CN108418715B - Resource discovery method in wireless network virtualization environment - Google Patents
Resource discovery method in wireless network virtualization environment Download PDFInfo
- Publication number
- CN108418715B CN108418715B CN201810165808.3A CN201810165808A CN108418715B CN 108418715 B CN108418715 B CN 108418715B CN 201810165808 A CN201810165808 A CN 201810165808A CN 108418715 B CN108418715 B CN 108418715B
- Authority
- CN
- China
- Prior art keywords
- virtual network
- resource
- attribute
- network resources
- attributes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000011524 similarity measure Methods 0.000 claims description 18
- 238000010586 diagram Methods 0.000 claims description 9
- 238000010295 mobile communication Methods 0.000 abstract description 2
- 238000004451 qualitative analysis Methods 0.000 abstract description 2
- 238000004445 quantitative analysis Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 6
- 241000221931 Hypomyces rosellus Species 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明涉及移动通信技术领域,特别涉及一种对无线网络虚拟化环境中资源发现方法,包括:将底层物理网络资源虚拟化得到的虚拟网络资源,将虚拟网络资源存储到资源发现的资源储存库中;使用基于信息熵加权的分类属性层次聚类方法对虚拟网络资源进行聚类,生成聚类虚拟网络资源,虚拟网络提供商从聚类虚拟网络资源中找到用户需要的虚拟网络资源;本发明对虚拟网络资源特性的定性分析转化为定量分析,可以有效减少资源发现时延,提高虚拟网络配置效率。
The invention relates to the technical field of mobile communications, and in particular to a method for discovering resources in a wireless network virtualization environment, comprising: virtual network resources obtained by virtualizing underlying physical network resources, and storing the virtual network resources in a resource repository for resource discovery using the classification attribute hierarchical clustering method based on information entropy weighting to cluster virtual network resources to generate clustered virtual network resources, and the virtual network provider finds the virtual network resources required by users from the clustered virtual network resources; the present invention The qualitative analysis of virtual network resource characteristics is transformed into quantitative analysis, which can effectively reduce the resource discovery delay and improve the efficiency of virtual network configuration.
Description
技术领域technical field
本发明涉及移动通信技术领域,特别涉及一种对无线网络虚拟化环境中资源发现方法。The present invention relates to the technical field of mobile communication, in particular to a method for discovering resources in a wireless network virtualization environment.
背景技术Background technique
经过几十年的发展,无线通信技术与网络互联技术日益成熟,多样化移动服务大量涌现对人们工作、生活各方面都做出了巨大的贡献。无线网络逐渐成为未来互联网络的一种重要的接入形式,但是现有的网络架构模型为固定设计,仅仅由互联网服务提供商一个角色组成,正面临着可拓展性、移动性、安全性、服务质量等方面一系列问题的凸显,难以满足当下层出不穷的高质量、高服务和新兴应用。学术界把当前互联网络正面临的这一系列问题称之为“僵化”。为了克服当前Internet的“僵化”问题,无线网络虚拟化技术作为一种新兴且有效的技术方案被提出。After decades of development, wireless communication technology and network interconnection technology are becoming more and more mature, and the emergence of a large number of diversified mobile services has made great contributions to people's work and life. Wireless network has gradually become an important access form of the future Internet, but the existing network architecture model is a fixed design, only composed of the role of the Internet service provider, facing scalability, mobility, security, A series of problems such as service quality are prominent, and it is difficult to meet the current emerging high-quality, high-service and emerging applications. The academic circles call this series of problems that the current Internet is facing "ossification". In order to overcome the "rigidity" problem of the current Internet, wireless network virtualization technology is proposed as a new and effective technical solution.
无线网络虚拟化本质是一种资源共享技术,它可以通过虚拟化技术将物理网络抽象为逻辑网络,进而使复杂多样的网络控制功能从硬件中解耦出来,抽取到上层做统一协调和管理,降低网络管理和维护成本,提高网络控制管理效率。在网络虚拟化环境中,许多虚拟逻辑网络共存于同一个物理网络,并且相互隔离、独立互不干扰,拥有完整而独特网络服务功能。网络虚拟化和当前Internet的最大区别是在商业模型中扮演的角色。目前的Internet只由单一的角色--网络服务提供商(Internet service provider,ISP)组成,网络虚拟化环境中的商业模型角色如基础设施提供商(Infrastructure provider,InP)、服务提供(Service Providers,SP)和虚拟网络提供商(Virtual network provider,VNP),不同的角色扮演着不同的功能。在网络虚拟化环境中的基础设施与网络服务商业角色的分离设计机制可以使多种异构的虚拟网络共同享有底层共有的物理网络资源,大大降低网络基础设施的维护和管理成本。The essence of wireless network virtualization is a resource sharing technology. It can abstract the physical network into a logical network through virtualization technology, and then decouple the complex and diverse network control functions from the hardware and extract them to the upper layer for unified coordination and management. Reduce network management and maintenance costs and improve network control and management efficiency. In a network virtualization environment, many virtual logical networks coexist on the same physical network, which are isolated from each other, independent of each other, and have complete and unique network service functions. The biggest difference between network virtualization and the current Internet is the role it plays in the business model. The current Internet is only composed of a single role, the Internet service provider (ISP). SP) and virtual network provider (Virtual network provider, VPN), different roles play different functions. The separation design mechanism of infrastructure and network service business roles in a network virtualization environment can enable a variety of heterogeneous virtual networks to share the underlying shared physical network resources, greatly reducing the maintenance and management costs of network infrastructure.
在无线网络虚拟化中的虚拟网络配置过程包括资源发现、匹配、映射和分配,资源发现是其首要不可或缺的步骤,它的主要目的是使VNP在底层物理基础设施中找到可用的网络资源和决定虚拟网络请求(Virtual network request,VNR)选择最合适的InP。资源发现包含两个重要的过程:资源描述和资源聚类;在无线网络虚拟化环境中,虚拟资源需要以属性和功能的形式被描述。资源聚类是对已经被描述的网络资源进行划分和分组,使用的是数据挖掘领域中的聚类技术。The virtual network configuration process in wireless network virtualization includes resource discovery, matching, mapping and allocation. Resource discovery is the first and indispensable step. Its main purpose is to enable VPN to find available network resources in the underlying physical infrastructure And determine the virtual network request (Virtual network request, VNR) to select the most suitable InP. Resource discovery includes two important processes: resource description and resource clustering; in wireless network virtualization environment, virtual resources need to be described in the form of attributes and functions. Resource clustering is to divide and group the network resources that have been described, using the clustering technology in the field of data mining.
层次聚类可以在不同层次上获取数据的内部特征,通过层次聚类结果生成的网络资源树状图的结构和每层的特征描述可以清晰直观的查找VNP想要的资源。在层次聚类方法中也存在某些方法(如参考文献:Guha,S,Rastogi,R,Kyuseok Shim.ROCK:a robustclustering algorithm for categorical attributes[J].Information Systems,2000,25(5):345-366.)能够聚类分类数据,但是还存在显著的缺点,计算量比较大,时间复杂度高,每次聚类操作都要计算各个簇内所有对象间的距离,并且大量的时间都消耗在比较其大小的操作上面。Hierarchical clustering can obtain the internal characteristics of data at different levels. The structure of the network resource tree diagram generated by the hierarchical clustering results and the feature description of each layer can clearly and intuitively find the resources that VNP wants. There are also some methods in hierarchical clustering methods (such as reference: Guha, S, Rastogi, R, Kyuseok Shim. ROCK: a robustclustering algorithm for categorical attributes[J]. Information Systems, 2000, 25(5): 345 -366.) can cluster classification data, but there are still significant shortcomings, the amount of calculation is relatively large, the time complexity is high, each clustering operation needs to calculate the distance between all objects in each cluster, and a lot of time is consumed Above the operation that compares its size.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明提出一种无线网络虚拟化环境中资源发现方法,包括:In view of the above problems, the present invention provides a resource discovery method in a wireless network virtualization environment, including:
将底层物理网络资源虚拟化得到的虚拟网络资源,将虚拟网络资源存储到资源发现的资源储存库中;Virtual network resources obtained by virtualizing underlying physical network resources, and storing virtual network resources in the resource repository of resource discovery;
使用基于信息熵加权的分类属性层次聚类方法对虚拟网络资源进行聚类,生成聚类虚拟网络资源,虚拟网络提供商从聚类虚拟网络资源中找到用户需要的虚拟网络资源。The virtual network resources are clustered using the information entropy weighted classification attribute hierarchical clustering method to generate clustered virtual network resources. The virtual network provider finds the virtual network resources required by users from the clustered virtual network resources.
优选的,所述虚拟网络资源包括n个对象,每个对象包括m组属性及属性的属性值。Preferably, the virtual network resource includes n objects, and each object includes m groups of attributes and attribute values of the attributes.
优选的,属性包括节点类型、操作系统、虚拟环境、源节点、目的节点、中间节点、链路协议、链路类型、接口类型。Preferably, the attributes include node type, operating system, virtual environment, source node, destination node, intermediate node, link protocol, link type, and interface type.
优选的,基于信息熵加权的分类属性层次聚类方法,包括:Preferably, the classification attribute hierarchical clustering method based on information entropy weighting includes:
S1、输入虚拟网络资源,以虚拟网络资源中的所有对象作为根节点建立树状图,令i=1;S1, input the virtual network resource, build a tree diagram with all objects in the virtual network resource as the root node, let i=1;
S2、计算每个属性的相似性度量,对相似性度量由高到低进行排序,选择相似性度量最高的属性及其属性值作为树状图的第i层;S2. Calculate the similarity measure of each attribute, sort the similarity measure from high to low, and select the attribute with the highest similarity measure and its attribute value as the i-th layer of the dendrogram;
S3、判断虚拟网络资源的对象是否均独自构成一个簇或者簇中的对象的相似性度量最高的属性的属性值一致,如果是则完成聚类,输出聚类虚拟网络资源,否则令i=i+1,返回S2。S3. Determine whether the objects of the virtual network resource all independently form a cluster or the attributes of the objects in the cluster with the highest similarity measure have the same attribute value. If so, complete the clustering and output the clustered virtual network resource, otherwise set i=i +1, go back to S2.
优选的,相似性度量公式包括:Preferably, the similarity measurement formula includes:
其中,Sj表示属性Aj相似性度量,wj表示属性Aj信息熵的权值,rj表示属性Aj在虚拟网络资源的所有对象中出现的次数,pjk表示属性Aj的属性值ajk的比重,rjk表示属性值ajk在虚拟网络资源的所有对象中出现的次数,cj表示属性Aj拥有cj个属性值。Among them, S j represents the similarity measure of the attribute A j , w j represents the weight of the information entropy of the attribute A j , r j represents the number of times the attribute A j appears in all objects of the virtual network resource, and p jk represents the attribute of the attribute A j The proportion of the value a jk , r jk represents the number of times the attribute value a jk appears in all objects of the virtual network resource, and c j represents that the attribute A j has c j attribute values.
优选的,信息熵的权值wj表示为:Preferably, the weight w j of the information entropy is expressed as:
其中,Hj表示属性Aj的信息熵,m表示虚拟网络资源中属性的数量。Among them, H j represents the information entropy of the attribute A j , and m represents the number of attributes in the virtual network resource.
优选的,虚拟网络资源Aj的信息熵Hj表示为:Preferably, the information entropy H j of the virtual network resource A j is expressed as:
优选的,属性Aj的属性值ajk的比重pjk表示为:Preferably, the proportion p jk of the attribute value a jk of the attribute A j is expressed as:
其中,n表示虚拟网络资源的数量。Among them, n represents the number of virtual network resources.
优选的,虚拟网络提供商从聚类虚拟网络资源中找到用户需要的虚拟网络资源包括:Preferably, the virtual network resource that the virtual network provider finds from the clustered virtual network resources includes:
S11、用户发起资源请求;S11. The user initiates a resource request;
S12、判断储存库中是否有用户需要的属性及属性值,若没有则结束查询,否则进行S13;S12, determine whether there are attributes and attribute values required by the user in the repository, if not, end the query, otherwise go to S13;
S13、判断当前是否有满足用户需求的虚拟资源类型的对象,若有满足用户需求的虚拟网络资源类型的对象,则接受用户的资源请求,完成查询;S13, determine whether there is currently an object of the virtual resource type that meets the user's needs, and if there is an object of the virtual network resource type that meets the user's needs, accept the user's resource request and complete the query;
S14、若遍历完多层次属性树的所有分支,都未找到满足用户的资源的对象,则结束查询。S14. If no object that satisfies the resource of the user is found after traversing all the branches of the multi-level attribute tree, end the query.
本发明对虚拟网络资源特性的定性分析转化为定量分析,可以有效减少资源发现时延,提高虚拟网络配置效率。The present invention converts the qualitative analysis of the characteristics of virtual network resources into quantitative analysis, which can effectively reduce the time delay of resource discovery and improve the efficiency of virtual network configuration.
附图说明Description of drawings
图1为本发明无线网络虚拟化环境中资源发现方法的架构图;1 is an architectural diagram of a resource discovery method in a wireless network virtualization environment of the present invention;
图2为本发明的虚拟网络资源描述的方案图;2 is a schematic diagram of virtual network resource description of the present invention;
图3为本发明的资源发现方法与现有蛛网(cobweb)方法的时延对比图;Fig. 3 is the time delay comparison diagram of the resource discovery method of the present invention and the existing cobweb (cobweb) method;
图4为本发明基于多层次基于信息熵加权的分类属性层次聚类方法的实例图。FIG. 4 is an example diagram of the hierarchical clustering method of classification attributes based on multi-level information entropy weighting according to the present invention.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application.
本发明提出一种无线网络虚拟化环境中资源发现方法,包括:The present invention provides a resource discovery method in a wireless network virtualization environment, including:
将底层物理网络资源虚拟化得到的虚拟网络资源,将虚拟网络资源存储到资源发现的资源储存库中;Virtual network resources obtained by virtualizing underlying physical network resources, and storing virtual network resources in the resource repository of resource discovery;
使用基于信息熵加权的分类属性层次聚类方法对虚拟网络资源进行聚类,生成聚类虚拟网络资源,虚拟网络提供商从聚类虚拟网络资源中找到用户需要的虚拟网络资源。The virtual network resources are clustered using the information entropy weighted classification attribute hierarchical clustering method to generate clustered virtual network resources. The virtual network provider finds the virtual network resources required by users from the clustered virtual network resources.
虚拟网络资源运行管理流程,如图1,基础设施提供商把虚拟网络资源公开、登记和注册到资源发现模块中,即将虚拟网络的虚拟资源描述文件储存到资源储存库中,虚拟网络提供商对资源发现模块进行发现和匹配,找到资源请求想要的虚拟网络资源。The virtual network resource operation management process is shown in Figure 1. The infrastructure provider exposes, registers and registers virtual network resources into the resource discovery module, that is, stores the virtual resource description file of the virtual network in the resource repository, and the virtual network provider The resource discovery module performs discovery and matching to find the virtual network resource desired by the resource request.
在资源发现模块中,使用分布式存储方式管理虚拟网络资源,基础设施提供商被划分为不同的管理域,各个管理域对虚拟网络资源描述方案将抽象后的虚拟网络资源进行标准化、规范化的描述,最终形成一个虚拟资源描述文档,并将这些描述文档存放于资源发现模块中的外部存储库中,进而完成资源的注册发布,最终以服务的形式提供给用户。In the resource discovery module, distributed storage is used to manage virtual network resources, infrastructure providers are divided into different management domains, and each management domain standardizes and standardizes the abstracted virtual network resources for the virtual network resource description scheme. , and finally form a virtual resource description document, and store these description documents in the external repository in the resource discovery module, and then complete the registration and release of the resource, and finally provide it to the user in the form of a service.
在无线网络虚拟化环境中,基础设施提供商负责管理着和提供各种网络资源,它们的基本元素是节点、链路、接口和路径,根据图论的相关理论,使用带权值的无向图G=(N,L)表示一个网络,其中N表示节点的集合,表示为N=(n1,n2,...,ni,...);L表示链路的集合,表示为L=(l1,l2,...,lj,...);这些网络资源根据属性类别分为功能性和非功能性资源,用于以上方案的进行资源描述的是具有功能属性的虚拟网络资源。具有功能属性的虚拟网络资源是一种典型的概念——属性的关系,如图2中描述的是虚拟网络资源的网络元素、属性及属性与属性之间的关系,例如虚拟网络资源包括节点、路径、链路和接口等网络元素,其中网络元素节点包括节点类型、操作系统和虚拟环境等属性。In the wireless network virtualization environment, the infrastructure provider is responsible for managing and providing various network resources. Their basic elements are nodes, links, interfaces and paths. According to the relevant theories of graph theory, the use of undirected weighted The graph G=(N, L) represents a network, where N represents the set of nodes, represented as N=(n 1 , n 2 ,...,n i ,...); L represents the set of links, represented by is L=(l 1 ,l 2 ,...,l j ,...); these network resources are divided into functional and non-functional resources according to attribute categories. The resource description used in the above scheme is the one with function Properties of the virtual network resource. A virtual network resource with functional attributes is a typical concept - the relationship between attributes. Figure 2 describes the network elements, attributes and the relationship between attributes and attributes of virtual network resources. For example, virtual network resources include nodes, Network elements such as paths, links, and interfaces, where network element nodes include attributes such as node type, operating system, and virtual environment.
本发明针对无线网络化环境,对其中的虚拟网络资源聚类设计一种基于信息熵加权分类数据的层次聚类算法,包括资源处理模块和聚类操作模块;其中资源处理模块包括资源分析和熵权,资源分析主要包括:对虚拟网络资源根据对象分类,然后根据对象的属性分类;熵权主要是从虚拟资源特性出发,考察属性的重要性,以信息熵的加权来衡量属性的权重;聚类操作模块主要是为资源处理模块处理的虚拟网络资源,设计一种以相似性度量构建的聚类准则进行聚类操作。Aiming at the wireless network environment, the present invention designs a hierarchical clustering algorithm based on information entropy weighted classification data for the virtual network resource clustering therein, including a resource processing module and a clustering operation module; wherein the resource processing module includes resource analysis and entropy Resource analysis mainly includes: classifying virtual network resources according to objects, and then classifying them according to their attributes; entropy weight mainly starts from the characteristics of virtual resources, examines the importance of attributes, and measures the weight of attributes with the weight of information entropy; The class operation module mainly designs a clustering criterion constructed by similarity measure for the virtual network resources processed by the resource processing module to perform the clustering operation.
在无线网络虚拟化环境中,虚拟网络资源由一系列基本网络元素组成,网络元素包括节点、链路、路径和接口,这些基本网络元素又包含多种属性和属性值,优选的,属性包括节点类型、操作系统、虚拟环境、源节点、目的节点、中间节点、链路协议、链路类型、接口类型;假设虚拟网络资源,拥有n个对象和m个属性,每个属性包括cj个属性值,每个对象可以具有多个属性和多个属性值,例如一个属性中的一个属性值和多个属性中的多个属性值,该虚拟网络资源中的属性和属性值具有权重;用O表示虚拟网络资源,若虚拟网络资源包括n个对象,第n个对象表示为On,可以是虚拟网络资源的网络元素中的任一一种,本实施例以节点作为对象,m个属性和对应属性的cj个属性值表示形式如下所示:In the wireless network virtualization environment, virtual network resources are composed of a series of basic network elements. The network elements include nodes, links, paths, and interfaces. These basic network elements contain various attributes and attribute values. Preferably, the attributes include nodes. Type, operating system, virtual environment, source node, destination node, intermediate node, link protocol, link type, interface type; assuming a virtual network resource, it has n objects and m attributes, and each attribute includes c j attributes value, each object can have multiple attributes and multiple attribute values, such as one attribute value in one attribute and multiple attribute values in multiple attributes, the attributes and attribute values in this virtual network resource have weights; use O Represents a virtual network resource. If the virtual network resource includes n objects, the n -th object is represented as On, which can be any one of the network elements of the virtual network resource. In this embodiment, the node is used as the object, and the m attributes and The representations of the c j attribute values of the corresponding attributes are as follows:
O={O1,O2,...,On},O= { O 1 ,O 2 ,...,On },
A={A1,A2,...,Am},A={A 1 ,A 2 ,...,A m },
O表示对象的集合,Oi为虚拟网络资源中第i个对象,且i={1,2,3,…,n};O represents the set of objects, O i is the ith object in the virtual network resource, and i={1, 2, 3,...,n};
A表示属性的集合,Aj为虚拟网络资源中第j个属性,且j={1,2,3,…,m};A represents a set of attributes, A j is the jth attribute in the virtual network resource, and j={1,2,3,...,m};
Dom(Aj)表示第j个属性Aj共有cj个属性值,其中属性Aj的第k个属性值表示为ajk,且设k={1,2,3,…,cj},则有:Dom(A j ) means that the j-th attribute A j has c j attribute values in total, wherein the k-th attribute value of the attribute A j is denoted as a jk , and let k={1,2,3,...,c j } , then there are:
属性Aj的比重表示为: The proportion of attribute A j is expressed as:
属性Aj中的第k个属性值ajk的比重表示为: The proportion of the kth attribute value a jk in the attribute A j is expressed as:
rj表示属性Aj在虚拟网络资源的所有对象中出现的次数,rjk表示属性值ajk在虚拟网络资源的所有对象中出现的次数,属性Aj的比重还可以表示为:r j represents the number of times the attribute A j appears in all objects of the virtual network resource, r jk represents the number of times the attribute value a jk appears in all the objects of the virtual network resource, and the proportion of the attribute A j can also be expressed as:
在无线网络虚拟化中,每个虚拟网络资源的每个属性的重要性大小都各有不同,本发明考虑各个属性的重要性,重要性越大,信息熵越小,说明数据中的这些对象越集中,那么越有可能被聚类到同一簇中。In wireless network virtualization, the importance of each attribute of each virtual network resource is different. The present invention considers the importance of each attribute. The greater the importance, the smaller the information entropy, indicating that these objects in the data are The more concentrated it is, the more likely it is to be clustered into the same cluster.
可以将虚拟网络资源的属性Aj的信息熵表示为:The information entropy of the attribute A j of the virtual network resource can be expressed as:
重要的属性应被赋予较大的权重,不重要的属性应被赋予较小的权重;根据这个原理,本专利使用了一种加权方法——熵权法。Important attributes should be given larger weights, and unimportant attributes should be given smaller weights; according to this principle, this patent uses a weighting method—entropy weight method.
在数据集聚类的过程中,熵权法可以根据每个对象的信息熵对其属性进行加权,相对于主观权重法,它能更客观、准确的反映每个指标的权值,属性Aj的信息熵的权值计算如下:In the process of data set clustering, the entropy weight method can weight the attributes of each object according to the information entropy of each object. Compared with the subjective weight method, it can more objectively and accurately reflect the weight of each index. The attribute A j The weight of the information entropy is calculated as follows:
聚类是一个无监督学习(unsupervised learning)的过程,不需要进行样本数据的训练,设计出适合的相似性度量方法后,即可对目标数据集进行聚类;本发明提出一种新型的和以往层次聚类不同的相似性度量方法,其相似性度量公式为:Clustering is an unsupervised learning process, which does not require sample data training. After designing a suitable similarity measurement method, the target data set can be clustered; the present invention proposes a new and For different similarity measurement methods of previous hierarchical clustering, the similarity measurement formula is:
将信息熵的权值wj,pjk,和rjk的公式代入上述公式,可以得到:Substituting the formulas of the weights w j , p jk , and r jk of the information entropy into the above formula, we can get:
从上述公式中可以得知,Sj只与n、m、cj、rj和rjk有关,说明进行聚类的度量标准直接由该虚拟网络资源本身的性质,即聚类的对象、对象的属性和属性的属性值,决定;Sj为相似性度量值,基于以此设计层次聚类方法,通过比较它的大小来对虚拟网络资源中的对象进行聚类。It can be known from the above formula that S j is only related to n, m, c j , r j and r jk , indicating that the metric for clustering is directly determined by the nature of the virtual network resource itself, that is, the object of clustering, the The attribute and the attribute value of the attribute are determined; S j is the similarity measure value, based on this, the hierarchical clustering method is designed, and the objects in the virtual network resource are clustered by comparing its size.
通过相似性度量为聚类标准,利用有监督学习中决策树思想设计一种全新的,基于信息熵加权的分类属性层次聚类方法,该方法具体步骤描述如下:Using the similarity measure as the clustering standard, and using the decision tree idea in supervised learning, a new hierarchical clustering method based on information entropy weighting is designed. The specific steps of the method are described as follows:
S1、输入虚拟网络资源,以虚拟网络资源中的所有对象作为根节点建立树状图,令i=1;S1, input the virtual network resource, build a tree diagram with all objects in the virtual network resource as the root node, let i=1;
S2、计算每个属性的相似性度量,对相似性度量由高到低进行排序,选择相似性度量最高的属性及其属性值作为树状图的第i层;S2. Calculate the similarity measure of each attribute, sort the similarity measure from high to low, and select the attribute with the highest similarity measure and its attribute value as the i-th layer of the dendrogram;
S3、判断虚拟网络资源的对象是否均独自构成一个簇或者簇中的对象的相似性度量最高的属性的属性值一致,如果是则完成聚类,输出聚类虚拟网络资源,否则令i=i+1,返回S2。S3. Determine whether the objects of the virtual network resource all independently form a cluster or the attributes of the objects in the cluster with the highest similarity measure have the same attribute value. If so, complete the clustering and output the clustered virtual network resource, otherwise set i=i +1, go back to S2.
上述的基于信息熵加权的分类属性层次聚类方法,把虚拟网络资源分类成多个簇,其结构形式表示为树状图,每层表示虚拟网络资源被分成几个簇,层数越多表示资源被划分的越细,簇的数量数越多;下一层的簇嵌套在当前层的簇中,即当前层的簇再进行分簇形成下一层的簇,比如一个聚类中的某个簇R1={{x1,x2},{x3},{x4,x5}包含了另一个簇R2={{x1,x2,x3},{x4,x5}},那这就是R2嵌套在R1中,或者说是R1嵌套了R2。The above-mentioned classification attribute hierarchical clustering method based on information entropy weighting classifies virtual network resources into multiple clusters, and its structural form is represented as a tree diagram. The finer the resources are divided, the more the number of clusters; the clusters of the next layer are nested in the clusters of the current layer, that is, the clusters of the current layer are clustered to form the clusters of the next layer, such as in a cluster. A certain cluster R1={{x1,x2},{x3},{x4,x5} contains another cluster R2={{x1,x2,x3},{x4,x5}}, then this is R2 nesting In R1, or R1 nests R2.
本文采用外在方法中的纯度(Purity)来度量算法的准确率,纯度是一种简单而有效的评价方法,它以数据样本为基准,将外在方法与聚类进行比较,以评估聚类,其值计算是对于数据对象聚类而形成的每个簇,簇中含有基准中的对象数目除以总样本中的对象数目,纯度的计算可以表示为:In this paper, the purity of the extrinsic method is used to measure the accuracy of the algorithm. Purity is a simple and effective evaluation method. It takes the data sample as the benchmark and compares the extrinsic method with the clustering to evaluate the clustering. , and its value is calculated for each cluster formed by clustering data objects. The number of objects in the cluster is divided by the number of objects in the total sample. The calculation of purity can be expressed as:
其中,Λ表示聚类结果得到每个簇的集合,表示为Λ={κ1,κ2,...,κq,...},κq表示第q个簇,q为簇的数量;C表示属性值数量的集合,表示为C={c1,c2,...,cj},例如cj表示属性Aj有cj个属性值。Among them, Λ represents the set of each cluster obtained from the clustering result, expressed as Λ={κ 1 ,κ 2 ,...,κ q ,...}, κ q represents the qth cluster, and q is the number of clusters ; C represents the set of attribute values, expressed as C={c 1 , c 2 , . . . , c j }, for example, c j means that attribute A j has c j attribute values.
对虚拟网络资源聚类,虚拟网络资源聚类过程包括两个部分,如图3所示:基础设施提供商们把他们所管辖的底层物理网络资源虚拟化并描述和公开、登记、注册到资源发现模块的资源存储库中;使用本发明提出的聚类方法对虚拟网络资源进行聚类操作,其整个聚类操作在资源发现模块中进行,最后生成的聚类虚拟网络资源被保存在资源存储库中。在网络虚拟化环境中资源发现是一个连续而持续的过程,首先虚拟网络资源经过资源描述,其次使用聚类算法进行划分和分组,最后VNP根据用户请求的网络资源基于前两步在资源发现模块的资源存储库中查找。For virtual network resource clustering, the virtual network resource clustering process includes two parts, as shown in Figure 3: Infrastructure providers virtualize and describe and disclose, register, and register the underlying physical network resources under their jurisdiction. In the resource storage library of the discovery module; the clustering method proposed by the present invention is used to perform a clustering operation on the virtual network resources, and the entire clustering operation is performed in the resource discovery module, and the finally generated clustered virtual network resources are stored in the resource storage. in the library. In the network virtualization environment, resource discovery is a continuous and continuous process. First, virtual network resources are described by resources, and then they are divided and grouped by clustering algorithm. Finally, according to the network resources requested by users, VNP is based on the first two steps in the resource discovery module. 's resource repository.
由于本发明对虚拟网络资源聚类使用的方法属于分裂型层次聚类,所以生成的聚类结果如图4中的虚拟网络资源以分层次的、由上而下的树状图表现形式呈现,如图4中,虚拟网络资源的对象数为7,分别为Node1、Node2、Node3、Node4、Node5、Node6和Node7,在以属性为节点类型的这一层次中,根据属性的属性值将对象分为三个类簇,即由(Node1、Node2)构成的属性值为交换机的类簇、由(Node3、Node4、Node5)构成的属性值为路由的类簇、由(Node6、Node7)构成的属性值为基站的类簇,对于由(Node3、Node4、Node5)构成的类簇,还可以根据虚拟环境、操作系统和网络协议进行分类,如图4,可以得到由(Node3)构成的类簇和由(Node4、Node5)构成的类簇。Since the method used in the present invention for clustering virtual network resources belongs to split-type hierarchical clustering, the generated clustering results are presented in the form of hierarchical, top-down dendrogram as shown in FIG. 4 , As shown in Figure 4, the number of objects in the virtual network resource is 7, which are Node1, Node2, Node3, Node4, Node5, Node6 and Node7. In this level where the attribute is the node type, the objects are classified according to the attribute value of the attribute. There are three clusters, that is, the cluster whose attribute value is composed of (Node1, Node2) is the switch, the attribute value that is composed of (Node3, Node4, Node5) is the routing cluster, and the attribute which is composed of (Node6, Node7) The value is the class cluster of the base station. For the class cluster composed of (Node3, Node4, Node5), it can also be classified according to the virtual environment, operating system and network protocol. As shown in Figure 4, the class cluster composed of (Node3) and A cluster consisting of (Node4, Node5).
若将一个对象归为一个类别,则需要划分7个簇,在第0层只有一个簇,为所有的虚拟网络资源的对象,第1层虚拟网络资源根据节点类型被聚类为3个簇,第2层在第1层的基础上根据其他的属性继续聚类形成5个簇,最后第3层在第2层的基础上继续聚类为7个簇,即每个对象为一个簇,完成聚类。If an object is classified into one category, it needs to be divided into 7 clusters. There is only one cluster in the 0th layer, which is the object of all virtual network resources. The first layer of virtual network resources is clustered into 3 clusters according to the node type. On the basis of the first layer, the second layer continues to cluster to form 5 clusters according to other attributes, and finally the third layer continues to cluster into 7 clusters on the basis of the second layer, that is, each object is a cluster. clustering.
相应查找所使用的树查找方法是从上而下的查询,其过程如下:The tree search method used for the corresponding search is a top-down query, and the process is as follows:
S11、用户发起资源请求;S11. The user initiates a resource request;
S12、判断储存库中是否有用户需要的属性及属性值,若没有则结束查询,否则进行S13;S12, determine whether there are attributes and attribute values required by the user in the repository, if not, end the query, otherwise go to S13;
S13、判断当前是否有满足用户需求的虚拟资源类型的对象,若有满足用户需求的虚拟网络资源类型的对象,则接受用户的资源请求,完成查询;S13, determine whether there is currently an object of the virtual resource type that meets the user's needs, and if there is an object of the virtual network resource type that meets the user's needs, accept the user's resource request and complete the query;
S14、若遍历完多层次属性树的所有分支,都未找到满足用户的资源的对象,则结束查询。S14. If no object that satisfies the resource of the user is found after traversing all the branches of the multi-level attribute tree, end the query.
为了验证本发明提出的一种基于信息熵加权的网络虚拟资源层次聚类方法在无线网络虚拟化环境中资源发现过程的有效性,并使用相似性匹配方法对虚拟网络资源查找,以网络节点作为虚拟网络资源查找对象,用查找时间长短来衡量资源发现过程效果的好坏,最后采用D.Fisher等人提出的Cobweb方法进行对比;如图3,显示了本发明提出的方法和Cobweb方法应用于资源发现过程中VNP找到目标资源的时间延时对比,从图中可以看出使用了本发明提出的方法聚类后,资源发现的时间要低于Cobweb,运用本发明的方法可以有效地减少虚拟网络资源的查询时间,从而提高资源发现的效率。In order to verify the effectiveness of a network virtual resource hierarchical clustering method based on information entropy weighting proposed by the present invention in the resource discovery process in the wireless network virtualization environment, and use the similarity matching method to search for virtual network resources, the network node is used as the The virtual network resource search object, the search time is used to measure the effect of the resource discovery process, and finally the Cobweb method proposed by D. Fisher et al is used for comparison; Figure 3 shows that the method proposed by the present invention and the Cobweb method are applied to Comparison of the time delay for VNP to find the target resource in the process of resource discovery, it can be seen from the figure that the time for resource discovery is lower than that of Cobweb after using the method proposed by the present invention for clustering, and the method of the present invention can effectively reduce virtual The query time of network resources, thereby improving the efficiency of resource discovery.
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps in the various methods of the above embodiments can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium, and the storage medium can include: ROM, RAM, magnetic disk or optical disk, etc.
以上所举实施例,对本发明的目的、技术方案和优点进行了进一步的详细说明,所应理解的是,以上所举实施例仅为本发明的优选实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内对本发明所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above-mentioned embodiments further describe the purpose, technical solutions and advantages of the present invention in detail. It should be understood that the above-mentioned embodiments are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made to the present invention within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810165808.3A CN108418715B (en) | 2018-02-28 | 2018-02-28 | Resource discovery method in wireless network virtualization environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810165808.3A CN108418715B (en) | 2018-02-28 | 2018-02-28 | Resource discovery method in wireless network virtualization environment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108418715A CN108418715A (en) | 2018-08-17 |
CN108418715B true CN108418715B (en) | 2020-12-18 |
Family
ID=63129164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810165808.3A Active CN108418715B (en) | 2018-02-28 | 2018-02-28 | Resource discovery method in wireless network virtualization environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108418715B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109104725B (en) * | 2018-08-27 | 2021-04-20 | 重庆邮电大学 | Method for preventing united network attack in tactical mobile ad hoc network |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105630573A (en) * | 2015-10-20 | 2016-06-01 | 浙江大学 | Non-intrusive virtual machine cluster discovery method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070143851A1 (en) * | 2005-12-21 | 2007-06-21 | Fiberlink | Method and systems for controlling access to computing resources based on known security vulnerabilities |
US10581734B2 (en) * | 2010-05-03 | 2020-03-03 | Pluribus Networks, Inc. | Methods, systems, and fabrics implementing a distributed network operating system |
CN105337834B (en) * | 2015-12-04 | 2019-03-08 | 重庆邮电大学 | A Mapping Method in Wireless Network Virtualization Environment |
-
2018
- 2018-02-28 CN CN201810165808.3A patent/CN108418715B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105630573A (en) * | 2015-10-20 | 2016-06-01 | 浙江大学 | Non-intrusive virtual machine cluster discovery method |
Also Published As
Publication number | Publication date |
---|---|
CN108418715A (en) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Resource-efficient federated learning with hierarchical aggregation in edge computing | |
US20190306035A1 (en) | Mdl-based clustering for dependency mapping | |
Löser et al. | Semantic overlay clusters within super-peer networks | |
Yao et al. | RDAM: A reinforcement learning based dynamic attribute matrix representation for virtual network embedding | |
Fredj et al. | Efficient semantic-based IoT service discovery mechanism for dynamic environments | |
CN110288824B (en) | Analysis method of morning and evening peak congestion status and propagation mechanism based on Granger causality road network | |
Zhang et al. | An affinity propagation clustering algorithm for mixed numeric and categorical datasets | |
CN109657147A (en) | Microblogging abnormal user detection method based on firefly and weighting extreme learning machine | |
Symvoulidis et al. | A user mobility-based data placement strategy in a hybrid cloud/edge environment using a causal-aware deep learning network | |
CN115712755B (en) | Big data access control entity relation prediction method based on GNN double-source learning | |
CN108418715B (en) | Resource discovery method in wireless network virtualization environment | |
CN110442800A (en) | A kind of semi-supervised community discovery method of aggregators attribute and graph structure | |
CN104317853B (en) | A kind of service cluster construction method based on Semantic Web | |
CN115509733A (en) | Data migration method and device, computer equipment and storage medium | |
Zhang et al. | An intelligent SDN‐enabled CCN routing mechanism with community division | |
Kumar et al. | A time granular analysis of software defined wireless mesh based IoT (SDWM-IoT) network traffic using supervised learning | |
CN106209978B (en) | Alliance relation service combination selection system and method | |
CN108280176A (en) | Data mining optimization method based on MapReduce | |
Cao et al. | Communication optimisation for intermediate data of MapReduce computing model | |
Xia et al. | Cost-effective and adaptive clustering algorithm for stream processing on cloud system | |
Zhao et al. | Reinforcement federated learning method based on adaptive OPTICS clustering | |
CN112508725A (en) | Community structure-based location awareness influence maximization method | |
Li et al. | Learning-based dynamic graph stream sketch | |
Xue | Genetic algorithm for web services selection supporting quality of service | |
CN111695316A (en) | Network-on-chip test planning method based on improved hybrid algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |