[go: up one dir, main page]

CN108447982A - An information storage device with electric field non-volatile regulation of tunnel magnetoresistance - Google Patents

An information storage device with electric field non-volatile regulation of tunnel magnetoresistance Download PDF

Info

Publication number
CN108447982A
CN108447982A CN201810427415.5A CN201810427415A CN108447982A CN 108447982 A CN108447982 A CN 108447982A CN 201810427415 A CN201810427415 A CN 201810427415A CN 108447982 A CN108447982 A CN 108447982A
Authority
CN
China
Prior art keywords
layer
electric field
ferromagnetic
magnetic
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810427415.5A
Other languages
Chinese (zh)
Inventor
赵永刚
陈爱天
李裴森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201810427415.5A priority Critical patent/CN108447982A/en
Publication of CN108447982A publication Critical patent/CN108447982A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)

Abstract

The invention discloses a kind of information recording devices of the non-volatile regulation and control tunnel magneto resistance of the electric field for belonging to technical field of information storage;The information recording device has is sequentially overlapped the multi-layer compound film structure formed by bottom electrode layer, ferroelectric layer, seed layer, inverse ferric magnetosphere, ferromagnetic pinning layer, non magnetic barrier layer, ferromagnetic free layer, protective layer and top electrode layer.Ferromagnetic pinning layer, non magnetic barrier layer and ferromagnetic free layer constitute the magnetic tunnel junction sandwich structure with tunnel magneto resistance.Bottom electrode layer and seed layer apply electric field respectively as the positive and negative electrode of ferroelectric layer to it, and wherein direction of an electric field is perpendicular to ferroelectric layer.Ferroelectric layer rotates the magnetic moment orientation of ferromagnetic free layer to regulate and control tunnel magneto resistance under electric field action by magnetoelectric effect.Electric field can realize that information is written to the present invention with the high and low configuration of Effective Regulation tunnel magneto resistance in practical applications, have many advantages, such as room temperature, zero magnetic field, low-power consumption and non-volatile.

Description

一种电场非易失性调控隧道磁电阻的信息存储器件An information storage device with electric field non-volatile regulation of tunnel magnetoresistance

技术领域technical field

本发明涉及一种电场非易失性调控隧道磁电阻的信息存储器件,属于信息存储技术领域。The invention relates to an information storage device for controlling tunnel magnetoresistance with non-volatile electric field, and belongs to the technical field of information storage.

背景技术Background technique

磁性随机存储器是一种具有高存储密度、快速读写、非易失性等优势的存储器件,其核心存储单元是磁性隧道结。磁性随机存储器信息写入的基本工作原理是通过旋转铁磁自由层的磁矩来改变铁磁自由层和铁磁钉扎层磁化状态的相互取向,从而在磁性隧道结中产生高、底两种隧道磁电阻状态来实现信息存储。目前,磁性随机存储器的信息写入利用磁场或者自旋转移力矩,这需要大的电流密度,因而写入功耗较大。用电场调控磁性和隧道磁电阻来实现对信息的写入可以有效地降低功耗,具有很大的潜在应用前景。现今电场对隧道磁电阻的调控存在着低温、需要磁场辅助、易失性等问题。Magnetic random access memory is a storage device with high storage density, fast read and write, and non-volatility. Its core storage unit is a magnetic tunnel junction. The basic working principle of MRAM information writing is to change the mutual orientation of the magnetization states of the ferromagnetic free layer and the ferromagnetic pinned layer by rotating the magnetic moment of the ferromagnetic free layer, thereby generating two high and low states in the magnetic tunnel junction. Tunneling magnetoresistance states for information storage. At present, the information writing of the magnetic random access memory uses a magnetic field or a spin transfer torque, which requires a large current density, and thus consumes a lot of power for writing. Using electric field to control magnetism and tunnel magnetoresistance to write information can effectively reduce power consumption and has great potential application prospects. Nowadays, there are problems such as low temperature, need for magnetic field assistance, and volatility in the regulation of tunnel magnetoresistance by electric field.

为了克服低温、需要磁场辅助、易失性的缺点,提出了一种在铁电衬底上生长磁性隧道结的结构,基于应变媒介磁电耦合效应,利用电场旋转铁磁自由层的磁矩来进行写入操作,不需要外加磁场辅助,从而实现了室温和零磁场下电场对隧道磁电阻的非易失性调控,同时可以减小功耗。In order to overcome the shortcomings of low temperature, need for magnetic field assistance, and volatility, a structure of growing magnetic tunnel junctions on ferroelectric substrates is proposed. The write operation does not require the assistance of an external magnetic field, thereby realizing the non-volatile regulation of the tunnel magnetoresistance by the electric field at room temperature and zero magnetic field, and at the same time reducing power consumption.

发明内容Contents of the invention

本发明的目的是提出一种电场非易失性调控隧道磁电阻的信息存储器件,其特征在于,所述电场非易失性调控隧道磁电阻的信息存储器件具有多层复合薄膜结构,所述多层复合薄膜结构由底电极层、铁电层、种子层、反铁磁层、铁磁钉扎层、非磁性势垒层、铁磁自由层、保护层和顶电极层依次叠加形成;具体是所述铁电层形成在底电极层之上;所述种子层形成在铁电层之上;所述反铁磁层形成在种子层之上,用于通过界面耦合对铁磁钉扎层产生钉扎作用;所述铁磁钉扎层形成在反铁磁层之上,其磁矩被反铁磁层钉扎而固定;所述非磁性势垒层形成在铁磁钉扎层之上;所述铁磁自由层形成在非磁性势垒层之上;所述保护层形成在铁磁自由层之上,以保护所述铁磁自由层不被氧化;所述顶电极层形成在所述保护层之上。The object of the present invention is to propose an information storage device for regulating tunnel magnetoresistance with non-volatile electric field, characterized in that the information storage device for non-volatile regulating tunnel magnetoresistance with electric field has a multi-layer composite film structure, and the The multilayer composite thin film structure is formed by stacking bottom electrode layer, ferroelectric layer, seed layer, antiferromagnetic layer, ferromagnetic pinning layer, nonmagnetic barrier layer, ferromagnetic free layer, protective layer and top electrode layer; The ferroelectric layer is formed on the bottom electrode layer; the seed layer is formed on the ferroelectric layer; the antiferromagnetic layer is formed on the seed layer for interfacial coupling to the ferromagnetic pinning layer A pinning effect is generated; the ferromagnetic pinning layer is formed on the antiferromagnetic layer, and its magnetic moment is pinned and fixed by the antiferromagnetic layer; the nonmagnetic barrier layer is formed on the ferromagnetic pinning layer The ferromagnetic free layer is formed on the nonmagnetic barrier layer; the protective layer is formed on the ferromagnetic free layer to protect the ferromagnetic free layer from oxidation; the top electrode layer is formed on the above the protective layer.

所述铁磁钉扎层、非磁性势垒层和铁磁自由层构成具有隧道磁电阻的磁性隧道结三明治结构。The ferromagnetic pinned layer, the nonmagnetic barrier layer and the ferromagnetic free layer constitute a magnetic tunnel junction sandwich structure with tunnel magnetoresistance.

所述底电极层和种子层分别作为铁电层的正负电极,对铁电层施加电场,其电场方向垂直于铁电层;铁电层在电场作用下通过磁电耦合效应旋转铁磁自由层的磁矩取向,以使得磁性隧道结的隧道磁电阻发生非易失性调控。The bottom electrode layer and the seed layer are respectively used as the positive and negative electrodes of the ferroelectric layer, and an electric field is applied to the ferroelectric layer, and the direction of the electric field is perpendicular to the ferroelectric layer; The orientation of the magnetic moment of the layer is used to make the tunnel magnetoresistance of the magnetic tunnel junction non-volatile.

所述种子层和顶电极层作为磁性隧道结的电极以测量隧道磁电阻。The seed layer and the top electrode layer are used as electrodes of the magnetic tunnel junction to measure the tunnel magnetoresistance.

所述铁电层在室温下,在正负不对称电场的作用下能够产生非易失性应变。The ferroelectric layer can generate non-volatile strain under the action of positive and negative asymmetric electric fields at room temperature.

本发明有益效果是本信息存储器件是将磁性隧道结生长在铁电层上,利用磁电耦合效应以实现室温和零磁场下电场对隧道磁电阻的非易失性调控;克服了现有的电场对隧道磁电阻的调控存在着低温、需要磁场辅助、易失性等问题,本发明室温操作,不需要外加磁场辅助,非易失性,低功耗。The beneficial effect of the invention is that the information storage device grows the magnetic tunnel junction on the ferroelectric layer, and uses the magnetoelectric coupling effect to realize the non-volatile control of the tunnel magnetoresistance by the electric field at room temperature and zero magnetic field; it overcomes the existing There are problems such as low temperature, need for magnetic field assistance, and volatility in the regulation of tunnel magnetoresistance by electric field. The invention operates at room temperature, does not require external magnetic field assistance, is non-volatile, and has low power consumption.

附图说明Description of drawings

图1是电场非易失性调控隧道磁电阻的信息存储器件的结构示意图。Fig. 1 is a schematic structural diagram of an information storage device for non-volatile control of tunnel magnetoresistance by an electric field.

图2是铁电层的非易失性应变曲线。Fig. 2 is a non-volatile strain curve of the ferroelectric layer.

图3是在不同电场下隧道磁电阻曲线的调控行为。Figure 3 shows the regulation behavior of the tunnel magnetoresistance curve under different electric fields.

图4是在室温零磁场下隧道磁电阻随电场的变化。Figure 4 shows the variation of tunnel magnetoresistance with electric field at room temperature and zero magnetic field.

图5是在室温零磁场下脉冲电场对隧道磁电阻高、低阻态的非易失性调控。Figure 5 shows the non-volatile control of the high and low resistance states of tunnel magnetoresistance by pulsed electric field at room temperature and zero magnetic field.

图6是电场非易失性调控隧道磁电阻的工作原理示意图。Fig. 6 is a schematic diagram of the working principle of electric field non-volatile control tunnel magnetoresistance.

附图标记说明:1-底电极层,2-铁电层,3-种子层,4-反铁磁层,5-铁磁钉扎层,6-非磁性势垒层,7-铁磁自由层,8-保护层,9-顶电极层。Explanation of reference signs: 1-bottom electrode layer, 2-ferroelectric layer, 3-seed layer, 4-antiferromagnetic layer, 5-ferromagnetic pinning layer, 6-nonmagnetic barrier layer, 7-ferromagnetic free layer, 8-protective layer, 9-top electrode layer.

具体实施方式Detailed ways

本发明提出的一种电场非易失性调控隧道磁电阻的信息存储器件,其结构如图1所示,由底电极层1、铁电层2、种子层3、反铁磁层4、铁磁钉扎层5、非磁性势垒层6、铁磁自由层7、保护层8和顶电极层9依次叠加形成的多层复合薄膜结构。The present invention proposes an information storage device for controlling tunnel magnetoresistance with non-volatile electric field. Its structure is shown in FIG. A multi-layer composite film structure formed by sequentially stacking the magnetic pinning layer 5, the non-magnetic barrier layer 6, the ferromagnetic free layer 7, the protective layer 8 and the top electrode layer 9.

底电极层1和种子层3分别作为铁电层2的正负电极,对其施加电场,其中所述电场方向垂直于铁电层2。反铁磁层4和铁磁钉扎层5通过界面耦合产生的交换偏置效应对铁磁钉扎层5产生顶扎作用,从而使铁磁钉扎层5的磁矩在零磁场下固定,不能被电场旋转。铁磁钉扎层5、非磁性势垒层6和铁磁自由层7构成具有隧道磁电阻的磁性隧道结三明治结构。保护层8用来保护铁磁自由层7不被氧化。种子层3和顶电极层9作为磁性隧道结的电极以测量隧道磁电阻。铁电层4在所述电场作用下能够产生非易失性应变,应变传递到其上的磁性隧道结,通过磁电耦合效应旋转铁磁自由层7的磁矩取向以使得所述磁性隧道结的隧道磁电阻发生非易失性调控。The bottom electrode layer 1 and the seed layer 3 serve as positive and negative electrodes of the ferroelectric layer 2 respectively, and an electric field is applied thereto, wherein the direction of the electric field is perpendicular to the ferroelectric layer 2 . The exchange bias effect generated by the interface coupling between the antiferromagnetic layer 4 and the ferromagnetic pinning layer 5 produces a pinning effect on the ferromagnetic pinning layer 5, so that the magnetic moment of the ferromagnetic pinning layer 5 is fixed at zero magnetic field, Cannot be rotated by an electric field. The ferromagnetic pinning layer 5, the nonmagnetic barrier layer 6 and the ferromagnetic free layer 7 constitute a magnetic tunnel junction sandwich structure with tunnel magnetoresistance. The protection layer 8 is used to protect the ferromagnetic free layer 7 from being oxidized. The seed layer 3 and the top electrode layer 9 serve as electrodes of the magnetic tunnel junction to measure the tunnel magnetoresistance. The ferroelectric layer 4 can generate nonvolatile strain under the action of the electric field, and the strain is transmitted to the magnetic tunnel junction on it, and the magnetic moment orientation of the ferromagnetic free layer 7 is rotated by the magnetoelectric coupling effect so that the magnetic tunnel junction The tunneling magnetoresistance occurs in non-volatile regulation.

本发明提出的电场非易失性调控隧道磁电阻的信息存储器件,其制备过程可以采用磁控溅射法,包括以下各步骤:The information storage device of the electric field non-volatile control tunneling magnetoresistance proposed by the present invention, its preparation process can adopt the magnetron sputtering method, including the following steps:

(1)购买成分为30%的铌镁酸铅钛酸铅(以下简称PMN-PT)的晶体,并加工成一个铁电层2,使铁电层的尺寸为长(沿[100]方向)×宽(沿[01-1]方向)×厚(沿[011]方向)等于10×10×0.5毫米3,并可以根据实际需要合理改变。然后进行单面(011)面抛光,要求粗糙度小于1纳米。(1) purchase the crystal of 30% lead magnesium niobate titanate (hereinafter referred to as PMN-PT), and process it into a ferroelectric layer 2, so that the size of the ferroelectric layer is long (along [100] direction) ×width (along [01-1] direction)×thickness (along [011] direction) is equal to 10×10×0.5 mm3 , and can be changed reasonably according to actual needs. Then perform single-sided (011) surface polishing, requiring a roughness of less than 1 nanometer.

(2)采用磁控溅射方法,在铁电基底的未抛光表面上溅射300纳米金层(Au)作为底电极。(2) A 300 nm gold layer (Au) was sputtered on the unpolished surface of the ferroelectric substrate as the bottom electrode by magnetron sputtering method.

(3)采用磁控溅射方法,在铁电基底的抛光表面上依次溅射种子层3、反铁磁层4、铁磁钉扎层5、非磁性势垒层6、铁磁自由层7和保护层8。反铁磁层4选用铱锰合金(Ir20Mn80)和人工反铁磁结构,铁磁钉扎层5和铁磁自由层7选用铁磁金属钴铁硼合金(Co40Fe40B20),非磁性势垒层6选用氧化镁(MgO)。磁控溅射的工艺参数为:在室温下使用超高真空系统,将背底真空抽至10-6Pa,生长过程中沿PMN-PT的[100]晶向有一约100奥斯特的磁场以确定反铁磁层的钉扎方向。(3) Using the magnetron sputtering method, the seed layer 3, the antiferromagnetic layer 4, the ferromagnetic pinning layer 5, the nonmagnetic barrier layer 6, and the ferromagnetic free layer 7 are sequentially sputtered on the polished surface of the ferroelectric substrate and protective layer 8. The antiferromagnetic layer 4 is made of iridium-manganese alloy (Ir 20 Mn 80 ) and artificial antiferromagnetic structure, and the ferromagnetic pinned layer 5 and ferromagnetic free layer 7 are made of ferromagnetic metal cobalt-iron-boron alloy (Co 40 Fe 40 B 20 ) , The non-magnetic barrier layer 6 is made of magnesium oxide (MgO). The process parameters of magnetron sputtering are: use an ultra-high vacuum system at room temperature, pump the background vacuum to 10 -6 Pa, and have a magnetic field of about 100 Oersted along the [100] crystal direction of PMN-PT during the growth process To determine the pinning direction of the antiferromagnetic layer.

(4)生长后的样品用退火炉在真空有磁场环境下退火以使非磁性势垒层6结晶提高隧道磁电阻。退火过程中磁场为8000奥斯特,磁场方向与样品生长过程中所加磁场方向一致,沿着PMN-PT的[100]晶向。退火温度为360摄氏度,退火时间为1小时。(4) The grown sample is annealed in an annealing furnace in a vacuum environment with a magnetic field to crystallize the non-magnetic barrier layer 6 and increase the tunnel magnetoresistance. During the annealing process, the magnetic field is 8000 Oersted, and the direction of the magnetic field is consistent with the direction of the magnetic field applied during the growth of the sample, along the [100] crystal direction of PMN-PT. The annealing temperature is 360 degrees Celsius, and the annealing time is 1 hour.

(5)退火后的样品通过光刻技术将磁性隧道结微加工为10微米直径的圆形结构,之后用磁控溅射方法生长顶电极9。(5) The annealed sample was microfabricated into a circular structure with a diameter of 10 microns by photolithography, and then the top electrode 9 was grown by magnetron sputtering.

实施例1,Example 1,

制备具有电场非易失性调控隧道磁电阻功能的多铁复合结构,如图1所示。A multiferroic composite structure with electric field non-volatile regulation of tunnel magnetoresistance was prepared, as shown in Figure 1.

购买成分为30%的铌镁酸铅钛酸铅晶体,将晶体加工成一个铁电层2,使铁电层基底的尺寸为长(沿[100]方向)×宽(沿[01-1]方向)×厚(沿[011]方向)等于10×10×0.5毫米3。然后进行单面(011)面抛光,要求粗糙度小于1纳米。采用磁控溅射方法,在铁电基底的未抛光表面溅射300纳米金层(Au)作为底电极层1。如图2所示,在8千伏/厘米和-1.6千伏/厘米的电场下,[011]取向的PMN-PT铁电层应变曲线呈现非易失性,在零电场下有两种应变状态。各层材料选择如下:The purchase composition is 30% lead magnesium niobate lead titanate crystal, and the crystal is processed into a ferroelectric layer 2, so that the size of the ferroelectric layer base is long (along [100] direction) * wide (along [01-1] direction)×thickness (along [011] direction) is equal to 10×10× 0.5mm3 . Then perform single-sided (011) surface polishing, requiring a roughness of less than 1 nanometer. A 300 nm gold layer (Au) was sputtered on the unpolished surface of the ferroelectric substrate as the bottom electrode layer 1 by using the magnetron sputtering method. As shown in Fig. 2, the strain curves of the [011]-oriented PMN-PT ferroelectric layer exhibited non-volatility at electric fields of 8 kV/cm and −1.6 kV/cm, and there were two strains at zero electric field state. The materials for each layer are selected as follows:

种子层3使用但不仅限于采用5纳米钽(Ta)和5纳米钌(Ru)。The seed layer 3 uses, but is not limited to, 5nm tantalum (Ta) and 5nm ruthenium (Ru).

反铁磁层4优选但不仅限于采用铱锰合金(Ir20Mn80)和人工反铁磁结构钴铁/钌/钴铁硼(Co70Fe30/Ru/Co40Fe40B20)。The antiferromagnetic layer 4 is preferably, but not limited to, iridium manganese alloy (Ir 20 Mn 80 ) and artificial antiferromagnetic structure cobalt iron/ruthenium/cobalt iron boron (Co 70 Fe 30 /Ru/Co 40 Fe 40 B 20 ).

铁磁钉扎层5和铁磁自由层7采用铁磁金属钴铁硼合金(Co40Fe40B20),其厚度都为2.6纳米,The ferromagnetic pinned layer 5 and the ferromagnetic free layer 7 are made of ferromagnetic cobalt-iron-boron alloy (Co 40 Fe 40 B 20 ), both of which have a thickness of 2.6 nanometers.

非磁性势垒层6优选但不仅限于采用氧化镁(MgO),其厚度为2.3纳米。The non-magnetic barrier layer 6 is preferably but not limited to magnesium oxide (MgO), and its thickness is 2.3 nanometers.

保护层8采用5纳米钽(Ta)和7纳米钌(Ru)。The protective layer 8 is made of 5nm tantalum (Ta) and 7nm ruthenium (Ru).

经过微加工,顶电极层9采用10纳米钛(Ti)和60纳米金(Au)。After microfabrication, the top electrode layer 9 adopts 10 nanometers of titanium (Ti) and 60 nanometers of gold (Au).

实施例2,Example 2,

测量上述制备的多铁复合结构的电场调控隧道磁电阻性能:将上述制备完好的样品利用北京东方晨景科技有限公司的EM3电磁铁系统测量其输运性质,所有测量均在室温环境下进行。如图3所示的隧道磁电阻曲线表明,在施加8千伏/厘米电场后的+0千伏/厘米和施加-1.6千伏/厘米后的-0千伏/厘米下具有明显不同的行为,其隧道磁电阻高达235%。如图3箭头所示,在零磁场下,在0千伏/厘米时有两种不同的隧道磁电阻状态,这说明这是一种零磁场下电场对隧道磁电阻的非易失性调控,其对隧道磁电阻的调控可达约108%。Measuring the electric-field-regulated tunneling magnetoresistance performance of the multiferroic composite structure prepared above: the transport properties of the above-prepared samples were measured using the EM3 electromagnet system of Beijing Oriental Morning View Technology Co., Ltd., and all measurements were carried out at room temperature. Tunneling magnetoresistance curves shown in Fig. 3 show a distinctly different behavior at +0 kV/cm after applying an electric field of 8 kV/cm and at -0 kV/cm after applying -1.6 kV/cm , and its tunnel magnetoresistance is as high as 235%. As shown by the arrows in Figure 3, under zero magnetic field, there are two different tunnel magnetoresistance states at 0 kV/cm, which indicates that this is a non-volatile regulation of electric field on tunnel magnetoresistance under zero magnetic field, It can control the tunnel magnetoresistance up to about 108%.

如图4所示,在零磁场下,当电场扫描一周,即从0千伏/厘米逐渐变到8千伏/厘米,再逐渐减小到0千伏/厘米,然后反向增大到-1.6千伏/厘米,然后再逐渐减小至0千伏/厘米时,发现隧道磁电阻呈现回滞特征,在零电场下有两种隧道磁电阻状态,表现为电场对隧道磁电阻调控的非易失性。As shown in Figure 4, under zero magnetic field, when the electric field scans for a week, it gradually changes from 0 kV/cm to 8 kV/cm, then gradually decreases to 0 kV/cm, and then increases to - 1.6 kV/cm, and then gradually decreased to 0 kV/cm, it was found that the tunnel magnetoresistance showed a hysteresis characteristic, and there were two tunnel magnetoresistance states under zero electric field, which showed that the electric field had no effect on tunnel magnetoresistance regulation. Volatile.

在零磁场下,通过使用电场强度为8千伏/厘米和-1.6千伏/厘米的正、负脉冲电场可以实现对隧道磁电阻明显的高、低阻态的调控行为,如图5所示,这对于实际应用具有重大意义。Under zero magnetic field, by using positive and negative pulsed electric fields with electric field strengths of 8 kV/cm and -1.6 kV/cm, the regulation behavior of TMR with obvious high and low resistance states can be achieved, as shown in Figure 5 , which is of great significance for practical applications.

实施例3,Example 3,

图6所示是电场非易失性调控隧道磁电阻的工作原理示意图。图6中,施加-1.6千伏/厘米的脉冲电场后,其产生的应变在-0千伏/厘米时能够使铁磁自由层7的磁矩旋转,从而可以使磁性隧道结中铁磁自由层7和铁磁钉扎层5的磁矩相对取向从反平行态调控到垂直态,因而形成低阻态;而施加8千伏/厘米的脉冲电场后,在+0千伏/厘米时铁磁自由层7的磁矩能够重新旋转回到初始态,从而可以使磁性隧道结中铁磁自由层7和铁磁钉扎层5的磁矩相对取向从垂直态调控到反平行态,形成高阻态。因此,施加8千伏/厘米和-1.6千伏/厘米的正、负脉冲电场可以使铁磁自由层7和铁磁钉扎层5的磁矩相对取向在反平行态和垂直态之间往复调控,从而实现室温、零磁场下电场对隧道磁电阻的非易失性调控。FIG. 6 is a schematic diagram of the working principle of the electric field non-volatile control tunnel magnetoresistance. In Fig. 6, after applying a pulsed electric field of -1.6 kV/cm, the strain generated by it can rotate the magnetic moment of the ferromagnetic free layer 7 at -0 kV/cm, so that the ferromagnetic free layer in the magnetic tunnel junction can be 7 and the relative orientation of the magnetic moments of the ferromagnetic pinning layer 5 are adjusted from the antiparallel state to the perpendicular state, thus forming a low resistance state; and after applying a pulsed electric field of 8 kV/cm, the ferromagnetic The magnetic moment of the free layer 7 can be rotated back to the initial state, so that the relative orientation of the magnetic moments of the ferromagnetic free layer 7 and the ferromagnetic pinned layer 5 in the magnetic tunnel junction can be adjusted from a perpendicular state to an antiparallel state, forming a high resistance state . Therefore, applying positive and negative pulsed electric fields of 8 kV/cm and -1.6 kV/cm can make the relative orientation of the magnetic moments of the ferromagnetic free layer 7 and the ferromagnetic pinned layer 5 reciprocate between the antiparallel state and the perpendicular state Regulation, so as to realize the non-volatile regulation of tunnel magnetoresistance by electric field at room temperature and zero magnetic field.

Claims (5)

1. a kind of information recording device of the non-volatile regulation and control tunnel magneto resistance of electric field, which is characterized in that the electric field is non-volatile Property regulation and control tunnel magneto resistance information recording device have multi-layer compound film structure, the multi-layer compound film structure by bottom electricity Pole layer, ferroelectric layer, seed layer, inverse ferric magnetosphere, ferromagnetic pinning layer, non magnetic barrier layer, ferromagnetic free layer, protective layer and top electrode Layer is sequentially overlapped to be formed;The specifically described ferroelectric layer is formed on bottom electrode layer;The seed layer is formed on ferroelectric layer; The inverse ferric magnetosphere is formed on seed layer, for generating pinning effect to ferromagnetic pinning layer by interface coupling;The iron Magnetic pinning layer is formed on inverse ferric magnetosphere, and magnetic moment is fixed by inverse ferric magnetosphere pinning;The non magnetic barrier layer is formed in On ferromagnetic pinning layer;The ferromagnetic free layer is formed on non magnetic barrier layer;The protective layer is formed in ferromagnetic freedom On layer, to protect the ferromagnetic free layer not oxidized;The top electrode layer is formed on the protective layer.
2. a kind of information recording device of the non-volatile regulation and control tunnel magneto resistance of electric field, feature exist according to claim 1 In the ferromagnetic pinning layer, non magnetic barrier layer and ferromagnetic free layer constitute magnetic tunnel junction Sanming City with tunnel magneto resistance Control structure.
3. a kind of information recording device of the non-volatile regulation and control tunnel magneto resistance of electric field, feature exist according to claim 1 In the bottom electrode layer and seed layer apply electric field, direction of an electric field hangs down respectively as the positive and negative electrode of ferroelectric layer to ferroelectric layer Directly in ferroelectric layer;Ferroelectric layer rotates the magnetic moment orientation of ferromagnetic free layer under electric field action by magnetoelectric effect, so that Non-volatile regulation and control occur for the tunnel magneto resistance of magnetic tunnel junction.
4. a kind of information recording device of the non-volatile regulation and control tunnel magneto resistance of electric field, feature exist according to claim 1 In, the seed layer and top electrode layer as the electrode of magnetic tunnel junction to measure tunnel magneto resistance.
5. a kind of information recording device of the non-volatile regulation and control tunnel magneto resistance of electric field, feature exist according to claim 1 In the ferroelectric layer at room temperature, non-volatile strain can be generated under the action of positive and negative asymmetric electric field.
CN201810427415.5A 2018-05-07 2018-05-07 An information storage device with electric field non-volatile regulation of tunnel magnetoresistance Pending CN108447982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810427415.5A CN108447982A (en) 2018-05-07 2018-05-07 An information storage device with electric field non-volatile regulation of tunnel magnetoresistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810427415.5A CN108447982A (en) 2018-05-07 2018-05-07 An information storage device with electric field non-volatile regulation of tunnel magnetoresistance

Publications (1)

Publication Number Publication Date
CN108447982A true CN108447982A (en) 2018-08-24

Family

ID=63202420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810427415.5A Pending CN108447982A (en) 2018-05-07 2018-05-07 An information storage device with electric field non-volatile regulation of tunnel magnetoresistance

Country Status (1)

Country Link
CN (1) CN108447982A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112082579A (en) * 2020-07-31 2020-12-15 中国电力科学研究院有限公司 Wide-range tunnel magneto-resistance sensor and Wheatstone half bridge
CN112701214A (en) * 2020-12-28 2021-04-23 西安交通大学 Spin orbit torque magnetic random access memory with artificial anti-ferromagnetic free layer regulated by ferroelectrics
CN112701216A (en) * 2020-12-28 2021-04-23 西安交通大学 Magnetic multilayer structure and SOT-MRAM
CN112767979A (en) * 2020-12-28 2021-05-07 西安交通大学 Magnetic multilayer film structure and spin transfer torque magnetic random access memory
US11411171B2 (en) 2018-08-07 2022-08-09 Ip2Ipo Innovations Limited Non-volatile memory cell
CN115955904A (en) * 2022-09-23 2023-04-11 浙江驰拓科技有限公司 A Realization Method of Voltage Controlled Memory Cell Based on Tunneling Magnetoresistance
CN115996625A (en) * 2023-03-22 2023-04-21 北京航空航天大学 A kind of room temperature antiferromagnetic memory device and its preparation method
WO2023133774A1 (en) * 2022-01-13 2023-07-20 华为技术有限公司 Magnetic memory cell and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080733A (en) * 2008-09-26 2010-04-08 Toshiba Corp Magnetoresistive element, and magnetic memory
CN101834271A (en) * 2010-03-02 2010-09-15 清华大学 Magnetoelectric random storage unit and memory with the same
WO2013020569A1 (en) * 2011-08-10 2013-02-14 Christian-Albrechts-Universität Zu Kiel Magnetoresistive memory with low critical current for magnetization switching
CN106688041A (en) * 2014-09-25 2017-05-17 英特尔公司 Strain-assisted spin-torque flipped spin-transfer torque memory
CN107946454A (en) * 2017-11-17 2018-04-20 南方科技大学 Magnetic random access memory and writing method, reading method and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080733A (en) * 2008-09-26 2010-04-08 Toshiba Corp Magnetoresistive element, and magnetic memory
CN101834271A (en) * 2010-03-02 2010-09-15 清华大学 Magnetoelectric random storage unit and memory with the same
WO2013020569A1 (en) * 2011-08-10 2013-02-14 Christian-Albrechts-Universität Zu Kiel Magnetoresistive memory with low critical current for magnetization switching
CN106688041A (en) * 2014-09-25 2017-05-17 英特尔公司 Strain-assisted spin-torque flipped spin-transfer torque memory
CN107946454A (en) * 2017-11-17 2018-04-20 南方科技大学 Magnetic random access memory and writing method, reading method and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411171B2 (en) 2018-08-07 2022-08-09 Ip2Ipo Innovations Limited Non-volatile memory cell
CN112082579A (en) * 2020-07-31 2020-12-15 中国电力科学研究院有限公司 Wide-range tunnel magneto-resistance sensor and Wheatstone half bridge
CN112082579B (en) * 2020-07-31 2023-08-15 中国电力科学研究院有限公司 Wide range tunnel magnetoresistive sensor and Wheatstone half bridge
CN112767979A (en) * 2020-12-28 2021-05-07 西安交通大学 Magnetic multilayer film structure and spin transfer torque magnetic random access memory
CN112701216A (en) * 2020-12-28 2021-04-23 西安交通大学 Magnetic multilayer structure and SOT-MRAM
CN112701214A (en) * 2020-12-28 2021-04-23 西安交通大学 Spin orbit torque magnetic random access memory with artificial anti-ferromagnetic free layer regulated by ferroelectrics
CN112701214B (en) * 2020-12-28 2023-09-01 西安交通大学 Ferroelectric controlled artificial antiferromagnetic free layer spin orbit moment magnetic random access memory
CN112767979B (en) * 2020-12-28 2023-10-27 西安交通大学 A kind of magnetic multilayer film structure and spin transfer torque magnetic random access memory
CN112701216B (en) * 2020-12-28 2024-01-23 西安交通大学 Magnetic multilayer structure and SOT-MRAM
WO2023133774A1 (en) * 2022-01-13 2023-07-20 华为技术有限公司 Magnetic memory cell and manufacturing method therefor
CN115955904A (en) * 2022-09-23 2023-04-11 浙江驰拓科技有限公司 A Realization Method of Voltage Controlled Memory Cell Based on Tunneling Magnetoresistance
CN115996625A (en) * 2023-03-22 2023-04-21 北京航空航天大学 A kind of room temperature antiferromagnetic memory device and its preparation method
CN115996625B (en) * 2023-03-22 2023-06-09 北京航空航天大学 A kind of room temperature antiferromagnetic memory device and its preparation method

Similar Documents

Publication Publication Date Title
CN108447982A (en) An information storage device with electric field non-volatile regulation of tunnel magnetoresistance
CN109037434B (en) Tunnel junction device and magnetic random access memory device based on artificial antiferromagnetic free layer
CN109300495B (en) Magnetic structure based on artificial antiferromagnetic free layer and SOT-MRAM
CN101840993B (en) Multilayer film structure having exchange bias effect and manufacturing method thereof
US8456898B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
US9153306B2 (en) Tunnel magnetoresistive effect element and random access memory using same
CN103151455B (en) Memory element and memory apparatus
CN109560193A (en) Magnetic texure and SOT-MRAM based on artificial antiferromagnetic fixing layer
EP2903020B1 (en) Storage element, storage device, and magnetic head
CN105633111A (en) Electrical field assisted writing magnetic tunnel junction unit and writing method thereof
CN109273593B (en) Single-layer ferromagnetic material with magnetic moment reversal driven by current and application thereof
CN102593348B (en) An information storage device with non-volatile electric field-regulated magnetization
CN111384235B (en) Magnetic tunnel junction and NSOT-MRAM device based on magnetic tunnel junction
CN109243512A (en) A method of control inverse ferric magnetosphere and pinning layer domain structure realize that Multi-state data stores in magnetic tunnel junction
US11444239B1 (en) Magnetoresistive element having an adjacent-bias layer and a toggle writing scheme
CN101276879A (en) A Double Free Layer Vertical Ferromagnetic Tunnel Junction Structure
CN110379917B (en) Magnetic multilayer structure, magnetic junction device, magnetic random access memory device and auxiliary writing and direct reading methods thereof
CN102903841B (en) A kind of temperature controlled magnetic electron device, its preparation method and application
CN112968125B (en) Device for driving magnetic flip magnetic moment by spin orbit torque without external field and preparation method
CN103280234B (en) Magnetic RAM
JPWO2018194155A1 (en) Magnetization control element, magnetic memory and magnetic recording system
JP2001339110A (en) Magnetic control element, magnetic component and memory device using the same
CN101944365A (en) Method for improving magnetism and heat stability of exchange bias membrane
CN115996628A (en) Spin-orbit torque magnetic random access memory and operation method thereof
JP7708488B1 (en) Magnetic Memory Device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180824

RJ01 Rejection of invention patent application after publication