embodiment.
具体实施方式Detailed ways
下面结合附图及实施例对本发明作进一步描述:The present invention will be further described below in conjunction with accompanying drawing and embodiment:
实施例一:采用6~8μm铜箔作为集流体,利用化学气相沉积或磁控溅射镀膜形成硅薄膜沉积于铜箔正反两面之上。通过掩膜版,利用氢氟酸、硝酸、醋酸对硅进行各向同性湿法腐蚀,形成圆柱状硅阵列,通过使用化学气相沉积CVD形成石墨烯包覆于硅表面。Embodiment 1: Copper foil of 6-8 μm is used as a current collector, and a silicon film is formed by chemical vapor deposition or magnetron sputtering coating and deposited on both sides of the copper foil. Through the mask, silicon is isotropically wet-etched with hydrofluoric acid, nitric acid, and acetic acid to form a cylindrical silicon array, and graphene is coated on the silicon surface by using chemical vapor deposition CVD.
由于硅在充放电的体积变化为300%~400%,所以膨胀3~4倍后的圆柱间最大可用空时是其相切。考虑到圆柱中心轴向有极组挤压,另外具有高的长径比的材料沿径向变化大于中心轴方向。所以这里假设硅全部沿径向膨胀,杜绝径向挤压的可能性。Since the volume change of silicon during charging and discharging is 300%~400%, the maximum available space time between the cylinders after expanding 3~4 times is its tangency. Considering that the pole group is extruded in the central axis of the cylinder, the material with a high aspect ratio changes more in the radial direction than in the direction of the central axis. Therefore, it is assumed here that all silicon expands in the radial direction, eliminating the possibility of radial extrusion.
如图1所示,膨胀后圆柱截面圆形面积S2与膨胀前面积S1满足S2/S1=3~4,即=3~4,其中r2为膨胀后圆柱截面圆形半径、r1膨胀前圆柱截面圆形半径。圆柱之间中心轴间距。一般石墨颗粒的D50半径r为10~20μm,能量型石墨D50为20μm左右,功率型石墨D50为10μm左右。改变颗粒大小不仅会改变扩散路径,并且非常不利于配料匀浆涂布等制程的进行,所以最优的方案是将硅圆柱的体积与球形碳的体积相等,因而圆柱的高度h满足。As shown in Figure 1, the circular area S 2 of the cylindrical section after expansion and the area S 1 before expansion satisfy S 2 /S 1 =3~4, that is =3~4, where r 2 is the circular radius of the cylindrical section after expansion, and r 1 is the circular radius of the cylindrical section before expansion. Center axis distance between cylinders . Generally, the D50 radius r of graphite particles is 10~20 μm, the D50 of energy type graphite is about 20 μm, and the D50 of power type graphite is about 10 μm. Changing the particle size will not only change the diffusion path, but also is very unfavorable to the process of homogenization and coating of ingredients, so the optimal solution is to make the volume of the silicon cylinder equal to the volume of the spherical carbon, so the height h of the cylinder satisfies .
根据电动汽车用电池的功率密度与能量密度可以选择正极材料所对应的面密度,随后根据正极材料克容量以及合理设计负极容量过量比确定对应硅负极的单片(单层)容量,最终可以确定负极的面密度。在满足上述两公式条件下,最终形成电池的设计方案。According to the power density and energy density of the battery for electric vehicles, the surface density corresponding to the positive electrode material can be selected, and then the monolithic (single layer) capacity of the corresponding silicon negative electrode can be determined according to the gram capacity of the positive electrode material and the rational design of the negative electrode capacity excess ratio, and finally can be determined areal density of the negative electrode. Under the conditions of satisfying the above two formulas, the design scheme of the battery is finally formed.
实施例二:Embodiment two:
采用6~8μm铜箔作为集流体,利用化学气相沉积或磁控溅射镀膜形成硅薄膜沉积于铜箔正反两面之上。通过掩膜版,利用氢氧化钾、氢氧化钠、氨水对硅进行各向异性湿法腐蚀,形成棱锥状硅阵列,通过使用化学气相沉积CVD形成石墨烯包覆于硅表面。6~8μm copper foil is used as the current collector, and the silicon film is deposited on the front and back sides of the copper foil by chemical vapor deposition or magnetron sputtering coating. Through the mask plate, silicon is anisotropically wet-etched by potassium hydroxide, sodium hydroxide, and ammonia water to form a pyramid-shaped silicon array, and graphene is coated on the silicon surface by using chemical vapor deposition CVD.
如图2,由于正多边形面积,其中N为正多边形的边数、r为内切圆半径。膨膨胀后圆柱截面圆形面积S2与膨胀前面积S1满足S2/S1=3~4。底面正N边形之间的内切圆圆心间距,即,其中a1和a2分别为膨胀前与膨胀后正N边形边长、r1和r2分别为膨胀前和膨胀后正N边形内切圆半径。由于棱锥体积为、,所以集流体一侧的棱锥高度h满足,其中r为石墨颗粒D50半径,一般为10~20μm,能量型石墨D50为20μm左右,功率型石墨D50为10μm左右。As shown in Figure 2, due to the regular polygon area , where N is the number of sides of the regular polygon, and r is the radius of the inscribed circle. The circular area S 2 of the cylindrical section after expansion and the area S 1 before expansion satisfy S 2 /S 1 =3~4. The distance between the centers of the inscribed circles between regular N-gons on the bottom surface, namely , where a 1 and a 2 are the side lengths of the regular N-gon before and after expansion, respectively, and r1 and r2 are the inscribed circle radii of the regular N-gon before and after expansion, respectively. Since the volume of the pyramid is , , so the height h of the pyramid on one side of the current collector satisfies , where r is the D50 radius of graphite particles, generally 10-20 μm, the D50 of energy type graphite is about 20 μm, and the D50 of power type graphite is about 10 μm.
根据电动汽车用电池的功率密度与能量密度可以选择正极材料所对应的面密度,随后根据正极材料克容量以及合理设计负极容量过量比确定对应硅负极的单片(单层)容量,最终可以确定负极的面密度。在满足上述两公式条件下,最终形成电池的设计方案。According to the power density and energy density of the battery for electric vehicles, the surface density corresponding to the positive electrode material can be selected, and then the monolithic (single layer) capacity of the corresponding silicon negative electrode can be determined according to the gram capacity of the positive electrode material and the rational design of the negative electrode capacity excess ratio, and finally can be determined areal density of the negative electrode. Under the conditions of satisfying the above two formulas, the design scheme of the battery is finally formed.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810344840.8A CN108448059A (en) | 2018-04-17 | 2018-04-17 | A kind of silicon negative electrode for lithium ion battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810344840.8A CN108448059A (en) | 2018-04-17 | 2018-04-17 | A kind of silicon negative electrode for lithium ion battery and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108448059A true CN108448059A (en) | 2018-08-24 |
Family
ID=63200136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810344840.8A Pending CN108448059A (en) | 2018-04-17 | 2018-04-17 | A kind of silicon negative electrode for lithium ion battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108448059A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109273689A (en) * | 2018-09-19 | 2019-01-25 | 惠州亿纬锂能股份有限公司 | A kind of heterojunction structure silicon based anode material and preparation method thereof and lithium ion battery |
CN110911630A (en) * | 2019-10-23 | 2020-03-24 | 东北大学 | A kind of high porosity lithium ion battery pole piece and preparation method thereof |
CN111916673A (en) * | 2020-08-04 | 2020-11-10 | 珠海冠宇电池股份有限公司 | Negative plate, preparation method and battery |
CN115188947A (en) * | 2022-07-13 | 2022-10-14 | 河南工业大学 | One-dimensional silicon-based composite negative electrode material and negative electrode sheet, electrochemical device and electronic device comprising the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102084525A (en) * | 2008-07-29 | 2011-06-01 | 松下电器产业株式会社 | Current collector for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, method for manufacturing the current collector and the electrode, and nonaqueous electrolyte secondary battery |
CN102208632A (en) * | 2011-04-12 | 2011-10-05 | 湘潭大学 | Silicon nano wire-fullerene complex cathode material for lithium ion battery and preparation method thereof |
US20120028124A1 (en) * | 2008-12-30 | 2012-02-02 | University Of Louisville Research Foundation, Inc. | Anode materials for lithium-ion batteries |
CN104577077A (en) * | 2013-10-16 | 2015-04-29 | 国家纳米科学中心 | Silicon-carbon nanocomposite film, preparation method and application thereof and lithium ion battery |
CN105960731A (en) * | 2013-08-28 | 2016-09-21 | 罗伯特·博世有限公司 | Solid state battery with volume change material |
CN208637507U (en) * | 2018-04-17 | 2019-03-22 | 星恒电源股份有限公司 | A kind of lithium ion battery silicium cathode |
CN110010864A (en) * | 2019-03-21 | 2019-07-12 | 中国科学院半导体研究所 | Silicon-graphene battery anode material and preparation method thereof, and lithium battery |
-
2018
- 2018-04-17 CN CN201810344840.8A patent/CN108448059A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102084525A (en) * | 2008-07-29 | 2011-06-01 | 松下电器产业株式会社 | Current collector for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, method for manufacturing the current collector and the electrode, and nonaqueous electrolyte secondary battery |
US20120028124A1 (en) * | 2008-12-30 | 2012-02-02 | University Of Louisville Research Foundation, Inc. | Anode materials for lithium-ion batteries |
CN102208632A (en) * | 2011-04-12 | 2011-10-05 | 湘潭大学 | Silicon nano wire-fullerene complex cathode material for lithium ion battery and preparation method thereof |
CN105960731A (en) * | 2013-08-28 | 2016-09-21 | 罗伯特·博世有限公司 | Solid state battery with volume change material |
CN104577077A (en) * | 2013-10-16 | 2015-04-29 | 国家纳米科学中心 | Silicon-carbon nanocomposite film, preparation method and application thereof and lithium ion battery |
CN208637507U (en) * | 2018-04-17 | 2019-03-22 | 星恒电源股份有限公司 | A kind of lithium ion battery silicium cathode |
CN110010864A (en) * | 2019-03-21 | 2019-07-12 | 中国科学院半导体研究所 | Silicon-graphene battery anode material and preparation method thereof, and lithium battery |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109273689A (en) * | 2018-09-19 | 2019-01-25 | 惠州亿纬锂能股份有限公司 | A kind of heterojunction structure silicon based anode material and preparation method thereof and lithium ion battery |
CN110911630A (en) * | 2019-10-23 | 2020-03-24 | 东北大学 | A kind of high porosity lithium ion battery pole piece and preparation method thereof |
CN111916673A (en) * | 2020-08-04 | 2020-11-10 | 珠海冠宇电池股份有限公司 | Negative plate, preparation method and battery |
CN115188947A (en) * | 2022-07-13 | 2022-10-14 | 河南工业大学 | One-dimensional silicon-based composite negative electrode material and negative electrode sheet, electrochemical device and electronic device comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112447956B (en) | Composite silicon-based negative electrode material, preparation method thereof and lithium ion battery | |
CN103107317B (en) | A kind of Si-C composite material and preparation method thereof, lithium ion battery containing this material | |
Xiao et al. | Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries | |
CN108448059A (en) | A kind of silicon negative electrode for lithium ion battery and preparation method thereof | |
CN115275191B (en) | Negative electrode material, negative plate and sodium ion battery | |
CN103346303A (en) | Silicon-carbon composite material and preparation method thereof, and lithium ion battery | |
Khan et al. | SiO2-based lithium-ion battery anode materials: a brief review | |
CN103236528B (en) | A kind of germanium carbon graphite alkene composite material and its preparation method and application | |
CN101465416A (en) | High specific capacity composite electrode pole piece for lithium ion battery | |
CN102110807A (en) | Preparation method of tin oxide/carbon nano tube composite negative electrode material and application of material | |
CN109411756A (en) | A kind of secondary cell carbon three-dimensional structure electrode and its preparation method and application | |
CN106025242A (en) | Silicon alloy nano-wire compound negative electrode material for lithium-ion battery and preparation method thereof | |
CN108878820A (en) | A kind of sodium-ion battery antimony carbon negative pole material and its preparation, application method | |
CN110767891A (en) | Preparation method of porous spherical silicon-based composite anode material | |
CN103413920A (en) | Silicon/aligned carbon nanotube composite negative electrode material for lithium ion battery and preparation method thereof | |
CN106997946B (en) | Silicon-copper composite material, preparation method and application in lithium ion battery | |
CN216389433U (en) | Quick-charging graphite negative pole piece and lithium ion battery cell adopting same | |
CN108899518B (en) | Flexible lithium stearate coated nano silicon composite material with shell-core structure and preparation and application thereof | |
CN114122379B (en) | Positive electrode material, preparation method and application thereof | |
CN102646812A (en) | A kind of structure of negative electrode material of lithium ion battery | |
CN208637507U (en) | A kind of lithium ion battery silicium cathode | |
CN108963237A (en) | A kind of preparation method of anode material of lithium-ion battery | |
CN110098392B (en) | Preparation method of graphene/silicon nanosheet/carbon nanotube composite material | |
Ma et al. | Recent Research and Advances of Gradient Graphene and 3D Collectors for Lithium Metal Anode | |
Zhang et al. | Design of ultrafine silicon structure for lithium battery and research progress of silicon-carbon composite negative electrode materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180824 |
|
RJ01 | Rejection of invention patent application after publication |