CN108421545A - Manganese dioxide composite material and its preparation method and application - Google Patents
Manganese dioxide composite material and its preparation method and application Download PDFInfo
- Publication number
- CN108421545A CN108421545A CN201810190921.7A CN201810190921A CN108421545A CN 108421545 A CN108421545 A CN 108421545A CN 201810190921 A CN201810190921 A CN 201810190921A CN 108421545 A CN108421545 A CN 108421545A
- Authority
- CN
- China
- Prior art keywords
- composite material
- manganese dioxide
- dioxide composite
- permanganate
- material according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8668—Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/45—Gas separation or purification devices adapted for specific applications
- B01D2259/4508—Gas separation or purification devices adapted for specific applications for cleaning air in buildings
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Biomedical Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一种二氧化锰复合材料,包括由δ‑MnO2纳米片和纳米碳组装而成的纳米二次颗粒,所述纳米二次颗粒具有多孔结构。本发明还提供一种所述二氧化锰复合材料的制备方法及其在去除甲醛中的应用。本发明提供的二氧化锰复合材料在低温/室温下可快速催化甲醛降解,且对甲醛的去除率高。本发明提供的二氧化锰复合材料的制备方法简单易操作,且生产成本低。
A manganese dioxide composite material, comprising nano secondary particles assembled by δ- MnO2 nanosheets and nano carbon, the nano secondary particles have a porous structure. The invention also provides a preparation method of the manganese dioxide composite material and its application in removing formaldehyde. The manganese dioxide composite material provided by the invention can quickly catalyze the degradation of formaldehyde at low temperature/room temperature, and has a high removal rate of formaldehyde. The preparation method of the manganese dioxide composite material provided by the invention is simple and easy to operate, and has low production cost.
Description
技术领域technical field
本发明涉及材料领域,特别是涉及一种二氧化锰复合材料及其制备方法和应用。The invention relates to the field of materials, in particular to a manganese dioxide composite material and its preparation method and application.
背景技术Background technique
甲醛作为一种重要的化工原料被广泛地使用在生活的各个领域,尤其是装修、装饰材料和家具等,因此,甲醛广泛地暴露于我们生活、工作、休闲等室内环境中,室内环境中甲醛的污染被公众广泛地关注。国际癌症研究机构基于大量的人类和动物的实验发现甲醛对人体的伤害巨大,并将其归为一类致癌物,因此,室内空气中甲醛含量的高低直接影响到长期在室内活动的人们的身体健康。针对甲醛具有浓度低,释放周期长等特点,人们对于如何去除室内甲醛做了大量的研究工作,其中催化氧化技术被认为是最有效的去除甲醛的方法。As an important chemical raw material, formaldehyde is widely used in various fields of life, especially decoration, decoration materials and furniture. Therefore, formaldehyde is widely exposed to indoor environments such as our life, work, and leisure. Formaldehyde in indoor environments pollution is widely concerned by the public. Based on a large number of human and animal experiments, the International Agency for Research on Cancer found that formaldehyde is extremely harmful to the human body and classified it as a class I carcinogen. Therefore, the level of formaldehyde in indoor air directly affects the health of people who have been active indoors for a long time. healthy. Aiming at the characteristics of low concentration and long release cycle of formaldehyde, people have done a lot of research on how to remove indoor formaldehyde, among which catalytic oxidation technology is considered to be the most effective method for removing formaldehyde.
用于催化甲醛氧化的常用催化剂分为两类,贵金属催化剂和非贵金属催化剂。其中,贵金属催化剂可以在室温下将甲醛完全转化成二氧化碳和水,但由于贵金属成本较高、原料资源匮乏,并且在使用过程中容易失活等问题,限制了贵金属催化剂的实际应用。因此,使用非贵金属催化剂是降解甲醛的一个重要方向。过渡金属氧化物,尤其是锰氧化物被证实能降解甲醛,然而,二氧化锰在室温下对甲醛的转化率很低,严重地限制了其实际应用。Commonly used catalysts for catalyzing formaldehyde oxidation fall into two categories, noble metal catalysts and non-noble metal catalysts. Among them, noble metal catalysts can completely convert formaldehyde into carbon dioxide and water at room temperature, but the practical application of noble metal catalysts is limited due to the high cost of noble metals, lack of raw material resources, and easy deactivation during use. Therefore, the use of non-noble metal catalysts is an important direction for the degradation of formaldehyde. Transition metal oxides, especially manganese oxides, have been proven to degrade formaldehyde. However, the conversion rate of manganese dioxide to formaldehyde at room temperature is very low, which seriously limits its practical application.
研究者们采取了大量的手段来提高二氧化锰的催化性能,例如,对二氧化锰进行过渡金属掺杂等,然而,二氧化锰在室温下对甲醛的转化率仍然不理想,例如Tian等制备的MnOx-CeO2混合氧化物在60℃下,空速为21L/gcat·h条件下,对甲醛的转化率仅为27%(HCHO:580ppm)(Appl.Catal.B:Environ.,2006,62,265);用Ce掺杂的MnO2,当掺杂比为1:10时,在50℃下,空速为90L/gcat·h条件下,对甲醛的转化率仅为~23%(Appl.Catal.B:Environ.,2017,211,212)。Researchers have taken a lot of measures to improve the catalytic performance of manganese dioxide, for example, doping manganese dioxide with transition metals, etc. However, the conversion rate of manganese dioxide to formaldehyde at room temperature is still not ideal, such as Tian et al. The prepared MnO x -CeO 2 mixed oxide has a conversion rate of only 27% (HCHO: 580ppm) to formaldehyde at 60°C and a space velocity of 21L/gcat h (Appl.Catal.B:Environ., 2006,62,265); when the doping ratio of Ce-doped MnO 2 is 1:10, the conversion rate of formaldehyde is only ~23% at 50°C and the space velocity is 90L/gcat·h ( Appl. Catal. B: Environ., 2017, 211, 212).
发明内容Contents of the invention
基于此,有必要提供一种具有高催化活性的二氧化锰复合材料及其制备方法和应用。Based on this, it is necessary to provide a manganese dioxide composite material with high catalytic activity and its preparation method and application.
一种二氧化锰复合材料,包括由δ-MnO2纳米片和纳米碳组装而成的纳米二次颗粒,所述纳米二次颗粒具有多孔结构。A manganese dioxide composite material includes nano secondary particles assembled by δ- MnO2 nanosheets and nano carbon, and the nano secondary particles have a porous structure.
在其中一个实施例中,所述纳米碳附着于所述δ-MnO2纳米片的表面。In one of the embodiments, the carbon nanometers are attached to the surface of the δ-MnO 2 nanosheets.
在其中一个实施例中,所述δ-MnO2纳米片中存在锰的空位,所述锰的空位与所述δ-MnO2纳米片中Mn元素的摩尔比为1:49~8:42。In one embodiment, manganese vacancies exist in the δ-MnO 2 nanosheets, and the molar ratio of the manganese vacancies to the Mn element in the δ-MnO 2 nanosheets is 1:49˜8:42.
在其中一个实施例中,所述δ-MnO2纳米片的厚度为1nm~5nm,长度为10nm~40nm,所述纳米碳的粒径为1nm至10nm,所述纳米二次颗粒的粒径为30nm~200nm。In one of the embodiments, the thickness of the δ- MnO2 nanosheets is 1nm-5nm, the length is 10nm-40nm, the particle size of the nano-carbon is 1nm-10nm, and the particle size of the nano-secondary particles is 30nm ~ 200nm.
在其中一个实施例中,所述纳米二次颗粒的平均孔径为3nm至13nm,比表面积为100m2/g~240m2/g。In one embodiment, the average pore diameter of the secondary nano particles is 3 nm to 13 nm, and the specific surface area is 100 m 2 /g to 240 m 2 /g.
在其中一个实施例中,所述纳米碳是石墨化纳米碳。In one embodiment, the nanocarbon is graphitized nanocarbon.
在其中一个实施例中,所述δ-MnO2纳米片中存在锰的空位,所述锰的空位与所述δ-MnO2纳米片中Mn的摩尔比为4:46至8:42。In one embodiment, manganese vacancies exist in the δ-MnO 2 nanosheets, and the molar ratio of the manganese vacancies to Mn in the δ-MnO 2 nanosheets is 4:46 to 8:42.
在其中一个实施例中,所述δ-MnO2纳米片的厚度为3nm~5nm,长度为10nm~30nm,所述石墨化纳米碳的粒径为2nm至6nm,所述纳米二次颗粒的粒径为30nm~80nm。In one of the embodiments, the thickness of the δ- MnO2 nanosheets is 3nm-5nm, the length is 10nm-30nm, the particle size of the graphitized nano-carbon is 2nm-6nm, and the particle size of the nano-secondary particles is The diameter is 30nm ~ 80nm.
在其中一个实施例中,所述纳米二次颗粒的平均孔径为8nm至13nm,比表面积为180m2/g~240m2/g。In one embodiment, the average pore diameter of the secondary nano particles is 8 nm to 13 nm, and the specific surface area is 180 m 2 /g to 240 m 2 /g.
一种二氧化锰复合材料的制备方法,包括:提供高锰酸盐、糖类化合物和溶剂,所述高锰酸盐和所述糖类化合物均溶于所述溶剂中;以及将所述高锰酸盐、所述糖类化合物和所述溶剂混合后形成反应液,并使所述反应液在40℃至100℃进行反应,得到所述二氧化锰复合材料。A method for preparing a manganese dioxide composite material, comprising: providing permanganate, a saccharide compound and a solvent, wherein the permanganate and the saccharide compound are all dissolved in the solvent; Manganate, the saccharide compound and the solvent are mixed to form a reaction liquid, and the reaction liquid is reacted at 40° C. to 100° C. to obtain the manganese dioxide composite material.
在其中一个实施例中,所述糖类化合物为单糖、双糖和多糖中的至少一种。In one embodiment, the carbohydrate compound is at least one of monosaccharides, disaccharides and polysaccharides.
在其中一个实施例中,所述糖类化合物为还原性糖。In one embodiment, the carbohydrate compound is a reducing sugar.
在其中一个实施例中,所述糖类化合物为甘油醛、赤藓糖、苏力糖、阿拉伯糖、核糖、木糖、来苏糖、葡萄糖、甘露糖、果糖、半乳糖、乳糖和麦芽糖中的至少一种。In one of the embodiments, the carbohydrate compound is glyceraldehyde, erythrose, thulose, arabinose, ribose, xylose, lyxose, glucose, mannose, fructose, galactose, lactose and maltose at least one of .
在其中一个实施例中,在所述反应液中,所述高锰酸盐与所述糖类化合物的摩尔比为2:1至20:1。In one embodiment, in the reaction solution, the molar ratio of the permanganate to the sugar compound is 2:1 to 20:1.
在其中一个实施例中,所述高锰酸盐在所述反应液中的浓度为0.01mol/L至0.15mol/L。In one embodiment, the concentration of the permanganate in the reaction solution is 0.01mol/L to 0.15mol/L.
在其中一个实施例中,所述高锰酸盐包括高锰酸钾、高锰酸钠、高锰酸钙、高锰酸锂、高锰酸钡、高锰酸锌和高锰酸镁中的至少一种,所述溶剂为水。In one of the embodiments, the permanganate includes potassium permanganate, sodium permanganate, calcium permanganate, lithium permanganate, barium permanganate, zinc permanganate and magnesium permanganate At least one, the solvent is water.
一种所述二氧化锰复合材料在去除甲醛中的应用。An application of the manganese dioxide composite material in removing formaldehyde.
在其中一个实施例中,所述二氧化锰复合材料用于在室温下催化甲醛氧化降解。In one embodiment, the manganese dioxide composite material is used to catalyze the oxidative degradation of formaldehyde at room temperature.
本发明提供的二氧化锰复合材料,为在反应过程中基本同时生成的δ-MnO2纳米片和纳米碳组装形成的纳米二次颗粒。所述纳米碳可附着于所述δ-MnO2纳米片的表面,并阻碍δ-MnO2纳米片之间的团聚,从而得到了比表面积较大的多孔的纳米二次颗粒。所述纳米二次颗粒对甲醛具有较强的催化活性。The manganese dioxide composite material provided by the invention is a secondary nanoparticle formed by assembling δ- MnO2 nanosheets and nanocarbons generated substantially simultaneously during the reaction process. The nano-carbon can be attached to the surface of the δ-MnO 2 nano-sheets and hinder the agglomeration between the δ-MnO 2 nano-sheets, thereby obtaining porous nano-secondary particles with a larger specific surface area. The secondary nano particles have strong catalytic activity to formaldehyde.
进一步的,由于所述纳米碳的存在影响了δ-MnO2纳米片的结晶和生长,从而使得δ-MnO2纳米片可以存在缺陷和空位,从而具有较多的活性位点,进一步提高对甲醛的催化活性。Further, since the presence of the nano-carbon affects the crystallization and growth of the δ- MnO2 nanosheets, defects and vacancies may exist in the δ- MnO2 nanosheets, thereby having more active sites, further improving the resistance to formaldehyde. catalytic activity.
进一步的,当所述纳米碳为石墨化纳米碳时,可使得δ-MnO2纳米片具有更多的缺陷和空位,且δ-MnO2纳米片之间的团聚程度更小,所述纳米二次颗粒的孔径和比表面积更大,另外,石墨化的结构有利于甲醛氧化过程中电子的快速转移,能够加快甲醛的催化氧化速度,因此,进一步提高了所述二氧化锰复合材料的催化活性。Further, when the nanocarbon is graphitized nanocarbon, the δ- MnO2 nanosheets can have more defects and vacancies, and the degree of agglomeration between the δ- MnO2 nanosheets is smaller, and the nanometer2 The pore diameter and specific surface area of the secondary particles are larger. In addition, the graphitized structure is conducive to the rapid transfer of electrons in the formaldehyde oxidation process, which can accelerate the catalytic oxidation rate of formaldehyde. Therefore, the catalytic activity of the manganese dioxide composite material is further improved. .
本发明提供的二氧化锰复合材料,能够在低温/常温下快速催化降解甲醛,具有良好的应用前景,且其采用一步法进行制备,简单容易操作,并且制备成本低,容易实现工业化生产。The manganese dioxide composite material provided by the invention can quickly catalyze and degrade formaldehyde at low or normal temperature, has good application prospects, and is prepared by a one-step method, which is simple and easy to operate, has low preparation cost, and is easy to realize industrial production.
附图说明Description of drawings
图1为本发明实施例1和实施例2提供的二氧化锰复合材料的X射线衍射(XRD)图谱;Fig. 1 is the X-ray diffraction (XRD) spectrum of the manganese dioxide composite material that the embodiment of the present invention 1 and embodiment 2 provide;
图2a至图2d分别为本发明实施例1提供的二氧化锰复合材料的扫描电镜图(SEM)、透射电镜图(TEM)、高倍透射电镜图(HR-TEM)和X射线能量色散元素分布图(EDX mapping);图2e至图2h分别为本发明实施例2提供的二氧化锰复合材料的扫描电镜图(SEM)、透射电镜图(TEM)、高倍透射电镜图(HR-TEM)和X射线能量色散元素分布(EDX mapping);Fig. 2a to Fig. 2d are scanning electron micrograph (SEM), transmission electron micrograph (TEM), high magnification transmission electron micrograph (HR-TEM) and X-ray energy dispersive element distribution of the manganese dioxide composite material provided by Example 1 of the present invention respectively Figure (EDX mapping); Fig. 2e to Fig. 2h are scanning electron micrograph (SEM), transmission electron micrograph (TEM), high magnification transmission electron micrograph (HR-TEM) and X-ray energy dispersive element distribution (EDX mapping);
图3为本发明实施例1和实施例2提供的二氧化锰复合材料的傅立叶红外光谱(FTIR)图;Fig. 3 is the Fourier transform infrared spectrum (FTIR) figure of the manganese dioxide composite material that the embodiment of the present invention 1 and embodiment 2 provide;
图4为本发明实施例1和实施例2提供的二氧化锰复合材料的拉曼(Raman)图谱;Fig. 4 is the Raman (Raman) spectrum of the manganese dioxide composite material that the embodiment of the present invention 1 and embodiment 2 provide;
图5a和图5b分别为本发明实施例1和实施例2提供的二氧化锰复合材料的循环伏安曲线和恒流充放电曲线;Figure 5a and Figure 5b are respectively the cyclic voltammetry curve and the constant current charge and discharge curve of the manganese dioxide composite material provided by Example 1 and Example 2 of the present invention;
图6a和图6b分别为本发明实施例1和实施例2提供的二氧化锰复合材料的H2程序升温还原(H2-TPR)曲线图和O2程序升温氧化(O2-TPD)曲线图;Figure 6a and Figure 6b are respectively the H 2 temperature programmed reduction (H 2 -TPR) curve and the O 2 temperature programmed oxidation (O 2 -TPD) curve of the manganese dioxide composite materials provided in Example 1 and Example 2 of the present invention picture;
图7a和图7b分别为本发明实施例1和实施例2提供的二氧化锰复合材料在甲醛静态测试过程中甲醛和二氧化碳浓度随时间变化的曲线图;Fig. 7a and Fig. 7b are respectively the graph of formaldehyde and carbon dioxide concentration changing with time in the manganese dioxide composite material provided by embodiment 1 and embodiment 2 of the present invention during the formaldehyde static test;
图8为本发明实施例1提供的二氧化锰复合材料在甲醛动态测试过程中甲醛去除效率随时间变化的曲线图;Fig. 8 is the graph that the formaldehyde removal efficiency of the manganese dioxide composite material provided by Example 1 of the present invention changes with time during the formaldehyde dynamic test process;
图9为本发明实施例1提供的二氧化锰复合材料在甲醛动态测试过程中不同相对湿度下甲醛去除效率随时间变化的曲线图;Fig. 9 is a curve diagram of the formaldehyde removal efficiency of the manganese dioxide composite material provided by Example 1 of the present invention under different relative humidity during the formaldehyde dynamic test process;
图10为本发明实施例2提供的二氧化锰复合材料在甲醛动态测试过程中甲醛去除效率随时间变化的曲线图;Figure 10 is a graph showing the formaldehyde removal efficiency of the manganese dioxide composite material in Example 2 of the present invention as a function of time during the formaldehyde dynamic test;
图11a和图11b分别为本发明实施例3提供的二氧化锰复合材料的扫描电镜图(SEM)和高倍透射电镜图(HR-TEM)。Figure 11a and Figure 11b are the scanning electron microscope (SEM) and high power transmission electron microscope (HR-TEM) images of the manganese dioxide composite material provided in Example 3 of the present invention, respectively.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail through the following embodiments and in conjunction with the accompanying drawings. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
一种二氧化锰复合材料,包括由δ-MnO2纳米片和纳米碳组装而成的纳米二次颗粒,所述纳米二次颗粒具有多孔结构。A manganese dioxide composite material includes nano secondary particles assembled by δ- MnO2 nanosheets and nano carbon, and the nano secondary particles have a porous structure.
本发明提供的二氧化锰复合材料,为在反应过程中基本同时生成的δ-MnO2纳米片和纳米碳组装形成的纳米二次颗粒。所述纳米碳可附着于所述δ-MnO2纳米片的表面,并阻碍δ-MnO2纳米片之间的团聚,从而得到了比表面积较大的多孔的纳米二次颗粒。所述纳米二次颗粒对甲醛具有较强的催化活性。The manganese dioxide composite material provided by the invention is a secondary nanoparticle formed by assembling δ- MnO2 nanosheets and nanocarbons generated substantially simultaneously during the reaction process. The nano-carbon can be attached to the surface of the δ-MnO 2 nano-sheets and hinder the agglomeration between the δ-MnO 2 nano-sheets, thereby obtaining porous nano-secondary particles with a larger specific surface area. The secondary nano particles have strong catalytic activity to formaldehyde.
进一步地,由于所述纳米碳的存在影响了δ-MnO2纳米片的结晶和生长,从而使得δ-MnO2纳米片可以存在缺陷和空位,从而具有较多的活性位点,进一步提高对甲醛的催化活性。优选地,所述δ-MnO2纳米片中可存在锰的空位。更为优选的,所述δ-MnO2纳米片中所述锰的空位与所述δ-MnO2纳米片中Mn元素的摩尔比可以为1:49~8:42。Further, since the presence of the nano-carbon affects the crystallization and growth of the δ- MnO2 nanosheets, defects and vacancies may exist in the δ- MnO2 nanosheets, thereby having more active sites, further improving the resistance to formaldehyde. catalytic activity. Preferably, manganese vacancies may exist in the δ-MnO 2 nanosheets. More preferably, the molar ratio of the manganese vacancies in the δ-MnO 2 nanosheets to the Mn element in the δ-MnO 2 nanosheets may be 1:49˜8:42.
所述δ-MnO2纳米片的厚度可为1nm~5nm,长度可为10nm~40nm。所述纳米碳的粒径可为1nm至10nm。所述纳米二次颗粒的粒径可为30nm~200nm。所述纳米二次颗粒的平均孔径为3nm至13nm,比表面积可为100m2/g~240m2/g。The thickness of the δ-MnO 2 nanosheets may be 1nm-5nm, and the length may be 10nm-40nm. The particle diameter of the nano carbon may be 1nm to 10nm. The particle size of the secondary nano particles may be 30nm-200nm. The average pore diameter of the secondary nano particles is 3 nm to 13 nm, and the specific surface area may be 100 m 2 /g to 240 m 2 /g.
优选地,所述纳米碳为石墨化纳米碳,该石墨化纳米碳可使得δ-MnO2纳米片具有更多的缺陷和空位和更小的尺寸,并且使得δ-MnO2纳米片的更不容易团聚,从而得到孔径和比表面积均更大的纳米二次颗粒。另外,石墨化的结构有利于甲醛氧化过程中电子的快速转移,从而能够加快甲醛的催化氧化速度。优选地,具有石墨化纳米碳的所述δ-MnO2纳米片中所述锰的空位与所述δ-MnO2纳米片中Mn元素的摩尔比可以为4:46~8:42。优选地,所述δ-MnO2纳米片的厚度可为3nm~5nm,尺寸可为10nm~30nm。优选地,所述纳米碳的粒径可为1nm至6nm。所述纳米二次颗粒的粒径可为30nm~80nm。所述纳米二次颗粒的平均孔径为8nm至13nm,比表面积可为180m2/g~240m2/g。Preferably, the nano-carbon is graphitized nano-carbon, and the graphitized nano-carbon can make the δ- MnO2 nanosheets have more defects and vacancies and a smaller size, and make the δ- MnO2 nanosheets less It is easy to agglomerate, so as to obtain nano secondary particles with larger pore diameter and specific surface area. In addition, the graphitized structure is conducive to the rapid transfer of electrons during the oxidation of formaldehyde, which can accelerate the catalytic oxidation of formaldehyde. Preferably, the molar ratio of the manganese vacancies in the δ-MnO 2 nanosheets with graphitized nanocarbon to the Mn element in the δ-MnO 2 nanosheets may be 4:46˜8:42. Preferably, the thickness of the δ-MnO 2 nanosheets may be 3nm-5nm, and the size may be 10nm-30nm. Preferably, the particle diameter of the nano-carbon may be 1nm to 6nm. The particle size of the secondary nano particles may be 30nm-80nm. The average pore diameter of the secondary nano particles is 8 nm to 13 nm, and the specific surface area may be 180 m 2 /g to 240 m 2 /g.
本发明提供的二氧化锰复合材料具有较高的催化活性,能够在低温/常温下快速催化降解甲醛。The manganese dioxide composite material provided by the invention has high catalytic activity and can rapidly catalyze and degrade formaldehyde at low or normal temperature.
本发明进一步提供一种二氧化锰复合材料的制备方法,包括:The present invention further provides a preparation method of manganese dioxide composite material, comprising:
S1,提供高锰酸盐、糖类化合物和溶剂,所述高锰酸盐和所述糖类化合物均能够溶解于所述溶剂中;以及S1, providing permanganate, a saccharide compound and a solvent in which both the permanganate and the saccharide compound can be dissolved; and
S2,将所述高锰酸盐、所述糖类化合物和所述溶剂混合形成反应液,使所述反应液在40℃至100℃进行反应,得到所述二氧化锰复合材料。S2, mixing the permanganate, the saccharide compound and the solvent to form a reaction solution, and reacting the reaction solution at 40°C to 100°C to obtain the manganese dioxide composite material.
在步骤S1中,所述高锰酸盐可以包括高锰酸钾、高锰酸钠、高锰酸钙、高锰酸锂、高锰酸钡、高锰酸锌和高锰酸镁中的至少一种。优选地,所述高锰酸盐可以为高锰酸钾、高锰酸钠和高锰酸钙中的至少一种。更为优选地,所述高锰酸盐可以为高锰酸钾。In step S1, the permanganate may include at least one of potassium permanganate, sodium permanganate, calcium permanganate, lithium permanganate, barium permanganate, zinc permanganate and magnesium permanganate A sort of. Preferably, the permanganate may be at least one of potassium permanganate, sodium permanganate and calcium permanganate. More preferably, the permanganate may be potassium permanganate.
所述糖类化合物可以是单糖、双糖和多糖中的至少一种。所述单糖可以是甘油醛、赤藓糖、苏力糖、阿拉伯糖、核糖、木糖、来苏糖、葡萄糖、甘露糖、果糖和半乳糖中的至少一种。所述双糖可以是麦芽糖、蔗糖和乳糖中的至少一种。所述多糖可以是小分子的糖原等。The saccharide compound may be at least one of monosaccharides, disaccharides and polysaccharides. The monosaccharide may be at least one of glyceraldehyde, erythrose, thulose, arabinose, ribose, xylose, lyxose, glucose, mannose, fructose and galactose. The disaccharide may be at least one of maltose, sucrose and lactose. The polysaccharide can be small molecule glycogen and the like.
所述溶剂可以是水。The solvent may be water.
在步骤S2中,将所述高锰酸盐、所述糖类化合物和所述溶剂混合的步骤可包括:In step S2, the step of mixing the permanganate, the saccharide compound and the solvent may include:
S21,将所述高锰酸盐溶解于所述溶剂中,形成高锰酸盐溶液;以及S21, dissolving the permanganate in the solvent to form a permanganate solution; and
S22,将所述糖类化合物加入所述高锰酸盐溶液中进行混合,得到所述反应液。S22, adding the saccharide compound into the permanganate solution for mixing to obtain the reaction solution.
可以理解,也可以采用其他的方式混合所述高锰酸盐、所述糖类化合物和所述溶剂,例如可将所述锰酸盐和所述糖类化合物同时加入所述溶剂中进行混合。优选地,在进行加热之前,使所述高锰酸盐、所述糖类化合物和所述溶剂快速地进行混合,以防止所述高锰酸盐和所述糖类化合物在加热之前进行反应。It can be understood that the permanganate, the saccharide compound and the solvent may also be mixed in other ways, for example, the manganate and the saccharide compound may be added to the solvent at the same time for mixing. Preferably, the permanganate, the saccharide compound and the solvent are mixed quickly before heating to prevent the permanganate and the saccharide compound from reacting before heating.
所述反应液在40℃至100℃进行反应时,所述高锰酸盐还原得到的二氧化锰结晶得到δ-MnO2纳米片,同时所述糖类化合物被氧化得到纳米碳,该纳米碳一方面可以阻止δ-MnO2纳米片的生长,从而使得到的δ-MnO2纳米片具有较小的尺寸,且具有较多的缺陷和空位,另一方面,所述纳米碳可阻止δ-MnO2纳米片的团聚,并与所述δ-MnO2纳米片发生自组装,形成具有多孔结构的纳米二次颗粒,即δ-MnO2纳米片和纳米碳的合成与自组装为纳米二次颗粒是在所述反应液的加热过程中一步得到。所述纳米碳可以附着于所述δ-MnO2纳米片的表面。所述纳米二次颗粒一方面具有多孔结构和较大的比表面积,可以吸附更多的甲醛,另一方面由于δ-MnO2纳米片存在较多的缺陷和空位,所以具有较多的活性位点,加快了甲醛的催化速度,因此,所述二氧化锰复合材料具有较高的催化活性,可以快速、高效地降解甲醛。When the reaction solution is reacted at 40° C. to 100° C., the manganese dioxide crystals obtained by the reduction of the permanganate are obtained to obtain δ-MnO 2 nanosheets, and at the same time, the saccharides are oxidized to obtain nano-carbons. The nano-carbons On the one hand, it can prevent the growth of δ-MnO 2 nanosheets, so that the resulting δ-MnO 2 nanosheets have a smaller size and have more defects and vacancies; on the other hand, the nanocarbon can prevent δ-MnO 2 Agglomeration of MnO2 nanosheets and self-assembly with the δ- MnO2 nanosheets to form nanosecondary particles with a porous structure, that is, the synthesis and self-assembly of δ- MnO2 nanosheets and nanocarbons into nanosecondary The particles are obtained in one step during the heating of the reaction solution. The nanocarbons may be attached to the surface of the δ-MnO 2 nanosheets. On the one hand, the nano-secondary particles have a porous structure and a larger specific surface area, which can absorb more formaldehyde; point, the catalytic speed of formaldehyde is accelerated, therefore, the manganese dioxide composite material has high catalytic activity and can degrade formaldehyde quickly and efficiently.
优选地,所述糖类化合物为还原性糖,例如可为单糖和某些具有还原性的双糖。当所述糖类化合物为还原性糖时,该还原性糖一方面在被氧化可形成石墨化纳米碳,另一方面,所述δ-MnO2纳米片的缺陷和空位更多,尺寸更小,相互之间团聚程度也更小,并且形成的纳米二次颗粒的孔径和比表面积更大,从而可进一步提高所述二氧化锰复合材料的催化活性和对甲醛的降解效率。Preferably, the saccharide compound is a reducing sugar, such as a monosaccharide and some reducing disaccharides. When the sugar compound is a reducing sugar, on the one hand, the reducing sugar can form graphitized nano-carbon when being oxidized; on the other hand, the δ- MnO2 nanosheets have more defects and vacancies, and are smaller , the degree of mutual agglomeration is also smaller, and the pore size and specific surface area of the formed nano secondary particles are larger, so that the catalytic activity of the manganese dioxide composite material and the degradation efficiency of formaldehyde can be further improved.
在所述反应液中,所述糖类化合物与所述高锰酸盐的摩尔比可以为2:1至20:1,更优选地为4:1至12:1。所述高锰酸盐在所述反应液中的浓度可为0.01mol/L至0.15mol/L,更优选地为0.05mol/L至0.10mol/L。所述反应时间可以为1min至12h。优选地,所述反应时间为1min至360min。In the reaction solution, the molar ratio of the carbohydrate compound to the permanganate may be 2:1 to 20:1, more preferably 4:1 to 12:1. The concentration of the permanganate in the reaction solution may be 0.01mol/L to 0.15mol/L, more preferably 0.05mol/L to 0.10mol/L. The reaction time may be 1 min to 12 h. Preferably, the reaction time is from 1 min to 360 min.
反应完毕得到所述二氧化锰复合材料后,可进一步包括分离、洗涤和干燥所述二氧化锰复合材料的步骤。可通过过滤、离心等方法分离所述二氧化锰复合材料。所述二氧化锰复合材料的干燥温度可小于300℃,以防止二氧化锰和纳米石墨碳的晶型发生变化。在干燥步骤之后,还可进一步包括研磨所述二氧化锰复合材料的步骤。After the reaction is completed to obtain the manganese dioxide composite material, the steps of separating, washing and drying the manganese dioxide composite material may be further included. The manganese dioxide composite material can be separated by filtration, centrifugation and the like. The drying temperature of the manganese dioxide composite material may be less than 300° C., so as to prevent crystal forms of manganese dioxide and nano-graphite carbon from changing. After the drying step, the step of grinding the manganese dioxide composite material may be further included.
本发明提供的制备方法,采用一步法即可获得所述二氧化锰复合材料,简单容易操作,且制备成本低。The preparation method provided by the invention can obtain the manganese dioxide composite material in one step, is simple and easy to operate, and has low preparation cost.
本发明还提供一种所述二氧化锰复合材料在去除甲醛中的应用。所述二氧化锰复合材料可作为催化剂,在低温/室温下快速使甲醛氧化降解,且对甲醛的转化率高。所述甲醛的氧化降解机理如下所示:The invention also provides an application of the manganese dioxide composite material in removing formaldehyde. The manganese dioxide composite material can be used as a catalyst to quickly oxidize and degrade formaldehyde at low temperature/room temperature, and has a high conversion rate to formaldehyde. The oxidative degradation mechanism of described formaldehyde is as follows:
可以理解,所述二氧化锰复合材料不仅可以用于催化甲醛发生氧化降解,也可以应用于催化其他氧化还原反应或者应用于离子交换等反应中。It can be understood that the manganese dioxide composite material can be used not only to catalyze the oxidative degradation of formaldehyde, but also to catalyze other redox reactions or ion exchange reactions.
实施例1:Example 1:
称取1.2g高锰酸钾溶解于盛有100mL水的锥形瓶中,然后称取0.18g葡萄糖加入至上述溶液中,将装有反应液的锥形瓶置于80℃水浴中反应15min。反应完毕后将锥形瓶中的固体离心洗涤,于105℃下干燥12h后,研磨得到二氧化锰复合材料粉末(GLC-MnO2)。Weigh 1.2g of potassium permanganate and dissolve it in an Erlenmeyer flask containing 100mL of water, then weigh 0.18g of glucose and add it to the above solution, and place the Erlenmeyer flask containing the reaction solution in a water bath at 80°C for 15 minutes to react. After the reaction, the solid in the Erlenmeyer flask was washed by centrifugation, dried at 105° C. for 12 hours, and then ground to obtain a manganese dioxide composite material powder (GLC-MnO 2 ).
对所述GLC-MnO2的性能进行表征,结果如图1至图6以及表1所示。The performance of the GLC- MnO2 was characterized, and the results are shown in Figures 1 to 6 and Table 1.
对甲醛的静态降解测试:Static degradation test of formaldehyde:
称取GLC-MnO2100mg,置于3.5L的有机玻璃反应器中,并将所述催化剂用密封盖密封,向有机玻璃反应器中打入一定量的甲醛,使得平衡后的甲醛浓度约为200ppm。打开密封盖,使催化剂和甲醛相互接触,记录甲醛浓度和二氧化碳浓度随着时间的变化,结果如图7所示。Take by weighing GLC-MnO 100mg , place in the plexiglass reactor of 3.5L, and described catalyst is sealed with airtight lid, pour into a certain amount of formaldehyde in the plexiglass reactor, make the formaldehyde concentration after equilibrium be about 200ppm. Open the sealing cover, make the catalyst and formaldehyde contact with each other, record the change of formaldehyde concentration and carbon dioxide concentration with time, the results are shown in Figure 7.
对甲醛的动态降解测试:Dynamic degradation test of formaldehyde:
称取GLC-MnO2100mg,装填到内径为6mm的玻璃管中,通过调节干、湿气路的不同配气比例控制反应气体的相对湿度,使得反应气的相对湿度为55%。通过控制甲醛的流量控制甲醛的初始浓度,使得初始浓度为0.5-1.0mg/m3,通过国家标准中的酚试剂测量进、出口的甲醛浓度,甲醛去除效率随时间的变化曲线图如图8所示;保持甲醛的初始浓度为0.5mg/m3,分别控制反应气体的相对湿度为1%~100%,测试进出口甲醛的浓度,甲醛去除效率随时间的变化曲线图如图9所示。Weigh 100 mg of GLC-MnO 2 , fill it into a glass tube with an inner diameter of 6 mm, and control the relative humidity of the reaction gas by adjusting the different gas distribution ratios of the dry and wet gas paths, so that the relative humidity of the reaction gas is 55%. The initial concentration of formaldehyde is controlled by controlling the flow rate of formaldehyde, so that the initial concentration is 0.5-1.0mg/m 3 , and the concentration of formaldehyde at the inlet and outlet is measured by the phenol reagent in the national standard. The curve of formaldehyde removal efficiency with time is shown in Figure 8 As shown; keep the initial concentration of formaldehyde at 0.5mg/m 3 , respectively control the relative humidity of the reaction gas at 1% to 100%, test the concentration of formaldehyde at the inlet and outlet, and the curve of formaldehyde removal efficiency with time is shown in Figure 9 .
如图1所示,实施例1的二氧化锰复合材料粉末的XRD图谱的12.3°、24.6°、36.5°和65.5°峰分别对应δ-MnO2晶体的晶面(001)、(002)、(100)和(110)。如图2a所示,所述二氧化锰复合材料为粒径为30nm至80nm的纳米二次颗粒,该纳米二次颗粒包括多个MnO2纳米片结构。如图2b所示,该纳米二次颗粒有明显的孔状结构,平均孔径为5nm,经测定比表面积为216m2/g。进一步观察其微结构,如图2c所示,所述二氧化锰复合材料具有明细的晶格条纹,其中,0.24nm的条纹间距对应着δ-MnO2的晶面(110),0.21nm的条纹间距对应着石墨的晶面(110),即MnO2纳米片的表面附着有石墨化纳米碳,所示石墨化纳米碳的粒径为2nm至6nm。如图2d所示,所述二氧化锰复合材料中含有C、Mn、O和K,且C元素与Mn元素、O元素和K元素一样,在所述二氧化锰复合材料中有着具有较为均为的分布。从以上分析结果可知,在上述反应过程中,在高锰酸钾转化二氧化锰的同时,葡萄糖原位转化为石墨化的纳米碳粒子,该石墨化的纳米碳米粒子和二氧化锰纳米片共同组装形成了多孔结构的纳米二次颗粒。As shown in Figure 1, the 12.3 °, 24.6 °, 36.5 ° and 65.5 ° peaks of the XRD spectrum of the manganese dioxide composite material powder of embodiment 1 correspond to δ- MnO crystal faces (001), (002), (100) and (110). As shown in Figure 2a, the manganese dioxide composite material is nano secondary particles with a particle size of 30nm to 80nm, and the nano secondary particles include a plurality of MnO 2 nanosheet structures. As shown in Figure 2b, the secondary nanoparticle has an obvious porous structure with an average pore diameter of 5nm and a measured specific surface area of 216m 2 /g. Further observe its microstructure, as shown in Figure 2c, the manganese dioxide composite material has fine lattice fringes, wherein the fringe spacing of 0.24nm corresponds to the crystal plane (110) of δ- MnO2 , and the fringe spacing of 0.21nm The spacing corresponds to the crystal plane (110) of graphite, that is, graphitized nanocarbon is attached to the surface of the MnO 2 nanosheet, and the particle size of the graphitized nanocarbon shown is 2nm to 6nm. As shown in Figure 2d, the manganese dioxide composite material contains C, Mn, O and K, and the C element is the same as the Mn element, O element and K element, and has a relatively uniform for the distribution. From the above analysis results, it can be seen that in the above reaction process, while potassium permanganate converts manganese dioxide, glucose is converted into graphitized nano-carbon particles in situ, and the graphitized nano-carbon rice particles and manganese dioxide nanosheets Co-assembled to form secondary nano-particles with a porous structure.
从表1可以看出,二氧化锰复合材料中的Mn/O比0.44小于MnO2的化学计量的Mn/O比0.5,表明二氧化锰晶体锰的位置存在空位,锰的空位处更容易生成不饱和的氧物种,而锰的空位处用于平衡电荷的K+的存在也更有利于活性氧的产生,二氧化锰复合材料中还含有0.20的表面吸附氧,这些不饱和的氧物种和表面吸附氧对甲醛的催化起着重要的重用,使得二氧化锰复合材料对甲醛的较高的催化活性。It can be seen from Table 1 that the Mn/O ratio of 0.44 in the manganese dioxide composite material is less than the stoichiometric Mn/O ratio of 0.5 in MnO2 , indicating that there are vacancies in the manganese dioxide crystals, and the vacancies of manganese are easier to generate Unsaturated oxygen species, and the existence of K + for charge balance in manganese vacancies is also more conducive to the generation of active oxygen, and the manganese dioxide composite also contains 0.20 surface adsorbed oxygen, these unsaturated oxygen species and The surface adsorbed oxygen plays an important role in the catalysis of formaldehyde, which makes the manganese dioxide composite material have higher catalytic activity to formaldehyde.
如图7所示,静态甲醛降解测试结果显示,反应1小时后,二氧化锰复合材料在室温下对甲醛的去除率达到93.5%。如图8所示,动态甲醛降解测试结果显示,在相对湿度为55%时,二氧化锰复合材料在室温下对低浓度甲醛的去除率达到90%以上,且在10小时内保持稳定,且二氧化锰复合材料在室温、高湿度条件下对低浓度甲醛仍有很高的去除率。如图9所示,在4%~80%的相对湿度范围内,二氧化锰复合材料在室温下对低浓度甲醛均具有很高的去除率。As shown in Figure 7, the static formaldehyde degradation test results show that after 1 hour of reaction, the formaldehyde removal rate of the manganese dioxide composite material at room temperature reaches 93.5%. As shown in Figure 8, the dynamic formaldehyde degradation test results show that when the relative humidity is 55%, the removal rate of low-concentration formaldehyde of the manganese dioxide composite material at room temperature reaches more than 90%, and remains stable within 10 hours, and Manganese dioxide composites still have a high removal rate for low-concentration formaldehyde at room temperature and high humidity. As shown in Figure 9, in the relative humidity range of 4% to 80%, the manganese dioxide composite material has a high removal rate for low-concentration formaldehyde at room temperature.
实施例2Example 2
称取1.2g高锰酸钾溶解于盛有100mL水的锥形瓶中,然后称取0.34g蔗糖加入至上述溶液中,将装有反应液的锥形瓶置于80℃水浴中反应15min。反应完毕后将锥形瓶中的固体离心洗涤,于105℃下干燥12h后,研磨得到二氧化锰复合材料粉末(AC-MnO2)。Weigh 1.2g of potassium permanganate and dissolve it in an Erlenmeyer flask containing 100mL of water, then weigh 0.34g of sucrose and add it to the above solution, and place the Erlenmeyer flask containing the reaction solution in a water bath at 80°C for 15min. After the reaction, the solid in the Erlenmeyer flask was washed by centrifugation, dried at 105° C. for 12 hours, and then ground to obtain a manganese dioxide composite material powder (AC-MnO 2 ).
对所述AC-MnO2的性能进行表征,结果如图1至图6以及表1所示。The performance of the AC-MnO 2 was characterized, and the results are shown in Figures 1 to 6 and Table 1.
采用与实施例1相同的方法进行甲醛的静态降解测试,结果如图7所示。The static degradation test of formaldehyde was carried out by the same method as in Example 1, and the results are shown in Figure 7.
采用与实施例1相同的方法在55%的相对湿度下、甲醛初始浓度为1.0mg/m3的条件下进行甲醛的动态降解测试,结果如图10所示。Using the same method as in Example 1, the dynamic degradation test of formaldehyde was carried out under the condition of a relative humidity of 55% and an initial formaldehyde concentration of 1.0 mg/m 3 , and the results are shown in FIG. 10 .
实施例2的二氧化锰复合材料粉末的XRD图谱的12.3°、24.6°、36.5°和65.5°峰分别对应δ-MnO2晶体的晶面(001)、(002)、(100)和(110)。如图2e所示,所述二氧化锰复合材料为粒径为150nm至200nm的纳米二次颗粒,该纳米二次颗粒包括多个MnO2纳米片结构。如图2f所示,该纳米二次颗粒有孔状结构,平均孔径为9nm,经测定比表面积为70.3m2/g。进一步观察其微结构,如图2g所示,所述二氧化锰复合材料的晶格条纹只具有对应着δ-MnO2的晶面(110)的0.24nm条纹间距,该MnO2纳米片上附着无定型纳米碳,无定型纳米碳的粒径为5nm至10nm。如图2h所示,所述二氧化锰复合材料中的C元素与Mn元素、O元素和K元素一样,在所述二氧化锰复合材料中有着具有较为均为的分布。从以上分析结果可知,在上述反应过程中,在高锰酸钾转化二氧化锰的同时,蔗糖转化为无定形的纳米碳粒子,该纳米碳米粒子和二氧化锰纳米片共同组装形成了多孔结构的纳米二次颗粒。The 12.3 °, 24.6 °, 36.5 ° and 65.5 ° peaks of the XRD spectrum of the manganese dioxide composite material powder of embodiment 2 correspond to δ- MnO crystal faces (001), (002), (100) and (110 ). As shown in FIG. 2e, the manganese dioxide composite material is nano secondary particles with a particle size of 150 nm to 200 nm, and the nano secondary particles include a plurality of MnO 2 nano sheet structures. As shown in Figure 2f, the secondary nanoparticle has a porous structure with an average pore diameter of 9 nm and a measured specific surface area of 70.3 m 2 /g. Further observe its microstructure, as shown in Figure 2g, the lattice fringes of the manganese dioxide composite material only have the 0.24nm fringe spacing corresponding to the crystal plane (110) of δ- MnO 2 Shaped nano-carbon, the particle size of amorphous nano-carbon is 5nm to 10nm. As shown in FIG. 2h , the C element in the manganese dioxide composite material is the same as the Mn element, O element and K element, and has a relatively uniform distribution in the manganese dioxide composite material. From the above analysis results, it can be seen that in the above reaction process, while potassium permanganate is converted into manganese dioxide, sucrose is converted into amorphous nano-carbon particles, and the nano-carbon rice particles and manganese dioxide nanosheets are assembled together to form a porous structure. Structured nanosecondary particles.
从表1可以看出,二氧化锰复合材料中的Mn/O比0.48小于MnO2的化学计量的Mn/O比0.5,表明二氧化锰晶体锰的位置存在空位,锰的空位处更容易生成不饱和的氧物种,而锰的空位处用于平衡电荷的K+的存在也更有利于活性氧的产生,二氧化锰复合材料中还含有0.15的表面吸附氧,这些不饱和的氧物种和表面吸附氧对甲醛的催化起着重要的重用,使得二氧化锰复合材料对甲醛的较高的催化活性。It can be seen from Table 1 that the Mn/O ratio of 0.48 in the manganese dioxide composite material is less than the stoichiometric Mn/O ratio of 0.5 in MnO2 , indicating that there are vacancies in the manganese dioxide crystals, and the vacancies of manganese are easier to generate Unsaturated oxygen species, and the existence of K + for charge balance in manganese vacancies is also more conducive to the generation of active oxygen, and the manganese dioxide composite also contains 0.15 surface adsorbed oxygen, these unsaturated oxygen species and The surface adsorbed oxygen plays an important role in the catalysis of formaldehyde, which makes the manganese dioxide composite material have higher catalytic activity to formaldehyde.
如图7所示,静态甲醛降解测试结果显示,反应1小时后,二氧化锰复合材料在室温下对甲醛的去除率达到83.4%。As shown in Figure 7, the static formaldehyde degradation test results show that after 1 hour of reaction, the formaldehyde removal rate of the manganese dioxide composite material at room temperature reaches 83.4%.
如图10所示,在相对湿度为55%时,二氧化锰复合材料在室温下对1.0mg/m3的甲醛去除率达到89.4%,且在10h内保持平稳。As shown in Figure 10, when the relative humidity is 55%, the formaldehyde removal rate of 1.0mg/ m3 of the manganese dioxide composite material at room temperature reaches 89.4%, and remains stable within 10h.
实施例3Example 3
称取1.2g高锰酸钾溶解于盛有100mL水的锥形瓶中,然后称取0.18g果糖加入至上述溶液中,将装有反应液的锥形瓶置于40℃水浴中反应15min。反应完毕后将锥形瓶中的固体离心洗涤,于105℃下干燥12h后,研磨得到二氧化锰复合材料粉末。经测试,所述二氧化锰复合材料为δ-MnO2纳米片和石墨化纳米碳组装得到的纳米二次颗粒,所述二氧化锰复合材料的比表面积为230m2/g,孔体积为0.3cm3/g,孔径大小为5.2nm。Weigh 1.2g of potassium permanganate and dissolve it in an Erlenmeyer flask containing 100mL of water, then weigh 0.18g of fructose and add it to the above solution, and place the Erlenmeyer flask containing the reaction solution in a 40°C water bath for 15min. After the reaction, the solid in the Erlenmeyer flask was centrifugally washed, dried at 105° C. for 12 hours, and then ground to obtain a manganese dioxide composite material powder. After testing, the manganese dioxide composite material is a nano-secondary particle assembled from δ-MnO 2 nanosheets and graphitized nano-carbon, the specific surface area of the manganese dioxide composite material is 230m 2 /g, and the pore volume is 0.3 cm 3 /g, and the pore size is 5.2nm.
实施例4Example 4
称取1.2g高锰酸钾溶解于盛有100mL水的锥形瓶中,然后称取0.18g乳糖加入至上述溶液中,将装有反应液的锥形瓶置于95℃水浴中反应360min。反应完毕后将锥形瓶中的固体离心洗涤,于105℃下干燥12h后,研磨得到二氧化锰复合材料粉末。经测试,所述二氧化锰复合材料为δ-MnO2纳米片和石墨化纳米碳组装得到的纳米二次颗粒。Weigh 1.2g of potassium permanganate and dissolve it in an Erlenmeyer flask containing 100mL of water, then weigh 0.18g of lactose and add it to the above solution, and place the Erlenmeyer flask containing the reaction solution in a 95°C water bath for 360min. After the reaction, the solid in the Erlenmeyer flask was centrifugally washed, dried at 105° C. for 12 hours, and then ground to obtain a manganese dioxide composite material powder. After testing, the manganese dioxide composite material is nano secondary particles assembled from δ-MnO 2 nanosheets and graphitized nano carbon.
对比例1Comparative example 1
采用与实施例1相同的方法对层状二氧化锰进行甲醛静态和动态降解实验。静态甲醛降解测试结果显示,反应1小时后,层状二氧化锰在室温下对甲醛的去除率为55%。动态甲醛降解测试结果显示,在相对湿度为55%时,层状二氧化锰在室温下对低浓度1.0mg/m3甲醛的去除率为80%。Using the same method as in Example 1, the static and dynamic degradation experiments of formaldehyde were carried out on the layered manganese dioxide. Static formaldehyde degradation test results show that after 1 hour of reaction, the formaldehyde removal rate of layered manganese dioxide at room temperature is 55%. The dynamic formaldehyde degradation test results show that when the relative humidity is 55%, the removal rate of the low concentration of 1.0mg/m 3 formaldehyde at room temperature by layered manganese dioxide is 80%.
对比例2Comparative example 2
对比例1与实施例1基本相同,不同之处仅在于,所述反应液在常温下进行反应。经测试,得到的产品仅包括二氧化锰,不包括纳米碳,该产品的比表面积为72.4m2/g,孔体积为0.78cm3/g,孔径大小为4.4nm。Comparative Example 1 is basically the same as Example 1, except that the reaction solution is reacted at normal temperature. After testing, the obtained product only includes manganese dioxide and does not include nano-carbon. The specific surface area of the product is 72.4m 2 /g, the pore volume is 0.78cm 3 /g, and the pore size is 4.4nm.
表1实施例1以及实施例2的二氧化锰复合材料的XPS(X射线光电子能谱)以及ICP-AES(电感耦合等离子体原子发射光谱法)分析结果XPS (X-ray Photoelectron Spectroscopy) and ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy) analysis results of the manganese dioxide composite material of Table 1 Example 1 and Example 2
备注:上标a代表从XPS分析得到的数据;上标b代表从ICP-AES分析得到的数据;Oα代表Mn-O中的O,Oβ代表表面吸附的O,Oγ代表与碳相关的O和水中的O;AOS为Mn的平均氧化态。Remarks: superscript a represents data obtained from XPS analysis; superscript b represents data obtained from ICP-AES analysis; O α represents O in Mn-O, O β represents surface-adsorbed O, O γ represents carbon-related O in water and O in water; AOS is the average oxidation state of Mn.
本发明提供的二氧化锰复合材料在室温下对甲醛降解的催化效果更好,在实际降解室内空气中的甲醛具有巨大的应用潜力。另外,相比于AC-MnO2,GLC-MnO2具有更多的电活性位点、更高的电活性、更高的导电性、更多的化学吸附的氧和更多的锰的空位,更有利于甲醛的催化,且GLC-MnO2具有更小的粒径和更大的孔径和比表面积,能使更多的活性反应位点暴露出来,对甲醛的催化性能和去除效率更高。The manganese dioxide composite material provided by the invention has a better catalytic effect on formaldehyde degradation at room temperature, and has great application potential in actually degrading formaldehyde in indoor air. In addition, compared with AC-MnO 2 , GLC-MnO 2 has more electroactive sites, higher electroactivity, higher conductivity, more chemisorbed oxygen and more manganese vacancies, It is more conducive to the catalysis of formaldehyde, and GLC-MnO 2 has smaller particle size and larger pore size and specific surface area, which can expose more active reaction sites, and the catalytic performance and removal efficiency of formaldehyde are higher.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810190921.7A CN108421545B (en) | 2018-03-08 | 2018-03-08 | Application of manganese dioxide composites |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810190921.7A CN108421545B (en) | 2018-03-08 | 2018-03-08 | Application of manganese dioxide composites |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108421545A true CN108421545A (en) | 2018-08-21 |
CN108421545B CN108421545B (en) | 2020-04-28 |
Family
ID=63157688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810190921.7A Active CN108421545B (en) | 2018-03-08 | 2018-03-08 | Application of manganese dioxide composites |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108421545B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109529613A (en) * | 2018-12-26 | 2019-03-29 | 深圳市中建南方环境股份有限公司 | A kind of method and purification system of the formaldehyde of mineralising at room temperature |
CN109589971A (en) * | 2019-01-28 | 2019-04-09 | 哈尔滨工业大学 | It is a kind of to utilize C-MnO2The method that composite material removes perfluoro caprylic acid in water removal |
CN110002501A (en) * | 2019-04-11 | 2019-07-12 | 华东师范大学 | A kind of manganese dioxide electrode material for super capacitor and preparation method and application |
CN110548519A (en) * | 2019-08-07 | 2019-12-10 | 广东工业大学 | porous nano cobalt-doped zinc manganate spinel catalyst and preparation method and application thereof |
CN112604681A (en) * | 2020-12-14 | 2021-04-06 | 陕西科技大学 | Formaldehyde degradation material and preparation method and application thereof |
CN112619640A (en) * | 2020-12-14 | 2021-04-09 | 陕西科技大学 | Active manganese formaldehyde degradation material and preparation and application thereof |
CN112774652A (en) * | 2019-11-08 | 2021-05-11 | 成都易态科技有限公司 | Formaldehyde purification porous film and preparation method thereof |
CN112774650A (en) * | 2019-11-08 | 2021-05-11 | 成都易态科技有限公司 | Formaldehyde purification material preparation, preparation method and application |
CN112774651A (en) * | 2019-11-08 | 2021-05-11 | 成都易态科技有限公司 | Formaldehyde purification material preparation, preparation method and application |
CN113181902A (en) * | 2021-04-21 | 2021-07-30 | 南京理工大学 | Preparation method and application of trimanganese tetroxide catalyst rich in metal defects |
CN113648998A (en) * | 2021-08-11 | 2021-11-16 | 北京工业大学 | Method and application of δ-MnO2 supported graphene oxide and Ag-Gd composite catalyst |
CN113750988A (en) * | 2021-09-26 | 2021-12-07 | 华南理工大学 | A kind of heterojunction manganese oxide catalyst and its preparation method and application |
CN114452974A (en) * | 2022-02-21 | 2022-05-10 | 中南大学 | MnO2-based aldehyde-removing material and its ultrasonic-microwave-assisted preparation method and its application in catalytic oxidation of formaldehyde |
CN115090281A (en) * | 2022-07-04 | 2022-09-23 | 嘉应学院 | A preparation method of three-dimensional sheet Na-α-MnO2 and its application in catalytic combustion of VOCs |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001087775A1 (en) * | 2000-05-15 | 2001-11-22 | Eveready Battery Company Inc. | A method of preparation of porous manganese dioxide |
CN102059082A (en) * | 2010-11-30 | 2011-05-18 | 重庆大学 | Method for preparing nano manganese dioxide/carbon composite microsphere |
CN103050679A (en) * | 2012-12-26 | 2013-04-17 | 浙江工业大学 | Spherical hollow porous MnO/C composite material and application thereof |
-
2018
- 2018-03-08 CN CN201810190921.7A patent/CN108421545B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001087775A1 (en) * | 2000-05-15 | 2001-11-22 | Eveready Battery Company Inc. | A method of preparation of porous manganese dioxide |
CN102059082A (en) * | 2010-11-30 | 2011-05-18 | 重庆大学 | Method for preparing nano manganese dioxide/carbon composite microsphere |
CN103050679A (en) * | 2012-12-26 | 2013-04-17 | 浙江工业大学 | Spherical hollow porous MnO/C composite material and application thereof |
Non-Patent Citations (1)
Title |
---|
朱刚等: "氧化锰纳米颗粒的低温水热合成及其电化学性能", 《硅酸盐通报》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109529613B (en) * | 2018-12-26 | 2020-09-25 | 深圳市中建南方环境股份有限公司 | Method for mineralizing formaldehyde at room temperature and purification system |
CN109529613A (en) * | 2018-12-26 | 2019-03-29 | 深圳市中建南方环境股份有限公司 | A kind of method and purification system of the formaldehyde of mineralising at room temperature |
CN109589971A (en) * | 2019-01-28 | 2019-04-09 | 哈尔滨工业大学 | It is a kind of to utilize C-MnO2The method that composite material removes perfluoro caprylic acid in water removal |
CN110002501A (en) * | 2019-04-11 | 2019-07-12 | 华东师范大学 | A kind of manganese dioxide electrode material for super capacitor and preparation method and application |
CN110548519A (en) * | 2019-08-07 | 2019-12-10 | 广东工业大学 | porous nano cobalt-doped zinc manganate spinel catalyst and preparation method and application thereof |
CN110548519B (en) * | 2019-08-07 | 2022-07-12 | 广东工业大学 | Porous nano cobalt-doped zinc manganate spinel catalyst and preparation method and application thereof |
CN112774650B (en) * | 2019-11-08 | 2022-03-11 | 成都易态科技有限公司 | Formaldehyde purification material preparation, preparation method and application |
CN112774652A (en) * | 2019-11-08 | 2021-05-11 | 成都易态科技有限公司 | Formaldehyde purification porous film and preparation method thereof |
CN112774650A (en) * | 2019-11-08 | 2021-05-11 | 成都易态科技有限公司 | Formaldehyde purification material preparation, preparation method and application |
CN112774651A (en) * | 2019-11-08 | 2021-05-11 | 成都易态科技有限公司 | Formaldehyde purification material preparation, preparation method and application |
CN112774652B (en) * | 2019-11-08 | 2022-03-15 | 成都易态科技有限公司 | Formaldehyde purification porous film and preparation method thereof |
CN112774651B (en) * | 2019-11-08 | 2022-03-11 | 成都易态科技有限公司 | Formaldehyde purification material preparation, preparation method and application |
CN112604681A (en) * | 2020-12-14 | 2021-04-06 | 陕西科技大学 | Formaldehyde degradation material and preparation method and application thereof |
CN112619640A (en) * | 2020-12-14 | 2021-04-09 | 陕西科技大学 | Active manganese formaldehyde degradation material and preparation and application thereof |
CN113181902A (en) * | 2021-04-21 | 2021-07-30 | 南京理工大学 | Preparation method and application of trimanganese tetroxide catalyst rich in metal defects |
CN113648998A (en) * | 2021-08-11 | 2021-11-16 | 北京工业大学 | Method and application of δ-MnO2 supported graphene oxide and Ag-Gd composite catalyst |
CN113648998B (en) * | 2021-08-11 | 2023-10-20 | 北京工业大学 | δ-MnO 2 Method for loading graphene oxide and Ag-Gd composite catalyst and application |
CN113750988A (en) * | 2021-09-26 | 2021-12-07 | 华南理工大学 | A kind of heterojunction manganese oxide catalyst and its preparation method and application |
CN113750988B (en) * | 2021-09-26 | 2023-11-17 | 华南理工大学 | A heterogeneous junction manganese oxide catalyst and its preparation method and application |
CN114452974A (en) * | 2022-02-21 | 2022-05-10 | 中南大学 | MnO2-based aldehyde-removing material and its ultrasonic-microwave-assisted preparation method and its application in catalytic oxidation of formaldehyde |
CN114452974B (en) * | 2022-02-21 | 2023-05-23 | 中南大学 | MnO2-based aldehyde-removing material and its ultrasonic-microwave-assisted preparation method and its application in catalytic oxidation of formaldehyde |
CN115090281A (en) * | 2022-07-04 | 2022-09-23 | 嘉应学院 | A preparation method of three-dimensional sheet Na-α-MnO2 and its application in catalytic combustion of VOCs |
CN115090281B (en) * | 2022-07-04 | 2023-09-12 | 嘉应学院 | Three-dimensional flaky Na-alpha-MnO 2 Preparation method of (C) and application of (C) in catalytic combustion of VOCs |
Also Published As
Publication number | Publication date |
---|---|
CN108421545B (en) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108421545A (en) | Manganese dioxide composite material and its preparation method and application | |
Liu et al. | Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/α-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation | |
CN108722356B (en) | A kind of preparation method of nano-zero-valent iron-supported hydrophilic porous biochar composites | |
CN104810526B (en) | A kind of preparation method and application of graphene-based porous carbon metal supported catalyst | |
WO2009104500A1 (en) | Catalyst carrier, catalyst and method for producing the same | |
KR101408045B1 (en) | Mesoporous carbon, its production method and fuel cell using the same | |
CN107754785B (en) | Graphene-manganese oxide composite catalyst for low-temperature catalytic oxidation of formaldehyde and preparation method thereof | |
CN106378449A (en) | Ruthenium-cobalt alloy nanoparticle as well as preparation method and application thereof | |
Patil et al. | Nitrogen and sulphur co-doped multiwalled carbon nanotubes as an efficient electrocatalyst for improved oxygen electroreduction | |
CN109012731B (en) | Sea urchin-like CoZnAl-LDH/RGO/g-C3N4Z heterojunction and its preparation method and application | |
CN111151285B (en) | A nitrogen-doped porous carbon-supported ZnS nanocomposite material and its preparation method and application | |
Lin et al. | Construction of C 60-decorated SWCNTs (C 60-CNTs)/bismuth-based oxide ternary heterostructures with enhanced photocatalytic activity | |
Li et al. | Cu x O self-assembled mesoporous microspheres with effective surface oxygen vacancy and their room temperature NO2 gas sensing performance | |
CN106179446A (en) | The method of cobalt/nitrating porous carbon composite and preparation method thereof and catalysis silane oxidation | |
CN110690425B (en) | Boron-doped reduced carbon nanotube-loaded ferric oxide composite material and preparation method thereof | |
Seifi et al. | Preparation of copper oxide/oak-based biomass nanocomposite for electrochemical hydrogen storage | |
Zhong et al. | New finding on Sb (2–3 nm) nanoparticles and carbon simultaneous anchored on the porous palygorskite with enhanced catalytic activity | |
CN102205238A (en) | Method for preparing MWCNTs/ZnO (multi-wall carbon nano tubes/zinc oxide) nanometer composite material | |
Dhali et al. | Waste plastic derived nitrogen-doped reduced graphene oxide decorated core–shell nano-structured metal catalyst (WpNrGO-Pd–Ru) for a proton exchange membrane fuel cell | |
CN100595141C (en) | A kind of preparation method of indium tin oxide assembled carbon nanotube composite material | |
Kumar et al. | Synthesis and characterization of CeO2, Gr and rGO nanocomposites at different temperature | |
CN113750991B (en) | Catalyst of carbon-coated nickel oxide and its preparation method and application | |
CN113594476B (en) | A kind of carbon nitride modified methanol electrocatalyst and preparation method and application thereof | |
CN110386626A (en) | A kind of cobalt protoxide thin slice, preparation method and its decompose the application in water entirely in visible light catalytic | |
JP2006523591A (en) | Metal-carbon composite having nanostructure and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |