CN108420811B - Application of the lipid-lowering medicine in terms of hyperhomocysteinemiainjury treatment - Google Patents
Application of the lipid-lowering medicine in terms of hyperhomocysteinemiainjury treatment Download PDFInfo
- Publication number
- CN108420811B CN108420811B CN201810393784.7A CN201810393784A CN108420811B CN 108420811 B CN108420811 B CN 108420811B CN 201810393784 A CN201810393784 A CN 201810393784A CN 108420811 B CN108420811 B CN 108420811B
- Authority
- CN
- China
- Prior art keywords
- lymphocytes
- β2gpi
- lipid
- hhcy
- autophagy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003814 drug Substances 0.000 title claims abstract description 14
- 229940079593 drug Drugs 0.000 claims abstract description 12
- 210000004369 blood Anatomy 0.000 claims abstract description 8
- 239000008280 blood Substances 0.000 claims abstract description 8
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 claims abstract description 6
- YMTINGFKWWXKFG-UHFFFAOYSA-N fenofibrate Chemical compound C1=CC(OC(C)(C)C(=O)OC(C)C)=CC=C1C(=O)C1=CC=C(Cl)C=C1 YMTINGFKWWXKFG-UHFFFAOYSA-N 0.000 claims description 14
- 229960002297 fenofibrate Drugs 0.000 claims description 14
- 238000002360 preparation method Methods 0.000 claims description 7
- 208000023275 Autoimmune disease Diseases 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims 1
- 210000003719 b-lymphocyte Anatomy 0.000 abstract description 105
- 108090000623 proteins and genes Proteins 0.000 abstract description 45
- 208000033892 Hyperhomocysteinemia Diseases 0.000 abstract description 42
- 230000003225 hyperhomocysteinemia Effects 0.000 abstract description 41
- 102000004169 proteins and genes Human genes 0.000 abstract description 36
- 230000014509 gene expression Effects 0.000 abstract description 30
- 210000002540 macrophage Anatomy 0.000 abstract description 23
- 230000028327 secretion Effects 0.000 abstract description 23
- 230000004900 autophagic degradation Effects 0.000 abstract description 21
- 239000003524 antilipemic agent Substances 0.000 abstract description 17
- 230000001105 regulatory effect Effects 0.000 abstract description 15
- 230000002401 inhibitory effect Effects 0.000 abstract description 8
- 230000001737 promoting effect Effects 0.000 abstract description 6
- 230000002441 reversible effect Effects 0.000 abstract description 5
- 230000003827 upregulation Effects 0.000 abstract description 5
- 230000003828 downregulation Effects 0.000 abstract description 4
- 230000006759 inflammatory activation Effects 0.000 abstract description 3
- 239000003112 inhibitor Substances 0.000 abstract description 3
- 230000001939 inductive effect Effects 0.000 abstract 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 40
- 210000004027 cell Anatomy 0.000 description 24
- 210000000952 spleen Anatomy 0.000 description 20
- 101001011441 Homo sapiens Interferon regulatory factor 4 Proteins 0.000 description 16
- 102100030126 Interferon regulatory factor 4 Human genes 0.000 description 16
- 102100024894 PR domain zinc finger protein 1 Human genes 0.000 description 16
- 108010009975 Positive Regulatory Domain I-Binding Factor 1 Proteins 0.000 description 16
- 241000699666 Mus <mouse, genus> Species 0.000 description 15
- 238000001514 detection method Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 238000003753 real-time PCR Methods 0.000 description 11
- 230000000638 stimulation Effects 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 10
- 241000699670 Mus sp. Species 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 9
- 101000687343 Mus musculus PR domain zinc finger protein 1 Proteins 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 101800001821 Precursor of protein E3/E2 Proteins 0.000 description 7
- 102100020814 Sequestosome-1 Human genes 0.000 description 7
- 239000003651 drinking water Substances 0.000 description 7
- 235000020188 drinking water Nutrition 0.000 description 7
- 230000002757 inflammatory effect Effects 0.000 description 7
- 210000004379 membrane Anatomy 0.000 description 7
- 101800002664 p62 Proteins 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 5
- 101100351020 Mus musculus Pax5 gene Proteins 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 238000001962 electrophoresis Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 206010035485 plasmacytosis Diseases 0.000 description 5
- 210000004180 plasmocyte Anatomy 0.000 description 5
- 238000010839 reverse transcription Methods 0.000 description 5
- 230000003393 splenic effect Effects 0.000 description 5
- 101150073922 ATG12 gene Proteins 0.000 description 4
- 101150102163 ATG7 gene Proteins 0.000 description 4
- 108010082399 Autophagy-Related Proteins Proteins 0.000 description 4
- 102100021631 B-cell lymphoma 6 protein Human genes 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 101000971234 Homo sapiens B-cell lymphoma 6 protein Proteins 0.000 description 4
- 101000601724 Homo sapiens Paired box protein Pax-5 Proteins 0.000 description 4
- 102100037504 Paired box protein Pax-5 Human genes 0.000 description 4
- 239000012980 RPMI-1640 medium Substances 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 230000003110 anti-inflammatory effect Effects 0.000 description 4
- 101150096483 atg5 gene Proteins 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 3
- 102000000018 Chemokine CCL2 Human genes 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 108090000174 Interleukin-10 Proteins 0.000 description 3
- 102000003814 Interleukin-10 Human genes 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 101100351021 Xenopus laevis pax5 gene Proteins 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 229940076144 interleukin-10 Drugs 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- -1 Atg9 Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 108010045055 PAX5 Transcription Factor Proteins 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 239000006180 TBST buffer Substances 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 210000000683 abdominal cavity Anatomy 0.000 description 2
- 230000003429 anti-cardiolipin effect Effects 0.000 description 2
- 210000003567 ascitic fluid Anatomy 0.000 description 2
- 239000012822 autophagy inhibitor Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- 102100030802 Beta-2-glycoprotein 1 Human genes 0.000 description 1
- 238000011749 CBA mouse Methods 0.000 description 1
- 101150052909 CCL2 gene Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 101150000943 Clec10a gene Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000729176 Fagopyrum dibotrys Species 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101000793425 Homo sapiens Beta-2-glycoprotein 1 Proteins 0.000 description 1
- 101150101999 IL6 gene Proteins 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 210000004322 M2 macrophage Anatomy 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 101000793426 Mus musculus Beta-2-glycoprotein 1 Proteins 0.000 description 1
- 101100167135 Mus musculus Chil3 gene Proteins 0.000 description 1
- 101100072790 Mus musculus Irf4 gene Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000005613 PAX5 Transcription Factor Human genes 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010226 confocal imaging Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 238000013230 female C57BL/6J mice Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 108010051920 interferon regulatory factor-4 Proteins 0.000 description 1
- 229940100601 interleukin-6 Drugs 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 210000003024 peritoneal macrophage Anatomy 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 238000010377 protein imaging Methods 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000003419 rna directed dna polymerase inhibitor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013595 supernatant sample Substances 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000001973 thioglycolate broth Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/216—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Hematology (AREA)
- Engineering & Computer Science (AREA)
- Diabetes (AREA)
- Obesity (AREA)
- Emergency Medicine (AREA)
- Epidemiology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
本发明公开了降脂药在高同型半胱氨酸血症治疗方面的应用。研究发现,HHcy会显著促进B淋巴细胞自噬、浆细胞化相关基因和蛋白的表达水平,自噬、浆细胞化抑制因子则下调,表明HHcy会刺激促进B淋巴细胞自噬、浆细胞化。降脂药预处理B淋巴细胞可逆转HHcy引起的自噬、浆细胞化相关基因和蛋白上调及相关抑制因子下调。研究还发现,HHcy会显著促进B淋巴细胞分泌anti‑β2GPI,降脂药预处理B淋巴细胞可逆转HHcy对B淋巴细胞分泌anti‑β2GPI的促进作用。anti‑β2GPI作为一种抗磷脂抗体,其升高会导致血液中抗磷脂抗体水平升高,具有诱发抗磷脂综合征的风险,使用降脂药干预可预防该风险。降脂药还可通过抑制高同型半胱氨酸血症致B淋巴细胞分泌anti‑β2GPI降低anti‑β2GPI对巨噬细胞的炎性活化。
The invention discloses the application of a lipid-lowering drug in the treatment of hyperhomocysteinemia. The study found that HHcy can significantly promote the expression levels of autophagy and plasmacytization-related genes and proteins in B lymphocytes, while autophagy and plasmacytization inhibitory factors are down-regulated, indicating that HHcy can stimulate autophagy and plasmacytization of B lymphocytes. Pretreatment of B lymphocytes with lipid-lowering drugs can reverse the up-regulation of autophagy and plasmacytization-related genes and proteins and the down-regulation of related inhibitors caused by HHcy. The study also found that HHcy can significantly promote the secretion of anti-β2GPI by B lymphocytes, and pretreatment of B lymphocytes with lipid-lowering drugs can reverse the promoting effect of HHcy on the secretion of anti-β2GPI by B lymphocytes. anti-β2GPI is an antiphospholipid antibody, and its elevation will lead to an increase in the level of antiphospholipid antibody in the blood, which has the risk of inducing antiphospholipid syndrome, and the intervention of lipid-lowering drugs can prevent this risk. Lipid-lowering drugs can also reduce the inflammatory activation of macrophages by anti-β2GPI by inhibiting the secretion of anti-β2GPI by B lymphocytes caused by hyperhomocysteinemia.
Description
技术领域technical field
本发明属于医药领域,涉及降脂药在高同型半胱氨酸血症治疗方面的应用。The invention belongs to the field of medicine and relates to the application of lipid-lowering drugs in the treatment of hyperhomocysteinemia.
背景技术Background technique
同型半胱氨酸(homocysteine,Hcy)是体内蛋氨酸代谢的中间产物,是一个含有巯基的 非必需氨基酸。蛋氨酸代谢发生异常,会导致血中Hcy这一中间代谢产物的积累。如果血中 Hcy水平上升高于10μM时,即定义为高同型半胱氨酸血症(hyperhomocysteinemia,HHcy)。Homocysteine (Hcy) is an intermediate product of methionine metabolism in the body, and it is a non-essential amino acid containing a sulfhydryl group. Abnormal methionine metabolism will lead to the accumulation of Hcy, an intermediate metabolite in the blood. If the level of Hcy in the blood rises above 10 μM, it is defined as hyperhomocysteinemia (HHcy).
已有研究证明,HHcy与包括心血管疾病在内的多种疾病有关。Studies have shown that HHcy is related to many diseases including cardiovascular diseases.
发明内容Contents of the invention
本发明的目的在于提供降脂药在高同型半胱氨酸血症治疗方面的应用。The purpose of the present invention is to provide the application of the lipid-lowering drug in the treatment of hyperhomocysteinemia.
本发明的上述目的是通过下面的技术方案得以实现的:Above-mentioned purpose of the present invention is achieved by following technical scheme:
降脂药在制备抑制高同型半胱氨酸血症致B淋巴细胞自噬的药物中的应用。体内外研究 发现,HHcy会显著促进B淋巴细胞自噬相关基因和蛋白的表达水平,自噬抑制因子则显著 被下调,这表明HHcy在体和离体会刺激促进B淋巴细胞发生自噬。降脂药非诺贝特预处理 B淋巴细胞可以逆转HHcy引起的自噬相关基因和蛋白上调以及自噬抑制因子下调。Application of the lipid-lowering drug in the preparation of a drug for inhibiting autophagy of B lymphocytes caused by hyperhomocysteinemia. In vivo and in vitro studies have found that HHcy can significantly promote the expression levels of autophagy-related genes and proteins in B lymphocytes, and autophagy inhibitory factors are significantly down-regulated, which indicates that HHcy can stimulate and promote autophagy in B lymphocytes in vivo and in vitro. The lipid-lowering drug fenofibrate pretreatment of B lymphocytes can reverse the up-regulation of autophagy-related genes and proteins and the down-regulation of autophagy inhibitors caused by HHcy.
降脂药在制备抑制高同型半胱氨酸血症致B淋巴细胞浆细胞化的药物中的应用。本领域 技术人员知道,当B淋巴细胞激活后会经过免疫球蛋白类型转化重组,最终分化成浆细胞。 BLIMP1和IRF4具有促浆细胞化的作用,抑制B淋巴细胞浆细胞的分子包括BCL6和PAX5 等;通过测定B淋巴细胞中BLIMP1、IRF4、BCL6和PAX5的表达水平可以反映B淋巴细 胞的浆细胞化程度。体内外研究发现,HHcy会显著促进B淋巴细胞浆细胞化相关基因和蛋 白的表达水平,浆细胞化抑制因子则显著被下调,这表明HHcy在体和离体会刺激促进B淋 巴细胞浆细胞化。降脂药非诺贝特预处理B淋巴细胞可以逆转HHcy引起的浆细胞化相关基 因和蛋白上调以及浆细胞化抑制因子下调。Application of the lipid-lowering drug in the preparation of a drug for inhibiting plasmacytization of B lymphocytes caused by hyperhomocysteinemia. Those skilled in the art know that when activated, B lymphocytes undergo immunoglobulin type transformation and recombination, and finally differentiate into plasma cells. BLIMP1 and IRF4 have the effect of promoting plasmacytosis, and the molecules that inhibit B lymphocyte plasma cells include BCL6 and PAX5; the plasmacytization of B lymphocytes can be reflected by measuring the expression levels of BLIMP1, IRF4, BCL6 and PAX5 in B lymphocytes degree. In vivo and in vitro studies have found that HHcy can significantly promote the expression levels of B lymphocyte plasmacytization-related genes and proteins, while plasmacytization inhibitors are significantly down-regulated, which indicates that HHcy can stimulate and promote B lymphocyte plasmacytization in vivo and in vitro. Pretreatment of B lymphocytes with the lipid-lowering drug fenofibrate can reverse the up-regulation of plasmacytization-related genes and proteins and the down-regulation of plasmacytization inhibitory factors induced by HHcy.
降脂药在制备抑制高同型半胱氨酸血症致B淋巴细胞分泌anti-β2GPI的药物中的应用。 体内外研究发现,HHcy会显著促进B淋巴细胞分泌anti-β2GPI,降脂药非诺贝特预处理B 淋巴细胞可以逆转HHcy对B淋巴细胞分泌anti-β2GPI的促进作用。Application of the lipid-lowering drug in the preparation of a drug for inhibiting the secretion of anti-β2GPI by B lymphocytes caused by hyperhomocysteinemia. In vivo and in vitro studies have found that HHcy can significantly promote the secretion of anti-β2GPI by B lymphocytes, and pretreatment of B lymphocytes with the lipid-lowering drug fenofibrate can reverse the promoting effect of HHcy on the secretion of anti-β2GPI by B lymphocytes.
降脂药在制备抑制高同型半胱氨酸血症致B淋巴细胞分泌anti-β2GPI进而升高血液中抗 磷脂抗体水平的药物中的应用。anti-β2GPI是一种典型的抗磷脂抗体(APL),anti-β2GPI升高 会导致血液中抗磷脂抗体水平也显著升高。本领域技术人员知道,APL过高会引起一种自身 免疫性疾病抗磷脂综合征(APS)。也就是说,对于HHcy患者,B淋巴细胞的anti-β2GPI分泌 水平提高导致血液中APL过高具有引发APS自身免疫性疾病的风险,使用降脂药非诺贝特 干预可以预防该风险。Application of the lipid-lowering drug in the preparation of a drug that inhibits the secretion of anti-β2GPI by B lymphocytes caused by hyperhomocysteinemia, thereby increasing the level of antiphospholipid antibodies in blood. Anti-β2GPI is a typical antiphospholipid antibody (APL), and the increase of anti-β2GPI will lead to a significant increase in the level of antiphospholipid antibody in the blood. Those skilled in the art know that excessive APL can cause a kind of autoimmune disease antiphospholipid syndrome (APS). That is to say, for HHcy patients, the increased anti-β2GPI secretion level of B lymphocytes leads to excessive APL in the blood, which has the risk of causing APS autoimmune diseases, and the intervention of lipid-lowering drug fenofibrate can prevent this risk.
降脂药在制备抑制高同型半胱氨酸血症致B淋巴细胞分泌anti-β2GPI进而促进巨噬细胞 炎性活化的药物中的应用。研究结果发现,anti-β2GPI IgG会直接促进巨噬细胞M1极化并抑 制抑炎性M2极化,促进巨噬细胞分泌炎症因子,引发或加重机体内的炎症。而根据上述结 果,降脂药非诺贝特可以抑制B淋巴细胞分泌anti-β2GPI,所以本领域技术人员可以知道降 脂药可以通过抑制高同型半胱氨酸血症致B淋巴细胞分泌anti-β2GPI降低anti-β2GPI对巨噬 细胞的炎性活化作用。Application of the lipid-lowering drug in the preparation of a drug that inhibits the secretion of anti-β2GPI by B lymphocytes caused by hyperhomocysteinemia and promotes the inflammatory activation of macrophages. The results of the study found that anti-β2GPI IgG can directly promote the polarization of macrophage M1 and inhibit the polarization of anti-inflammatory M2, promote the secretion of inflammatory factors by macrophages, and trigger or aggravate inflammation in the body. According to the above results, the lipid-lowering drug fenofibrate can inhibit the secretion of anti-β2GPI by B lymphocytes, so those skilled in the art can know that lipid-lowering drugs can inhibit the secretion of anti-β2GPI by B lymphocytes caused by hyperhomocysteinemia. β2GPI reduces the inflammatory activation effect of anti-β2GPI on macrophages.
在具体实施例中,所述降脂药为非诺贝特。In a specific embodiment, the lipid-lowering drug is fenofibrate.
附图说明Description of drawings
图1:HHcy刺激机体产生APL IgG和anti-β2GPI IgG。同型半胱氨酸饮水喂养(1.8g/l)造 成C57BL/6J小鼠HHcy模型中。ELISA检测小鼠血浆APL(A)、anti-β2GPI(B)和ACL (C)IgG水平。n=3-5。*与对照组相比;P<0.05为具有显著性差异。Figure 1: HHcy stimulates the body to produce APL IgG and anti-β2GPI IgG. Homocysteine drinking water feeding (1.8g/l) caused HHcy model in C57BL/6J mice. ELISA detection of mouse plasma APL (A), anti-β2GPI (B) and ACL (C) IgG levels. n=3-5. *Compared with the control group; P<0.05 means significant difference.
图2:Hcy刺激B淋巴细胞产生APL IgG和anti-β2GPI IgG。Hcy刺激C57BL/6J小鼠脾脏B淋巴细胞72小时。ELISA检测Hcy刺激后B淋巴细胞培养基上清APL(A)、anti-β2GPI (B)和ACL(C)IgG水平。n=6。*与对照组相比;P<0.05为具有显著性差异。Figure 2: Hcy stimulates B lymphocytes to produce APL IgG and anti-β2GPI IgG. Hcy stimulated spleen B lymphocytes of C57BL/6J mice for 72 hours. ELISA was used to detect the levels of APL (A), anti-β2GPI (B) and ACL (C) IgG in the culture supernatant of B lymphocytes after Hcy stimulation. n=6. *Compared with the control group; P<0.05 means significant difference.
图3:HHcy促进小鼠B淋巴细胞发生浆细胞化。C57BL/6J小鼠给予普通饮水或Hcy(1.8g/l) 的饮水饲养两周后,分离脾脏B淋巴细胞进行检测。(A)用Western blot检测B淋巴细胞内 BLIMP1和IRF4蛋白的表达水平;eIF5作为内参。n=3。(B)定量PCR检测B淋巴细胞Pax5、 Irf4和Blimp1基因的表达水平。n=3-5。*与对照组相比;P<0.05差异显著。Figure 3: HHcy promotes plasmacytization of mouse B lymphocytes. After C57BL/6J mice were given normal drinking water or Hcy (1.8g/l) drinking water for two weeks, spleen B lymphocytes were isolated for detection. (A) Western blot was used to detect the expression levels of BLIMP1 and IRF4 proteins in B lymphocytes; eIF5 was used as an internal reference. n=3. (B) Quantitative PCR detection of the expression levels of Pax5, Irf4 and Blimp1 genes in B lymphocytes. n=3-5. *Compared with the control group; P<0.05 significantly different.
图4:Hcy促进小鼠脾脏B淋巴细胞发生浆细胞化。C57BL/6J小鼠分离脾脏B淋巴细胞, 使用Hcy刺激48小时。(A)Western blot检测B淋巴细胞BLIMP1和IRF4蛋白的表达水平,eIF5作为内参。n=3。(B)定量PCR检测B淋巴细胞Pax5、Irf4和Blimp1基因的表达水平。 n=3-5。*与对照组相比;P<0.05为具有显著性差异。Figure 4: Hcy promotes plasmacytization of mouse spleen B lymphocytes. Spleen B lymphocytes were isolated from C57BL/6J mice and stimulated with Hcy for 48 hours. (A) The expression levels of BLIMP1 and IRF4 proteins in B lymphocytes were detected by Western blot, and eIF5 was used as an internal reference. n=3. (B) Quantitative PCR detection of the expression levels of Pax5, Irf4 and Blimp1 genes in B lymphocytes. n=3-5. *Compared with the control group; P<0.05 means significant difference.
图5:HHcy促进小鼠脾脏B淋巴细胞自噬作用。C57BL/6J小鼠给予普通饮水或Hcy(1.8g/l) 的饮水饲养两周,分离脾脏B淋巴细胞进行检测。(A)用Western blot检测B淋巴细胞内 BLIMP1、IRF4、p62和LC3II蛋白表达水平,eIF5作为内参。n=3。(B)定量PCR检测B淋巴细胞内Blimp1、Irf4、Lc3ii、Atg5、Atg7、Atg9和Atg12基因的表达水平。n=3-5。*与 对照组相比;P<0.05为具有显著性差异。Figure 5: HHcy promotes autophagy of mouse spleen B lymphocytes. C57BL/6J mice were given normal drinking water or Hcy (1.8g/l) drinking water for two weeks, and the spleen B lymphocytes were isolated for detection. (A) The expression levels of BLIMP1, IRF4, p62 and LC3II proteins in B lymphocytes were detected by Western blot, and eIF5 was used as an internal reference. n=3. (B) Quantitative PCR detection of the expression levels of Blimp1, Irf4, Lc3ii, Atg5, Atg7, Atg9 and Atg12 genes in B lymphocytes. n=3-5. * Compared with the control group; P<0.05 means significant difference.
图6:Hcy促进小鼠脾脏B淋巴细胞自噬。分离C57BL/6J小鼠脾脏B淋巴细胞,使用Hcy刺激48小时。(A)Westernblot检测B淋巴细胞BLIMP1、IRF4、p62和LC3II蛋白的 表达水平,eIF5作为内参。n=3。(B)定量PCR检测B淋巴细胞Blimp1、Irf4、Lc3ii、Atg5、 Atg7、Atg9和Atg12基因的表达水平。n=3-5。*与对照组相比;P<0.05为具有显著性差异。Figure 6: Hcy promotes autophagy in mouse spleen B lymphocytes. Spleen B lymphocytes of C57BL/6J mice were isolated and stimulated with Hcy for 48 hours. (A) The expression levels of BLIMP1, IRF4, p62 and LC3II proteins in B lymphocytes were detected by Western blot, and eIF5 was used as an internal reference. n=3. (B) Quantitative PCR detection of Blimp1, Irf4, Lc3ii, Atg5, Atg7, Atg9 and Atg12 gene expression levels in B lymphocytes. n=3-5. *Compared with the control group; P<0.05 means significant difference.
图7:降脂药非诺贝特抑制B淋巴细胞的浆细胞化、自噬和anti-β2GPI IgG的分泌。分 离C57BL/6J小鼠脾脏B淋巴细胞,非诺贝特(10μM)预处理B淋巴细胞30分钟后,给予 Hcy(100μM)刺激48小时或72小时。(A)Hcy(100μM)刺激48小时后,Western blot 检测B淋巴细胞BLIMP1、IRF4、p62和LC3II蛋白的表达水平,eIF5作为内参。n=3。(B) Hcy(100μM)刺激B淋巴细胞72小时后,ELISA检测细胞培养基上清中anti-β2GPIIgG水 平。n=6。*与对照组相比;#与Hcy组相比;P<0.05具有显著性差异。Figure 7: The lipid-lowering drug fenofibrate inhibits plasmacytization, autophagy and anti-β2GPI IgG secretion of B lymphocytes. Spleen B lymphocytes of C57BL/6J mice were isolated, and after B lymphocytes were pretreated with fenofibrate (10 μM) for 30 minutes, they were stimulated with Hcy (100 μM) for 48 hours or 72 hours. (A) After Hcy (100 μM) stimulation for 48 hours, the expression levels of BLIMP1, IRF4, p62 and LC3II proteins in B lymphocytes were detected by Western blot, and eIF5 was used as an internal reference. n=3. (B) After Hcy (100 μM) stimulated B lymphocytes for 72 hours, the anti-β2GPIIgG level in the cell culture supernatant was detected by ELISA. n=6. *compared with the control group; #compared with the Hcy group; P<0.05 has a significant difference.
图8:anti-β2GPI活化巨噬细胞。anti-β2GPI(1ng/μl)刺激巨噬细胞24小时。(A)免疫荧光染色检测巨噬细胞上β2-GPI(红色)和Hochest33324(蓝色)的分布情况。n=6。(B)定量PCR检测巨噬细胞细胞M1类别转化相关的基因。(C)用定量PCR检测巨噬细胞细胞 M2类别转化相关的基因。n=6。*与对照组相比;P<0.05为具有显著性差异。Figure 8: Anti-β2GPI activates macrophages. Anti-β2GPI (1 ng/μl) stimulated macrophages for 24 hours. (A) Immunofluorescent staining to detect the distribution of β2-GPI (red) and Hochest33324 (blue) on macrophages. n=6. (B) Quantitative PCR detection of genes associated with M1 class transformation of macrophages. (C) Quantitative PCR detection of genes associated with M2 class transformation of macrophage cells. n=6. *Compared with the control group; P<0.05 means significant difference.
图9:anti-β2GPI活化巨噬细胞分泌炎症因子。anti-β2GPI(1ng/μl)刺激巨噬细胞24小 时。CBA检测小鼠炎症实验检测巨噬细胞TNF-α,MCP1,IL-6以及IL-10等炎症因子分泌情况。n=6。*与对照组相比.P<0.05为具有显著性差异。Figure 9: Anti-β2GPI activates macrophages to secrete inflammatory factors. Anti-?2GPI (1 ng/µl) stimulated macrophages for 24 hours. CBA detection of mouse inflammation test to detect the secretion of inflammatory factors such as TNF-α, MCP1, IL-6 and IL-10 in macrophages. n=6. *Compared with the control group. P<0.05 means significant difference.
具体实施方式Detailed ways
下面结合附图和实施例具体介绍本发明实质性内容,但并不以此限定本发明的保护范围。The following describes the substantive content of the present invention in detail in conjunction with the drawings and embodiments, but does not limit the protection scope of the present invention.
一、实验材料1. Experimental materials
抗小鼠LC3II,BLIMP1,IRF4,Phospho-DRP1(Ser637):美国CST公司;抗小鼠eIF5抗体:美国Santa Cruz Biotechnology公司;抗小鼠p62抗体:日本MBL International公司; IRDye700或800结合的荧光二抗:美国Rockland公司;抗小鼠APOH抗体:美国Biossantibodies公司;辣根酶标记山羊抗兔IgG(H+L):中杉金桥科技有限公司。Anti-mouse LC3II, BLIMP1, IRF4, Phospho-DRP1 (Ser637): American CST Company; anti-mouse eIF5 antibody: American Santa Cruz Biotechnology Company; anti-mouse p62 antibody: Japan MBL International Company; Anti-: American Rockland Company; anti-mouse APOH antibody: American Biossantibodies Company; horseradish enzyme-labeled goat anti-rabbit IgG (H+L): Zhongshan Jinqiao Technology Co., Ltd.
小鼠抗心磷脂抗体IgG(ACA-IgG)检测试剂盒:上海古朵生物科技有限公司;小鼠β2 糖蛋白I抗体IgG(anti-β2GPIIgG):上海古朵生物科技有限公司;小鼠抗磷脂抗体(AplAPA): 上海古朵生物科技有限公司;beta2-GlycoproteinI IgG/IgM ELISAKit:美国Abnova公司;BD CBA小鼠炎症检测试剂盒:美国BD公司;BCA蛋白定量试剂盒:美国Pierce公司;AMV 逆转录试剂盒:美国Promega公司。Mouse anticardiolipin antibody IgG (ACA-IgG) detection kit: Shanghai Guduo Biotechnology Co., Ltd.; mouse β2 glycoprotein I antibody IgG (anti-β2GPIIgG): Shanghai Guduo Biotechnology Co., Ltd.; mouse antiphospholipid Antibody (AplAPA): Shanghai Guduo Biotechnology Co., Ltd.; beta2-GlycoproteinI IgG/IgM ELISAKit: Abnova Company of the United States; BD CBA Mouse Inflammation Detection Kit: BD Company of the United States; BCA Protein Quantification Kit: Pierce Company of the United States; Recording kit: American Promega Company.
二、实验方法2. Experimental method
1、实验动物与疾病模型建立1. Establishment of experimental animals and disease models
1)实验动物:我们选用6~8周龄的雌性小鼠进行实验,其中C57BL/6J小鼠由北京大学 医学部实验动物中心提供,所有小鼠均在无特定病原体(SPF)环境下饲养。1) Experimental animals: We selected female mice aged 6-8 weeks for the experiment, among which C57BL/6J mice were provided by the Experimental Animal Center of Peking University Health Science Center, and all mice were raised in a specific pathogen-free (SPF) environment.
2)高同型半胱氨酸血症小鼠模型:为了在小鼠中诱导高同型半胱氨酸血症,我们给予6 周龄的雌性C57BL/6J小鼠含有1.8g/lDL-同型半胱氨酸的饮水喂养四周,确定同型半胱氨酸 血症诱导成功。2) Hyperhomocysteinemia mouse model: To induce hyperhomocysteinemia in mice, we administered 6-week-old female C57BL/6J mice containing 1.8g/lDL-homocysteine The mice were fed with drinking water for four weeks to confirm that homocysteinemia was successfully induced.
3)所有动物实验遵守北京大学医学部生物医学伦理委员会实验动物伦理分会指南进行。3) All animal experiments were carried out in accordance with the guidelines of the Experimental Animal Ethics Branch of the Biomedical Ethics Committee of Peking University Health Science Center.
2、脾脏B淋巴细胞提取和培养2. Spleen B lymphocyte extraction and culture
1)脾脏细胞悬液的制备:将小鼠颈椎脱臼法处死后,75%酒精消毒,迅速打开腹腔分离 脾脏置于细胞用PBS(4℃)中。剥离脾脏周围筋膜、脂肪、结缔组织,置于300目尼龙网上, 加入PBS并对脾脏研磨,制备脾脏的单细胞悬液。1) Preparation of spleen cell suspension: After the mice were killed by cervical dislocation, they were disinfected with 75% alcohol, and the abdominal cavity was quickly opened to separate the spleen and placed in PBS (4°C) for cells. The fascia, fat, and connective tissue around the spleen were peeled off, placed on a 300-mesh nylon mesh, PBS was added and the spleen was ground to prepare a single-cell suspension of the spleen.
2)分离单个核细胞:将脾脏的单细胞悬液转移至15ml离心管中,离心(1000rpm×10min) 后,弃上清,加入4℃预冷的红细胞裂解红细胞(每个小鼠脾脏对应加入3-5ml),离心 (1000rpm×10min),再用PBS重悬洗涤,离心(1000rpm×10min)后收集得到单个细胞。2) Isolation of mononuclear cells: Transfer the single cell suspension of the spleen to a 15ml centrifuge tube, centrifuge (1000rpm×10min), discard the supernatant, and add 4°C pre-cooled red blood cells to lyse the red blood cells (add to each mouse spleen 3-5ml), centrifuged (1000rpm×10min), then resuspended and washed with PBS, and centrifuged (1000rpm×10min) to collect single cells.
3)抗CD19磁珠阳性分选B淋巴细胞(以分离1×108脾脏细胞为例):将分离的单个核 细胞用PBS重悬为1×108细胞/900μl,随后加入抗CD19磁珠100μl后,4℃冰箱中孵育18min, 再加入十倍体积PBS中止反应,离心(1000rpm×10min)后LS阳性磁柱分离获得CD19+B淋 巴细胞,再次离心(1000rpm×10min)得到B淋巴细胞。3) Anti-CD19 magnetic beads positively sort B lymphocytes (take the isolation of 1×10 8 spleen cells as an example): resuspend the isolated mononuclear cells in PBS to 1×10 8 cells/900 μl, then add anti-CD19 magnetic beads After 100 μl, incubate in a refrigerator at 4°C for 18 minutes, then add 10 times the volume of PBS to stop the reaction, centrifuge (1000rpm×10min) and obtain CD19 + B lymphocytes by LS-positive magnetic column separation, and centrifuge again (1000rpm×10min) to obtain B lymphocytes.
4)B淋巴细胞的培养:用含有10%血清的RPMI-1640培养基重悬细胞,细胞计数,以3×106细胞/ml接种于细胞培养板中,加入LPS(终浓度为0.1μg/ml)后,放入37℃的5%CO2的细胞孵箱中培养。4) Cultivation of B lymphocytes: resuspend the cells with RPMI-1640 medium containing 10% serum, count the cells, inoculate them in a cell culture plate at 3×10 6 cells/ml, add LPS (final concentration is 0.1 μg/ml) ml) and cultured in a cell incubator with 5% CO 2 at 37°C.
5)Hcy刺激实验:往含有B细胞的培养基加入Hcy(终浓度100μM),刺激特定时间。5) Hcy stimulation experiment: add Hcy (final concentration 100 μM) to the culture medium containing B cells, and stimulate for a specific time.
6)抑制剂或阻断剂加入:在加入Hcy刺激前半小时,往B细胞中加入自噬抑制剂3-MA (终浓度为10mM),降脂药非诺贝特(终浓度为10μM)预先孵育半小时。6) Addition of inhibitors or blocking agents: Add autophagy inhibitor 3-MA (final concentration: 10mM) to B cells half an hour before Hcy stimulation, and lipid-lowering drug fenofibrate (final concentration: 10μM) Incubate for half an hour.
3、原代小鼠腹腔巨噬细胞分离3. Isolation of primary mouse peritoneal macrophages
1)雌性8周龄C57BL/6J小鼠腹腔注射4%巯乙酸盐肉汤2ml。1) Female 8-week-old C57BL/6J mice were intraperitoneally injected with 2ml of 4% thioglycolate broth.
2)3天后,脱颈椎死小鼠,75%酒精消毒,下腹部进针注射8ml含有10%FBS的腹腔灌 洗液,按摩腹部3分钟,充分灌洗腹腔。2) After 3 days, the mice were killed by cervical dislocation, sterilized with 75% alcohol, injected with 8ml of peritoneal lavage solution containing 10% FBS in the lower abdomen, and massaged the abdomen for 3 minutes to fully lavage the peritoneal cavity.
3)剪开皮肤,暴露腹腔,用10ml注射器尽取腹腔液体。3) Cut the skin to expose the abdominal cavity, and use a 10ml syringe to extract the peritoneal fluid.
4)腹腔液体离心(1000rpm×5min),弃上清;加入5ml含10%FBS的RPMI-1640洗涤细胞,离心(1000rpm×5min),弃上清。4) Centrifuge the peritoneal fluid (1000rpm×5min), discard the supernatant; add 5ml of RPMI-1640 containing 10% FBS to wash the cells, centrifuge (1000rpm×5min), discard the supernatant.
5)用含有10%血清的RPMI-1640培养基重悬细胞,细胞计数,以3×106细胞/孔接种于 细胞培养6孔板中(用于蛋白水平检测),以1.5×106细胞/孔接种于细胞培养12孔板中(用 于基因水平检测)。放入37℃的5%CO2的细胞孵箱中培养,贴壁2小时后换入新鲜的含有 10%血清的RPMI-1640培养基,静息12小时后给药处理实验。5) Resuspend the cells with RPMI-1640 medium containing 10% serum, count the cells, inoculate 3×10 6 cells/well in a cell culture 6-well plate (for protein level detection), and inoculate 1.5×10 6 cells Each well was seeded in a cell culture 12-well plate (for gene level detection). Place them in a cell incubator with 5% CO 2 at 37°C for culture, and replace them with fresh RPMI-1640 medium containing 10% serum after 2 hours of adherence, and give them to the treatment experiment after resting for 12 hours.
4、细胞蛋白的提取和定量4. Extraction and quantification of cellular proteins
1)细胞总蛋白的提取:收集悬浮的B细胞至1.5mlEP管中,离心(4℃,350g×10min), 弃去上清,加入PBS吹洗细胞,再次离心(4℃,350g×10min)后,加入全细胞裂解液(每 1×107个B细胞对应加入40μl),冰上放置30min待细胞充分裂解。离心(4℃,10000rpm×10min) 后转移上清至新的0.6ml EP管,即得到细胞总蛋白裂解液。1) Extraction of total cell protein: collect the suspended B cells into a 1.5ml EP tube, centrifuge (4°C, 350g×10min), discard the supernatant, add PBS to wash the cells, and centrifuge again (4°C, 350g×10min) Finally, add whole cell lysate (40 μl for every 1×10 7 B cells), and place on ice for 30 min until the cells are fully lysed. After centrifugation (4°C, 10000rpm×10min), transfer the supernatant to a new 0.6ml EP tube to obtain the total cell protein lysate.
2)蛋白定量:利用Pierce公司的BCA蛋白定量试剂盒,配置白蛋白标准溶液(0、50、100、200、300、400、500、1000mg/ml),分别加入96孔酶标板中(每孔25μl),待测蛋 白样品用水稀释至25μl(2.5μl样品+22.5μl水)后加入酶标板,最后每孔加入200μl的BCA 工作液(试剂A和试剂B以50:1的浓度混合),37℃孵育30min,以570nm为测定波长, 630nm为校准波长,利用酶标仪测定并记录吸光度值。利用Prism6软件根据标准蛋白的吸光 度值作出标准曲线,再根据样品的吸光度值计算出样品的蛋白浓度。2) Protein quantification: Use the BCA protein quantification kit from Pierce to configure albumin standard solutions (0, 50, 100, 200, 300, 400, 500, 1000 mg/ml) and add them to 96-well microtiter plates (each Well 25μl), the protein sample to be tested was diluted to 25μl with water (2.5μl sample + 22.5μl water) and then added to the microtiter plate, and finally 200μl of BCA working solution was added to each well (reagent A and reagent B were mixed at a concentration of 50:1) , and incubated at 37° C. for 30 min, with 570 nm as the measuring wavelength and 630 nm as the calibration wavelength, and using a microplate reader to measure and record the absorbance value. Use Prism6 software to make a standard curve according to the absorbance value of the standard protein, and then calculate the protein concentration of the sample according to the absorbance value of the sample.
5、蛋白印迹实验(Western blotting)5. Western blotting
1)蛋白电泳:配置不连续SDS聚丙烯酰胺凝胶(上层为6%浓缩胶,下层为10%分离胶), 利用Bio-Rad Mini-PROTEAN Tetra cell系统加入蛋白样品(蛋白与5×上样缓冲液以1:4比例 混合)以及蛋白分子量marker后进行电泳,55V恒压电泳至溴酚兰到达分离胶界面,蛋白 marker初步分离后,改变电压至110V,恒压电泳至溴酚兰到达分离胶下边界后停止电泳。1) Protein electrophoresis: configure a discontinuous SDS polyacrylamide gel (the upper layer is a 6% stacking gel, and the lower layer is a 10% separating gel), and use the Bio-Rad Mini-PROTEAN Tetra cell system to add protein samples (protein and 5× loading Buffer (mixed at a ratio of 1:4) and protein molecular weight marker for electrophoresis, 55V constant voltage electrophoresis until bromophenol blue reaches the separation gel interface, after the protein marker is initially separated, change the voltage to 110V, constant voltage electrophoresis until bromophenol blue reaches the separation gel Stop electrophoresis after the gel subsides the border.
2)蛋白转膜:切割出7×5cm大小的凝胶,利用Bio-Rad Mini Trans-BlotElectrophoretic Transfer Cell系统将凝胶恒流(250mA)电转2小时,转移到硝酸纤维膜上。2) Protein transfer: cut out a 7×5cm gel, use the Bio-Rad Mini Trans-Blot Electrophoretic Transfer Cell system to electroporate the gel at a constant current (250mA) for 2 hours, and transfer it to a nitrocellulose membrane.
3)免疫杂交:转膜后,取出印迹膜在室温下用5%牛奶或BSA封闭1小时,随后加入一 抗(1:1000浓度稀释),在4℃摇床中孵育过夜。第二天取出印迹膜,利用TBST洗膜(3 次×10min),将印迹膜加入IRDye700或800连接的荧光二抗(1:10000~20000稀释)中避光 室温孵育1小时,再用TBST洗膜(3次×10min)。3) Immunoblotting: After transferring to the membrane, take out the blotted membrane and block it with 5% milk or BSA for 1 hour at room temperature, then add the primary antibody (1:1000 concentration dilution), and incubate overnight at 4°C in a shaker. Take out the blotted membrane the next day, wash the membrane with TBST (3 times × 10min), add the blotted membrane to IRDye700 or 800-linked fluorescent secondary antibody (1:10000-20000 dilution) and incubate at room temperature for 1 hour in the dark, then wash with TBST film (3 times x 10 min).
4)蛋白显影:利用Odyssey红外成像系统,选取相应的荧光通道检测印迹膜的荧光条带。4) Protein imaging: using the Odyssey infrared imaging system, select the corresponding fluorescent channel to detect the fluorescent bands of the blotted membrane.
5)图像分析:利用Odyssey软件,去除背景后,根据条带的灰度值来进行蛋白表达的定 量,并导出相应图像。5) Image analysis: use Odyssey software, after removing the background, quantify the protein expression according to the gray value of the band, and export the corresponding image.
6、总RNA提取和定量6. Total RNA extraction and quantification
1)总RNA液相分离:收集悬浮的B细胞至1.5ml EP管中,离心(4℃,350g×10min),弃去上清,加入PBS吹洗细胞,再次离心(4℃,350g×10min)后,加入RNATRIzol(每1×107个B细胞加入1ml),冰上放置10min待细胞充分裂解;向EP管内加入200μl三氯甲烷,用 手剧烈混匀15s,冰上放置分层后,离心(4℃,13000rpm×15min);小心转移上层液相(约 600μl)至新的1.5ml EP管中。1) Liquid phase separation of total RNA: collect suspended B cells into 1.5ml EP tube, centrifuge (4°C, 350g×10min), discard the supernatant, add PBS to wash the cells, and centrifuge again (4°C, 350g×10min ), add RNATRIzol (1ml per 1 ×107 B cells), place on ice for 10min until the cells are fully lysed; add 200μl chloroform to the EP tube, mix vigorously by hand for 15s, place on ice to separate layers, Centrifuge (4°C, 13000rpm×15min); carefully transfer the upper liquid phase (about 600μl) to a new 1.5ml EP tube.
2)RNA沉淀:加入等体积的异丙醇至上层液相中,颠倒混匀后冰上放置15min,离心(4℃,13000rpm×15min)。2) RNA precipitation: add an equal volume of isopropanol to the upper liquid phase, invert and mix well, place on ice for 15 min, and centrifuge (4° C., 13000 rpm×15 min).
3)RNA洗涤:离心后弃去上清,加入1ml的75%乙醇(利用DEPC水稀释),颠倒混 匀后离心(4℃,13000rpm×10min),弃去上清后室温静置干燥RNA。3) RNA washing: discard the supernatant after centrifugation, add 1ml of 75% ethanol (diluted with DEPC water), invert and mix well and then centrifuge (4°C, 13000rpm×10min), discard the supernatant and let stand at room temperature to dry the RNA.
4)RNA溶解重悬:加入无核酸酶水溶解RNA(每1×107个B细胞加入10-15μl)溶解RNA沉淀。4) RNA dissolution and resuspension: add nuclease-free water to dissolve RNA (10-15 μl per 1×10 7 B cells) to dissolve RNA precipitate.
5)RNA定量:吸取DEPC水测定,作为空白对照,随后每个样品吸取1μl来进行浓度测定,记录RNA浓度与吸光度OD260nm/280nm。5) Quantification of RNA: Aspirate DEPC water for measurement as a blank control, then aspirate 1 μl of each sample for concentration determination, and record RNA concentration and absorbance OD260nm/280nm.
7、实时定量PCR分析7. Real-time quantitative PCR analysis
1)RNA逆转录:吸取1.5μg总RNA至EP管,70℃变性10min后置于冰上,利用Promega逆转录系统,在EP管中分别加入以下试剂:1) RNA reverse transcription: pipette 1.5 μg of total RNA into EP tubes, denature at 70°C for 10 minutes, place on ice, use the Promega reverse transcription system, add the following reagents to the EP tubes:
25mM MgCl24μl25mM MgCl2 4μl
10×逆转录缓冲液2μl10× reverse transcription buffer 2 μl
10mM dNTP混合物2μl10mM dNTP mix 2μl
Oligo(dT)15引物1μlOligo(dT)15 primer 1μl
重组逆转录酶抑制剂0.5μlRecombinant reverse transcriptase inhibitor 0.5 μl
AMV逆转录酶0.6μlAMV reverse transcriptase 0.6 μl
最后用无核酸酶水补足至20μl的总体积。Finally make up to a total volume of 20 μl with nuclease-free water.
将EP管放入42℃水浴1小时,100℃变性5min后,放置冰上,放入-20℃保存。Put the EP tube in a water bath at 42°C for 1 hour, denature at 100°C for 5 minutes, place it on ice, and store it at -20°C.
2)PCR引物设计:PCR引物根据NCBI网站上Primer设计,利用Oligo软件进行引物筛选,最后利用NCBI网站上Blast进行引物特异性对比分析,得到特异的引物。具体引物序列如下表所示:2) Design of PCR primers: PCR primers were designed according to Primer on the NCBI website, primers were screened using Oligo software, and finally specific primers were obtained by using Blast on the NCBI website to perform comparative analysis of primer specificity. The specific primer sequences are shown in the table below:
3)定量PCR及数据分析:3) Quantitative PCR and data analysis:
逆转录得到cDNA按照qPCR体系进行实验,体系如下:The cDNA obtained by reverse transcription was tested according to the qPCR system. The system is as follows:
10×PCR缓冲液2.5μl10× PCR buffer 2.5 μl
2.5mM dNTP混合物2μl2.5mM dNTP mix 2μl
10μM上游引物0.5μl0.5 μl of 10 μM upstream primer
10μM下游引物0.5μl0.5 μl of 10 μM downstream primer
逆转录反应混合物5μlReverse transcription reaction mix 5 μl
TaKaRaTaq 0.25μlTaKaRaTaq 0.25 μl
SYRB Green 1.25μlSYRB Green 1.25μl
去离子水补充至25μlMake up to 25 μl with deionized water
预变性94℃5min;(变性94℃30s,退火58℃30s,延伸72℃30s)×40个循环;延伸72℃5min。收集数据,利用Stratagene Mx Pro软件进行统计分析。Pre-denaturation at 94°C for 5min; (denaturation at 94°C for 30s, annealing at 58°C for 30s, extension at 72°C for 30s) x 40 cycles; extension at 72°C for 5min. Data were collected and analyzed statistically using Stratagene Mx Pro software.
8、ELISA测定APL、ACA和anti-β2GPI IgG8. Determination of APL, ACA and anti-β2GPI IgG by ELISA
1)样品收集:对于细胞上清样品,将分离得到的B淋巴细胞(1×106细胞/500μl)植入 48孔细胞培养板中,刺激相应时间后收集细胞上清;对于血浆样品,收集小鼠血液,离心(3000rpm×20min),转移血浆至新的EP管,-80℃保存样品。1) Sample collection: For cell supernatant samples, the isolated B lymphocytes (1×10 6 cells/500 μl) were implanted into a 48-well cell culture plate, and the cell supernatant was collected after stimulation for a corresponding time; for plasma samples, collected Mouse blood, centrifuge (3000rpm×20min), transfer the plasma to a new EP tube, and store the sample at -80°C.
2)实验测定:利用上海古朵生物科技有限公司的小鼠特异性APL抗体,ACL抗体和aβ2GPI IgG。2) Experimental determination: using the mouse-specific APL antibody, ACL antibody and aβ2GPI IgG from Shanghai Guduo Biotechnology Co., Ltd.
3)ELISA试剂盒进行测定。3) ELISA kit for determination.
9、统计学分析9. Statistical analysis
所有实验数据均利用GraphPad Prism 6软件统计,并以平均数±标准差(Mean±SD)表示。 对两组数据之间进行比较时,采用学生t检验方法;对多组数据进行比较时,则采用单因素 方差分析,并进一步采用Tukey检验。P值<0.05作为显著性差异的标准。All experimental data were calculated using GraphPad Prism 6 software, and expressed as mean ± standard deviation (Mean ± SD). When comparing two groups of data, the Student's t test method was used; when comparing multiple groups of data, one-way analysis of variance was used, and Tukey's test was further used. P value <0.05 was taken as the criterion of significant difference.
三、实验结果3. Experimental results
1、高同型半胱氨酸促进B淋巴细胞分泌anti-β2GPI1. High homocysteine promotes the secretion of anti-β2GPI by B lymphocytes
利用6周龄C57BL/6J雌性小鼠进行4周Hcy(1.8g/l)饮水喂养,诱导HHcy模型。随后我们对激活B淋巴细胞产生总的抗磷脂抗体(APL)和其中两种典型的抗磷脂抗体,即anti-β2GPI和抗心磷脂抗体(ACL)IgG分泌水平进行了检测。如图1所示,与对照组相比,HHcy 小鼠外周血中总APL IgG显著上升(3609.67±585.70mg/l上升到8402.67±1014.18mg/l), anti-β2GPI IgG水平也明显增加(2.45±0.47mg/l上升到5.82±1.63mg/l)。但ACL IgG水平没 有明显变化。结果说明HHcy促进小鼠B淋巴细胞APL以及anti-β2GPIIgG的生成和分泌。The HHcy model was induced by feeding 6-week-old C57BL/6J female mice with Hcy (1.8g/l) drinking water for 4 weeks. Then we detected the total antiphospholipid antibody (APL) produced by activated B lymphocytes and two typical antiphospholipid antibodies, anti-β2GPI and anticardiolipin antibody (ACL) IgG secretion levels. As shown in Figure 1, compared with the control group, the total APL IgG in the peripheral blood of HHcy mice increased significantly (3609.67±585.70mg/l rose to 8402.67±1014.18mg/l), and the anti-β2GPI IgG level also increased significantly (2.45 ±0.47mg/l rose to 5.82±1.63mg/l). However, ACL IgG levels did not change significantly. The results showed that HHcy promoted the production and secretion of APL and anti-β2GPIIgG in mouse B lymphocytes.
我们在离体实验中进一步验证HHcy刺激B淋巴细胞产生抗磷脂抗体的作用。分离C57BL/6J小鼠脾脏B淋巴细胞后,给予Hcy(100μM)刺激72小时,anti-β2GPI IgG明显上 升(从0.023±0.0039mg/l上升到0.10±0.020mg/l)(图2中B)。但是与对照组相比,APL IgG与ACL IgG水平没有变化(图2中A和C)。结果进一步证实HHcy促进小鼠B淋巴细胞抗 磷脂抗体产生,特别是促进其anti-β2GPI IgG的产生和分泌。We further verified the role of HHcy in stimulating B lymphocytes to produce antiphospholipid antibodies in vitro. After isolating splenic B lymphocytes from C57BL/6J mice, they were stimulated with Hcy (100 μM) for 72 hours, and the anti-β2GPI IgG increased significantly (from 0.023±0.0039mg/l to 0.10±0.020mg/l) (B in Figure 2) . However, APL IgG and ACL IgG levels did not change compared with controls (A and C in Figure 2). The results further confirmed that HHcy promotes the production of anti-phospholipid antibodies in mouse B lymphocytes, especially the production and secretion of anti-β2GPI IgG.
2、高同型半胱氨酸促进B淋巴细胞浆细胞化2. High homocysteine promotes plasmacytization of B lymphocytes
本领域技术人员知道,当B淋巴细胞激活后会经过免疫球蛋白类型转化重组,最终分化 成浆细胞。BLIMP1和IRF4具有促浆细胞化的作用,抑制B淋巴细胞浆细胞的分子包括BCL6 和PAX5等;通过测定B淋巴细胞中BLIMP1、IRF4、BCL6和PAX5的表达水平可以反映B 淋巴细胞的浆细胞化程度。Those skilled in the art know that when activated, B lymphocytes undergo immunoglobulin type transformation and recombination, and finally differentiate into plasma cells. BLIMP1 and IRF4 have the effect of promoting plasmacytosis, and the molecules that inhibit B lymphocyte plasma cells include BCL6 and PAX5; the plasmacytization of B lymphocytes can be reflected by measuring the expression levels of BLIMP1, IRF4, BCL6 and PAX5 in B lymphocytes degree.
如图3中A,HHcy在体显著上调脾脏B淋巴细胞BLIMP1和IRF4的蛋白表达水平。同时,如图3中B的定量PCR结果显示,HHcy小鼠脾脏Blimp1和转录因子干扰素调节因子4(Irf4)基因水平也显著上调。此外,抑制B淋巴细胞浆细胞化的转录因子Pax5基因呈现下降趋势。以上结果说明Hcy在体刺激促进B淋巴细胞向浆细胞分化。As shown in A in Figure 3, HHcy significantly up-regulated the protein expression levels of BLIMP1 and IRF4 in splenic B lymphocytes in vivo. At the same time, the results of quantitative PCR in B in Figure 3 showed that the gene levels of Blimp1 and transcription factor interferon regulatory factor 4 (Irf4) in the spleen of HHcy mice were also significantly up-regulated. In addition, the gene Pax5, a transcription factor that inhibits plasmacytosis of B lymphocytes, showed a downtrend. The above results indicated that Hcy stimulation in vivo promoted the differentiation of B lymphocytes into plasma cells.
在离体实验中,我们进一步验证了Hcy对B淋巴细胞的浆细胞化作用。如图4中A所示, 从C57BL/6J小鼠分离脾脏B淋巴细胞后,给予Hcy(100μM)刺激48小时,B淋巴细胞表 达的浆细胞化标志BLIMP1和IRF4的蛋白表达水平显著上调。同时,如图4中B的定量PCR 结果显示,Hcy离体刺激小鼠脾脏B淋巴细胞,其浆细胞化标志Blimp1和Irf4基因表达水平 显著上调。此外,抑制B淋巴细胞浆细胞化的转录因子Pax5基因与在体HHcy刺激B淋巴 细胞结果一致,呈现下降趋势。In vitro experiments, we further verified the plasmacytization effect of Hcy on B lymphocytes. As shown in A in Figure 4, after splenic B lymphocytes were isolated from C57BL/6J mice, and given Hcy (100 μM) stimulation for 48 hours, the protein expression levels of plasmacytization markers BLIMP1 and IRF4 expressed by B lymphocytes were significantly up-regulated. At the same time, the quantitative PCR results of B in Figure 4 showed that Hcy stimulated mouse spleen B lymphocytes in vitro, and the gene expression levels of plasmacytization markers Blimp1 and Irf4 were significantly up-regulated. In addition, the transcription factor Pax5 gene that inhibits B lymphocyte plasmacytization is consistent with the results of HHcy stimulation of B lymphocytes in vivo, showing a downward trend.
以上结果提示,HHcy在体和离体显著上调B淋巴细胞BLIMP1和IRF4的蛋白和基因表 达水平,同时下调转录因子Pax5的基因表达水平,从而促进B淋巴细胞发生浆细胞化。The above results suggest that HHcy significantly up-regulates the protein and gene expression levels of BLIMP1 and IRF4 in B lymphocytes in vitro and in vitro, and at the same time down-regulates the gene expression level of transcription factor Pax5, thereby promoting the plasmacytization of B lymphocytes.
3、高同型半胱氨酸促进B淋巴细胞自噬3. High homocysteine promotes autophagy of B lymphocytes
本领域技术人员知道,B淋巴细胞的浆细胞化以及系统性红斑狼疮等抗磷脂综合征的发 病过程依赖于B淋巴细胞的自噬作用。Those skilled in the art know that the plasmacytization of B lymphocytes and the pathogenesis of antiphospholipid syndromes such as systemic lupus erythematosus depend on the autophagy of B lymphocytes.
如图5中A,HHcy在体促进B淋巴细胞浆细胞化,即BLIMP1和IRF4蛋白表达水平显著上调的情况下,B淋巴细胞表达的自噬标志蛋白(LC3II)水平显著上调;p62蛋白水平显著下降。同时,如图5中B的定量PCR结果显示,HHcy在体刺激脾脏B淋巴细胞浆化相关Blimp1和Irf4的基因表达水平显著上调;Pax5基因显著下调。自噬相关基因Lc3ii、Atg5、Atg7、Atg9、Atg12的mRNA表达显著上调。这些结果说明HHcy刺激B淋巴细胞发生浆细 胞化的同时促进B淋巴细胞自噬。As shown in Figure 5A, HHcy promotes plasmacytosis of B lymphocytes in vivo, that is, when the protein expression levels of BLIMP1 and IRF4 are significantly upregulated, the level of autophagy marker protein (LC3II) expressed by B lymphocytes is significantly upregulated; the protein level of p62 is significantly upregulated decline. At the same time, the quantitative PCR results in B in Figure 5 showed that the expression levels of Blimp1 and Irf4 genes related to plasmatization of splenic B lymphocytes stimulated by HHcy in vivo were significantly up-regulated; Pax5 gene was significantly down-regulated. The mRNA expressions of autophagy-related genes Lc3ii, Atg5, Atg7, Atg9, and Atg12 were significantly upregulated. These results indicate that HHcy stimulates plasmacytization of B lymphocytes and promotes autophagy of B lymphocytes.
为了进一步验证上述在体HHcy对B淋巴细胞自噬的调控作用。我们从C57BL/6J小鼠 分离脾脏B淋巴细胞后,给予Hcy(100μM)刺激48小时,如图6中A所示,Hcy刺激B 淋巴细胞BLIMP1和IRF4的蛋白表达水平显著上调;脾脏B淋巴细胞表达的自噬标志蛋白 (LC3II)蛋白水平显著上调;自噬底物p62蛋白水平显著下降。图6中B的定量PCR结果 显示,Hcy刺激脾脏B淋巴细胞Blimp1和Irf4基因水平显著上调,抑制性因子Pax5基因表 达显著被下调,自噬相关基因Lc3ii、Atg5、Atg7、Atg9、Atg12的mRNA表达水平显著上调。 以上结果进一步说明Hcy在体和离体刺激促进B淋巴细胞发生自噬。In order to further verify the regulatory effect of HHcy on autophagy of B lymphocytes in vivo. After we isolated splenic B lymphocytes from C57BL/6J mice, they were stimulated with Hcy (100 μM) for 48 hours. As shown in Figure 6A, the protein expression levels of BLIMP1 and IRF4 in Hcy stimulated B lymphocytes were significantly up-regulated; spleen B lymphocytes The expressed autophagy marker protein (LC3II) protein level was significantly up-regulated; the autophagy substrate p62 protein level was significantly decreased. The quantitative PCR results of B in Figure 6 showed that Hcy-stimulated spleen B lymphocytes Blimp1 and Irf4 gene levels were significantly up-regulated, the inhibitory factor Pax5 gene expression was significantly down-regulated, and the mRNA expressions of autophagy-related genes Lc3ii, Atg5, Atg7, Atg9, and Atg12 level increased significantly. The above results further indicated that Hcy stimulated autophagy in B lymphocytes in vivo and in vitro.
4、降脂药非诺贝特阻断Hcy上调B淋巴细胞浆细胞化、自噬和anti-β2GPI的分泌4. The lipid-lowering drug fenofibrate blocks Hcy to up-regulate the plasmacytization, autophagy and anti-β2GPI secretion of B lymphocytes
如图7中A,Westernblotting结果显示,非诺贝特预处理B淋巴细胞有效翻转由Hcy刺 激上调的B淋巴细胞BLIMP1和IRF4等浆细胞化标志的蛋白表达水平。同时,Hcy刺激引起的自噬标志蛋白(LC3II)蛋白表达水平的上调和p62蛋白水平的下调均得到翻转。在图7中B的ELISA结果显示,非诺贝特显著降低Hcy刺激B淋巴细胞72小时后anti-β2GPI IgG 产生(从0.12±0.02mg/l降低到0.05±0.01mg/l)。这些结果说明,脂质代谢参与Hcy促进B 淋巴细胞浆细胞化以及anti-β2GPI IgG分泌的过程,降脂药非诺贝特可以阻断Hcy上调B淋巴细胞浆细胞化、自噬和anti-β2GPI的分泌。As shown in Figure 7A, Western blotting results showed that pretreatment of B lymphocytes with fenofibrate effectively reversed the protein expression levels of plasmacytosis markers such as BLIMP1 and IRF4 in B lymphocytes that were up-regulated by Hcy stimulation. At the same time, both the up-regulation of autophagy marker protein (LC3II) protein expression level and the down-regulation of p62 protein level caused by Hcy stimulation were reversed. The ELISA results of B in Figure 7 showed that fenofibrate significantly reduced the production of anti-β2GPI IgG after Hcy stimulation of B lymphocytes for 72 hours (from 0.12±0.02mg/l to 0.05±0.01mg/l). These results indicate that lipid metabolism is involved in the process of Hcy promoting B lymphocyte plasmacytization and anti-β2GPI IgG secretion, and the lipid-lowering drug fenofibrate can block Hcy up-regulation of B lymphocyte plasmacytization, autophagy and anti-β2GPI secretion.
5、anti-β2GPI IgG促进巨噬细胞M1致炎极化并抑制其M2抑炎极化5. Anti-β2GPI IgG promotes the inflammatory polarization of macrophage M1 and inhibits its M2 anti-inflammatory polarization
使用商品化anti-β2GPI IgG对巨噬细胞进行刺激,观察该抗体对巨噬细胞极化的影响。 如图8中A所示,与对照组相比,激光共聚焦显像观察到anti-β2GPI IgG处理巨噬细胞后, 其表面出现β2GPI向巨噬细胞膜的募集。图8中B结果显示抗体处理巨噬细胞后,其Il-1β、 Tnf-α、Mcp1以及Il-6等多种炎性细胞因子基因表达增加。图8中C结果显示抗体处理巨噬 细胞后,抑炎M2型巨噬细胞标志分子Arg-1、Mrc1、Mmgl2、Clec10a和Chi3l3的基因表达 被显著降低。这些结果说明anti-β2GPI直接促进巨噬细胞M1极化并抑制抑炎性M2极化。Macrophages were stimulated with commercially available anti-β2GPI IgG, and the effect of the antibody on macrophage polarization was observed. As shown in Figure 8A, compared with the control group, laser confocal imaging observed the recruitment of β2GPI to the macrophage membrane on the surface of macrophages treated with anti-β2GPI IgG. The results in B in Figure 8 show that after antibody treatment of macrophages, the gene expression of various inflammatory cytokines such as Il-1β, Tnf-α, Mcp1 and Il-6 increased. The results of C in Figure 8 show that after antibody treatment of macrophages, the gene expressions of anti-inflammatory M2 macrophage marker molecules Arg-1, Mrc1, Mmgl2, Clec10a and Chi3l3 were significantly reduced. These results suggest that anti-β2GPI directly promotes macrophage M1 polarization and inhibits anti-inflammatory M2 polarization.
我们还检测了anti-β2GPI IgG作用于巨噬细胞后,对先关的炎症因子分泌水平的影响。 如图9流式CBA的结果显示,anti-β2GPI IgG可以有效的诱导巨噬细胞肿瘤坏死因子(TNF-α)、单核细胞趋化蛋白-1(MCP1)、白细胞介素-6(IL-6)以及白细胞介素-10(IL-10)等炎症因子分泌。We also detected the effect of anti-β2GPI IgG on the secretion level of the first-related inflammatory factors after acting on macrophages. The results of flow CBA in Figure 9 show that anti-β2GPI IgG can effectively induce macrophage tumor necrosis factor (TNF-α), monocyte chemoattractant protein-1 (MCP1), interleukin-6 (IL- 6) and the secretion of inflammatory factors such as interleukin-10 (IL-10).
上述实施例的作用在于具体介绍本发明的实质性内容,但本领域技术人员应当知道,不 应将本发明的保护范围局限于该具体实施例。The purpose of the above-mentioned embodiments is to specifically introduce the substantive content of the present invention, but those skilled in the art should know that the protection scope of the present invention should not be limited to the specific embodiments.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810393784.7A CN108420811B (en) | 2018-04-27 | 2018-04-27 | Application of the lipid-lowering medicine in terms of hyperhomocysteinemiainjury treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810393784.7A CN108420811B (en) | 2018-04-27 | 2018-04-27 | Application of the lipid-lowering medicine in terms of hyperhomocysteinemiainjury treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108420811A CN108420811A (en) | 2018-08-21 |
CN108420811B true CN108420811B (en) | 2019-08-23 |
Family
ID=63162002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810393784.7A Active CN108420811B (en) | 2018-04-27 | 2018-04-27 | Application of the lipid-lowering medicine in terms of hyperhomocysteinemiainjury treatment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108420811B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119367545B (en) * | 2025-01-02 | 2025-04-08 | 山东第一医科大学(山东省医学科学院) | Application of targeted intervention ANGPTL8 mRNA in preparation of medicines for treating hyperhomocysteinemia |
-
2018
- 2018-04-27 CN CN201810393784.7A patent/CN108420811B/en active Active
Non-Patent Citations (2)
Title |
---|
Homocysteine and lipid lowering agents. A comparison between atorvastatin and fenofibrate in patients with mixed hyperlipidemia;Giral, P.等;《Atherosclerosis》;20011231 |
The effect of fibrates and other lipid-lowering drugs on plasma homocysteine levels;Dierkes, J.等;《Expert Opinion on Drug Safety》;20041231 |
Also Published As
Publication number | Publication date |
---|---|
CN108420811A (en) | 2018-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | A critical role of transcription factor YY1 in rheumatoid arthritis by regulation of interleukin-6 | |
Chen et al. | Interleukin-37 is increased in ankylosing spondylitis patients and associated with disease activity | |
Long et al. | TREM2 attenuates Aβ1-42-mediated neuroinflammation in BV-2 cells by downregulating TLR signaling | |
Schirmer et al. | The causes and consequences of variation in human cytokine production in health | |
Meng et al. | Astragalus polysaccharides inhibits cell growth and pro-inflammatory response in IL-1β-stimulated fibroblast-like synoviocytes by enhancement of autophagy via PI3K/AKT/mTOR inhibition | |
Chen et al. | Thalidomide ameliorates rosacea-like skin inflammation and suppresses NF-κB activation in keratinocytes | |
Bi et al. | Prostaglandin E2 confers protection against diabetic coronary atherosclerosis by stimulating M2 macrophage polarization via the activation of the CREB/BDNF/TrkB signaling pathway | |
Song et al. | MicroRNA-365 in macrophages regulates Mycobacterium tuberculosis-induced active pulmonary tuberculosis via interleukin-6 | |
Liu et al. | Elevated expression of microRNA-873 facilitates Th17 differentiation by targeting forkhead box O1 (Foxo1) in the pathogenesis of systemic lupus erythematosus | |
Johnson et al. | Human placental trophoblasts infected by Listeria monocytogenes undergo a pro-inflammatory switch associated with poor pregnancy outcomes | |
Al Rushood et al. | Autosomal dominant cases of chronic mucocutaneous candidiasis segregates with mutations of signal transducer and activator of transcription 1, but not of Toll-like receptor 3 | |
Chevillard et al. | Identification of interleukin-1β regulated genes in uterine smooth muscle cells | |
Li et al. | MicroRNA-218 alleviates sepsis inflammation by negatively regulating VOPP1 via JAK/STAT pathway. | |
Li et al. | MicroRNA miR-27b-3p regulate microglial inflammation response and cell apoptosis by inhibiting A20 (TNF-α-induced protein 3) | |
JP2022521997A (en) | Use of circular RNA in the preparation of drugs to treat systemic lupus erythematosus | |
CN117230186B (en) | Application of glutamine transporter ASCT2 as target in preparation of medicines for treating Tfh-related autoimmune diseases | |
He et al. | MiR-29b-3p aggravates cardiac hypoxia/reoxygenation injury via targeting PTX3 | |
Li et al. | MicroRNA-543-3p down-regulates inflammation and inhibits periodontitis through KLF6 | |
Liu et al. | MicroRNA 1283 alleviates cardiomyocyte damage caused by hypoxia/reoxygenation via targeting GADD45A and inactivating the JNK and p38 MAPK signaling pathways | |
Sun et al. | MAF bZIP transcription factor B (MAFB) protected against Ovalbumin-Induced allergic rhinitis via the alleviation of inflammation by restoring the T helper (th) 1/Th2/Th17 imbalance and epithelial barrier dysfunction | |
CN108420811B (en) | Application of the lipid-lowering medicine in terms of hyperhomocysteinemiainjury treatment | |
Wang et al. | ZNF667 facilitates angiogenesis after myocardial ischemia through transcriptional regulation of VASH1 and Wnt signaling pathway | |
Kang et al. | Estrogen enhanced the expression of IL‐17 by tissue‐resident memory γδT cells from uterus via interferon regulatory factor 4 | |
Plewka et al. | Long intergenic noncoding RNAs affect biological pathways underlying autoimmune and neurodegenerative disorders | |
Wang et al. | E3 ubiquitin ligase RNF180 mediates the ALKBH5/SMARCA5 axis to promote colon inflammation and Th17/Treg imbalance in ulcerative colitis mice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |