CN108431978A - Monolithic 3D memory array formed using sacrificial polysilicon pillars - Google Patents
Monolithic 3D memory array formed using sacrificial polysilicon pillars Download PDFInfo
- Publication number
- CN108431978A CN108431978A CN201780005021.4A CN201780005021A CN108431978A CN 108431978 A CN108431978 A CN 108431978A CN 201780005021 A CN201780005021 A CN 201780005021A CN 108431978 A CN108431978 A CN 108431978A
- Authority
- CN
- China
- Prior art keywords
- memory
- polysilicon
- vertically oriented
- bit line
- lbl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 79
- 229920005591 polysilicon Polymers 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 claims abstract description 71
- 239000003989 dielectric material Substances 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 239000011800 void material Substances 0.000 claims abstract description 20
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 238000003491 array Methods 0.000 abstract description 24
- 239000010410 layer Substances 0.000 description 156
- 239000000463 material Substances 0.000 description 41
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 32
- 229910052710 silicon Inorganic materials 0.000 description 32
- 239000010703 silicon Substances 0.000 description 32
- 230000008569 process Effects 0.000 description 27
- 230000002441 reversible effect Effects 0.000 description 18
- 229910052581 Si3N4 Inorganic materials 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 15
- 238000002955 isolation Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 238000003860 storage Methods 0.000 description 9
- 229910052721 tungsten Inorganic materials 0.000 description 9
- 239000010937 tungsten Substances 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 8
- 239000012790 adhesive layer Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 238000005498 polishing Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000007667 floating Methods 0.000 description 5
- 239000012782 phase change material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 4
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 101710190981 50S ribosomal protein L6 Proteins 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- -1 BL25 Proteins 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 101000575029 Bacillus subtilis (strain 168) 50S ribosomal protein L11 Proteins 0.000 description 1
- 101000592939 Bacillus subtilis (strain 168) 50S ribosomal protein L24 Proteins 0.000 description 1
- 101001113309 Bacillus subtilis (strain 168) 50S ribosomal protein L30 Proteins 0.000 description 1
- 101000712130 Bacillus subtilis (strain 168) 50S ribosomal protein L7/L12 Proteins 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- 101001093025 Geobacillus stearothermophilus 50S ribosomal protein L7/L12 Proteins 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
- H10B63/34—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
- H10B63/84—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
- H10B63/845—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/031—Manufacture or treatment of data-storage electrodes
- H10D64/035—Manufacture or treatment of data-storage electrodes comprising conductor-insulator-conductor-insulator-semiconductor structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/031—Manufacture or treatment of data-storage electrodes
- H10D64/037—Manufacture or treatment of data-storage electrodes comprising charge-trapping insulators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/823—Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
提供了形成单片三维存储器阵列的方法。该方法包含在衬底上方形成第一垂直取向的多晶硅柱,该第一垂直取向的多晶硅柱由介电材料围绕,将第一垂直取向的多晶硅柱移除以形成介电材料中的第一空隙,并且用导电材料填充第一空隙以形成第一通孔。
Methods of forming monolithic three-dimensional memory arrays are provided. The method includes forming a first vertically oriented polysilicon column over a substrate, the first vertically oriented polysilicon column surrounded by a dielectric material, removing the first vertically oriented polysilicon column to form a first void in the dielectric material , and fill the first gap with a conductive material to form a first through hole.
Description
背景技术Background technique
半导体存储器广泛用于诸如移动计算装置、移动电话、固态驱动器、电子照相机、个人数字助理、医疗电子、服务器和非移动计算装置的各种电子装置。半导体存储器可以包括非易失性存储器或易失性存储器。即使当非易失性存储器装置未连接到功率源(例如电池)时,非易失性存储器也允许储存或保留信息。Semiconductor memory is widely used in various electronic devices such as mobile computing devices, mobile phones, solid state drives, electronic cameras, personal digital assistants, medical electronics, servers, and non-mobile computing devices. Semiconductor memory may include nonvolatile memory or volatile memory. Non-volatile memory allows information to be stored or retained even when the non-volatile memory device is not connected to a power source, such as a battery.
非易失性存储器的示例包含闪速存储器(例如NAND型和NOR型闪速存储器)、电可擦除可编程只读存储器(EEPROM)、铁电存储器(例如FeRAM)、磁阻存储器(例如MRAM)和相变存储器(例如PRAM)。近年来,非易失性存储器装置已经规模化以便于减少每位的成本。然而,随着工艺几何结构缩小,出现许多设计和工艺挑战。这些挑战包含增加存储器单元I-V特性中的变化性、降低存储器单元感测电流以及增加位线结算时间。Examples of non-volatile memory include flash memory (such as NAND-type and NOR-type flash memory), electrically erasable programmable read-only memory (EEPROM), ferroelectric memory (such as FeRAM), magnetoresistive memory (such as MRAM ) and phase-change memory (such as PRAM). In recent years, nonvolatile memory devices have been scaled in order to reduce the cost per bit. However, as process geometries shrink, many design and process challenges arise. These challenges include increasing variability in memory cell I-V characteristics, reducing memory cell sense current, and increasing bit line settlement times.
附图说明Description of drawings
图1A描绘了存储器系统和主机的实施例。Figure 1A depicts an embodiment of a memory system and host.
图1B描绘了存储器核心控制电路的实施例。Figure IB depicts an embodiment of a memory core control circuit.
图1C描绘了存储器核心的实施例。Figure 1C depicts an embodiment of a memory core.
图1D描绘了存储器托架的实施例。Figure ID depicts an embodiment of a memory bay.
图1E描绘了存储器块的实施例。Figure IE depicts an embodiment of a memory block.
图1F描绘了存储器托架的另一个实施例。Figure IF depicts another embodiment of a memory bay.
图2A描绘了图1F的存储器托架的示意图。Figure 2A depicts a schematic diagram of the memory carrier of Figure IF.
图2B描绘了存储器托架布置的示意图,其中跨越存储器块共享字线和位线,并且行解码器和列解码器二者是分离的。Figure 2B depicts a schematic diagram of a memory bay arrangement in which word lines and bit lines are shared across memory blocks and both row and column decoders are separate.
图3A描绘了单片三维存储器阵列的部分的实施例。Figure 3A depicts an embodiment of a portion of a monolithic three-dimensional memory array.
图3B描绘了存储器阵列的子集和三维存储器阵列的示例的布局层。3B depicts a subset of memory arrays and layout layers of an example of a three-dimensional memory array.
图3C-3D描绘了交叉点存储器阵列的各种实施例。3C-3D depict various embodiments of cross-point memory arrays.
图4A描绘了单片三维存储器阵列的部分的实施例。Figure 4A depicts an embodiment of a portion of a monolithic three-dimensional memory array.
图4B描绘了包含非易失性存储器材料的垂直条的单片三维存储器阵列的部分的实施例。Figure 4B depicts an embodiment of a portion of a monolithic three-dimensional memory array comprising vertical strips of non-volatile memory material.
图5A-5D描绘了实施例单片三维存储器阵列的各种视图。5A-5D depict various views of an embodiment monolithic three-dimensional memory array.
图6A-6L2是图5A-5D的单片三维存储器阵列的示例性制造期间的衬底部分的横截面视图。6A-6L2 are cross-sectional views of portions of the substrate during exemplary fabrication of the monolithic three-dimensional memory array of FIGS. 5A-5D .
具体实施方式Detailed ways
描述了单片三维存储器阵列的技术。特别地,通过使用牺牲多晶硅柱形成导电通孔。特别地,形成牺牲垂直取向的多晶硅柱,同时形成将用作垂直取向位线选择晶体管的垂直取向的多晶硅柱。将牺牲垂直取向的多晶硅柱移除以形成空隙。在孔隙上沉积导电材料以形成通孔。通孔可以用于在单片三维存储器阵列的材料层之间形成垂直导电连接件。Techniques for monolithic three-dimensional memory arrays are described. In particular, conductive vias are formed by using sacrificial polysilicon pillars. In particular, sacrificial vertically oriented polysilicon pillars are formed while forming vertically oriented polysilicon pillars that will function as vertically oriented bit line select transistors. The sacrificial vertically oriented polysilicon pillars are removed to form voids. A conductive material is deposited over the pores to form vias. Vias may be used to form vertical conductive connections between material layers of a monolithic three-dimensional memory array.
例如,行选择线可以包含第一部分和第二部分,其中行选择线的第一部分与行选择线的第二部分以一距离分离。在实施例中,字线接线(hookup)区域将与行选择线的第二部分分离的行选择线的第一部分分离。诸如尽管如上所述使用牺牲垂直取向的多晶硅柱的通孔,可以用于将行选择线的第一部分电耦接到行选择线的第二部分。For example, a row selection line may comprise a first portion and a second portion, wherein the first portion of the row selection line is separated by a distance from the second portion of the row selection line. In an embodiment, a word line hookup region separates a first portion of the row select line from a second portion of the row select line. Vias, such as though using sacrificial vertically oriented polysilicon pillars as described above, may be used to electrically couple the first portion of the row select line to the second portion of the row select line.
在一些实施例中,存储器阵列可以包含交叉点存储器阵列。交叉点存储器阵列可以是指存储器阵列,其中双端子存储器单元放置在控制线中布置在第一方向上的第一集合(诸如字线)和控制线的第二集合(诸如位线)的相交处,该第二集合布置在垂直于第一方向的第二方向上。双端子存储器单元可以包含诸如相变材料、铁电材料或金属氧化物(例如镍氧化物或铪氧化物)的阻抗切换材料。在一些情况下,在交叉点存储器阵列中的每一个存储器单元可以与转向元件或隔离元件(诸如二极管)串联放置以降低漏电流。尤其因为漏电流可以在偏置电压和温度之上变化很大,所以在存储器单元不包含隔离元件的交叉点存储器阵列中,控制并且最小化漏电流可以是重要问题。In some embodiments, the memory array may comprise a cross-point memory array. A cross-point memory array may refer to a memory array in which two-terminal memory cells are placed at the intersection of a first set of control lines (such as word lines) arranged in a first direction and a second set of control lines (such as bit lines) , the second set is arranged in a second direction perpendicular to the first direction. Two-terminal memory cells may contain impedance-switching materials such as phase change materials, ferroelectric materials, or metal oxides such as nickel oxide or hafnium oxide. In some cases, each memory cell in a cross-point memory array can be placed in series with a steering element or an isolation element, such as a diode, to reduce leakage current. Especially because leakage current can vary widely over bias voltage and temperature, controlling and minimizing leakage current can be an important issue in cross-point memory arrays where the memory cells do not contain isolation elements.
在一个实施例中,非易失性储存系统可以包含非易失性存储器单元的一个或多个二维阵列。二维存储器阵列内的存储器单元可以形成存储器单元的单层并且可以是在X和Y方向上所选择的通孔控制线(例如字线和位线)。在另一个实施例中,非易失性储存系统可以包含一个或多个单片三维存储器阵列,其中存储器单元的两个或更多个层可以形成在单个衬底上方而不含任何介于中间的衬底。在一些情况下,三维存储器阵列可以包含存储器单元中位于衬底上方和与衬底正交的一个或多个垂直列。在一个示例中,非易失性储存系统可以包含具有位线或者与半导体衬底正交布置的位线的存储器阵列。衬底可以包含硅衬底。存储器阵列可以包含可重复写入的非易失性存储器单元,其中每个存储器单元包含可逆电阻切换元件而不含与可逆电阻切换元件串联的隔离元件(例如没有与可逆电阻切换元件串联的二极管)。In one embodiment, a non-volatile storage system may contain one or more two-dimensional arrays of non-volatile memory cells. Memory cells within a two-dimensional memory array may form a single layer of memory cells and may be via control lines (eg, word lines and bit lines) selected in the X and Y directions. In another embodiment, a non-volatile storage system may comprise one or more monolithic three-dimensional memory arrays, where two or more layers of memory cells may be formed over a single substrate without any intervening the substrate. In some cases, a three-dimensional memory array can include one or more vertical columns of memory cells above and orthogonal to a substrate. In one example, a non-volatile storage system may include a memory array having bit lines or bit lines arranged orthogonally to a semiconductor substrate. The substrate may include a silicon substrate. The memory array may comprise rewritable non-volatile memory cells, wherein each memory cell comprises a reversible resistance-switching element without an isolation element in series with the reversible resistance-switching element (e.g., no diode in series with the reversible resistance-switching element) .
在一些实施例中,非易失性储存系统可以包含非易失性存储器,该非易失性存储器单片地形成在存储器单元的阵列的一个或多个物理级别中,该一个或多个物理级别具有设置在硅衬底上方的有源区。非易失性储存系统还可以包含与存储器单元的操作相关联的电路(例如解码器、状态机、页寄存器或控制存储器单元的读取或编程的控制电路)。与存储器单元的操作相关联的电路可以位于衬底上方或者衬底内部。In some embodiments, a nonvolatile storage system may include nonvolatile memory monolithically formed in one or more physical levels of an array of memory cells that The level has an active area disposed over a silicon substrate. The non-volatile storage system may also include circuitry associated with the operation of the memory cells (eg, decoders, state machines, page registers, or control circuitry to control the reading or programming of the memory cells). Circuitry associated with the operation of the memory cells may be located above the substrate or within the substrate.
在一些实施例中,非易失性储存系统可以包含单片三维存储器阵列。单片三维存储器阵列可以包含存储器单元的一个或多个级别。在存储器单元的一个或多个级别中的第一级别内的每个存储器单元可以包含位于衬底上方的有源区(例如,在单晶体衬底或单晶硅衬底上方)。在一个示例中,有源区可以包含半导体结(例如PN结)。有源区可以包含晶体管的源极或漏极区域的部分。在另一个示例中,有源区可以包含晶体管的沟道区域。In some embodiments, a non-volatile storage system may include a monolithic three-dimensional memory array. A monolithic three-dimensional memory array may contain one or more levels of memory cells. Each memory cell within a first level of the one or more levels of memory cells may include an active region over a substrate (eg, over a single crystal substrate or a single crystal silicon substrate). In one example, the active region may contain a semiconductor junction (eg, a PN junction). The active region may comprise part of the source or drain region of the transistor. In another example, the active region may contain a channel region of a transistor.
图1A描绘了存储器系统100和主机102的一个实施例。存储器系统100可以包含与主机102(例如移动计算装置)接合的非易失性储存系统。在一些情况下,存储器系统100可以嵌入在主机102内。在其他情况下,存储器系统100可以包含存储器卡。如所描绘的,存储器系统100包含存储器芯片控制器104和存储器芯片106。尽管描绘了单个存储器芯片106,但是存储器系统100可以包含多于一个存储器芯片(例如四个、八个或其他数量的存储器芯片)。存储器芯片控制器104可以从主机102接收数据和命令,并且将存储器芯片数据提供到主机102。FIG. 1A depicts one embodiment of a memory system 100 and a host 102 . The memory system 100 may include a non-volatile storage system that interfaces with a host 102 (eg, a mobile computing device). In some cases, memory system 100 may be embedded within host 102 . In other cases, memory system 100 may include memory cards. As depicted, memory system 100 includes memory chip controller 104 and memory chip 106 . Although a single memory chip 106 is depicted, the memory system 100 may contain more than one memory chip (eg, four, eight, or other numbers of memory chips). The memory chip controller 104 can receive data and commands from the host 102 and provide memory chip data to the host 102 .
存储器芯片控制器104可以包含一个或多个状态机、页寄存器、SRAM和控制存储器芯片106的操作的控制电路。一个或多个状态机、页寄存器、SRAM和控制存储器芯片106的操作的控制电路可以称为管理或控制电路。管理或控制电路可以促使诸如形成、擦除、编程或读取操作之类的一个或多个存储器阵列操作。Memory chip controller 104 may contain one or more state machines, page registers, SRAM, and control circuitry that control the operation of memory chip 106 . The one or more state machines, page registers, SRAM, and control circuits that control the operation of memory chip 106 may be referred to as management or control circuits. Management or control circuitry may cause one or more memory array operations such as form, erase, program, or read operations.
在一些实施例中,促进一个或多个存储器阵列操作的管理或控制电路(或管理或控制电路的部分)可以集成在存储器芯片106中。存储器芯片控制器104和存储器芯片106可以布置在单个集成电路上。在其他实施例中,存储器芯片控制器104和存储器芯片106可以布置在不同的集成电路上。在一些情况下,存储器芯片控制器104和存储器芯片106可以集成在系统板、逻辑板或PCB上。In some embodiments, management or control circuitry (or portions of management or control circuitry) that facilitates operation of one or more memory arrays may be integrated in memory chip 106 . Memory chip controller 104 and memory chip 106 may be arranged on a single integrated circuit. In other embodiments, memory chip controller 104 and memory chip 106 may be disposed on different integrated circuits. In some cases, memory chip controller 104 and memory chip 106 may be integrated on a system board, logic board, or PCB.
存储器芯片106包含存储器核心控制电路108和存储器核心110。存储器核心控制电路108可以包含以下逻辑电路:控制存储器核心110内的存储器块(或阵列)的选择,控制电压参考的生成以将特定存储器阵列偏置到读取或写入状态中,或者生成行地址和列地址。Memory chip 106 includes memory core control circuitry 108 and memory core 110 . Memory core control circuitry 108 may contain logic to control the selection of memory blocks (or arrays) within memory core 110, to control the generation of voltage references to bias a particular memory array into a read or write state, or to generate row address and column address.
存储器核心110可以包含存储器单元的一个或多个二维阵列或者存储器单元的一个或多个三维阵列。在一个实施例中,存储器核心控制电路108和存储器核心110布置在单个集成电路上。在其他实施例中,存储器核心控制电路108(或存储器核心控制电路108的部分)和存储器核心110可以布置在不同的集成电路上。Memory core 110 may contain one or more two-dimensional arrays of memory cells or one or more three-dimensional arrays of memory cells. In one embodiment, memory core control circuitry 108 and memory core 110 are arranged on a single integrated circuit. In other embodiments, memory core control circuitry 108 (or portions of memory core control circuitry 108 ) and memory core 110 may be disposed on different integrated circuits.
当主机102将指令发送到存储器芯片控制器104时,可以初始化存储器操作,该指令指示了主机102将要从存储器系统100读取数据或将数据写入到存储器系统100。在写入(或编程)操作的事件下,主机102将向存储器芯片控制器104发送写入命令和待写入数据二者。可以由存储器芯片控制器104缓存待写入数据,并且可以与待写入数据对应地生成错误校正代码(ECC)。可以将ECC数据(其允许数据在发送或储存期间发生来检测和/或校正)写入到存储器核心110或者储存在存储器芯片控制器104内的非易失性存储器中。在一个实施例中,可以生成ECC数据并且数据错误由存储器芯片控制器104内的电路来校正。Memory operations may be initiated when the host 102 sends an instruction to the memory chip controller 104 indicating that the host 102 is about to read data from or write data to the memory system 100 . In the event of a write (or program) operation, the host 102 will send both a write command and the data to be written to the memory chip controller 104 . Data to be written may be buffered by the memory chip controller 104, and an error correction code (ECC) may be generated corresponding to the data to be written. ECC data (which allows data to be detected and/or corrected during transmission or storage) may be written to memory core 110 or stored in non-volatile memory within memory chip controller 104 . In one embodiment, ECC data may be generated and data errors corrected by circuitry within the memory chip controller 104 .
存储器芯片控制器104控制存储器芯片106的操作。在一个示例中,在将写入操作发布到存储器芯片106之前,存储器芯片控制器104可以检查状态寄存器,以确保存储器芯片106能够接受待写入的数据。在另一个示例中,在将读取操作发布到存储器芯片106之前,存储器芯片控制器104可以预先读取与待读取的数据相关联的开销信息。开销信息可以包含与待读取的数据相关联的ECC数据或者对存储器芯片106内的新存储器位置重定向指示器,在该存储器芯片106中读取所请求的数据。一旦读取或写入操作由存储器芯片控制器104初始化,存储器核心控制电路108可以生成存储器核心110内的字线和位线的适当偏置电压,并且生成适当存储器块、行和列地址。The memory chip controller 104 controls the operation of the memory chip 106 . In one example, before issuing a write operation to memory chip 106, memory chip controller 104 may check a status register to ensure that memory chip 106 is able to accept the data to be written. In another example, prior to issuing a read operation to the memory chip 106, the memory chip controller 104 may pre-read overhead information associated with the data to be read. The overhead information may include ECC data associated with the data to be read or a redirection pointer to a new memory location within the memory chip 106 where the requested data is to be read. Once a read or write operation is initiated by memory chip controller 104, memory core control circuitry 108 may generate appropriate bias voltages for word and bit lines within memory core 110, and generate appropriate memory block, row, and column addresses.
在一些实施例中,一个或多个管理或控制电路可以用于控制存储器阵列的操作。一个或多个管理或控制电路可以将控制信号提供到存储器阵列以在存储器阵列上进行读取操作和/或写入操作。在一个示例中,一个或多个管理或控制电路可以包含以下的任何一个或者组合:控制电路、状态机、解码器、感测放大器、读取/写入电路、和/或控制器。一个或多个管理或控制电路可以进行或促进包含擦除、编程或读取操作之类的一个或多个存储器阵列操作。在一个示例中,一个或多个管理电路可以包含片上存储器控制器以确定行和列地址、字线和位线地址、存储器阵列使能信号和数据锁存信号。In some embodiments, one or more management or control circuits may be used to control the operation of the memory array. One or more management or control circuits may provide control signals to the memory array to perform read operations and/or write operations on the memory array. In one example, the one or more management or control circuits may comprise any one or combination of the following: control circuits, state machines, decoders, sense amplifiers, read/write circuits, and/or controllers. One or more management or control circuits may conduct or facilitate one or more memory array operations including erase, program or read operations. In one example, one or more management circuits may include an on-chip memory controller to determine row and column addresses, word line and bit line addresses, memory array enable signals, and data latch signals.
图1B描绘了存储器核心控制电路108的一个实施例。如所描绘的,存储器核心控制电路108包含(如下文详细描述的)地址解码器120、所选择的控制线的电压发生器122、未选择的控制线的电压发生器124和参考信号的信号发生器126。控制线可以包含字线、位线或者字线和位线的组合。所选择的控制线可以包含所选择的字线和/或所选择的位线,其用于将存储器单元放置到所选择的状态中。未选择的控制线可以包含未选择的字线和/或未选择的位线,其用于将存储器单元放置到未选择的状态中。FIG. 1B depicts one embodiment of memory core control circuitry 108 . As depicted, the memory core control circuitry 108 includes (as described in detail below) an address decoder 120, a voltage generator 122 for selected control lines, a voltage generator 124 for unselected control lines, and a signal generator for reference signals. device 126. The control lines may comprise word lines, bit lines, or a combination of word lines and bit lines. The selected control lines may include selected word lines and/or selected bit lines, which are used to place the memory cells into the selected state. Unselected control lines may include unselected word lines and/or unselected bit lines, which are used to place memory cells into an unselected state.
地址解码器120可以生成存储器块地址,以及特定存储器块的行地址和列地址。所选择的控制线的电压发生器(或电压调节器)122可以包含生成所选择的控制线电压的一个或多个电压发生器。未选择的控制线的电压发生器124可以包含生成未选择的控制线电压的一个或多个电压发生器。参考信号的信号发生器126可以包含生成参考电压的一个或多个电压发生器和/或生成参考电流的一个或多个电流发生器。Address decoder 120 may generate memory block addresses, as well as row and column addresses for a particular memory block. The selected control line voltage generator (or voltage regulator) 122 may include one or more voltage generators that generate the selected control line voltage. The voltage generators for unselected control lines 124 may include one or more voltage generators that generate unselected control line voltages. The signal generator 126 for the reference signal may include one or more voltage generators for generating a reference voltage and/or one or more current generators for generating a reference current.
图1C-1F描绘了存储器核心组织的实施例,其包含具有多个存储器托架的存储器核心,并且每个存储器托架具有多个存储器块。尽管公开了存储器核心组织,其中存储器托架包含存储器块,并且存储器块包含存储器单元的组,但是还可以以本文所描述的技术来使用其他组织或分组。1C-1F depict an embodiment of a memory core organization including a memory core with multiple memory bays, and each memory bay has multiple memory blocks. Although a memory core organization is disclosed where memory bays contain memory blocks and memory blocks contain groups of memory cells, other organizations or groupings may also be used with the techniques described herein.
图1C描绘了图1A中存储器核心110的一个实施例。如所描绘的,存储器核心110包含存储器托架130和存储器托架132。在一些实施例中,对于不同的实现方式每存储器核心的存储器托架数量可以不同。例如,存储器核心可以仅包含单个存储器托架或多个存储器托架(例如16个或存储器托架的其他数量)。Figure 1C depicts one embodiment of the memory core 110 of Figure 1A. As depicted, memory core 110 includes memory bay 130 and memory bay 132 . In some embodiments, the number of memory trays per memory core may vary for different implementations. For example, a memory core may contain only a single memory bay or multiple memory bays (eg, 16 or other number of memory bays).
图1D描绘了图1C中存储器托架130的一个实施例。如所描绘的,存储器托架130包含存储器块140-144和读取/写入电路146。在一些实施例中,对于不同的实现方式每存储器托架的存储器块数量可以不同。例如,存储器托架可以包含一个或多个存储器块(例如每存储器托架32个或存储器块的其他数量)。读取/写入电路146包含存储器块140-144内的读取和写入存储器单元的电路。Figure ID depicts one embodiment of memory bay 130 in Figure 1C. As depicted, memory bay 130 includes memory blocks 140 - 144 and read/write circuitry 146 . In some embodiments, the number of memory blocks per memory bay may vary for different implementations. For example, a memory bay may contain one or more memory blocks (eg, 32 per memory bay or other number of memory blocks). Read/write circuitry 146 includes circuitry to read and write memory cells within memory blocks 140-144.
如所描绘的,读取/写入电路146可以在存储器托架内跨越多个存储器块共享。这允许芯片面积减小,因为读取/写入电路146的单个组可以用于支持多个存储器块。然而,在一些实施例中,仅单个存储器块可以在特定时间电耦合到读取/写入电路146以避免信号冲突。As depicted, read/write circuitry 146 may be shared across multiple memory blocks within a memory bay. This allows chip area to be reduced since a single set of read/write circuits 146 can be used to support multiple memory blocks. However, in some embodiments, only a single memory block may be electrically coupled to read/write circuitry 146 at a particular time to avoid signal conflicts.
在一些实施例中,读取/写入电路146可以用于将一个或多个数据页写入到存储器块140-144中(或者到存储器块的子集中)。存储器块140-144内的存储器单元可以允许页的直接重写(即表示页或页的部分的数据可以写入到存储器块140-144中而不需要在写入数据之前在存储器单元上进行擦除或重设操作)。In some embodiments, read/write circuitry 146 may be used to write one or more pages of data into memory blocks 140-144 (or into a subset of memory blocks). Memory cells within memory blocks 140-144 may allow direct rewriting of pages (i.e., data representing a page or portion of a page may be written into memory blocks 140-144 without requiring an erase on the memory cells prior to writing the data. delete or reset operation).
在一个示例中,图1A中的存储器系统100可以接收写入命令,该写入命令包含目标地址和将要写入到目标地址的数据的集合。存储器系统100可以进行写入前读取(RBW)操作以读取目前储存在目标地址的数据和/或以在进行将数据的集合写入到目标地址的写入操作之前获取开销信息(例如ECC信息)。In one example, memory system 100 in FIG. 1A may receive a write command that includes a target address and a set of data to be written to the target address. Memory system 100 may perform a read before write (RBW) operation to read data currently stored at a target address and/or to obtain overhead information (e.g., ECC information).
在一些情况下,读取/写入电路146可以用于将特定存储器单元编程在三个或更多个数据/电阻状态中的一个(即特定存储器单元可以包含多级别存储器单元)。在一个示例中,读取/写入电路146可以施加跨越特定存储器单元的第一电压差(例如2V)以将特定存储器单元编程到三个或更多个数据/电阻状态中的第一状态,或者施加跨越特定存储器单元的第二电压差(例如1V),该电压小于第一电压差以将特定存储器单元编程到三个或更高多个数据/电阻状态中的第二状态。In some cases, read/write circuitry 146 may be used to program a particular memory cell in one of three or more data/resistance states (ie, a particular memory cell may comprise a multi-level memory cell). In one example, read/write circuitry 146 may apply a first voltage difference (e.g., 2V) across a particular memory cell to program the particular memory cell to a first of three or more data/resistance states, Alternatively, a second voltage difference (eg, 1 V) is applied across the particular memory cell that is less than the first voltage difference to program the particular memory cell to a second state of the three or higher plurality of data/resistance states.
施加跨越特定存储器单元的较小电压差可以引起以比在施加较大电压差时的较低速率来部分编程或编程特定存储器单元。在另一个示例中,读取/写入电路146可以施加跨越特定存储器单元的第一电压差达第一时间段(例如150ns),以将特定存储器单元编程到三个或更多个数据/电阻状态中的第一状态中,或者施加跨越特定存储器单元的第一电压差达小于第一时间段的第二时间段(例如50ns)。接着存储器单元验证阶段,一个或多个编程脉冲可以用于将特定存储器单元编程在正确状态下。Applying a smaller voltage difference across a particular memory cell can cause the particular memory cell to be partially programmed or programmed at a lower rate than when a larger voltage difference is applied. In another example, read/write circuit 146 may apply a first voltage difference across a particular memory cell for a first period of time (eg, 150 ns) to program the particular memory cell to three or more data/resistance In a first of the states, either the first voltage difference across the particular memory cell is applied for a second period of time (eg, 50 ns) that is less than the first period of time. Following the memory cell verification phase, one or more programming pulses may be used to program the particular memory cell in the correct state.
图1E描绘了图1D中存储器块140的一个实施例。如所描绘的,存储器块140包含存储器阵列150、行解码器152和列解码器154。存储器阵列150可以包含存储器单元的具有连续字线和位线的连续组。存储器阵列150可以包含存储器单元的一个或多个层。存储器阵列150可以包含二维存储器阵列或三维存储器阵列。Figure IE depicts one embodiment of memory block 140 in Figure ID. As depicted, memory block 140 includes memory array 150 , row decoder 152 and column decoder 154 . Memory array 150 may contain contiguous groups of memory cells having contiguous word lines and bit lines. Memory array 150 may contain one or more layers of memory cells. Memory array 150 may comprise a two-dimensional memory array or a three-dimensional memory array.
在适当的时候(例如当在存储器阵列150中读取或写入存储器单元时),行解码器152解码行地址并且选择存储器阵列150中的特定字线。列解码器154解码列地址并且选择存储器阵列150中的一个或多个位线以电耦合到读取/写入电路,诸如图1D中的读取/写入电路146。在一个实施例中,字线数量是每存储器层4K、位线数量是每存储器层1K,并且存储器层数量为4,以提供包含16M存储器单元的存储器阵列150。At the appropriate time (eg, when reading or writing a memory cell in memory array 150 ), row decoder 152 decodes the row address and selects a particular word line in memory array 150 . Column decoder 154 decodes the column address and selects one or more bit lines in memory array 150 for electrical coupling to read/write circuitry, such as read/write circuitry 146 in FIG. 1D . In one embodiment, the number of word lines is 4K per memory layer, the number of bit lines is 1K per memory layer, and the number of memory layers is 4 to provide a memory array 150 containing 16M memory cells.
图1F描绘了存储器托架134的一个实施例。存储器托架134是图1D中存储器托架130的替代性实现方式的一个示例。在一些实施例中,行解码器、列解码器以及读取/写入电路可以在存储器阵列之间分离或共享。如所描绘的,因为行解码器152b控制存储器阵列150a和150b二者中的字线,所以在存储器阵列150a和150b之间共享行解码器152b(即,共享由行解码器152b所驱动的字线)。One embodiment of memory bay 134 is depicted in FIG. 1F . Memory bay 134 is one example of an alternative implementation for memory bay 130 in FIG. 1D . In some embodiments, row decoders, column decoders, and read/write circuits can be split or shared between memory arrays. As depicted, because row decoder 152b controls word lines in both memory arrays 150a and 150b, row decoder 152b is shared between memory arrays 150a and 150b (i.e., word lines driven by row decoder 152b are shared). Wire).
行解码器152a和152b可以分离,使得存储器阵列150a中的偶数字线由行解码器152a驱动并且存储器阵列150a中的奇数字线由行解码器152b驱动。行解码器152c和152b可以分离使得存储器阵列150b中的偶数字线由行解码器152c驱动并且存储器阵列150b中的奇数字线由行解码器152b驱动。Row decoders 152a and 152b may be separated such that even word lines in memory array 150a are driven by row decoder 152a and odd word lines in memory array 150a are driven by row decoder 152b. Row decoders 152c and 152b may be split such that even word lines in memory array 150b are driven by row decoder 152c and odd word lines in memory array 150b are driven by row decoder 152b.
列解码器154a和154b可以分离,使得存储器阵列150a中的偶数位线由列解码器154b驱动并且存储器阵列150a中的奇数位线由列解码器154b驱动。列解码器154c和154d可以分离,使得存储器阵列150b中的偶数位线由列解码器154d驱动并且存储器阵列150b中的奇数位线由列解码器154c驱动。Column decoders 154a and 154b may be separated such that even bit lines in memory array 150a are driven by column decoder 154b and odd bit lines in memory array 150a are driven by column decoder 154b. Column decoders 154c and 154d may be separated such that even bit lines in memory array 150b are driven by column decoder 154d and odd bit lines in memory array 150b are driven by column decoder 154c.
由列解码器154a和列解码器154c控制的所选择的位线可以电耦合到读取/写入电路146a。由列解码器154b和列解码器154d控制的所选择的位线可以电耦合到读取/写入电路146b。在将列解码器分离时,将读取/写入电路分离到读取/写入电路146a和146b中可以允许存储器托架的更有效布局。Selected bit lines controlled by column decoder 154a and column decoder 154c may be electrically coupled to read/write circuitry 146a. Selected bit lines controlled by column decoder 154b and column decoder 154d may be electrically coupled to read/write circuitry 146b. Separating the read/write circuitry into read/write circuits 146a and 146b may allow for a more efficient layout of the memory bays while separating the column decoders.
图2A描绘了对应于图1F中的存储器托架134的示意图(包含字线和位线)的一个实施例。如所描绘的,字线WL1、WL3、和WL5共享在存储器阵列150a和150b之间并且由图1F的行解码器152控制。字线WL0、WL2、WL4、和WL6从存储器阵列150a的左侧来驱动并且由图1F的行解码器152a来控制。字线WL14、WL16、WL18、和WL20从存储器阵列150b的右侧来驱动并且由图1F的行解码器152c来控制。Figure 2A depicts one embodiment of a schematic diagram (including word lines and bit lines) corresponding to memory tray 134 in Figure IF. As depicted, word lines WL1, WL3, and WL5 are shared between memory arrays 150a and 150b and are controlled by row decoder 152 of FIG. 1F. Word lines WL0, WL2, WL4, and WL6 are driven from the left side of memory array 150a and are controlled by row decoder 152a of FIG. 1F. Word lines WL14, WL16, WL18, and WL20 are driven from the right side of memory array 150b and are controlled by row decoder 152c of FIG. 1F.
位线BL0、BL2、BL4、和BL6从存储器阵列150a的底部来驱动并且由图1F的行解码器154b来控制。位线BL1、BL3、和BL5从存储器阵列150a的顶部来驱动并且由图1F的行解码器154a来控制。位线BL7、BL9、BL11、和BL13从存储器阵列150b的底部来驱动并且由图1F的列解码器154d来控制。位线BL8、BL10、和BL12从存储器阵列150b的顶部来驱动并且由图1F的列解码器154c来控制。Bit lines BL0, BL2, BL4, and BL6 are driven from the bottom of memory array 150a and are controlled by row decoder 154b of FIG. 1F. Bit lines BL1, BL3, and BL5 are driven from the top of memory array 150a and are controlled by row decoder 154a of FIG. 1F. Bit lines BL7, BL9, BL11, and BL13 are driven from the bottom of memory array 150b and are controlled by column decoder 154d of FIG. 1F. Bit lines BL8, BL10, and BL12 are driven from the top of memory array 150b and are controlled by column decoder 154c of FIG. 1F.
在一个实施例中,存储器阵列150a和150b可以包含取向在与支撑衬底水平的水平面中的存储器层。在另一个实施例中,存储器阵列150a和150b可以包含取向在与支撑衬底垂直的垂直面(即该垂直面垂直于支撑衬底)中的存储器层。In one embodiment, memory arrays 150a and 150b may include memory layers oriented in a horizontal plane that is horizontal to the supporting substrate. In another embodiment, memory arrays 150a and 150b may include memory layers oriented in a vertical plane perpendicular to the supporting substrate (ie, the vertical plane is perpendicular to the supporting substrate).
图2B描绘了对应于存储器托架布置的示意图(包含字线和位线)的一个实施例,其中跨越存储器块共享字线和位线,并且行解码器和列解码器二者是分离的。因为单个行解码器和/或列解码器可以用于支撑两个存储器阵列,所以共享字线和/或位线有助于降低布局面积。Figure 2B depicts one embodiment of a schematic diagram (including word lines and bit lines) corresponding to a memory bay arrangement in which word lines and bit lines are shared across memory blocks and both row and column decoders are separate. Sharing word lines and/or bit lines helps reduce layout area because a single row decoder and/or column decoder can be used to support both memory arrays.
如所描绘的,字线WL1、WL3、和WL5共享在存储器阵列150a和150b之间,并且字线WL8、WL10和WL12共享在存储器阵列150c和150d之间。位线BL1、BL3、和BL5共享在存储器阵列150a和150c之间,并且位线BL8、BL10和BL12共享在存储器阵列150b和150d之间。As depicted, word lines WL1, WL3, and WL5 are shared between memory arrays 150a and 150b, and word lines WL8, WL10, and WL12 are shared between memory arrays 150c and 150d. Bit lines BL1, BL3, and BL5 are shared between memory arrays 150a and 150c, and bit lines BL8, BL10, and BL12 are shared between memory arrays 150b and 150d.
行解码器分离,使得字线WL0、WL2、WL4、和WL6从存储器阵列150a的左侧来驱动并且字线WL1、WL3、和WL5从存储器阵列150a的右侧来驱动。同样地,字线WL7、WL9、WL11、和WL13从存储器阵列150c的左侧来驱动并且字线WL8、WL10、和WL12从存储器阵列150c的右侧来驱动。The row decoders are split such that word lines WL0, WL2, WL4, and WL6 are driven from the left side of memory array 150a and word lines WL1, WL3, and WL5 are driven from the right side of memory array 150a. Likewise, word lines WL7, WL9, WL11, and WL13 are driven from the left side of memory array 150c and word lines WL8, WL10, and WL12 are driven from the right side of memory array 150c.
列解码器分离,使得位线BL0、BL2、BL4、和BL6从存储器阵列150a的底部来驱动并且位线BL1、BL3、和BL5从存储器阵列150a的顶部来驱动。同样地,位线BL21、BL23、BL25、和BL27从存储器阵列150d的顶部来驱动并且位线BL8、BL10、和BL12从存储器阵列150d的底部来驱动。分离行解码器和/或列解码器还有助于缓解布局限制(例如行解码器节距可以缓解2x因为分离列解码器仅需要驱动每隔一个位线来代替每个位线)。The column decoders are split such that bit lines BL0, BL2, BL4, and BL6 are driven from the bottom of memory array 150a and bit lines BL1, BL3, and BL5 are driven from the top of memory array 150a. Likewise, bit lines BL21, BL23, BL25, and BL27 are driven from the top of memory array 150d and bit lines BL8, BL10, and BL12 are driven from the bottom of memory array 150d. Separate row decoders and/or column decoders also help to alleviate layout constraints (eg row decoder pitch can be relieved by 2x because separate column decoders only need to drive every other bit line instead of every bit line).
图3A描绘了单片三维存储器阵列300的部分的一个实施例,该单片三维存储器阵列300的部分包含第一存储器级别302和位于第一存储器级别302之上的第二存储器级别304。存储器阵列300是图1E中存储器阵列150的实现方式的一个示例。位线306和308布置在第一方向上,并且字线310布置在垂直于第一方向的第二方向。如所描述的,第一存储器级别302的上部导体可以用作第二存储器级别304的下部导体。在具有附加的存储器阵列层的存储器阵列中,将存在对应的位线和字线的附加层。FIG. 3A depicts one embodiment of a portion of a monolithic three-dimensional memory array 300 comprising a first memory level 302 and a second memory level 304 above the first memory level 302 . Memory array 300 is one example of an implementation of memory array 150 in FIG. 1E . The bit lines 306 and 308 are arranged in a first direction, and the word line 310 is arranged in a second direction perpendicular to the first direction. As described, the upper conductors of the first memory level 302 may be used as the lower conductors of the second memory level 304 . In memory arrays with additional memory array layers, there will be additional layers of corresponding bit lines and word lines.
存储器阵列300包含多个存储器单元312。存储器单元312可以包含可重写的存储器单元,并且可以包含非易失性存储器单元或易失性存储器。相对于第一存储器级别302,存储器单元312的第一部分是在位线306和字线310之间并且连接到位线306和字线310。相对于第二存储器级别304,存储器单元312的第二部分是在位线308和字线310之间并且连接到位线306和字线310。在一个实施例中,每个存储器单元312包含转向元件(例如二极管)和存储器单元(即状态改变元件)。Memory array 300 includes a plurality of memory cells 312 . The memory unit 312 may include a rewritable memory unit, and may include a nonvolatile memory unit or a volatile memory. With respect to first memory level 302 , a first portion of memory cells 312 is between and connected to bitline 306 and wordline 310 . With respect to second memory level 304 , a second portion of memory cells 312 is between bit line 308 and word line 310 and is connected to bit line 306 and word line 310 . In one embodiment, each memory cell 312 includes a steering element (eg, a diode) and a memory cell (ie, a state change element).
在一个示例中,第一存储器级别302的二极管可以朝上指向如箭头A1所指示的二极管(例如具有在二极管底部处的p区域),然而第二存储器级别304的二极管可以朝下指向如箭头A2所指示的二极管(例如具有在二极管底部处的n区域),反之亦然。在另一个实施例中,每个存储器单元312仅包含状态改变元件。缺乏来自存储器单元的二极管(或其他转向元件)可以降低工艺复杂度并且降低与制造存储器阵列相关联的成本。In one example, the diodes of the first memory level 302 may point upward as indicated by arrow A1 (e.g., have a p-region at the bottom of the diode), while the diodes of the second memory level 304 may point downward as indicated by arrow A2 Diodes are indicated (eg with n-region at the bottom of the diode) and vice versa. In another embodiment, each memory cell 312 contains only state change elements. The lack of diodes (or other steering elements) from memory cells can reduce process complexity and lower costs associated with fabricating memory arrays.
在一个实施例中,存储器单元312包含可重写非易失性存储器单元,其包含可逆电阻切换元件。可逆电阻切换元件可以包含可逆电阻切换材料,其具有可以在两个或更多个状态之间切换的电阻。在一个实施例中,可逆电阻切换材料可以包含金属氧化物(例如二元金属氧化物)。金属氧化物可以包含镍氧化物、铪氧化物或其他任何金属氧化物材料。在另一个实施例中,可逆阻抗切换材料可以包含相变材料。相变材料可以包含硫族化物。在一些情况下,可重写的非易失性存储器单元可以包含电阻式RAM(ReRAM)器件。In one embodiment, memory cell 312 includes a rewritable non-volatile memory cell that includes a reversible resistance-switching element. A reversible resistance-switching element may comprise a reversible resistance-switching material that has a resistance that can be switched between two or more states. In one embodiment, the reversible resistance-switching material may comprise a metal oxide (eg, a binary metal oxide). The metal oxide may comprise nickel oxide, hafnium oxide or any other metal oxide material. In another embodiment, the reversible impedance-switching material may comprise a phase change material. The phase change material may contain chalcogenides. In some cases, the rewritable non-volatile memory cells may comprise resistive RAM (ReRAM) devices.
在另一个实施例中,存储器单元312可以包含导电桥存储器元件。导电桥存储器元件还可以称为可编程金属化单元。导电桥存储器元件可以基于固态电解质内的离子的物理重新定位来用作状态变化元件。在一些情况下,导电桥存储器元件可以包含两个固态金属电极,一个相对惰性(例如钨)和另一个电化学活性(例如银或铜),具有两个电极之间的固态电解质的薄膜。随着温度增加,离子的迁移率可以增加,以引起导电桥存储器单元的编程阈值降低。因此,导电桥存储器元件可以具由编程阈值随温度的宽范围。In another embodiment, memory cell 312 may include a conductive bridge memory element. Conductive bridge memory elements may also be referred to as programmable metallization cells. Conductive bridge memory elements can be used as state change elements based on the physical relocation of ions within a solid electrolyte. In some cases, a conductive bridge memory element may comprise two solid metal electrodes, one relatively inert (such as tungsten) and the other electrochemically active (such as silver or copper), with a thin film of solid electrolyte between the two electrodes. As the temperature increases, the mobility of the ions can increase to cause the programming threshold of the conductive bridge memory cells to decrease. Accordingly, conductive bridge memory elements can have a wide range of programming thresholds with temperature.
在读取操作的一个实施例中,可以通过将字线中的一个(即所选择的字线)偏置到读取模式下所选择的字线电压(例如0V)来读取储存在多个存储器单元312中的一个中的数据。感测放大器然后可以用于将连接到所选择的存储器单元的所选择的位线偏置到读取模式下所选择的位线电压(例如1.0V)。在一些情况下,为了避免从许多未选择的字线感测漏电流到所选择的位线,未选择的字线可以偏置到与所选择的位线相同的电压(例如1.0V)。为了避免漏电流从许多所选择的字线到未选择的位线,未选择的位线可以偏置到与所选择的字线相同的电压(例如0V)。然而,将未选择的字线偏置到与所选择的位线相同的电压并且将未选择的位线偏置到与所选择的字线相同的电压,可以跨越由未选择的字线和未选择的位线所驱动的未选择的存储器单元来放置实质电压应力。In one embodiment of a read operation, one of the word lines (ie, the selected word line) can be biased to the selected word line voltage (eg, 0V) in the read mode to read the Data in one of the memory cells 312. The sense amplifier can then be used to bias the selected bit line connected to the selected memory cell to the selected bit line voltage (eg 1.0V) in read mode. In some cases, to avoid sensing leakage current from many unselected word lines to the selected bit line, the unselected word lines may be biased to the same voltage as the selected bit line (eg, 1.0V). To avoid leakage current from many selected word lines to unselected bit lines, the unselected bit lines can be biased to the same voltage as the selected word lines (eg, 0V). However, biasing the unselected word lines to the same voltage as the selected bit line and biasing the unselected bit lines to the same voltage as the selected word line The selected bit line drives the unselected memory cells to place substantial voltage stress.
在替代读取偏置方案中,未选择的字线和未选择的位线二者可以偏置到在所选择的字线电压和所选择的位线电压之间的中间电压。将相同电压施加到未选择的字线和未选择的位线二者,可以跨越由未选择的字线和未选择的位线所驱动的未选择的存储器单元来降低电压应力。In an alternative read biasing scheme, both the unselected word line and the unselected bit line can be biased to a voltage intermediate between the selected word line voltage and the selected bit line voltage. Applying the same voltage to both unselected word lines and unselected bit lines can reduce voltage stress across unselected memory cells driven by the unselected word lines and unselected bit lines.
然而,降低的电压应力以增加的与所选择的字线和所选择的位线相关联的漏电流为代价。在已经将所选择的字线电压施加到所选择的字线之前,可以将所选择的位线施加到所选择的位线,并且然后感测放大器可以感测自动零数量的电流穿过所选择的存储器位线,该位线可以减去在将所选择的字线电压施加到所选择的字线时感测的第二电流中的位线电流。可以使用自动零电流感测来减去漏电流。However, the reduced voltage stress comes at the expense of increased leakage current associated with selected word lines and selected bit lines. The selected bit line may be applied to the selected bit line before the selected word line voltage has been applied to the selected word line, and then the sense amplifier may sense an auto-zero amount of current through the selected memory bit line that can subtract the bit line current in the second current sensed when the selected word line voltage is applied to the selected word line. Leakage current can be subtracted using automatic zero current sensing.
在写入操作的一个实施例中,可逆电阻切换材料可以在初始高阻态下,该高阻态基于第一电压和/或电流的施加是可切换到低阻态。第二电压和/或电流的施加可以将可逆电阻切换材料返回到高阻态。替代地,可逆电阻切换材料可以在初始低阻态下,该低阻态基于适当的(多个)电压和/或(多个)电流的施加是可切换到高阻态。In one embodiment of a write operation, the reversible resistance-switching material may be in an initial high-resistance state that is switchable to a low-resistance state upon application of a first voltage and/or current. Application of the second voltage and/or current may return the reversible resistance-switching material to a high resistance state. Alternatively, the reversible resistance-switching material may be in an initial low-resistance state that is switchable to a high-resistance state upon application of appropriate voltage(s) and/or current(s).
当用于存储器单元中,一个电阻态可以表示二进制数据“0”,并且其他电阻态可以表示二进制数据“1”。在一些情况下,可以认为存储器单元包含多于两个数据/电阻态(即多级别存储器单元)。在一些情况下,除了具有跨所选择的存储器单元的较大的电压范围之外,写入操作可以与读取操作相似的。When used in a memory cell, one resistive state can represent binary data "0" and the other resistive state can represent binary data "1." In some cases, a memory cell may be considered to contain more than two data/resistance states (ie, a multi-level memory cell). In some cases, a write operation may be similar to a read operation, except with a larger voltage range across selected memory cells.
将可逆电阻切换元件的电阻从高阻态切换到低阻态的工艺可以是指设定可逆电阻切换元件。将可逆电阻切换元件的电阻从低阻态切换到高阻态的工艺可以是指重新设定可逆电阻切换元件。高阻态可以与二进制数据“1”相关联,并且低阻态可以与二进制数据“0”相关联。在其他实施例中,可以保留设定与重新设定操作和/或数据编码。在一些实施例中,设定电阻切换元件的第一时间可以需要与普通编程电压相比更高并且可以是指形成操作。The process of switching the resistance of the reversible resistance-switching element from a high-resistance state to a low-resistance state may refer to setting the reversible resistance-switching element. The process of switching the resistance of the reversible resistance-switching element from a low-resistance state to a high-resistance state may refer to resetting the reversible resistance-switching element. The high resistance state may be associated with binary data "1" and the low resistance state may be associated with binary data "0". In other embodiments, set and reset operations and/or data encoding may be preserved. In some embodiments, the first time to set the resistance-switching element may need to be higher than normal programming voltage and may refer to a forming operation.
在写入操作的一个实施例中,可以通过将字线中的一个(例如所选择的字线)偏置到写入模式下所选择的字线电压(例如5V),将数据写入到多个储器单元312中的一个。写入电路可以用于将连接到所选择的存储器单元的位线偏置到写入模式(例如0V)下所选择的位线电压。In one embodiment of a write operation, data can be written to multiple One of the storage units 312. A write circuit can be used to bias the bit line connected to the selected memory cell to the selected bit line voltage in the write mode (eg 0V).
在一些情况下,为了阻止未选择的存储器单元的共享所选择的字线的程序干扰,可以偏置未选择的位线使得所选择字线电压和未选择位线电压之间的第一电压差小于第一干扰阈值。在一些情况下,为了阻止未选择的存储器单元的共享所选择的字线的程序干扰,可以偏置未选择的位线使得所选择字线电压和未选择位线电压之间的第一电压差小于第一干扰阈值。第一干扰阈值和第二干扰阈值可以是不同的,取决于对易受干扰影响的未选择的存储器单元加压力的时间量。In some cases, to prevent program disturb of unselected memory cells sharing a selected word line, the unselected bit lines may be biased such that a first voltage difference between the selected word line voltage and the unselected bit line voltage less than the first interference threshold. In some cases, to prevent program disturb of unselected memory cells sharing a selected word line, the unselected bit lines may be biased such that a first voltage difference between the selected word line voltage and the unselected bit line voltage less than the first interference threshold. The first disturb threshold and the second disturb threshold may be different depending on the amount of time that unselected memory cells susceptible to disturb are stressed.
在一个写入偏置方案中,可以将未选择的字线和未选择的位线二者偏置到在所选择的字线电压和所选择的位线电压之间的中间电压。可以生成中间电压,使得跨越共享所选择的字线的未选择的存储器单元的第一电压差大于跨越共享所选择的位线的其他未选择的存储器单元的第二电压差。放置跨越共享所选择的字线的未选择的存储器单元的第一电压差的理由是:共享所选择的字线的存储器单元可以在写入操作之后直接验证以检测写入干扰。In one write biasing scheme, both the unselected word line and the unselected bit line can be biased to a voltage intermediate between the selected word line voltage and the selected bit line voltage. The intermediate voltages may be generated such that a first voltage difference across unselected memory cells sharing a selected word line is greater than a second voltage difference across other unselected memory cells sharing a selected bit line. The reason for placing the first voltage difference across the unselected memory cells sharing the selected word line is that the memory cells sharing the selected word line can be verified directly after the write operation to detect write disturb.
图3B描绘了三维存储器阵列的一个实施例的存储器阵列和布线层的子集,诸如图1E的存储器阵列150。如所描绘的,存储器阵列层放置在衬底上方。存储器阵列层包含位线层BL0、BL1和BL2,以及字线层WL0和WL1。在其他实施例中,还可以实现附加位线和字线层。支持电路(例如行解码器、列解码器和读取/写入电路)可以布置在具有支持电路上方所制造的存储器阵列层的衬底的表面上。Figure 3B depicts a subset of the memory array and wiring layers of one embodiment of a three-dimensional memory array, such as memory array 150 of Figure IE. As depicted, a memory array layer is placed over the substrate. The memory array layers include bit line layers BL0, BL1 and BL2, and word line layers WL0 and WL1. In other embodiments, additional bitline and wordline layers may also be implemented. Support circuits such as row decoders, column decoders, and read/write circuits may be disposed on the surface of the substrate with the memory array layer fabricated above the support circuits.
实现三维存储器阵列的集成电路还可以包含在支持电路的不同组件之间、以及在支持电路与存储器阵列的位线和字线之间的布线信号的多个金属层。这些布线层可以布置在支持电路上方,该支持电路实现在衬底的表面上并且在存储器阵列层下方。An integrated circuit implementing a three-dimensional memory array may also contain multiple metal layers for routing signals between different components of the support circuitry, and between the support circuitry and the bit lines and word lines of the memory array. These wiring layers may be arranged over support circuitry implemented on the surface of the substrate and below the memory array layer.
如图3B所描绘的,两个金属层R1和R2用于布线层。然而,其他实施例可以包含多于或少于两个金属层。在一个示例中,这些金属层R1和R2由钨(大约1欧姆/平方)构成。定位于存储器阵列层上方可以是用于在集成电路的不同组件之间的布线信号的一个或多个顶部金属层,诸如顶部金属层。在一个示例中,顶部金属层由铜或者铝(大约0.5欧姆/平方)构成,其可以提供比金属层R1和R2更小的每单元面积的阻抗。在一些情况下,可以不使用与那些用于顶部金属层的相同材料来实现金属层R1和R2,因为用于R1和R2的材料必须能够抵挡了R1和R2的顶部上制造存储器阵列层的工艺步骤。As depicted in FIG. 3B, two metal layers R1 and R2 are used for wiring layers. However, other embodiments may include more or less than two metal layers. In one example, the metal layers R1 and R2 are composed of tungsten (approximately 1 ohm/square). Positioned above the memory array layer may be one or more top metal layers, such as a top metal layer, for routing signals between different components of the integrated circuit. In one example, the top metal layer is composed of copper or aluminum (approximately 0.5 ohms/square), which can provide a lower resistance per unit area than metal layers R1 and R2. In some cases, metal layers R1 and R2 may not be implemented using the same materials as those used for the top metal layer, because the material used for R1 and R2 must be able to withstand the process of fabricating the memory array layer on top of R1 and R2 step.
图3C描绘了交叉点存储器阵列360的一个实施例。交叉点存储器阵列360可以与图3A中的存储器阵列300对应。如所描绘的,交叉点存储器阵列360包含字线365-368和位线361-364。字线366包含所选择的字线,并且位线362包含所选择的位线。在所选择的字线366和所选择的位线362的相交处是所选择的存储器单元(S单元)。跨越S单元的电压是在所选择的字线电压和所选择的位线电压之间的差异。FIG. 3C depicts one embodiment of a cross-point memory array 360 . Cross-point memory array 360 may correspond to memory array 300 in FIG. 3A . As depicted, cross-point memory array 360 includes word lines 365-368 and bit lines 361-364. Wordline 366 includes the selected wordline, and bitline 362 includes the selected bitline. At the intersection of the selected word line 366 and the selected bit line 362 is the selected memory cell (S cell). The voltage across the S cell is the difference between the selected word line voltage and the selected bit line voltage.
在所选择的字线366以及未选择的位线361、363和364的相交处的存储器单元包含未选择的存储器单元(H单元)。H单元是未选择的存储器单元,其共享了偏置到所选择的字线电压的所选择的字线。跨越H单元的电压是在所选择的字线电压和未选择的位线电压之间差异。The memory cells at the intersection of the selected word line 366 and the unselected bit lines 361, 363, and 364 comprise unselected memory cells (H cells). H cells are unselected memory cells that share the selected word line biased to the selected word line voltage. The voltage across the H cells is the difference between the selected word line voltage and the unselected bit line voltage.
在所选择的位线362以及未选择的字线365、367和368的相交处的存储器单元包含未选择的存储器单元(F单元)。F单元是未选择的存储器单元,其共享了偏置到所选择的位线电压的所选择的位线。跨越F单元的电压是在未选择的字线电压和所选择的位线电压之间的差异。The memory cells at the intersection of the selected bit line 362 and the unselected word lines 365, 367, and 368 comprise unselected memory cells (F cells). F cells are unselected memory cells that share the selected bit line biased to the selected bit line voltage. The voltage across the F cell is the difference between the unselected word line voltage and the selected bit line voltage.
在未选择的字线365、367和368以及未选择的位线361、363和364的相交处的存储器单元包含未选择的存储器单元(U单元)。跨越U单元的电压是在未选择的字线电压和未选择的位线电压之间的差异。The memory cells at the intersection of unselected word lines 365, 367, and 368 and unselected bit lines 361, 363, and 364 comprise unselected memory cells (U cells). The voltage across the U cell is the difference between the unselected word line voltage and the unselected bit line voltage.
F单元的数量与位线的长度有关(或者该数量的存储器单元连接到位线),然而H单元的数量与字线的长度有关(或者该数量的存储器单元联接到字线)。U单元的数量与字线长度和位线长度的乘积有关。在一个实施例中,共享特定字线(诸如字线365)的每个存储器单元可以与储存在交叉点存储器阵列360内的特定页相关联。The number of F cells is related to the length of the bit line (or the number of memory cells connected to the bit line), whereas the number of H cells is related to the length of the word line (or the number of memory cells connected to the word line). The number of U cells is related to the product of word line length and bit line length. In one embodiment, each memory cell sharing a particular word line, such as word line 365 , may be associated with a particular page stored within cross-point memory array 360 .
图3D描绘了交叉点存储器阵列的替代例。交叉点存储器阵列370可以与图3A中的存储器阵列300对应。如所描绘的,交叉点存储器阵列370包含字线375-378和位线371-374。字线376包含所选择的字线,并且位线372和374包含所选择的位线。尽管选择位线372和374二者,施加到位线372和位线374的电压可以是不同的。例如,在位线372与将要编程的第一存储器单元(即S单元)相关联的情况下,则位线372可以偏置到所选择的位线电压以编程第一存储器单元。在位线374与不被编程的第二存储器单元(即I单元)相关联的情况下,则位线374可以偏置到编程禁止电压(即位线电压将防止第二存储器单元被编程)。Figure 3D depicts an alternative example of a cross-point memory array. Cross-point memory array 370 may correspond to memory array 300 in FIG. 3A . As depicted, cross-point memory array 370 includes word lines 375-378 and bit lines 371-374. Word line 376 comprises the selected word line, and bit lines 372 and 374 comprise the selected bit lines. Although both bit lines 372 and 374 are selected, the voltages applied to bit line 372 and bit line 374 may be different. For example, where bitline 372 is associated with a first memory cell to be programmed (ie, an S cell), then bitline 372 can be biased to a selected bitline voltage to program the first memory cell. In the event that bit line 374 is associated with a second memory cell that is not being programmed (ie, an I cell), then bit line 374 can be biased to a program inhibit voltage (ie, the bit line voltage will prevent the second memory cell from being programmed).
在所选择的字线376和所选择的位线374的相交处是编程禁止存储器单元(I单元)。跨越I单元的电压是在所选择的字线电压和编程禁止电压之间的差异。在所选择的位线374以及未选择的字线375、377和378的相交处的存储器单元包含未选择的存储器单元(X单元)。X单元是未选择的存储器单元,其共享了偏置到编程禁止电压的所选择的位线。跨越X单元的电压是在未选择的字线电压和编程禁止电压之间的差异。At the intersection of the selected word line 376 and the selected bit line 374 is a program inhibit memory cell (I-cell). The voltage across the I cell is the difference between the selected word line voltage and the program inhibit voltage. The memory cells at the intersection of the selected bit line 374 and the unselected word lines 375, 377 and 378 comprise unselected memory cells (X cells). X cells are unselected memory cells that share the selected bit line biased to the program inhibit voltage. The voltage across cell X is the difference between the unselected word line voltage and the program inhibit voltage.
在一个实施例中,施加到所选择的位线374的编程禁止电压可以与未选择的位线电压相似。在另一个实施例中,编程禁止电压可以是大于或小于未选择的位线电压的电压。例如,编程禁止电压可以设定为在所选择的字线电压和未选择的位线电压之间的电压。在一些情况下,所施加的编程禁止电压可以是温度的函数。在一个示例中,编程禁止电压可以随着温度跟踪未选择的位线电压。In one embodiment, the program inhibit voltage applied to the selected bit line 374 may be similar to the unselected bit line voltage. In another embodiment, the program inhibit voltage may be a voltage greater or less than the unselected bit line voltage. For example, the program inhibit voltage may be set to a voltage between a selected word line voltage and an unselected bit line voltage. In some cases, the applied program inhibit voltage can be a function of temperature. In one example, the program inhibit voltage can track the unselected bit line voltage over temperature.
在一个实施例中,两个或更多个页可以与特定字线相关联。在一个示例中,字线375可以与第一页和第二页相关联。第一页可以与位线371和373对应,并且第二页可以与位线372和374对应。在这种情况下,第一页和第二页可以与共享相同字线的相间交错(interdigitated)存储器单元对应。因为与一个或多个其他页相关联的存储器单元将共享与第一页相同的所选择字线,所以当正在第一页上进行存储器阵列操作(例如编程操作)并且所选择的字线376偏置到所选择的字线电压时,还与所选择的字线376相关联的一个或多个其他页可以包含H单元。In one embodiment, two or more pages may be associated with a particular word line. In one example, word line 375 may be associated with a first page and a second page. The first page may correspond to bit lines 371 and 373 , and the second page may correspond to bit lines 372 and 374 . In this case, the first page and the second page may correspond to interdigitated memory cells sharing the same word line. Because memory cells associated with one or more other pages will share the same selected word line as the first page, when a memory array operation (such as a programming operation) is being performed on the first page and the selected word line 376 is off When brought to the selected word line voltage, one or more other pages also associated with the selected word line 376 may contain H cells.
在一些实施例中,不是所有未选择的位线可以驱动到未选择位线的电压。反而,若干未选择的位线可以浮置并且经由未选择的字线间接偏置。在这种情况下,存储器单元370的存储器单元可以包含电阻式存储器元件而不是隔离二极管。在一个实施例中,位线372和373可以包含三维存储器阵列(包括梳状字线)中的垂直位线。In some embodiments, not all unselected bit lines can be driven to the voltage of the unselected bit lines. Instead, several unselected bit lines can be floating and indirectly biased via unselected word lines. In this case, the memory cells of memory cell 370 may include resistive memory elements instead of isolation diodes. In one embodiment, bitlines 372 and 373 may comprise vertical bitlines in a three-dimensional memory array including comb wordlines.
图4A描绘了单片三维存储器阵列400的部分的一个实施例,该单片三维存储器阵列400包含了第一存储器级别410和定位于第一存储器级别410上方的第二存储器级别412。存储器阵列400是图1E中存储器阵列150的实现方式的一个示例。局部位线LBL11-LBL33布置在第一方向(例如z方向)上,并且字线WL10-WL23布置在垂直于第一方向的第二方向(例如x方向)上。单片三维存储器阵列中的垂直位线的该布置是垂直位线存储器阵列的一个实施例。FIG. 4A depicts one embodiment of a portion of a monolithic three-dimensional memory array 400 that includes a first memory level 410 and a second memory level 412 positioned above the first memory level 410 . Memory array 400 is one example of an implementation of memory array 150 in Figure IE. The local bit lines LBL 11 -LBL 33 are arranged in a first direction (eg, z direction), and the word lines WL 10 -WL 23 are arranged in a second direction (eg, x direction) perpendicular to the first direction. This arrangement of vertical bit lines in a monolithic three-dimensional memory array is one embodiment of a vertical bit line memory array.
如所描绘的,设置在每个局部位线和每个字线的相交之间是特定存储器单元(例如存储器单元M111设置在局部位线LBL11和字线WL10之间)。特定存储器单元可以包含浮置栅极器件、电荷俘获器件(例如使用硅氮化物材料)、可逆电阻切换元件、ReRAM器件或其他相似器件。全局位线GBL1-GBL3布置在与第一方向和第二方向二者垂直的第三方向(例如y方向)上。As depicted, disposed between the intersection of each local bit line and each word line is a particular memory cell (eg, memory cell M 111 is disposed between local bit line LBL 11 and word line WL 10 ). Certain memory cells may comprise floating gate devices, charge trapping devices (eg using silicon nitride materials), reversible resistance switching elements, ReRAM devices, or other similar devices. The global bit lines GBL1 - GBL3 are arranged in a third direction (eg, y direction) perpendicular to both the first direction and the second direction.
每个局部位线LBL11-LBL33分别具有相关联的位线选择晶体管Q11-Q33。位线选择晶体管Q11-Q33可以是场效应晶体管(诸如所示出的)或者可以是任何其他晶体管。如所描绘的,使用行选择线SG1,位线选择晶体管Q11-Q31分别与局部位线LBL11-LBL31相关联,并且可以用于将局部位线LBL11-LBL31分别连接到全局位线GBL1-GBL3。特别地,位线选择晶体管Q11-Q31的每个具有分别耦接到局部位线LBL11-LBL31中的对应的一个的第一端子(例如漏极/源极端子)、分别耦接到全局位线GBL1-GBL3中的对应的一个的第二端子(例如源极/漏极端子)、以及耦接到行选择线SG1的第三端子(例如栅极端子)。Each local bit line LBL 11 -LBL 33 has an associated bit line select transistor Q 11 -Q 33 , respectively. Bit line select transistors Q11 - Q33 may be field effect transistors such as shown or may be any other transistors. As depicted, bit line select transistors Q 11 -Q 31 are associated with local bit lines LBL 11 -LBL 31 , respectively, using row select line SG 1 , and can be used to connect local bit lines LBL 11 -LBL 31 respectively to Global bit lines GBL 1 -GBL 3 . In particular, each of the bit line selection transistors Q 11 -Q 31 has a first terminal (eg drain/source terminal) respectively coupled to a corresponding one of the local bit lines LBL 11 -LBL 31 , respectively coupled to to a second terminal (eg, a source/drain terminal) of a corresponding one of the global bit lines GBL1 - GBL3 , and a third terminal (eg, a gate terminal) coupled to the row select line SG1 .
相似地,使用行选择线SG2,位线选择晶体管Q12-Q32分别与局部位线LBL12-LBL32相关联,并且可以用于将局部位线LBL12-LBL32分别连接到全局位线GBL1-GBL3。特别地,位线选择晶体管Q12-Q32的每个具有分别耦接到局部位线LBL12-LBL32中的对应的一个的第一端子(例如漏极/源极端子)、分别耦接到全局位线GBL1-GBL3中的对应的一个的第二端子(例如源极/漏极端子)、以及耦接到行选择线SG2的第三端子(例如栅极端子)。Similarly, bit line select transistors Q 12 -Q 32 are associated with local bit lines LBL 12 -LBL 32 , respectively, using row select line SG 2 , and can be used to connect local bit lines LBL 12 -LBL 32 respectively to global bit lines Lines GBL 1 -GBL 3 . In particular, each of the bit line select transistors Q 12 -Q 32 has a first terminal (eg drain/source terminal) respectively coupled to a corresponding one of the local bit lines LBL 12 -LBL 32 , respectively coupled to to a second terminal (eg, source/drain terminal) of a corresponding one of the global bit lines GBL1 - GBL3 , and a third terminal (eg, gate terminal) coupled to row select line SG2 .
同样地,使用行选择线SG3,位线选择晶体管Q13-Q33分别与局部位线LBL13-LBL33相关联,并且可以用于将局部位线LBL13-LBL33分别连接到全局位线GBL1-GBL3。特别地,位线选择晶体管Q13-Q33的每个具有分别耦接到局部位线LBL13-LBL33中的对应的一个的第一端子(例如漏极/源极端子)、分别耦接到全局位线GBL1-GBL3中的对应的一个的第二端子(例如源极/漏极端子)、以及耦接到行选择线SG3的第三端子(例如栅极端子)。Likewise, bit line select transistors Q 13 -Q 33 are associated with local bit lines LBL 13 -LBL 33 , respectively, using row select line SG 3 , and can be used to connect local bit lines LBL 13 -LBL 33 respectively to global bit lines Lines GBL 1 -GBL 3 . In particular, each of the bit line selection transistors Q 13 -Q 33 has a first terminal (eg drain/source terminal) respectively coupled to a corresponding one of the local bit lines LBL 13 -LBL 33 , respectively coupled to to a second terminal (eg, a source/drain terminal) of a corresponding one of the global bit lines GBL1 - GBL3 , and a third terminal (eg, a gate terminal) coupled to a row selection line SG3 .
因为单个位线选择晶体管与对应的局部位线相关联,所以可以将特定局部位线的电压施加到对应的局部位线。因此,当局部位线的第一集合(例如LBL11-LBL31)偏置到全局位线时,必须将其他局部位线(例如LBL12-LBL32和LBL13-LBL33)或是驱动到相同全局位线GBL1-GBL3、或是浮置。Because a single bitline select transistor is associated with a corresponding local bitline, the voltage of a particular local bitline can be applied to the corresponding local bitline. Therefore, when the first set of local bitlines (eg, LBL 11 -LBL 31 ) are biased to the global bitlines, the other local bitlines (eg, LBL 12 -LBL 32 and LBL 13 -LBL 33 ) must either be driven to the same Global bit lines GBL 1 -GBL 3 , or floating.
在一个实施例中,在存储器操作期间,通过将局部位线中的每个连接到一个或多个局部位线来将存储器阵列内的所有局部位线首先偏置到未选择的位线电压。在将局部位线偏置到未选择位线电压之后,然而只有局部位线的第一集合LBL11-LBL31经由全局位线GBL1-GBL3偏置到一个或多个所选择的位线电压,同时其他局部位线(例如LBL12-LBL32和LBL13-LBL33)是浮置的。一个或多个所选择的位线电压可以对应于:例如读取操作期间的一个或多个读取电压或编程期间的一个或多个编程电压。In one embodiment, during memory operation, all local bitlines within the memory array are first biased to an unselected bitline voltage by connecting each of the local bitlines to one or more local bitlines. After biasing the local bitlines to the unselected bitline voltage, however only the first set of local bitlines LBL11 - LBL31 are biased to one or more selected bitlines via the global bitlines GBL1 - GBL3 voltage while other local bit lines (eg, LBL 12 -LBL 32 and LBL 13 -LBL 33 ) are floating. The one or more selected bit line voltages may correspond to, for example, one or more read voltages during a read operation or one or more program voltages during programming.
在一个实施例中,垂直位线存储器阵列(诸如存储器阵列400)包含与沿着垂直位线的存储器单元的数量相比更大数量的沿着字线的存储器单元(例如沿着字线的存储器单元的数量可以是沿着位线的存储器单元的数量的十倍多)。在一个示例中,沿着每个位线的存储器单元的数量可以是16个或32个,但是沿着每个字线的存储器单元的数量可以是2048个或者多于4096个。可以使用沿着每个位线的和沿着每个字线的存储器单元的其他数量。In one embodiment, a vertical bit line memory array, such as memory array 400, contains a greater number of memory cells along word lines (e.g., memory cells along word lines) than the number of memory cells along vertical bit lines. The number of cells can be more than ten times the number of memory cells along a bit line). In one example, the number of memory cells along each bit line may be 16 or 32, but the number of memory cells along each word line may be 2048 or more than 4096. Other numbers of memory cells along each bit line and along each word line may be used.
在读取操作的一个实施例中,储存在所选择的存储器单元(例如存储器单元M111)中的数据可以通过将连接到所选择的存储器单元(例如所选择的字线WL10)偏置到读取模式下所选择的字线电压(例如0V)来读取。经由耦接到所选择的局部位线(LBL11)的相关联的位线选择晶体管(例如Q11)和耦接到该位线选择晶体管(Q11)的全局位线(例如GBL1),将耦接到所选择的存储器单元(M111)的局部位线(例如LBL1)偏置到读取模式下所选择位线电压(例如1V)。然后可以将感测放大器耦接到所选择的局部位线(LBL11)以确定所选择的存储器单元(M111)的读取电流IREAD。读取电流IREAD由位线选择晶体管Q11传导,并且可以在大约100nA和大约500nA之间,但是可以使用其他读取电流。In one embodiment of a read operation, data stored in a selected memory cell (eg, memory cell M 111 ) may be biased by biasing the memory cell connected to the selected memory cell (eg, selected word line WL 10 ) to The selected word line voltage (for example, 0V) in the read mode is used for reading. Via the associated bit line select transistor (eg Q 11 ) coupled to the selected local bit line (LBL 11 ) and the global bit line (eg GBL 1 ) coupled to the bit line select transistor (Q 11 ), The local bit line (eg LBL 1 ) coupled to the selected memory cell (M 111 ) is biased to the selected bit line voltage (eg IV) in read mode. A sense amplifier can then be coupled to the selected local bit line (LBL 11 ) to determine the read current I READ of the selected memory cell (M 111 ). Read current I READ is conducted by bit line select transistor Q 11 and may be between about 100 nA and about 500 nA, although other read currents may be used.
在写入操作的一个实施例中,可以通过将连接到所选择的存储器单元(例如WL20)偏置到写入模式下所选择的字线电压(例如5V),将数据写入到所选择的存储器单元(例如存储器单元M221)。经由耦接到所选择的局部位线(LBL21)的相关联的位线选择晶体管(例如Q21)和耦接到该位线选择晶体管(Q21)的全局位线(例如GBL2),将耦接到所选择的存储器单元(M221)的局部位线(例如LBL21)偏置到读取模式下所选择位线电压(例如1V)。在写入操作期间,编程电流IPGRM由相关联的位线选择晶体管Q21传导,并且可以在大约3μA和大约500μA之间,但是可以使用其他编程电流。In one embodiment of a write operation, data can be written to the selected memory unit (for example, memory unit M 221 ). Via the associated bit line select transistor (eg Q 21 ) coupled to the selected local bit line (LBL 21 ) and the global bit line (eg GBL 2 ) coupled to the bit line select transistor (Q 21 ), The local bit line (eg LBL 21 ) coupled to the selected memory cell (M 221 ) is biased to the selected bit line voltage (eg IV) in read mode. During a write operation, programming current I PGRM is conducted by the associated bit line select transistor Q 21 and may be between about 3 μA and about 500 μA, although other programming currents may be used.
图4B描绘了单片三维存储器阵列的包含非易失性存储器材料的垂直条的部分的实施例。图4B所描绘的物理结构可以包含图4A所描绘的单片三维存储器阵列的部分的一个实现方式。非易失性存储器材料的垂直条可以形成在垂直于衬底的方向上(例如在z方向上)。非易失性存储器材料414的垂直条可以包含例如垂直氧化物层、垂直可逆电阻切换元件材料(例如诸如镍氧化物的金属氧化物层、或其他类似金属氧化物材料、相变材料或其他可逆电阻切换元件材料)、或者垂直电荷俘获层(例如硅氮化物层)。材料的垂直条可以包含单个连续材料层,其可以由多个存储器单元或器件来使用。Figure 4B depicts an embodiment of a portion of a monolithic three-dimensional memory array comprising vertical strips of non-volatile memory material. The physical structure depicted in Figure 4B may comprise one implementation of a portion of the monolithic three-dimensional memory array depicted in Figure 4A. Vertical strips of non-volatile memory material may be formed in a direction perpendicular to the substrate (eg, in the z-direction). The vertical strips of nonvolatile memory material 414 may comprise, for example, vertical oxide layers, vertical reversible resistance-switching element materials (e.g., metal oxide layers such as nickel oxide, or other similar metal oxide materials, phase change materials, or other reversible resistive switching element material), or a vertical charge trapping layer (such as a silicon nitride layer). A vertical strip of material may comprise a single continuous layer of material that may be used by multiple memory cells or devices.
在一个示例中,非易失性存储器材料414的垂直条的部分可以包含第一存储器单元的与WL12和LBL13之间的横截面相关联的部分以及第二存储器单元的与WL22和LBL13之间的横截面相关联的部分。在一些情况下,诸如LBL13的垂直位线可以包含垂直结构(例如矩形棱柱、圆柱体或柱状物),并且非易失性材料可以完全地或部分地围绕垂直结构(例如围绕垂直结构的侧边的相变材料的共形层)。In one example, the portion of the vertical strip of nonvolatile memory material 414 may include the portion of the first memory cell associated with the cross section between WL 12 and LBL 13 and the portion of the second memory cell associated with WL 22 and LBL 13 between the associated parts of the cross-section. In some cases, a vertical bit line such as LBL 13 may contain vertical structures (e.g., rectangular prisms, cylinders, or pillars), and nonvolatile material may completely or partially surround the vertical structures (e.g., around the sides of the vertical structures). Conformal layer of phase change material on the edge).
如所描绘的,可以经由相关联垂直取向的位线选择晶体管(例如Q11、Q12、Q13、Q23),将垂直位线中的每个连接到全局位线的集合中的一个。每个垂直取向的位线选择晶体管可以包含MOS器件(例如NMOS器件)或者垂直薄膜晶体管(TFT)。As depicted, each of the vertical bitlines can be connected to one of the set of global bitlines via an associated vertically oriented bitline select transistor (eg, Q 11 , Q 12 , Q 13 , Q 23 ). Each vertically oriented bit line select transistor may comprise a MOS device (eg, an NMOS device) or a vertical thin film transistor (TFT).
在实施例中,每个垂直取向的位线选择晶体管是垂直取向的柱状形TFT,其在相关联的局部位线柱和全局位线之间耦接。在实施例中,垂直取向的位线选择晶体管形成在柱选择层(其形成在CMOS衬底上方)中,并且包含字线的多层和存储器元件的存储器层形成在柱选择层上方。In an embodiment, each vertically-oriented bitline select transistor is a vertically-oriented pillar-shaped TFT coupled between an associated local bitline pillar and a global bitline. In an embodiment, a vertically oriented bit line select transistor is formed in a pillar select layer (which is formed over a CMOS substrate), and a memory layer including multiple layers of word lines and memory elements is formed over the pillar select layer.
图5A-5D描绘了单片三维存储器阵列500的包含非易失性存储器材料的垂直条的部分的实施例的各种视图。图5A-5D所描绘的物理结构可以包含图4A所描绘的单片三维存储器阵列的部分的一个实现方式。5A-5D depict various views of an embodiment of a portion of a monolithic three-dimensional memory array 500 comprising vertical strips of non-volatile memory material. The physical structures depicted in Figures 5A-5D may comprise one implementation of portions of the monolithic three-dimensional memory array depicted in Figure 4A.
单片三维存储器阵列500包含布置在第一方向(例如z方向)上的垂直位线LBL11-LBL88,布置在垂直于第一方向的第二方向(例如x方向)上的字线WL10、WL20、…、WL615,布置在第二方向上的行选择线SG1、SG2、…、SG8,以及布置在垂直于第一和第二方向的第三方向(例如y方向)上的全局位线GBL1、GBL2、…、GBL8。垂直位线LBL11-LBL88设置在全局位线GBL1、GBL2、…、GBL8上方,其每一个具有在第二方向(例如x方向)上的长轴。The monolithic three-dimensional memory array 500 includes vertical bit lines LBL 11 -LBL 88 arranged in a first direction (eg, z direction), and word lines WL 10 arranged in a second direction (eg, x direction) perpendicular to the first direction. , WL 20 , ..., WL 615 , row selection lines SG 1 , SG 2 , ..., SG 8 arranged in the second direction, and arranged in a third direction (eg, y direction) perpendicular to the first and second directions Global bit lines GBL 1 , GBL 2 , . . . , GBL 8 on . Vertical bit lines LBL 11 -LBL 88 are arranged above the global bit lines GBL 1 , GBL 2 , .
在实施例中,全局位线GBL1、GBL2、…、GBL8设置在衬底502(诸如硅、锗、硅化锗、未掺杂物、掺杂物、体、绝缘体上硅(“SOI”)或者具有或没有附加电路的其他衬底)上方。在实施例中,诸如硅氧化物、硅氮化物、硅氮氧化物或其他任何合适的绝缘层的层的隔离层504可以形成在衬底502上方。在实施例中,介电层506和508(例如二氧化硅)形成在隔离层504上方,并且全局位线GBL1、GBL2、…、GBL8设置在介电层508上方。In an embodiment , the global bit lines GBL 1 , GBL 2 , . . . ) or other substrates with or without additional circuitry). In an embodiment, an isolation layer 504 such as a layer of silicon oxide, silicon nitride, silicon oxynitride, or any other suitable insulating layer may be formed over the substrate 502 . In an embodiment, dielectric layers 506 and 508 (eg, silicon dioxide) are formed over isolation layer 504 , and global bit lines GBL 1 , GBL 2 , . . . , GBL 8 are disposed over dielectric layer 508 .
存储器单元设置在每个垂直位线和每个字线的相交之间(例如存储器单元M1114设置在垂直位线LBL17和字线WL113之间并且存储器单元M419设置在垂直位线LBL15和字线之间WL48)。每个存储器单元可以包含浮置栅极器件、电荷俘获器件(例如使用硅氮化物材料)、电阻变化存储器器件或其他类型的存储器器件。垂直取向的位线选择晶体管Q11-Q88可以用于选择垂直位线LBL11-LBL88的对应的一个。垂直取向的位线选择晶体管Q11-Q88可以是场效应晶体管,但是可以使用任何其他晶体管类型。Memory cells are disposed between the intersection of each vertical bit line and each word line (eg memory cell M 1114 is disposed between vertical bit line LBL 17 and word line WL 113 and memory cell M 419 is disposed between vertical bit line LBL 15 and word line WL 48 ). Each memory cell may comprise a floating gate device, a charge trapping device (eg using silicon nitride material), a resistance change memory device, or another type of memory device. Vertically oriented bit line select transistors Q11 - Q88 may be used to select a corresponding one of the vertical bit lines LBL11 - LBL88 . The vertically oriented bit line select transistors Q11 - Q88 may be field effect transistors, but any other transistor type may be used.
垂直取向的位线选择晶体管Q11-Q88中的每一个具有第一端子(例如漏极/源极端子)、第二端子(例如源极/漏极端子)、第一控制端子(例如第一栅极端子)和第二控制端子(例如第二栅极端子)。第一栅极端子和第二栅极端子可以设置在垂直取向的位线选择晶体管的相对侧上。第一栅极端子可以用于选择性诱导晶体管的第一端子和第二端子之间的第一导电沟道,并且第二栅极端子可以用于选择性诱导晶体管的第一端子和第二端子之间的第二导电沟道。Each of the vertically oriented bit line select transistors Q11 - Q88 has a first terminal (eg, drain/source terminal), a second terminal (eg, source/drain terminal), a first control terminal (eg, second a gate terminal) and a second control terminal (eg, a second gate terminal). The first gate terminal and the second gate terminal may be disposed on opposite sides of the vertically oriented bit line select transistor. The first gate terminal may be used to selectively induce a first conductive channel between the first terminal and the second terminal of the transistor, and the second gate terminal may be used to selectively induce the first terminal and the second terminal of the transistor between the second conductive channel.
在实施例中,第一栅极端子和第二栅极端子耦接在一起以形成单个控制端子,其可以用于共同导通或关断垂直取向的位线选择晶体管。因此,垂直取向的位线选择晶体管Q11-Q88中的每一个的第一栅极端子和第二栅极端子可以用于选择垂直位线LBL11、LBL12、…、LBL88的对应的一个。在不希望由任何特定理论限定的情况下,对于垂直取向的位线选择晶体管Q11-Q88中的每一个而言,可以相信的是:可以通过使用第一栅极端子和第二栅极端子二者来增加晶体管的电流驱动能力以导通晶体管。为简化起见,选择晶体管Q11-Q88中的每一个的第一和第二栅极端子的可以是指单个栅极端子。In an embodiment, the first gate terminal and the second gate terminal are coupled together to form a single control terminal that can be used to collectively turn on or off the vertically oriented bit line select transistor. Thus, the first and second gate terminals of each of the vertically oriented bit line select transistors Q 11 -Q 88 can be used to select the corresponding one of the vertical bit lines LBL 11 , LBL 12 , . . . One. Without wishing to be bound by any particular theory, for each of the vertically oriented bit line select transistors Q11 - Q88 , it is believed that a Both to increase the current drive capability of the transistor to turn on the transistor. For simplicity, the selection of the first and second gate terminals of each of transistors Q 11 -Q 88 may refer to a single gate terminal.
参考图5A,垂直取向的位线选择晶体管Q11、Q12、…、Q18用于使用行选择线SG1、SG2、…、SG8来分别选择性将垂直位线LBL11、LBL12、…、LBL18连接到全局位线GBL1或者分别从全局位线GBL1断开垂直位线LBL11、LBL12、…、LBL18。特别地,垂直取向的位线选择晶体管Q11、Q12、…、Q18中的每一个具有分别耦接到垂直位线LBL11、LBL12、…、LBL18中的对应的一个的第一端子(例如漏极/源极端子)、分别耦接到全局位线GBL1中的对应的一个的第二端子(例如源极/漏极端子)、以及耦接到行选择线SG1、SG2、…、SG8的第三端子(例如栅极端子)。行选择线SG1、SG2、…、SG8分别用于导通/关断垂直取向的位线选择晶体管Q11、Q12、…、Q18,以分别将垂直位线LBL11、LBL12、…、LBL18连接到全局位线GBL1,或者分别从全局位线GBL1断开垂直位线LBL11、LBL12、…、LBL18。Referring to FIG. 5A, vertically oriented bit line select transistors Q 11 , Q 12 , ..., Q 18 are used to selectively select vertical bit lines LBL 11 , LBL 12 using row select lines SG 1 , SG 2 , ..., SG 8, respectively. , . . . , LBL 18 are connected to the global bit line GBL 1 or disconnected from the global bit line GBL 1 , respectively, the vertical bit lines LBL 11 , LBL 12 , . . . , LBL 18 . In particular, each of the vertically oriented bit line select transistors Q 11 , Q 12 , . . . , Q 18 has a first terminal (eg drain/source terminal), a second terminal (eg source/drain terminal) respectively coupled to a corresponding one of the global bit lines GBL 1 , and to row select lines SG 1 , SG 2 , . . . , the third terminal (eg, gate terminal) of SG 8 . The row selection lines SG 1 , SG 2 , ..., SG 8 are used to turn on/off the vertically oriented bit line selection transistors Q 11 , Q 12 , ..., Q 18 respectively, so that the vertical bit lines LBL 11 , LBL 12 , . . . , LBL 18 are connected to the global bit line GBL 1 , or the vertical bit lines LBL 11 , LBL 12 , . . . , LBL 18 are respectively disconnected from the global bit line GBL 1 .
同样地,参考图5C,垂直取向的位线选择晶体管Q11、Q21、…、Q81用于使用行选择线SG1,来分别选择性与全局位线GBL1、GBL2、…、GBL8连接/断开垂直位线LBL11、LBL21、…、LBL81。特别地,垂直取向的位线选择晶体管Q11、Q21、…、Q81中的每一个具有分别耦接到垂直位线LBL11、LBL21、…、LBL81中的对应的一个的第一端子(例如漏极/源极端子)、分别耦接到全局位线GBL1、GBL2、…、GBL8中的对应的一个的第二端子(例如源极/漏极端子)、以及耦接到行选择线SG1的第三端子(例如栅极端子)。行选择线SG1分别用于导通/关断垂直取向的位线选择晶体管Q11、Q21、…、Q81,以分别将垂直位线LBL11、LBL21、…、LBL81连接到全局位线GBL1、GBL2、…、GBL8或者分别从全局位线GBL1、GBL2、…、GBL8断开垂直位线LBL11、LBL21、…、LBL81。Similarly, referring to FIG. 5C, the vertically oriented bit line selection transistors Q 11 , Q 21 , ..., Q 81 are used to use the row selection line SG 1 to selectively communicate with the global bit lines GBL 1 , GBL 2 , ..., GBL, respectively. 8. Connect/disconnect vertical bit lines LBL 11 , LBL 21 , . . . , LBL 81 . In particular, each of the vertically oriented bit line selection transistors Q 11 , Q 21 , . . . , Q 81 has a first terminal (eg, drain/source terminal), a second terminal (eg, source/drain terminal) respectively coupled to a corresponding one of the global bit lines GBL 1 , GBL 2 , . . . , GBL 8 , and coupling to the third terminal (eg gate terminal) of row select line SG1 . The row selection line SG 1 is used to turn on/off the vertically oriented bit line selection transistors Q 11 , Q 21 , . . . The bitlines GBL1 , GBL2 , ..., GBL8 or the vertical bitlines LBL11 , LBL21 , ..., LBL81 are disconnected from the global bitlines GBL1 , GBL2 , ..., GBL8 , respectively.
同样地,参考图5D,垂直取向的位线选择晶体管Q14、Q24、…、Q84用于使用行选择线SG4,来分别选择性将垂直位线LBL14、LBL24、…、LBL84连接到全局位线GBL1、GBL2、…、GBL8或者从全局位线GBL1、GBL2、…、GBL8断开垂直位线LBL14、LBL24、…、LBL84。特别地,垂直取向的位线选择晶体管Q14、Q24、…、Q84中的每一个具有分别耦接到垂直位线LBL14、LBL24、…、LBL84中的对应的一个的第一端子(例如漏极/源极端子)、分别耦接到全局位线GBL1、GBL2、…、GBL8中的对应的一个的第二端子(例如源极/漏极端子)、以及耦接到行选择线SG4的第三端子(例如栅极端子)。行选择线SG4分别用于导通/关断垂直取向的位线选择晶体管Q14、Q24、…、Q84,以分别将垂直位线LBL14、LBL24、…、LBL84连接到全局位线GBL1、GBL2、…、GBL8或者分别从全局位线GBL1、GBL2、…、GBL8断开垂直位线LBL14、LBL24、…、LBL84。Similarly, referring to FIG. 5D, the vertically oriented bit line selection transistors Q 14 , Q 24 , ..., Q 84 are used to use the row selection line SG 4 to selectively select the vertical bit lines LBL 14 , LBL 24 , ..., LBL respectively. 84 is connected to global bit lines GBL 1 , GBL 2 , . . . , GBL 8 or disconnects vertical bit lines LBL 14 , LBL 24 , . In particular, each of the vertically oriented bit line select transistors Q 14 , Q 24 , . . . , Q 84 has a first terminal (eg, drain/source terminal), a second terminal (eg, source/drain terminal) respectively coupled to a corresponding one of the global bit lines GBL 1 , GBL 2 , . . . , GBL 8 , and coupling to the third terminal (eg gate terminal) of row select line SG 4 . The row select line SG 4 is used to turn on/off the vertically oriented bit line select transistors Q 14 , Q 24 , . . . The bitlines GBL1 , GBL2 , ..., GBL8 or the vertical bitlines LBL14 , LBL24 , ..., LBL84 are disconnected from the global bitlines GBL1 , GBL2 , ..., GBL8 , respectively.
在实施例中,单片三维存储器阵列500包含设置在局部位线的第一组(例如LBL11、LBL21、LBL31、LBL41、…、LBL18、LBL28、LBL38、LBL48)和局部位线的第二组(例如LBL51、LBL61、LBL71、LBL81、…、LBL68、LBL628、LBL78、LBL88)之间的区域510。在实施例中,区域510包含在第一方向(例如z方向)上延伸的垂直导体512。可以将垂直导体512耦接到字线WL10、WL20、…、WL615中的一些或全部。因此,区域510还可以称为“字线接线区域510”。In an embodiment, the monolithic three-dimensional memory array 500 includes a first set of local bit lines (eg, LBL 11 , LBL 21 , LBL 31 , LBL 41 , . . . , LBL 18 , LBL 28 , LBL 38 , LBL 48 ) and Region 510 between the second set of local bit lines (eg, LBL 51 , LBL 61 , LBL 71 , LBL 81 , . . . , LBL 68 , LBL6 28 , LBL 78 , LBL 88 ). In an embodiment, region 510 includes vertical conductors 512 extending in a first direction (eg, z-direction). Vertical conductors 512 may be coupled to some or all of word lines WL 10 , WL 20 , . . . , WL 615 . Therefore, the region 510 may also be referred to as a "word line junction region 510".
如图5B所描绘的,在第三方向(例如y方向)上延伸穿过字线接线区域510的行选择线SG1、SG2、SG7和SG8。行选择线SG3、SG4、SG5和SG6还延伸在y方向上,而不会延伸穿过字线接线区域510。反而,将行选择线SG3、SG4、SG5和SG6中的每个分成两个部分,字线接线区域510的左边的第一部分(图5B所描绘的)以及字线接线区域510的右边的第二部分(图5B所描绘的)。在实施例中,行选择线SG3、SG4、SG5和SG6的第一和第二部分以大约4500埃和大约27000埃之间的距离X分离。As depicted in FIG. 5B , row select lines SG 1 , SG 2 , SG 7 , and SG 8 extend through word line junction region 510 in a third direction (eg, the y direction). The row selection lines SG 3 , SG 4 , SG 5 , and SG 6 also extend in the y direction without extending through the word line wiring region 510 . Instead, each of row select lines SG 3 , SG 4 , SG 5 , and SG 6 is divided into two sections, a first section to the left of word line wiring region 510 (depicted in FIG. The second part on the right (depicted in Figure 5B). In an embodiment, the first and second portions of row select lines SG 3 , SG 4 , SG 5 , and SG 6 are separated by a distance X of between about 4500 Angstroms and about 27000 Angstroms.
在实施例中,经由设置在字线接线区域510下方的导电层(例如金属层M1)上垂直导电柱和导电迹线(trace),将行选择线SG3、SG4、SG5和SG6中的每个的第一和第二部分彼此连接。就此而言,将行选择线SG3、SG4、SG5和SG6中的每个的第一和第二部分耦接在一起而不会延伸穿过字线接线区域510。In an embodiment, the row selection lines SG 3 , SG 4 , SG 5 and SG 6 are connected via vertical conductive pillars and conductive traces on a conductive layer (eg, metal layer M1 ) disposed under the word line connection region 510 . The first and second parts of each are connected to each other. In this regard, the first and second portions of each of the row select lines SG 3 , SG 4 , SG 5 , and SG 6 are coupled together without extending through the word line wiring region 510 .
例如,如图5B所示出,导电柱514a1、导电迹线516a和导电柱514a2将行选择线SG3的第一和第二部分耦接在一起。同样地,如图5A和5D所示,导电柱514b1导电迹线5156b和导电柱516b2将行选择线SG4耦接在一起。相似地,如图5A所示,导电柱514c1、导电迹线516c和导电柱514c2将行选择线SG5的第一和第二部分耦接在一起,并且导电柱514d1、导电迹线516d和导电柱514d2将行选择线SG6的第一和第二部分耦接在一起。For example, as shown in FIG. 5B , conductive pillar 514a1 , conductive trace 516a , and conductive pillar 514a2 couple the first and second portions of row select line SG 3 together. Likewise, as shown in FIGS. 5A and 5D , conductive post 514b1 conductive trace 5156b and conductive post 516b2 couple row select line SG 4 together. Similarly, as shown in FIG. 5A, conductive post 514c1, conductive trace 516c, and conductive post 514c2 couple the first and second portions of row select line SG5 together, and conductive post 514d1, conductive trace 516d, and conductive Post 514d2 couples together the first and second portions of row select line SG 6 .
如图5D所示,在实施例中,通孔518和通孔520可以用于将导电柱514b1和514b2连接到导电迹线516b。在实施例中,通孔520形成在全局位线层中,并且通孔518形成在全局位线层和金属层M1之间的层中。尽管未在图5A-5D中示出,但是相似通孔518和通孔520可以用于将导电柱514a1和514a2连接到导电迹线516a、将导电柱514c1和514c2连接到导电迹线516c、并且将导电柱514d1和514d2连接到导电迹线516d。在另一个实施例中,导电迹线514a-514d替代地可以形成在相同级别上并且使用与全局位线GBL1、GBL2、…、GBL8相同的导电层材料。这样的实施例可以消除对通孔518的需求。As shown in FIG. 5D , in an embodiment, vias 518 and 520 may be used to connect conductive posts 514b1 and 514b2 to conductive trace 516b. In an embodiment, the via 520 is formed in the global bit line layer, and the via 518 is formed in a layer between the global bit line layer and the metal layer M1. Although not shown in FIGS. 5A-5D , similar vias 518 and 520 may be used to connect conductive posts 514a1 and 514a2 to conductive trace 516a, conductive posts 514c1 and 514c2 to conductive trace 516c, and Conductive posts 514d1 and 514d2 are connected to conductive trace 516d. In another embodiment, conductive traces 514a-514d may alternatively be formed on the same level and using the same conductive layer material as global bitlines GBL1 , GBL2 , . . . , GBL8 . Such an embodiment may eliminate the need for via 518 .
参考图6A-6L2,描述了形成单片三维存储器阵列(诸如图5A-5D的单片三维存储器阵列)的示例方法。Referring to FIGS. 6A-6L2 , an example method of forming a monolithic three-dimensional memory array, such as the monolithic three-dimensional memory array of FIGS. 5A-5D , is described.
参考图6A,示出了如已经经受若干工艺步骤的衬底502。衬底502可以是诸如硅、锗、硅化锗、未掺杂物、掺杂物、体、绝缘体上硅(“SOI”)或者具有或没有附加电路的其他衬底之类的任何适当的衬底。例如,衬底502可以包含一个或多个n阱或p阱区域(未示出)。隔离层504形成在衬底502上方。在一些实施例中,隔离层504可以是硅氧化物、硅氮化物、硅氮氧化物或其他任何合适的绝缘层的层。Referring to FIG. 6A , a substrate 502 is shown as it has been subjected to several process steps. Substrate 502 may be any suitable substrate such as silicon, germanium, germanium silicide, undoped, doped, bulk, silicon-on-insulator (“SOI”), or other substrate with or without additional circuitry . For example, substrate 502 may contain one or more n-well or p-well regions (not shown). An isolation layer 504 is formed over the substrate 502 . In some embodiments, the isolation layer 504 may be a layer of silicon oxide, silicon nitride, silicon oxynitride, or any other suitable insulating layer.
接着隔离层504的形成,导电层505沉积在隔离层504之上。导电层505可以包含诸如钨或另一个适当的金属的任何合适的导电材料、重掺杂半导体材料、导电硅化物、导电硅锗化物、导电锗等,其由任何适当的方法(例如CVD、PVD等)沉积。在至少一个实施例中,导电层505可以包括大约200到大约2500埃之间的钨。可以使用其他导电层材料和/或厚度。在一些实施例中,诸如钛氮化硅或其他相似粘合层材料的粘合层(未示出)可以设置在隔离层504和导电层505之间,和/或在导电层505和随后垂直取向的位线选择晶体管层之间。Following the formation of the isolation layer 504 , a conductive layer 505 is deposited on the isolation layer 504 . Conductive layer 505 may comprise any suitable conductive material such as tungsten or another suitable metal, heavily doped semiconductor material, conductive silicide, conductive silicon germanide, conductive germanium, etc., formed by any suitable method (e.g., CVD, PVD etc.) deposition. In at least one embodiment, conductive layer 505 may include between about 200 and about 2500 Angstroms of tungsten. Other conductive layer materials and/or thicknesses may be used. In some embodiments, an adhesive layer (not shown) such as titanium silicon nitride or other similar adhesive layer material may be disposed between the isolation layer 504 and the conductive layer 505, and/or between the conductive layer 505 and the subsequent vertical Orientation of the bit line between select transistor layers.
本领域普通技术人员将理解的是:粘合层可以由PVD或其他方法形成在导电层上。例如,粘合层可以在大约20和大约500埃之间、且在一些实施例中大约100埃的钛氮化物或其他适当的粘合层(诸如钽氮化物、钨氮化物、钨、钼、一个或多个粘合层的组合等)。可以使用其他粘合层材料和/或厚度。为简化附图,粘合层未在任何图6A-6L2中描绘。本领域普通技术人员将理解的是:可以使用这样的粘合层。Those of ordinary skill in the art will understand that the adhesive layer can be formed on the conductive layer by PVD or other methods. For example, the adhesion layer may be between about 20 and about 500 Angstroms, and in some embodiments about 100 Angstroms of titanium nitride or other suitable adhesion layer such as tantalum nitride, tungsten nitride, tungsten, molybdenum, combination of one or more adhesive layers, etc.). Other adhesive layer materials and/or thicknesses may be used. To simplify the drawings, the adhesive layer is not depicted in any of Figures 6A-6L2. Those of ordinary skill in the art will appreciate that such adhesive layers may be used.
接着导电层505的形成,将导电层505图案化并且蚀刻。例如,可以使用传统光刻技术以软或硬掩模以及湿法或干法蚀刻工艺,将导电层505图案化且蚀刻。在至少一个实施例中,将导电层505图案化并且蚀刻以形成导电迹线516a-516e。导电迹线516a-516e的示例宽度和/或导电迹线516a-516e之间的间隔在大约480埃到大约1000埃之间变动,但是可以使用其他导电宽度和/或间隔。Following the formation of the conductive layer 505, the conductive layer 505 is patterned and etched. For example, the conductive layer 505 can be patterned and etched using conventional photolithography techniques with soft or hard masks and wet or dry etching processes. In at least one embodiment, conductive layer 505 is patterned and etched to form conductive traces 516a-516e. Example widths of the conductive traces 516a-516e and/or spacing between the conductive traces 516a-516e range from about 480 Angstroms to about 1000 Angstroms, although other conductive widths and/or spacings may be used.
在导电迹线516a-516e已经形成之后,介电材料层506形成在衬底502上以在导电迹线516a-516e之间填充空隙。例如,近似3000-7000埃的硅氧化物可以沉积在衬底502上,并且使用化学机械抛光或回蚀刻工艺来平坦化以形成平坦化表面507,而导致图6B1-6B2中所示出的结构。平坦化表面507包含导电迹线516a-516e的由介电材料506分离的暴露顶表面。可以使用诸如硅氮化物、硅氮氧化物、低K电介质等的其他介电材料和/或其他介电材料层厚度。示例低K电介质包含碳掺杂氧化物、硅碳层等。After the conductive traces 516a-516e have been formed, a layer of dielectric material 506 is formed on the substrate 502 to fill the voids between the conductive traces 516a-516e. For example, approximately 3000-7000 Angstroms of silicon oxide may be deposited on substrate 502 and planarized using a chemical mechanical polishing or etch-back process to form planarized surface 507, resulting in the structures shown in FIGS. 6B1-6B2 . Planarized surface 507 includes exposed top surfaces of conductive traces 516a - 516e separated by dielectric material 506 . Other dielectric materials and/or other dielectric material layer thicknesses may be used, such as silicon nitride, silicon oxynitride, low-K dielectrics, and/or the like. Example low-K dielectrics include carbon doped oxides, silicon carbon layers, and the like.
在其他实施例中,导电迹线516a-516e可以使用波纹(damascence)工艺来形成,其中将介电材料层506形成、图案化并且蚀刻以创造导电迹线516a-516e的开口或空隙。然后用导电层505(以及/或者如果需要的话导电种子层、导电填充层、和/或势垒层)来填充开口或空隙。然后将导电层505平坦化以形成平坦化表面507。In other embodiments, the conductive traces 516a-516e may be formed using a damascence process in which the layer of dielectric material 506 is formed, patterned, and etched to create openings or voids for the conductive traces 516a-516e. The opening or void is then filled with a conductive layer 505 (and/or a conductive seed layer, a conductive fill layer, and/or a barrier layer if desired). Conductive layer 505 is then planarized to form planarized surface 507 .
接着平坦化,形成通孔518,导致图6C1-6C2所示的结构。通孔518可以包含诸如钨或另一个适当的金属、重掺杂半导体材料、导电硅化物、导电硅锗化物、导电锗等之类的任何合适的导电材料,其由任何适当的方法(例如CVD、PVD等)沉积。在至少一个实施例中,导电层518可以包括大约480到大约1000埃之间的高度掺杂多晶硅。可以使用其他导电层材料和/或厚度。通孔518的示例宽度和/或通孔518之间的间隔在大约480埃到大约1000埃之间变动,但是可以使用其他通孔宽度和/或间隔。尽管示出了通孔518具有矩形形状,但是可以使用其他形状。Following planarization, vias 518 are formed, resulting in the structures shown in FIGS. 6C1-6C2. Vias 518 may comprise any suitable conductive material such as tungsten or another suitable metal, heavily doped semiconductor material, conductive suicide, conductive silicon germanide, conductive germanium, etc., formed by any suitable method such as CVD , PVD, etc.) deposition. In at least one embodiment, conductive layer 518 may comprise highly doped polysilicon of between about 480 to about 1000 Angstroms. Other conductive layer materials and/or thicknesses may be used. Example widths of vias 518 and/or spacing between vias 518 range from about 480 Angstroms to about 1000 Angstroms, although other via widths and/or spacings may be used. Although vias 518 are shown as having a rectangular shape, other shapes may be used.
在通孔518已经形成之后,介电材料层508形成在衬底502上以在通孔518之间填充空隙。例如,近似3000-7000埃的硅氧化物可以沉积在衬底502上,并且使用化学机械抛光或回蚀刻工艺来平坦化。可以使用诸如硅氮化物、硅氮氧化物、低K电介质等的其他介电材料和/或其他介电材料层厚度。示例低K电介质包含碳掺杂氧化物、硅碳层等。After the vias 518 have been formed, a layer of dielectric material 508 is formed on the substrate 502 to fill the voids between the vias 518 . For example, approximately 3000-7000 Angstroms of silicon oxide may be deposited on substrate 502 and planarized using a chemical mechanical polishing or etch back process. Other dielectric materials and/or other dielectric material layer thicknesses may be used, such as silicon nitride, silicon oxynitride, low-K dielectrics, and/or the like. Example low-K dielectrics include carbon doped oxides, silicon carbon layers, and the like.
在其他实施例中,通孔518可以使用波纹工艺来形成,其中将介电材料层508形成、图案化并且蚀刻以创造通孔518的开口或空隙。可以用导电层(以及/或者如果需要的话导电种子层、导电填充层、和/或势垒层)来填充开口或空隙。In other embodiments, the vias 518 may be formed using a damascene process in which the layer of dielectric material 508 is formed, patterned, and etched to create openings or voids for the vias 518 . The opening or void may be filled with a conductive layer (and/or a conductive seed layer, a conductive fill layer, and/or a barrier layer if desired).
接着平坦化,形成全局位线GBL1、GBL2、…、GBL8和通孔520。例如,导电层可以沉积在衬底502上,并且然后使用传统光刻技术以软或硬掩模以及湿法或干法蚀刻工艺,将其图案化并且蚀刻以形成全局位线GBL1、GBL2、…、GBL8。全局位线GBL1、GBL2、…、GBL8的示例宽度和/或全局位线GBL1、GBL2、…、GBL8之间的间隔在大约240埃到大约1000埃之间变动,但是可以使用其他导电宽度和/或间隔。通孔520的示例宽度和/或通孔520之间的间隔在大约240埃到大约1000埃之间变动,但是可以使用其他通孔宽度和/或间隔。在实施例中,通孔520具有矩形形状,但是可以使用其他形状。Following planarization, global bit lines GBL 1 , GBL 2 , . . . , GBL 8 and vias 520 are formed. For example, a conductive layer may be deposited on the substrate 502 and then patterned and etched using conventional photolithographic techniques with soft or hard masks and wet or dry etch processes to form global bit lines GBL1 , GBL2 , ..., GBL 8 . Exemplary widths of global bitlines GBL 1 , GBL 2 , . . . , GBL 8 and/or spacing between global bitlines GBL 1 , GBL 2 , . Use other conductive widths and/or spacing. Example widths of vias 520 and/or spacing between vias 520 range from about 240 Angstroms to about 1000 Angstroms, although other via widths and/or spacings may be used. In an embodiment, the via 520 has a rectangular shape, although other shapes may be used.
在实施例中,全局位线GBL1、GBL2、…、GBL8和通孔520可以包含诸如钨或另一个适当的金属、重掺杂半导体材料、导电硅化物、导电硅锗化物、导电锗等之类的任何合适的导电材料,其由任何适当的方法(例如CVD、PVD等)沉积。在至少一个实施例中,全局位线GBL1、GBL2、…、GBL8和通孔520包括在大约240和大约1000埃之间的钨。可以使用其他导电层材料和/或厚度。In an embodiment, global bit lines GBL 1 , GBL 2 , . . . etc., which are deposited by any suitable method (eg, CVD, PVD, etc.). In at least one embodiment, the global bit lines GBL 1 , GBL 2 , . . . , GBL 8 and via 520 comprise between about 240 and about 1000 Angstroms of tungsten. Other conductive layer materials and/or thicknesses may be used.
在全局位线GBL1、GBL2、…、GBL8和通孔520已经形成之后,介电材料层522形成在衬底502之上以填充在全局位线GBL1、GBL2、…、GBL8和通孔520之间的空隙。例如,近似3000-7000埃的硅氧化物可以沉积在衬底502上,并且使用化学机械抛光或回蚀刻工艺来平坦化以形成平坦化表面524,而导致图6D1-6D3中所示出的结构。平坦化表面524包含全局位线GBL1、GBL2、…、GBL8和通孔520的由介电材料524分离的暴露顶表面。可以使用诸如硅氮化物、硅氮氧化物、低K电介质等的其他介电材料和/或其他介电材料层厚度。示例低K电介质包含碳掺杂氧化物、硅碳层等。After the global bit lines GBL 1 , GBL 2 , . . . and the gap between the vias 520 . For example, approximately 3000-7000 Angstroms of silicon oxide may be deposited on substrate 502 and planarized using a chemical mechanical polishing or etch-back process to form planarized surface 524, resulting in the structures shown in FIGS. 6D1-6D3 . Planarized surface 524 includes exposed top surfaces of global bitlines GBL 1 , GBL 2 , . . . , GBL 8 and vias 520 separated by dielectric material 524 . Other dielectric materials and/or other dielectric material layer thicknesses may be used, such as silicon nitride, silicon oxynitride, low-K dielectrics, and/or the like. Example low-K dielectrics include carbon doped oxides, silicon carbon layers, and the like.
在其他实施例中,全局位线GBL1、GBL2、…、GBL8和通孔520可以使用波纹工艺来形成,其中介电材料层522形成、图案化和蚀刻以创造全局位线GBL1、GBL2、…、GBL8和通孔520之间的空隙。可以用导电层(以及/或者如果需要的话导电种子层、导电填充层、和/或势垒层)来填充开口或空隙。In other embodiments , global bitlines GBL 1 , GBL 2 , . The space between GBL 2 , . . . , GBL 8 and via 520 . The opening or void may be filled with a conductive layer (and/or a conductive seed layer, a conductive fill layer, and/or a barrier layer if desired).
接着平坦化,用于形成垂直取向的位线选择晶体管Q11-Q88的半导体材料形成在衬底502的平坦化的顶表面524之上。在一些实施例中,每个垂直取向的位线选择晶体管由诸如多晶硅、多晶硅锗合金、多晶锗或任何其他适当材料之类的多晶半导体材料来构成。替代地,垂直取向的位线选择晶体管Q11-Q88可以由诸如ZnO、InGaZnO或SiC之类的宽带隙半导体材料构成,该宽带隙半导体材料可以提供高击穿电压,并且典型地可以用于提供无结合FET。本领域普通技术人员将理解的是:可以使用其他材料。Following planarization, the semiconductor material used to form the vertically oriented bit line select transistors Q 11 -Q 88 is formed over the planarized top surface 524 of the substrate 502 . In some embodiments, each vertically oriented bit line select transistor is constructed of a polycrystalline semiconductor material such as polycrystalline silicon, polycrystalline silicon-germanium alloy, polycrystalline germanium, or any other suitable material. Alternatively, the vertically oriented bit line select transistors Q 11 -Q 88 can be constructed of a wide bandgap semiconductor material such as ZnO, InGaZnO or SiC, which can provide a high breakdown voltage and is typically used in Offers a junction-free FET. One of ordinary skill in the art will understand that other materials may be used.
在一些实施例中,每个垂直取向的位线选择晶体管可以包含第一区域(例如n+多晶硅)、第二区域(例如p多晶硅),以分别形成垂直FET的漏极/源极、和源极/漏极区域。例如,重掺杂的n+多晶硅层526可以沉积在平坦化的顶表面524上。在一些实施例中,n+多晶硅层526是在如所沉积的无定形状态下。在其他实施例中,n+多晶硅层526是在如所沉积的多晶体中。可以采用CVD或其他任何适当工艺以沉积n+多晶硅层526。In some embodiments, each vertically oriented bit line select transistor may comprise a first region (e.g. n+ polysilicon), a second region (e.g. p polysilicon) to form the drain/source, and source of the vertical FET, respectively. /drain region. For example, heavily doped n+ polysilicon layer 526 may be deposited on planarized top surface 524 . In some embodiments, n+ polysilicon layer 526 is in an amorphous state as deposited. In other embodiments, n+ polysilicon layer 526 is in polycrystalline as deposited. CVD or any other suitable process may be used to deposit n+ polysilicon layer 526 .
在实施例中,例如,n+多晶硅层526可以由具有掺杂浓度大约1021cm-3的大约100至大约500埃的磷或砷掺杂的硅来构成。可以使用其他层厚度、掺杂类型和/或掺杂浓度。例如,可以通过沉积期间使供气流动原位(in situ)掺杂N+多晶硅层526。可以使用其他掺杂方法(例如注入)。In an embodiment, for example, the n+ polysilicon layer 526 may be composed of phosphorus or arsenic doped silicon with a doping concentration of about 100 to about 500 Angstroms with a doping concentration of about 10 21 cm −3 . Other layer thicknesses, doping types and/or doping concentrations may be used. For example, N+ polysilicon layer 526 may be doped in situ by flowing a supply gas during deposition. Other doping methods (such as implantation) can be used.
在n+多晶硅层526的沉积之后,掺杂p型硅层528可以形成在n+多晶硅层526之上。P型硅可以或是沉积且由离子注入掺杂,或是可以在沉积期间原位掺杂,以形成p型硅层528。例如,本征硅层可以沉积在n+多晶硅层526上,并且空白p型注入可以用于在本征硅层内注入预定深度的硼。示例注入分子离子包含BF2、BF3、B等。在一些实施例中,可以采用大约1-10x1013离子/cm2的注入剂量。可以使用其他注入种类和/或诸如剂量。另外,在一些实施例中,可以采用扩散工艺。在实施例中,得到的p型硅层528的厚度从大约800到大约4000埃,但是可以使用其他p型硅层。After the deposition of n+ polysilicon layer 526 , doped p-type silicon layer 528 may be formed over n+ polysilicon layer 526 . P-type silicon can either be deposited and doped by ion implantation, or can be doped in situ during deposition to form p-type silicon layer 528 . For example, an intrinsic silicon layer may be deposited on the n+ polysilicon layer 526, and a dummy p-type implant may be used to implant boron to a predetermined depth within the intrinsic silicon layer. Example implanted molecular ions include BF 2 , BF 3 , B, and the like. In some embodiments, an implant dose of about 1-10×10 13 ions/cm 2 may be used. Other infusion types and/or doses may be used. Additionally, in some embodiments, a diffusion process may be employed. In an embodiment, the resulting p-type silicon layer 528 has a thickness from about 800 to about 4000 Angstroms, although other p-type silicon layers may be used.
接着p型硅层528的形成,重掺杂的n+多晶硅层530沉积在p型硅层528上。在一些实施例中,n+多晶硅层530是在如所沉积的无定形状态下。在其他实施例中,n+多晶硅层530是在如所沉积的多晶体中。可以采用CVD或其他任何适当工艺以沉积n+多晶硅层530。Following the formation of the p-type silicon layer 528 , a heavily doped n+ polysilicon layer 530 is deposited on the p-type silicon layer 528 . In some embodiments, n+ polysilicon layer 530 is in an amorphous state as deposited. In other embodiments, n+ polysilicon layer 530 is in polycrystalline as deposited. CVD or any other suitable process may be used to deposit n+ polysilicon layer 530 .
在实施例中,例如,n+多晶硅层530可以由具有掺杂浓度大约为1021cm-3的大约100至大约500埃的磷或砷掺杂的硅来构成。可以使用其他层厚度、掺杂类型和/或掺杂浓度。例如,可以通过沉积期间使供气流动原位掺杂N+多晶硅层530。可以使用其他掺杂方法(例如注入)。本领域普通技术人员将理解的是:硅层526、528和530替代地可以分别掺杂p+/n/p+,或可以用单个类型的掺杂物来掺杂以制造无结合的FET。In an embodiment, for example, the n+ polysilicon layer 530 may be composed of phosphorus or arsenic doped silicon having a doping concentration of about 100 to about 500 angstroms with a doping concentration of about 10 21 cm −3 . Other layer thicknesses, doping types and/or doping concentrations may be used. For example, the N+ polysilicon layer 530 may be doped in-situ by flowing a supply gas during deposition. Other doping methods (such as implantation) can be used. Those of ordinary skill in the art will appreciate that silicon layers 526, 528, and 530 may alternatively be doped p+/n/p+ separately, or may be doped with a single type of dopant to make a junctionless FET.
接着n+多晶硅层530的形成、将硅层526、528和530图案化并且蚀刻,以形成第一蚀刻行532和第二蚀刻行534。例如,可以使用传统光刻技术以湿法或干法蚀刻工艺,将硅层526、528和530图案化并且蚀刻。在实施例中,将硅层526、528和530图案化并且蚀刻,以形成设置在全局位线GBL1、GBL2、…、GBL8上方的第一蚀刻行531,和设置在通孔520上方的第二蚀刻行534。Following the formation of n+ polysilicon layer 530 , silicon layers 526 , 528 and 530 are patterned and etched to form first etched row 532 and second etched row 534 . For example, silicon layers 526, 528, and 530 may be patterned and etched in a wet or dry etch process using conventional photolithographic techniques. In an embodiment, the silicon layers 526, 528, and 530 are patterned and etched to form a first etch row 531 disposed over the global bit lines GBL 1 , GBL 2 , . . . , GBL 8 , and disposed over the via 520 The second etch row 534 of .
如下文更详细描述的,第一蚀刻行532将用于形成垂直取向的位线选择晶体管Q11-Q88,并且第二蚀刻行534将用于形成图5A-5D的垂直导体512和垂直柱514a1-514d2。第一蚀刻行532和第二蚀刻行534中的每一个可以具有正方形、矩形或其他形状,其每一个形状具有在大约240埃和大约1000埃的宽度,但是可以使用其他宽度。As described in more detail below, the first etch row 532 will be used to form the vertically oriented bit line select transistors Q 11 -Q 88 , and the second etch row 534 will be used to form the vertical conductor 512 and vertical pillars of FIGS. 5A-5D . 514a1-514d2. Each of the first etched row 532 and the second etched row 534 may have a square, rectangular, or other shape, each having a width between about 240 Angstroms and about 1000 Angstroms, although other widths may be used.
可以以单个图案/蚀刻过程或使用分离图案/蚀刻步骤,将硅层526、528和530图案化并且蚀刻。任何适当的掩模和蚀刻过程可以用于形成第一蚀刻行532和第二蚀刻行534。例如,可以使用标准光刻技术的以大约1到大约1.5微米、更优选地大约1.2到大约1.4微米的光刻胶(“PR”),将硅层526、528和530图案化。可以使用具有较小临界尺寸和技术节点的较薄PR层。在一些实施例中,氧化物硬掩模可以用在PR层下方,以改进图案转换并且在蚀刻期间保护下卧层。Silicon layers 526, 528, and 530 may be patterned and etched in a single pattern/etch process or using separate pattern/etch steps. Any suitable masking and etching process may be used to form the first etched row 532 and the second etched row 534 . For example, silicon layers 526, 528, and 530 may be patterned using photoresist ("PR") of about 1 to about 1.5 microns, more preferably about 1.2 to about 1.4 microns, using standard photolithographic techniques. Thinner PR layers with smaller critical dimensions and technology nodes can be used. In some embodiments, an oxide hardmask may be used under the PR layer to improve pattern switching and protect the underlying layer during etching.
在一些实施例中,蚀刻之后,第一蚀刻行532和第二蚀刻行534可以使用稀释氢氟酸/硫酸清洁剂来清洁。可以以诸如入侵者(Raider)工具(可从蒙塔纳州(Montana)的卡利斯佩尔(Kalispell)的Semitool购买)任何适当清洁工具来进行这样的清洁。示例蚀刻后清洁可以包含使用极度稀释的硫酸(例如大约1.5-1.8wt%)达大约60秒和/或极度稀释的氢氟(“HF”)酸(例如大约0.4-0.6wt%)达60秒。可以或可以不使用兆声波。可以采用其他清洁化学反应、时间和/或技术。In some embodiments, after etching, first etch row 532 and second etch row 534 may be cleaned using a dilute hydrofluoric acid/sulfuric acid cleaner. Such cleaning may be performed with any suitable cleaning implement, such as a Raider tool (available from Semitool of Kalispell, Montana). An example post-etch clean may include using extremely dilute sulfuric acid (e.g., about 1.5-1.8 wt %) for about 60 seconds and/or extremely dilute hydrofluoric ("HF") acid (e.g., about 0.4-0.6 wt %) for 60 seconds . Megasonic waves may or may not be used. Other cleaning chemistries, times and/or techniques may be employed.
在第一蚀刻行532和第二蚀刻行534已经形成之后,介电材料层536形成在衬底502之上以在第一蚀刻行532和第二蚀刻行534之间填充空隙。例如,近似3000-7000埃的硅氧化物可以沉积在衬底502上,并且使用化学机械抛光或回蚀刻工艺来平坦化以形成平坦化表面538,导致图6E1-6E3所示的结构。平坦化表面538包含第一蚀刻行532和第二蚀刻行的由介电材料536分离的暴露顶表面。可以使用诸如硅氮化物、硅氮氧化物、低K电介质等的其他介电材料,和/或其他介电材料层厚度。示例低K电介质包含碳掺杂氧化物、硅碳层等。After the first etched row 532 and the second etched row 534 have been formed, a layer of dielectric material 536 is formed over the substrate 502 to fill the void between the first etched row 532 and the second etched row 534 . For example, approximately 3000-7000 Angstroms of silicon oxide may be deposited on substrate 502 and planarized using a chemical mechanical polishing or etch-back process to form planarized surface 538, resulting in the structures shown in FIGS. 6E1-6E3. Planarized surface 538 includes exposed top surfaces of first etched row 532 and second etched row separated by dielectric material 536 . Other dielectric materials such as silicon nitride, silicon oxynitride, low-K dielectrics, etc., and/or other dielectric material layer thicknesses may be used. Example low-K dielectrics include carbon doped oxides, silicon carbon layers, and the like.
在第二掩模步骤中,将硅层526、528和530图案化并且蚀刻以形成垂直晶体管柱540和牺牲柱542。例如,可以使用传统光刻技术以湿法或干法蚀刻工艺,将硅层526、538和530图案化并且蚀刻。在实施例中,将硅层526、528和530图案化并且蚀刻以形成垂直晶体管柱540和牺牲柱542,导致图6F1-6F3所示的结构。第二蚀刻腔616b中的每一个可以具有正方形、矩形或其他形状,其每一个形状具有在大约240埃和大约1000埃之间的宽度、以及大约240埃和大约1000埃之间的长度,但是可以使用其他宽度和长度。In a second masking step, silicon layers 526 , 528 , and 530 are patterned and etched to form vertical transistor pillars 540 and sacrificial pillars 542 . For example, silicon layers 526, 538, and 530 may be patterned and etched using conventional photolithographic techniques in a wet or dry etch process. In an embodiment, silicon layers 526, 528, and 530 are patterned and etched to form vertical transistor pillars 540 and sacrificial pillars 542, resulting in the structures shown in FIGS. 6F1-6F3. Each of the second etching chambers 616b may have a square, rectangular, or other shape, each of which has a width between about 240 angstroms and about 1000 angstroms, and a length between about 240 angstroms and about 1000 angstroms, but Other widths and lengths can be used.
可以以单个图案/蚀刻过程或使用分离图案/蚀刻步骤,将硅层526、528和530图案化并且蚀刻。任何适当的掩模和蚀刻过程可以用于形成垂直晶体管柱540和牺牲柱542。例如,可以使用标准光刻技术的以大约1到大约1.5微米、更优选地大约1.2到大约1.4微米的PR,将硅层526、528和530图案化。可以使用具有较小临界尺寸和技术节点的较薄PR层。在一些实施例中,氧化物硬掩模可以用在PR层下方,以改进图案转换并且在蚀刻期间保护下卧层。Silicon layers 526, 528, and 530 may be patterned and etched in a single pattern/etch process or using separate pattern/etch steps. Any suitable masking and etching process may be used to form vertical transistor pillars 540 and sacrificial pillars 542 . For example, silicon layers 526, 528, and 530 may be patterned using standard photolithographic techniques with a PR of about 1 to about 1.5 microns, more preferably about 1.2 to about 1.4 microns. Thinner PR layers with smaller critical dimensions and technology nodes can be used. In some embodiments, an oxide hardmask may be used under the PR layer to improve pattern switching and protect the underlying layer during etching.
在一些实施例中,蚀刻之后,垂直晶体管柱540和牺牲柱542可以使用稀释的氢氟酸/硫酸清洁剂来清洁。可以以诸如入侵者(Raider)工具(从蒙塔纳州(Montana)的卡利斯佩尔(Kalispell)的Semitool可得)任何适当清洁工具来进行这样的清洁。示例蚀刻后清洁可以包含使用极度稀释的硫酸(例如大约1.5-1.8wt%)达大约60秒和/或极度稀释的HF酸(例如大约0.4-0.6wt%)达60秒。可以或可以不使用兆声波。可以采用其他清洁化学反应、时间和/或技术。In some embodiments, after etching, vertical transistor pillars 540 and sacrificial pillars 542 may be cleaned using a dilute hydrofluoric acid/sulfuric acid cleaner. Such cleaning may be performed with any suitable cleaning implement, such as a Raider tool (available from Semitool of Kalispell, Montana). Example post-etch cleaning may include using very dilute sulfuric acid (eg, about 1.5-1.8 wt %) for about 60 seconds and/or very dilute HF acid (eg, about 0.4-0.6 wt %) for 60 seconds. Megasonic waves may or may not be used. Other cleaning chemistries, times and/or techniques may be employed.
栅极介电层544共形地设置在衬底502之上,并且形成在垂直晶体管柱540和牺牲柱542的侧壁上,导致图6G1-6G3中所示的结构。例如,可以沉积在大约30埃和大约100埃的硅氧化物。可以使用诸如硅氮化物、硅氮氧化物、低K电介质等的其他介电材料,和/或其他介电材料层厚度。A gate dielectric layer 544 is conformally disposed over the substrate 502 and is formed on the sidewalls of the vertical transistor pillar 540 and the sacrificial pillar 542, resulting in the structures shown in FIGS. 6G1-6G3. For example, silicon oxide can be deposited at about 30 Angstroms and about 100 Angstroms. Other dielectric materials such as silicon nitride, silicon oxynitride, low-K dielectrics, etc., and/or other dielectric material layer thicknesses may be used.
栅电极材料沉积在垂直晶体管柱540和牺牲柱542以及栅极介电层544之上,以填充垂直晶体管柱540和牺牲柱542之间的空隙。例如,可以沉积近似10nm至大约20nm的钛氮化物或其他相似材料、诸如n+多晶硅、p+多晶硅的高度掺杂半导体、或者其他相似导电材料。如所沉积的栅电极材料随后回蚀刻以形成行选择线SG1、SG2、…、SG8,导致图6H1-6H3所示的结构。Gate electrode material is deposited over vertical transistor pillar 540 and sacrificial pillar 542 and gate dielectric layer 544 to fill the gap between vertical transistor pillar 540 and sacrificial pillar 542 . For example, approximately 10 nm to approximately 20 nm of titanium nitride or other similar materials, highly doped semiconductors such as n+ polysilicon, p+ polysilicon, or other similar conductive materials may be deposited. The gate electrode material as deposited is then etched back to form row select lines SG 1 , SG 2 , . . . , SG 8 , resulting in the structures shown in FIGS. 6H1-6H3 .
介电材料层546沉积在凹陷的行选择线SG1、SG2、…、SG8。例如,近似5000到大约8000埃的硅氧化物可以沉积或使用化学机械抛光或回蚀刻工艺来平坦化。可以使用其他介电材料和/或厚度。然后将介电材料层546图案化并蚀刻以在垂直晶体管柱540和牺牲柱542上方形成空隙,并且然后硅氮化物(或其他蚀刻停止材料)沉积在衬底502之上以填充空隙,形成了硅氮化物栓塞(plug)548,导致了图6I1-6I3中所示出的结构。A layer of dielectric material 546 is deposited on the recessed row select lines SG 1 , SG 2 , . . . , SG 8 . For example, approximately 5000 to approximately 8000 Angstroms of silicon oxide may be deposited or planarized using a chemical mechanical polishing or etch back process. Other dielectric materials and/or thicknesses may be used. Dielectric material layer 546 is then patterned and etched to form voids over vertical transistor pillars 540 and sacrificial pillars 542, and silicon nitride (or other etch stop material) is then deposited over substrate 502 to fill the voids, forming Silicon nitride plugs 548, resulting in the structures shown in Figures 6I1-6I3.
接着,在字线接线区域510中移除硅氮化物栓塞548、牺牲柱542和栅极介电层544,创造了空隙550,导致了图6J1-6J3所示的结构。例如,蚀刻可以选择性施加到字线接线区域510以将硅氮化物栓塞548、牺牲柱542和栅极介电层544移除。可以以一个或多个步骤施加蚀刻。Next, silicon nitride plug 548, sacrificial pillar 542, and gate dielectric layer 544 are removed in word line junction region 510, creating void 550, resulting in the structure shown in FIGS. 6J1-6J3. For example, an etch may be selectively applied to the word line connection region 510 to remove the silicon nitride plug 548 , the sacrificial pillar 542 and the gate dielectric layer 544 . Etching can be applied in one or more steps.
导电材料沉积在衬底502之上,填充了空隙550以形成导电通孔552。例如,近似500到大于3000埃的钨可以沉积并且使用化学机械抛光或回蚀刻工艺来平坦化,导致了图6K1-6K2中所示的结构。可以使用其他导电材料和/或厚度。A conductive material is deposited over substrate 502 , filling void 550 to form conductive via 552 . For example, approximately 500 to greater than 3000 Angstroms of tungsten can be deposited and planarized using a chemical mechanical polishing or etch back process, resulting in the structures shown in Figures 6K1-6K2. Other conductive materials and/or thicknesses may be used.
最后,化学机械抛光或回蚀刻工艺用于将介电材料546、硅氮化物栓塞548和导电通孔552的部分移除,导致了图6L1-6L2中所示的结构。如本领域已知的,其他工艺步骤可以用于在衬底502上方形成字线WL10、WL20、…、WL615,垂直位线LBL11、LBL12、…、LBL88,和存储器单元,以形成图5A-5D的单片三维阵列500。Finally, a chemical mechanical polishing or etch back process is used to remove portions of dielectric material 546, silicon nitride plug 548 and conductive via 552, resulting in the structure shown in FIGS. 6L1-6L2. As is known in the art, other process steps may be used to form word lines WL 10 , WL 20 , . . . , WL 615 , vertical bit lines LBL 11 , LBL 12 , . To form the monolithic three-dimensional array 500 shown in FIGS. 5A-5D .
在不希望由任何特定理论限定的情况下,可以相信的是:公开的技术可以降低字线接线区域510所需要的区域。例如,在实施例中,字线接线区域510可以是在大约0.2μm2和大约2.8μm2。Without wishing to be bound by any particular theory, it is believed that the disclosed techniques can reduce the area required for the word line junction region 510 . For example, in an embodiment, the word line junction region 510 may be between about 0.2 μm 2 and about 2.8 μm 2 .
此外,在不希望由任何特定理论限定的情况下,可以相信的是:公开的技术可以实质上消除在行选择线SG1、SG2、…、SG8和选择栅极中的任何一个与导电柱514a1-514d2的中任何一个之间的电短路的风险。Furthermore, without wishing to be bound by any particular theory, it is believed that the disclosed technique can substantially eliminate the connection between any of the row select lines SG 1 , SG 2 , . . . , SG 8 and the select gates. Risk of electrical short between any of the posts 514a1-514d2.
因此,如上文所述的,公开技术的一个实施例包含形成单片三维存储器阵列的方法。方法包含在衬底上方形成第一垂直取向的多晶硅柱,该第一垂直取向的多晶硅柱由介电材料围绕,将第一垂直取向的多晶硅柱移除以在介电材料形成中第一空隙,并且用导电材料填充第一空隙以形成第一通孔。Thus, as noted above, one embodiment of the disclosed technology includes a method of forming a monolithic three-dimensional memory array. The method includes forming a first vertically oriented polysilicon column over a substrate, the first vertically oriented polysilicon column surrounded by a dielectric material, removing the first vertically oriented polysilicon column to form a first void in the dielectric material, And the first gap is filled with a conductive material to form a first through hole.
公开技术的一个实施例包含在衬底上形成多个垂直取向的多晶硅柱,多个垂直取向的多晶硅柱中的每一个由介电材料围绕,该多个垂直取向的多晶硅柱包括第一垂直取向的多晶硅柱和第二垂直取向的多晶硅柱,设置行选择线相邻第一垂直取向的多晶硅柱,将第二垂直取向的多晶硅柱移除以在介电材料中形成空隙,用导电材料填充空隙以形成第一通孔,并且将行选择线耦接到该通孔。One embodiment of the disclosed technology includes forming a plurality of vertically oriented polysilicon pillars on a substrate, each of the plurality of vertically oriented polysilicon pillars surrounded by a dielectric material, the plurality of vertically oriented polysilicon pillars comprising a first vertically oriented The polysilicon pillars of the vertical orientation and the second vertically oriented polysilicon pillars, the row selection line is placed adjacent to the first vertically oriented polysilicon pillars, the second vertically oriented polysilicon pillars are removed to form voids in the dielectric material, and the voids are filled with conductive material to form a first via hole, and couple a row selection line to the via hole.
公开技术的一个实施例包含形成单片三维存储器阵列的行选择线的方法。方法包含形成行选择线的第一部分和行选择线的第二部分,行选择线的第一部分与行选择线的第二部分距一距离分离,形成第一通孔和第二通孔,将行选择线的第一部分耦接到第一通孔,并且将行选择线的第二部分耦接到第二通孔。通过在衬底上方形成第一垂直取向的多晶硅柱和第二垂直取向的多晶硅柱来形成第一和第二通孔,该第一垂直取向的多晶硅柱和第二垂直取向的多晶硅柱中的每一个由介电材料围绕,将第一垂直取向的多晶硅柱移除以在介电材料中形成第一空隙,将第二垂直取向的多晶硅柱移除以在第二介电材料中形成第二空隙,并且用介电材料填充第一空隙以形成第一通孔并且用介电材料填充第二空隙以形成第二通孔。One embodiment of the disclosed technology includes a method of forming row select lines for a monolithic three-dimensional memory array. The method includes forming a first portion of a row selection line and a second portion of the row selection line, the first portion of the row selection line is separated from the second portion of the row selection line by a distance, forming a first through hole and a second through hole, and separating the row selection line from the second portion of the row selection line by a distance. A first portion of the select line is coupled to the first via, and a second portion of the row select line is coupled to the second via. The first and second via holes are formed by forming first and second vertically oriented polysilicon pillars above the substrate, each of the first vertically oriented polysilicon pillars and the second vertically oriented polysilicon pillars one surrounded by dielectric material, a first vertically oriented polysilicon pillar removed to form a first void in the dielectric material, and a second vertically oriented polysilicon pillar removed to form a second void in the second dielectric material , and filling the first void with a dielectric material to form a first via and filling the second void with a dielectric material to form a second via.
出于本文档的目的,与公开技术相关联的每个工艺可以连续地且由一个或多个计算装置来进行。可以由与那些在其他步骤中所使用的相同的或不同计算装置来进行工艺中的每个步骤,并且不一定需要由单个计算装置来进行每个步骤。For the purposes of this document, each process associated with the disclosed techniques may be performed sequentially and by one or more computing devices. Each step in the process may be performed by the same or a different computing device than those used in the other steps, and does not necessarily need to be performed by a single computing device.
出于本文档的目的,规范中的参考“实施例”、“一个实施例”、“一些实施例”、“另一个实施例”可以用于描述不同的实施例并且不一定是指相同实施例。For the purposes of this document, references in the specification to "an embodiment," "one embodiment," "some embodiments," and "another embodiment" may be used to describe different embodiments and not necessarily to refer to the same embodiment .
出于本文档的目的,连接可以是直接连接或间接连接(例如,经由其他部件)。For the purposes of this document, a connection may be direct or indirect (eg, via other components).
出于本文档的目的,术语物体的“集合”可以是指一个或多个物体的“集合”。For the purposes of this document, the term "collection" of objects may refer to a "collection" of one or more objects.
尽管已经用特定结构特征和/或主题行为的语言来描述主题,但是将理解所附的权利要求中所限定的主题不一定受限于上文所述的特定特征或行为。当然,公开了如上所述的具体特征和行为作为实现权利要求的示例形式。Although the subject matter has been described in language specific to structural features and/or subject acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/995,224 | 2016-01-14 | ||
US14/995,224 US9646880B1 (en) | 2016-01-14 | 2016-01-14 | Monolithic three dimensional memory arrays formed using sacrificial polysilicon pillars |
PCT/US2017/012707 WO2017123498A1 (en) | 2016-01-14 | 2017-01-09 | Monolithic three dimensional memory arrays formed using sacrificial polysilicon pillars |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108431978A true CN108431978A (en) | 2018-08-21 |
Family
ID=57966090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780005021.4A Pending CN108431978A (en) | 2016-01-14 | 2017-01-09 | Monolithic 3D memory array formed using sacrificial polysilicon pillars |
Country Status (4)
Country | Link |
---|---|
US (1) | US9646880B1 (en) |
EP (1) | EP3375021A1 (en) |
CN (1) | CN108431978A (en) |
WO (1) | WO2017123498A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113948531A (en) * | 2020-07-15 | 2022-01-18 | 爱思开海力士有限公司 | Semiconductor device and method for manufacturing the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017195275A (en) * | 2016-04-20 | 2017-10-26 | 東芝メモリ株式会社 | Semiconductor storage device and manufacturing method of the same |
US20180033794A1 (en) | 2016-07-27 | 2018-02-01 | Sandisk Technologies Llc | Non-Volatile Memory With Reduced Program Speed Variation |
US12048152B2 (en) | 2020-02-21 | 2024-07-23 | Samsung Electronics Co., Ltd. | Vertical memory devices |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100047995A1 (en) * | 2008-08-18 | 2010-02-25 | Apodaca Mac D | Method for forming self-aligned phase-change semiconductor diode memory |
US20100181649A1 (en) * | 2009-01-22 | 2010-07-22 | Macronix International Co., Ltd. | Polysilicon pillar bipolar transistor with self-aligned memory element |
CN102037557A (en) * | 2007-12-11 | 2011-04-27 | 株式会社东芝 | Non-volatile semiconductor storage device and method of manufacturing the same |
CN102449701A (en) * | 2009-04-08 | 2012-05-09 | 桑迪士克3D有限责任公司 | Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines |
CN103811516A (en) * | 2010-12-14 | 2014-05-21 | 桑迪士克3D有限责任公司 | Non-volatile memory having 3d array of read/write elements with low current structures and methods thereof |
CN104520995A (en) * | 2012-06-15 | 2015-04-15 | 桑迪士克3D有限责任公司 | 3D memory having vertical switches with surround gates and method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101811308B1 (en) * | 2010-11-10 | 2017-12-27 | 삼성전자주식회사 | Non-volatile memory device having resistance changeable element and method of forming the same |
-
2016
- 2016-01-14 US US14/995,224 patent/US9646880B1/en active Active
-
2017
- 2017-01-09 EP EP17703487.3A patent/EP3375021A1/en not_active Withdrawn
- 2017-01-09 WO PCT/US2017/012707 patent/WO2017123498A1/en active Application Filing
- 2017-01-09 CN CN201780005021.4A patent/CN108431978A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102037557A (en) * | 2007-12-11 | 2011-04-27 | 株式会社东芝 | Non-volatile semiconductor storage device and method of manufacturing the same |
US20100047995A1 (en) * | 2008-08-18 | 2010-02-25 | Apodaca Mac D | Method for forming self-aligned phase-change semiconductor diode memory |
US20100181649A1 (en) * | 2009-01-22 | 2010-07-22 | Macronix International Co., Ltd. | Polysilicon pillar bipolar transistor with self-aligned memory element |
CN102449701A (en) * | 2009-04-08 | 2012-05-09 | 桑迪士克3D有限责任公司 | Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines |
CN103811516A (en) * | 2010-12-14 | 2014-05-21 | 桑迪士克3D有限责任公司 | Non-volatile memory having 3d array of read/write elements with low current structures and methods thereof |
CN104040633A (en) * | 2010-12-14 | 2014-09-10 | 桑迪士克3D有限责任公司 | Continuous mesh three dimensional non-volatile storage with vertical select devices |
CN104520995A (en) * | 2012-06-15 | 2015-04-15 | 桑迪士克3D有限责任公司 | 3D memory having vertical switches with surround gates and method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113948531A (en) * | 2020-07-15 | 2022-01-18 | 爱思开海力士有限公司 | Semiconductor device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
WO2017123498A1 (en) | 2017-07-20 |
US9646880B1 (en) | 2017-05-09 |
EP3375021A1 (en) | 2018-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9673257B1 (en) | Vertical thin film transistors with surround gates | |
US9530824B2 (en) | Monolithic three dimensional memory arrays with staggered vertical bit line select transistors and methods therfor | |
US9595530B1 (en) | Methods and apparatus for vertical bit line structures in three-dimensional nonvolatile memory | |
US9922716B2 (en) | Architecture for CMOS under array | |
US9318533B2 (en) | Methods and systems to reduce location-based variations in switching characteristics of 3D ReRAM arrays | |
US9735202B1 (en) | Implementation of VMCO area switching cell to VBL architecture | |
US10355129B2 (en) | Vertical transistors with sidewall gate air gaps and methods therefor | |
CN109427969B (en) | Phase change memory electrodes with multiple thermal interfaces | |
US10290680B2 (en) | ReRAM MIM structure formation | |
US9768180B1 (en) | Methods and apparatus for three-dimensional nonvolatile memory | |
US9672917B1 (en) | Stacked vertical memory array architectures, systems and methods | |
US10388870B2 (en) | Barrier modulated cell structures with intrinsic vertical bit line architecture | |
US10114590B1 (en) | Methods for three-dimensional nonvolatile memory that include multi-portion word lines | |
US9673304B1 (en) | Methods and apparatus for vertical bit line structures in three-dimensional nonvolatile memory | |
US9741768B1 (en) | Controlling memory cell size in three dimensional nonvolatile memory | |
CN108431978A (en) | Monolithic 3D memory array formed using sacrificial polysilicon pillars | |
US20180138292A1 (en) | Methods and apparatus for three-dimensional nonvolatile memory | |
US10115770B2 (en) | Methods and apparatus for three-dimensional nonvolatile memory | |
US20190034125A1 (en) | Methods and apparatus for three-dimensional nonvolatile memory | |
US10541273B2 (en) | Vertical thin film transistors with isolation | |
WO2018231296A1 (en) | Methods and apparatus for three-dimensional nonvolatile memory | |
US9748479B2 (en) | Memory cells including vertically oriented adjustable resistance structures | |
US20180286920A1 (en) | Methods and apparatus for three-dimensional nonvolatile memory | |
US20180166559A1 (en) | Methods and apparatus for three-dimensional nonvolatile memory | |
US9754999B1 (en) | Vertical thin film transistors with surround gates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180821 |