CN108447645B - Current lead anode tube for superconducting magnet and preparation method of anode tube insulating coating - Google Patents
Current lead anode tube for superconducting magnet and preparation method of anode tube insulating coating Download PDFInfo
- Publication number
- CN108447645B CN108447645B CN201711015811.9A CN201711015811A CN108447645B CN 108447645 B CN108447645 B CN 108447645B CN 201711015811 A CN201711015811 A CN 201711015811A CN 108447645 B CN108447645 B CN 108447645B
- Authority
- CN
- China
- Prior art keywords
- coating
- anode tube
- thickness
- ceramic
- current lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011248 coating agent Substances 0.000 title claims abstract description 60
- 238000000576 coating method Methods 0.000 title claims abstract description 60
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000000919 ceramic Substances 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 14
- 239000010410 layer Substances 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 238000007750 plasma spraying Methods 0.000 claims description 11
- 239000002086 nanomaterial Substances 0.000 claims description 9
- 238000005507 spraying Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 238000005524 ceramic coating Methods 0.000 claims description 6
- 229910052593 corundum Inorganic materials 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- 238000007788 roughening Methods 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000002344 surface layer Substances 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000010431 corundum Substances 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 230000003746 surface roughness Effects 0.000 claims description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 description 8
- 229910052734 helium Inorganic materials 0.000 description 8
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 6
- 230000035939 shock Effects 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
- H01F6/065—Feed-through bushings, terminals and joints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
- H01B17/62—Insulating-layers or insulating-films on metal bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B19/00—Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
The invention relates to a current lead anode tube, in particular to a current lead anode tube for a superconducting magnet and a preparation method of an anode tube insulating coating. The current lead anode tube for the superconducting magnet comprises an anode tube body and a coating attached to the anode tube body, wherein the coating comprises a ceramic insulating heat-conducting coating; and detecting the insulating property of the anode tube: DC100V, resistance ≧ 2M Ω. The current lead anode tube for the superconducting magnet comprises an anode tube body and a coating attached to the anode tube body, wherein the coating comprises a ceramic insulating heat-conducting coating; and detecting the insulating property of the anode tube: DC100V, resistance ≧ 2M Ω.
Description
Technical Field
The invention relates to a current lead anode tube, in particular to a current lead anode tube for a superconducting magnet and a preparation method of an anode tube insulating coating.
Background
The cryogenic superconducting magnet operates in liquid helium (4.2K), the power supply for magnet excitation is at room temperature, and the conductors connecting the room temperature power supply and the cryogenic magnet are referred to as current leads. Current leads are important components of superconducting magnet systems, and are responsible for the task of transferring energy between a power supply and the superconducting magnet. In a practical superconducting magnet system, one end of the current lead is at room temperature and the other end is at the temperature of the coolant. Thus, the current leads carry heat from the hot end to the cold end; when the superconducting magnet is excited or demagnetized, current passes through the lead, joule heat is generated by the lead, and a part of joule heat is also introduced into the cold end, so that the evaporation of the cooling liquid is increased. In general, gas-cooled current leads often introduce vaporized cooling gas into the tubular lead channels to reduce the cumulative temperature rise associated with joule heating. With conventional unitary current leads, the surface area of the main portion of the lead is maximized and the rising cold helium gas is turbulently formed to provide adequate heat exchange between the lead and the cold helium gas. Therefore, the current lead must be designed to minimize the effect of joule heating while taking into account the loss in heat leakage. For a metal current lead, materials with high thermal conductivity tend to have high electrical resistivity. Therefore, copper or copper alloy is usually selected as the conventional unitary current lead material. However, for large magnets, such as medical superconducting magnets (exciting current > 500A), the thermal conductivity of copper alloy is still too high, and the loss of heat leakage from room temperature to the liquid helium temperature region is too large, so that the key index of zero liquid helium evaporation is influenced.
Disclosure of Invention
The present invention is made to solve the above problems, and provides a current lead anode tube for a superconducting magnet.
The technical scheme for solving the problems is as follows:
the current lead anode tube for the superconducting magnet comprises an anode tube body and a coating attached to the anode tube body, wherein the coating comprises a ceramic insulating heat-conducting coating; and detecting the insulating property of the anode tube: DC100V, resistance ≧ 2M Ω.
Preferably, the ceramic insulating and heat conducting coating is formed by spraying high-purity aluminum oxide powder with a nano structure on the surface of the tube body of the anode tube by a plasma spraying process, wherein the high-purity aluminum oxide powder is used as a material of the ceramic insulating and heat conducting coating; the thermal conductivity of the ceramic insulating heat-conducting coating is 29.3/w.m-1·℃-1Volume resistance 1018/Ω·m。
Preferably, in the above technical solution, the positive tube body is made of stainless steel.
Preferably, in the above technical solution, the thickness of the ceramic insulating and heat conducting coating is 0.1 mm.
Preferably, the coating further comprises a copper coating, and the thickness of the copper coating is 100 μm.
The invention also aims to provide a preparation method of the ceramic insulating and heat conducting coating.
The preparation method of the ceramic insulating heat-conducting coating comprises the following steps:
1) pretreating and deoiling: ultrasonically cleaning the anode tube substrate with acetone for 30 minutes;
2) and surface roughening: adopting 60-mesh white corundum sand to carry out surface roughening treatment, wherein the pressure of compressed air is 0.3MPa, and the surface roughness tends to be uniform after treatment;
3) atmospheric plasma spraying: using Ni and Al alloy powder as a bonding bottom layer material, wherein the thickness of the bonding bottom layer coating is 80 mu m; the surface layer material is Al2O3Powder, the thickness of the surface coating is 200 mu m; preparing a coating by adopting 80KW plasma spraying equipment, wherein the spraying power of the bottom layer is controlled to be 30kW, and the spraying power of the surface layer is controlled to be 45 kW; the copper coating thickness was 100 μm.
The technology of cooling the magnet by using a cryogenic refrigerator is quite mature at present. Generally, a first stage (50 k, 50W) of the cryocooler is used to cut off the heat flow of the current lead to reduce the heat leakage from the room temperature to the liquid helium temperature region. Then in the area of the current lead hot cutoff, some process treatment is required to ensure that it is insulated and in thermal contact with the cryocooler stage. The process adopted by us is a double-layer thermal spraying process. On the surface of a current lead anode tube of which the base material is a stainless steel tube, firstly, a layer of insulating ceramic coating is thermally sprayed, secondly, a layer of copper coating is thermally sprayed on the surface of the ceramic coating, and then, the copper coating is connected with the primary surface of a refrigerator well in a brazing mode, so that the combination is reliable. Ensuring higher efficiency of the primary refrigeration efficiency of the utilization refrigerator.
The invention adopts high-purity alumina powder with a nano structure as a material of a ceramic insulating heat-conducting coating, and adopts a plasma spraying process to spray a coating with the thickness of about 0.1mm on the surface of a stainless steel lead tube. The coating has excellent insulating property and high thermal conductivity (volume resistance 10)18Omega m; thermal conductivity 29.3/w.m-1·℃-1) Meanwhile, the nano structure can relieve thermal stress generated by high and low temperature difference and has good thermal shock resistance.
The prepared ceramic coating current lead anode tube is subjected to subsequent insulation performance detection: DC100V, resistance ≧ 2M Ω. Low-temperature soaking test: immersion in liquid helium (4.2K) did not have any low temperature brittle fracture cracks. And (4) conclusion: the heat shock resistance is enough, and the insulating property is good.
In conclusion, the invention has the following beneficial effects:
the invention adopts high-purity alumina powder with a nano structure as a material of a ceramic insulating heat-conducting coating, and adopts a plasma spraying process to spray a coating with the thickness of about 0.1mm on the surface of a stainless steel lead tube. The coating has excellent insulating property and higher thermal conductivity, and meanwhile, the nano structure can relieve thermal stress generated by high and low temperature difference and has good thermal shock resistance.
Detailed Description
This detailed description is to be construed as illustrative only and is not limiting, since modifications will occur to those skilled in the art upon reading the preceding specification, and it is intended to be protected by the following claims.
Example one
The current lead anode tube for the superconducting magnet comprises an anode tube body made of stainless steel and a coating attached to the anode tube body, wherein the coating comprises a ceramic insulating heat-conducting coating with the thickness of 0.1mm and a copper coating with the thickness of 100 mu m. And detecting the insulating property of the anode tube: DC100V, resistance ≧ 2M Ω. The ceramic insulating heat-conducting coating is formed by spraying high-purity aluminum oxide powder with a nano structure on the surface of the anode tube body by a plasma spraying process, wherein the high-purity aluminum oxide powder with a nano structure is used as a material of the ceramic insulating heat-conducting coating; the thermal conductivity of the ceramic insulating heat-conducting coating is 29.3/w.m-1·℃-1Volume resistance 1018/Ω·m。
The preparation method of the ceramic insulating heat-conducting coating comprises the following steps:
1) pretreating and deoiling: ultrasonically cleaning the anode tube substrate with acetone for 30 minutes;
2) and surface roughening: adopting 60-mesh white corundum sand to carry out surface roughening treatment, wherein the pressure of compressed air is 0.3MPa, and the surface roughness tends to be uniform after treatment;
3) atmospheric plasma spraying: using Ni and Al alloy powder as a bonding bottom layer material, wherein the thickness of the bonding bottom layer coating is 80 mu m; the surface layer material is Al2O3Powder, the thickness of the surface coating is 200 mu m; the coating is prepared by adopting 80KW plasma spraying equipment, the spraying power of the bottom layer is controlled to be 30kW, and the spraying power of the surface layer is controlled to be45 kW; the copper coating thickness was 100 μm.
The prepared ceramic coating current lead anode tube is subjected to subsequent insulation performance detection: DC100V, resistance ≧ 2M Ω. Low-temperature soaking test: immersion in liquid helium (4.2K) did not have any low temperature brittle fracture cracks. And (4) conclusion: the heat shock resistance is enough, and the insulating property is good.
Claims (1)
1. The current lead anode tube for the superconducting magnet comprises an anode tube body made of stainless steel and a coating attached to the anode tube body, wherein the coating comprises a ceramic insulating heat-conducting coating with the thickness of 0.1mm and a copper coating with the thickness of 100 mu m; and detecting the insulating property of the anode tube: DC100V, resistance is more than or equal to 2M omega; the ceramic insulating heat-conducting coating is formed by spraying high-purity aluminum oxide powder with a nano structure on the surface of the anode tube body by a plasma spraying process, wherein the high-purity aluminum oxide powder with a nano structure is used as a material of the ceramic insulating heat-conducting coating; the thermal conductivity of the ceramic insulating heat-conducting coating is 29.3/w.m-1·℃-1Volume resistance 1018/Ω·m;
The preparation method of the ceramic insulating heat-conducting coating comprises the following steps:
1) pretreating and deoiling: ultrasonically cleaning the anode tube substrate with acetone for 30 minutes;
2) and surface roughening: adopting 60-mesh white corundum sand to carry out surface roughening treatment, wherein the pressure of compressed air is 0.3MPa, and the surface roughness tends to be uniform after treatment;
3) atmospheric plasma spraying: using Ni and Al alloy powder as a bonding bottom layer material, wherein the thickness of the bonding bottom layer coating is 80 mu m; the surface layer material is Al2O3Powder, wherein the surface coating is an insulating ceramic coating, a copper coating is sprayed on the surface of the insulating ceramic coating again, and the thickness of the surface coating is 0.1 mm; preparing a coating by adopting 80KW plasma spraying equipment, wherein the spraying power of the bottom layer is controlled to be 30kW, and the spraying power of the surface layer is controlled to be 45 kW; the copper coating thickness was 100 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711015811.9A CN108447645B (en) | 2017-10-25 | 2017-10-25 | Current lead anode tube for superconducting magnet and preparation method of anode tube insulating coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711015811.9A CN108447645B (en) | 2017-10-25 | 2017-10-25 | Current lead anode tube for superconducting magnet and preparation method of anode tube insulating coating |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108447645A CN108447645A (en) | 2018-08-24 |
CN108447645B true CN108447645B (en) | 2021-06-01 |
Family
ID=63190909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711015811.9A Active CN108447645B (en) | 2017-10-25 | 2017-10-25 | Current lead anode tube for superconducting magnet and preparation method of anode tube insulating coating |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108447645B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6220205A (en) * | 1985-07-18 | 1987-01-28 | 住友電気工業株式会社 | Method for manufacturing forced cooling superconductor |
CN101174500A (en) * | 2006-11-03 | 2008-05-07 | 中国科学院电工研究所 | Insulation and sealing structure and manufacturing method of high-current lead wire working at ultra-low temperature |
CN102360694B (en) * | 2011-08-22 | 2013-10-30 | 中国科学院高能物理研究所 | First-stage pullable binary coaxial current lead structure |
GB2504144B (en) * | 2012-07-20 | 2014-07-16 | Siemens Plc | Superconducting joints |
CN103866224A (en) * | 2012-12-11 | 2014-06-18 | 核工业西南物理研究院 | Method for preparing insulation anti-adhesion coating by using plasma spray-coating technology |
CN104143405B (en) * | 2013-05-10 | 2018-08-31 | 上海联影医疗科技有限公司 | A kind of connection structure and its manufacturing method |
CN104789914A (en) * | 2015-03-05 | 2015-07-22 | 中国船舶重工集团公司第七二五研究所 | Preparation method for bearing inner-outer ring electrical insulation coating |
-
2017
- 2017-10-25 CN CN201711015811.9A patent/CN108447645B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108447645A (en) | 2018-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102723162B (en) | A stainless steel skeleton Nb3Sn superconducting magnet solenoid coil | |
US5917393A (en) | Superconducting coil apparatus and method of making | |
CN103456455B (en) | A kind of current lead of superconducting magnets | |
CN106449004B (en) | A kind of conduction cooling superconducting magnet based on ReBCO coating superconducting pieces | |
CN201435457Y (en) | A binary lead structure for a superconducting device and a superconducting device having the structure | |
CN102360694B (en) | First-stage pullable binary coaxial current lead structure | |
CN207068576U (en) | A current lead for a conduction-cooled high-temperature superconducting magnet | |
CN104143405B (en) | A kind of connection structure and its manufacturing method | |
GB2476716B (en) | A cryogenically cooled current lead assembly for a superconducting magnet and its method of use | |
CN108447645B (en) | Current lead anode tube for superconducting magnet and preparation method of anode tube insulating coating | |
CN114727471B (en) | A microwave resonant cavity | |
CN107570688A (en) | The method for preparing the anti-corrosion liquid cold plate of microwave power frequency shift | |
KR102049155B1 (en) | Conduction cooling system for a superconducting magnet | |
CN101824596B (en) | Automatic cooling type power supply device | |
JP2002324707A (en) | Superconducting magnet | |
CN103354699B (en) | Many ceramic layers printed substrate | |
CN116734720A (en) | Metal-based high-temperature film strain gauge and preparation method thereof | |
CN110111968A (en) | The current feed construction and its manufacturing method and magnetic resonance equipment of superconducting magnet | |
Liu et al. | Testing of the ceramic insulation break for fusion device | |
CN101236239A (en) | Current leads of superconducting magnets for magnetic resonance systems | |
JP6172979B2 (en) | Superconducting device | |
CN106455178A (en) | Closed liquid nitrogen self-circulation rapid cooling system | |
CN116288344A (en) | Material adding method for copper layer on surface of superconducting cavity | |
CN206961633U (en) | A kind of magnet coil cooling system | |
CN209608884U (en) | Electric heating tube and electric heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 313000 South Gate 692 Zhiyuan North Road, Wukang Town, Deqing County, Huzhou City, Zhejiang Province Applicant after: Deqing innovation Polytron Technologies Inc Address before: 313000 South Gate 692 Zhiyuan North Road, Wukang Town, Deqing County, Huzhou City, Zhejiang Province Applicant before: Deqing Powerise Thermal Spraying Technology Co. Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |