CN108416276B - Abnormal gait detection method based on human lateral gait video - Google Patents
Abnormal gait detection method based on human lateral gait video Download PDFInfo
- Publication number
- CN108416276B CN108416276B CN201810143888.2A CN201810143888A CN108416276B CN 108416276 B CN108416276 B CN 108416276B CN 201810143888 A CN201810143888 A CN 201810143888A CN 108416276 B CN108416276 B CN 108416276B
- Authority
- CN
- China
- Prior art keywords
- gait
- image
- abnormal
- sum
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005021 gait Effects 0.000 title claims abstract description 132
- 206010017577 Gait disturbance Diseases 0.000 title claims abstract description 79
- 238000001514 detection method Methods 0.000 title claims abstract description 67
- 238000012549 training Methods 0.000 claims abstract description 37
- 238000012706 support-vector machine Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 31
- 238000004364 calculation method Methods 0.000 claims description 17
- 239000000284 extract Substances 0.000 claims description 15
- 230000007704 transition Effects 0.000 claims description 8
- 210000000746 body region Anatomy 0.000 claims description 7
- 238000005457 optimization Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 5
- 230000011218 segmentation Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 238000011410 subtraction method Methods 0.000 claims 1
- 230000002159 abnormal effect Effects 0.000 abstract description 10
- 230000008859 change Effects 0.000 abstract description 4
- 230000006872 improvement Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 206010003591 Ataxia Diseases 0.000 description 2
- 208000011644 Neurologic Gait disease Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 208000037118 sensory ataxia Diseases 0.000 description 2
- 230000001148 spastic effect Effects 0.000 description 2
- 206010017585 Gait spastic Diseases 0.000 description 1
- 206010019468 Hemiplegia Diseases 0.000 description 1
- 206010073713 Musculoskeletal injury Diseases 0.000 description 1
- 208000005736 Nervous System Malformations Diseases 0.000 description 1
- 206010033892 Paraplegia Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002567 electromyography Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 208000030175 lameness Diseases 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 201000008417 spastic hemiplegia Diseases 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/23—Recognition of whole body movements, e.g. for sport training
- G06V40/25—Recognition of walking or running movements, e.g. gait recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及步态识别领域,具体涉及一种从人的侧面步态视频中提取特征并结合异常步态检测模型实现异常步态检测的方法。The invention relates to the field of gait recognition, in particular to a method for extracting features from a human side gait video and combining an abnormal gait detection model to realize abnormal gait detection.
背景技术Background technique
步态即人行走的姿态,异常步态则是当一个人身体出现异常时出现的非正常行走姿态。常见的导致步态异常的原因包括疼痛、中枢神经系统异常和骨骼肌肉系统损伤。异常步态的种类繁多,典型的异常步态包括痉挛性偏瘫步态、痉挛性截瘫步态、感觉性共济失调步态、慌张步态、肌病步态、跨阈步态、癔症步态等。部分典型步态的出现反映了特点疾病的存在,通过对异常步态进行观察分析,可以对患者进行症状诊断,如帕金森病患者常见的慌张步态、冻结步态等。因此,异常步态的检测是医生诊断的重要依据。虽然目前已有关于人的步态的研究,但都集中在使用步态进行身份识别上,在异常步态检测上的研究较少,并且这些方法都是基于正常人的步态进行身份识别分类,并不适用于通用的异常步态检测。Gait is the walking posture of a person, and abnormal gait is the abnormal walking posture that occurs when a person's body is abnormal. Common causes of abnormal gait include pain, central nervous system abnormalities, and musculoskeletal injuries. There are many types of abnormal gaits. Typical abnormal gaits include spastic hemiplegic gait, spastic paraplegic gait, sensory ataxia gait, panic gait, myopathic gait, cross-threshold gait, and hysterical gait. Wait. The appearance of some typical gaits reflects the existence of characteristic diseases. By observing and analyzing abnormal gaits, symptoms can be diagnosed in patients, such as panic gait and freezing gait common in patients with Parkinson's disease. Therefore, the detection of abnormal gait is an important basis for doctors to diagnose. Although there are existing studies on human gait, they all focus on the use of gait for identification, and there are few studies on abnormal gait detection, and these methods are all based on normal human gait for identification and classification. , not suitable for general abnormal gait detection.
在临床医学上,对患者的异常步态检测常采用直接观察或基于肌电图等客观采集数据的定量分析。对异常步态的采集与分析通常使用外置硬件仪器进行,如使用角度测量装置综合采集主要关节的运动轨迹,分析人的步态周期规律;或通过穿戴式步态采集器采集足底压力,根据足底压力数据的变化分析踮脚走、后跟走、外八字和内八字等类别的异常步态。这些方法基于硬件设备对患者的步态进行分析,对设备要求较高,需要在特定场所进行,灵活度较低,不利于日常生活的异常步态检测。个别研究(如申请号为2017107435559的发明专利《异常步态检测方法及异常步态检测系统》)通过人体轮廓提取特征进行正常异常分类,但仅考虑了下半身步幅上变化的特点,未考虑一些异常步态如慌张步态中的上半身身体前倾的特点,同时所使用的训练模型容易受训练数据中的异常步态数据影响,不能有效检测丰富多样的异常步态。In clinical medicine, the detection of abnormal gait in patients often adopts direct observation or quantitative analysis based on objectively collected data such as electromyography. The collection and analysis of abnormal gait are usually carried out using external hardware instruments, such as the use of angle measurement devices to comprehensively collect the motion trajectories of major joints to analyze the regularity of human gait cycles; or to collect plantar pressure through a wearable gait collector. The abnormal gait in the categories of tiptoe walking, heel walking, outer stance and inner stance were analyzed according to the changes of plantar pressure data. These methods analyze the patient's gait based on hardware equipment, which requires high equipment, needs to be performed in a specific place, and has low flexibility, which is not conducive to the detection of abnormal gait in daily life. Individual studies (such as the invention patent "Abnormal Gait Detection Method and Abnormal Gait Detection System" with the application number of 2017107435559) classify normal abnormalities by extracting features from human contours, but only consider the characteristics of changes in the lower body stride, and do not consider some The abnormal gait is characterized by the forward leaning of the upper body in the panic gait. At the same time, the training model used is easily affected by the abnormal gait data in the training data, and cannot effectively detect the rich and diverse abnormal gait.
因此,需要对现有技术进行改进。Therefore, there is a need for improvements to the prior art.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是提出一种无需专业检测设备的基于人的侧面步态视频的异常步态检测方法。The technical problem to be solved by the present invention is to propose an abnormal gait detection method based on human side gait video without professional detection equipment.
为解决上述问题,本发明提出一种基于人的侧面步态视频的异常步态检测方法,包括以下步骤:In order to solve the above problems, the present invention proposes a method for detecting abnormal gait based on human side gait video, comprising the following steps:
步骤1、获取侧面步态视频,并从侧面步态视频中提取侧影轮廓图像序列;
步骤2、根据步骤1中所得的侧影轮廓图像序列,构建步宽与身高比的参数序列A、头部与两足中心的x轴水平距离与身高比前倾参数序列B,并由参数序列A和参数序列B提取描述步态信息的特征;
步骤3、收集正常步态的侧面步态视频作为训练样本;所述训练样本依次通过步骤1和步骤2提取其步态信息的特征,并将所提取的特征输入单分类支持向量机进行训练,构建异常步态检测模型;Step 3, collecting the side gait video of normal gait as a training sample; the training sample sequentially extracts the features of its gait information through
步骤4、获取待检测的侧面步态视频,依次通过步骤1和步骤2提取其步态信息的特征,并将该特征输入步骤3所构建的异常步态检测模型中进行检测。Step 4: Obtain the side gait video to be detected, extract features of its gait information through
作为基于人的侧面步态视频的异常步态检测方法的改进:As an improvement on the abnormal gait detection method based on human side gait videos:
所述步骤2包括以下步骤:The
2.1、将步骤1所得的侧影轮廓图像序列中每一帧侧影轮廓图像中根据各点像素值分割获得人体区域图像;2.1. Divide each frame of the silhouette silhouette image in the silhouette silhouette image sequence obtained in
2.2、根据步骤2.1分割得到的人体区域图像提取身高h,头部顶点x轴坐标x1;2.2. Extract the height h and the x-axis coordinate of the head vertex x 1 according to the human body region image obtained by segmentation in step 2.1;
2.3、按照从上到下的方向截取步骤2.1所获得的人体区域图像的4/5h到h高度的足部区域图像,获取实际步长宽度w及两足中心点x轴坐标x2;2.3. Intercept the image of the foot area from 4/5h to the height of h of the human body area image obtained in step 2.1 according to the direction from top to bottom, and obtain the actual step width w and the x-axis coordinate x 2 of the center point of both feet;
2.4、根据步骤2.3和步骤2.4计算所得的参数计算参数α和β:2.4. Calculate the parameters α and β according to the parameters calculated in steps 2.3 and 2.4:
计算步宽与身高比参数α,计算公式为 Calculate the step width to height ratio parameter α, the calculation formula is
计算头部水平前倾距离与身高比参数β,计算公式为 Calculate the horizontal forward tilt distance of the head and the height ratio parameter β, and the calculation formula is:
2.5、将每一帧侧影轮廓图像提取的参数α、β分别添加在参数序列A与参数序列B中,直至侧影轮廓图像序列中所有侧影轮廓图像处理完毕,获得参数序列A和参数序列B;即,参数α依次添加在参数序列A中,参数β依次添加在参数序列B中。2.5. Add the parameters α and β extracted from each frame of silhouette image to parameter sequence A and parameter sequence B, respectively, until all silhouette images in the silhouette image sequence are processed, and obtain parameter sequence A and parameter sequence B; that is, , the parameter α is added to the parameter sequence A in sequence, and the parameter β is sequentially added to the parameter sequence B.
2.6、从步骤2.5所获得的参数序列A绘制的曲线中提取步态的周期、前半周期、后半周期、波峰幅值、波谷幅值、波峰方差、波谷到波峰的过渡时间和波峰到波谷的过渡时间8个特征;2.6. Extract the gait cycle, first half cycle, second half cycle, peak amplitude, trough amplitude, peak variance, trough-to-peak transition time and peak-to-trough gait from the curve drawn by the parameter sequence A obtained in step 2.5. 8 characteristics of transition time;
2.7、从步骤2.5所获得的参数序列B中提取表示身体前倾特征的均值、方差、最大值和最小值4个特征;2.7. From the parameter sequence B obtained in step 2.5, extract four features representing the mean, variance, maximum and minimum values of forward leaning features;
2.8、综合步骤2.6和2.7提取的特征构成最终的特征G。2.8. Combine the features extracted in steps 2.6 and 2.7 to form the final feature G.
作为基于人的侧面步态视频的异常步态检测方法的进一步改进:As a further improvement of the abnormal gait detection method based on human side gait videos:
所述步骤3包括以下步骤:The step 3 includes the following steps:
3.1、收集正常步态的侧面步态视频构建训练样本;3.1. Collect side gait videos of normal gait to construct training samples;
3.2、将步骤3.1构建的训练样本依次通过步骤1和步骤2提取其步态信息的特征获得特征参数训练集;3.2. The training samples constructed in step 3.1 are sequentially extracted from the features of their gait information through
3.3、采用步骤3.2所得特征参数训练集进行异常检测模型的训练,构建异常步态检测模型。3.3. Use the feature parameter training set obtained in step 3.2 to train the abnormality detection model, and construct the abnormal gait detection model.
作为基于人的侧面步态视频的异常步态检测方法的进一步改进:As a further improvement of the abnormal gait detection method based on human side gait videos:
所述异常步态检测模型为单分类支持向量机。The abnormal gait detection model is a single-classification support vector machine.
作为基于人的侧面步态视频的异常步态检测方法的进一步改进:As a further improvement of the abnormal gait detection method based on human side gait videos:
所述单分类支持向量机模型的优化目标是求一个中心为o,半径为R的最小球面,公式如下:The optimization goal of the single-class SVM model is to find a minimum spherical surface with a center o and a radius R. The formula is as follows:
并满足条件: and meet the conditions:
其中,u为输入数据,i=1,…,N,N为输入数据的个数,C为惩罚因子,ξ为松弛因子。Among them, u is the input data, i=1,...,N, N is the number of input data, C is the penalty factor, and ξ is the relaxation factor.
采用拉格朗日乘子法并对约束条件进行简化,可将优化问题转换为:Using the Lagrange multiplier method and simplifying the constraints, the optimization problem can be transformed into:
约束条件为: The constraints are:
其中,i=1,…,N,j=1,…,N,N为输入数据的个数,λ为拉格朗日乘子。Among them, i=1,...,N, j=1,...,N, N is the number of input data, λ is the Lagrange multiplier.
本模型的核函数采用RBF径向基函数:The kernel function of this model adopts the RBF radial basis function:
K(ui,uj)=exp(-γ|ui-uj|2),K(u i , u j )=exp(-γ|u i -u j | 2 ),
其中,γ为核参数,本模型取值为0.083。Among them, γ is the kernel parameter, and the value of this model is 0.083.
与现有技术相比,本发明的技术优势在于:Compared with the prior art, the technical advantages of the present invention are:
1、本发明从行人轮廓中提取步宽与身高比参数(即,参数α)、身体前倾参数(即,参数β)作为步态特征,有效描述了步态特点,其中步宽的提取截取了人的足部区域,在一定程度上减少了大衣等服饰对于步宽提取的干扰;通过提取身体前倾特征,更好地描述了行走过程中是否存在身体前倾的现象,有助于异常步态的检测。1. The present invention extracts the step width-to-height ratio parameter (ie, parameter α) and the body forward leaning parameter (ie, parameter β) from the pedestrian profile as gait features, which effectively describes the gait features, wherein the step width is extracted and intercepted. The human foot area is reduced, to a certain extent, the interference of clothing such as coats on the step width extraction is reduced; by extracting the body forward leaning feature, it can better describe whether there is a forward leaning phenomenon during walking, which is helpful for abnormal Gait detection.
2、本发明根据所选的步态特征,使用正常步态数据采用单分类支持向量机进行模型训练,建立异常步态检测模型,不需要各类异常步态作为训练数据,即可有效区分正常步态及各类异常步态,检测待测步态为异常还是正常。2. According to the selected gait characteristics, the present invention uses the normal gait data to perform model training with a single-classification support vector machine, and establishes an abnormal gait detection model, which can effectively distinguish the normal gait without using various abnormal gaits as training data. Gait and various abnormal gaits, to detect whether the gait to be tested is abnormal or normal.
附图说明Description of drawings
下面结合附图对本发明的具体实施方式作进一步详细说明。The specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
图1为本发明基于人的侧面步态视频的异常步态检测方法的模型建立框图;Fig. 1 is the model building block diagram of the abnormal gait detection method based on the human side gait video of the present invention;
图2为图1中提取特征步骤的流程示意图;Fig. 2 is the schematic flow chart of extracting feature steps in Fig. 1;
图3为实施例1中从人体轮廓提取参数h和x1的示意图;3 is a schematic diagram of extracting parameters h and x 1 from the human body contour in
图4为实施例1中从人体轮廓提取参数w和x2的示意图;4 is a schematic diagram of extracting parameters w and x 2 from the human body contour in
图5为正常步态和异常步态的特征参数α变化曲线图;Fig. 5 is the characteristic parameter α change curve diagram of normal gait and abnormal gait;
图6为正常步态和异常步态的特征参数β变化曲线图。FIG. 6 is a graph showing the change of characteristic parameter β of normal gait and abnormal gait.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。The present invention will be further described below with reference to specific embodiments, but the protection scope of the present invention is not limited thereto.
实施例1、基于人的侧面步态视频的异常步态检测方法,如图1-6所示,通过采集侧面步态视频,并有效提取步态参数进行描述人的步速、步幅、是否前倾等特征,从而对异常步态做出检测。如图1所示,具体包括以下步骤:
步骤1、使用常见的普通相机或手机拍摄人的侧面步态视频,拍摄视频时需使用三脚架固定拍摄设备,视频格式可为MP4或AVI,拍摄人的侧面,至少包括两个步态周期。一个完整的步态周期指人从一侧的足跟着地开始,到同侧的足跟再次着地的过程。再基于背景差分法(已有的前景提取算法)从侧面步态视频中提取侧影轮廓图像序列。
步骤2、如图2所示,根据侧影轮廓图像序列,分别构建步宽与身高比的参数序列A、头部与两足中心的x轴水平距离与身高比前倾的参数序列B,由参数序列A和参数序列B提取12个特征描述步态信息。本特征提取方法具有有效反映人在行走过程中在步速时间、距离参数上是否正常,身体是否前倾等状态的优点。按照下述步骤依次对侧影轮廓图像序列的每一帧侧影轮廓图像进行处理:
2.1、分割人体区域:将步骤1所得的侧影轮廓图像序列中每一帧侧影轮廓图像中根据各点像素值分割人体区域。2.1. Segmenting the human body region: segment the human body region according to the pixel value of each point in each frame of the silhouette contour image in the sequence of silhouette contour images obtained in
人体区域分割采用图像遍历方法,定义x_left,x_right,y_top和y_bottom四个变量,分别表示人体区域在原图像上的最左点x轴坐标、最右点x轴坐标、最高点y轴坐标和最低点y轴坐标。分别按照从左到右、从右到左、从上到下和从下到上四个方向,依次计算每条图像列或行的像素值之和。由于在二值化图像中,黑色区域值为0,白色区域值为255,因此,当计算列或行像素值之和不为0时,说明检测到人体区域边界线,记录变量值,终止遍历查找。The human body area segmentation adopts the image traversal method, and defines four variables, x_left, x_right, y_top and y_bottom, which respectively represent the x-axis coordinates of the leftmost point, the x-axis coordinate of the rightmost point, the y-axis coordinate of the highest point and the lowest point of the human body area on the original image. y-axis coordinate. Calculate the sum of the pixel values of each image column or row in turn according to the four directions from left to right, right to left, top to bottom, and bottom to top. Since in the binarized image, the value of the black area is 0, and the value of the white area is 255. Therefore, when the sum of the calculated column or row pixel values is not 0, it means that the boundary line of the human body area is detected, the variable value is recorded, and the traversal is terminated. Find.
本实施例中计算x_left的具体方法为:初始化x_left=0,按照从左到右方向依次计算每条图像列像素值之和,当像素值之和为0时,x_left值加1,继续计算下一条图像列像素值之和,直至像素值之和不为0停止,此时该列像素值不为0的像素点为最左点,其x轴坐标即为此时的x_left,记录x_left;计算x_right的方法为:初始化x_right为图像的尺寸宽度(如300),之后按照从右到左的方向逐列计算每条像素列之和,当像素值之和为0时,x_right值减1,继续计算下一条图像列像素值之和,直至像素值之和不为0停止,此时该列像素值不为0的像素点为最右点,其x轴坐标即为此时的x_right,记录x_right;计算y_top和y_bottom的方法与上述计算方法相同,故不重复进行描述。The specific method for calculating x_left in this embodiment is: initialize x_left=0, calculate the sum of pixel values of each image column in turn from left to right, when the sum of pixel values is 0, add 1 to the x_left value, and continue to calculate the following The sum of the pixel values of an image column is stopped until the sum of the pixel values is not 0. At this time, the pixel point whose pixel value is not 0 is the leftmost point, and its x-axis coordinate is the x_left at this time, and x_left is recorded; calculation The method of x_right is: initialize x_right as the size and width of the image (such as 300), and then calculate the sum of each pixel column column by column in the direction from right to left. When the sum of the pixel values is 0, the x_right value is reduced by 1, and continue Calculate the sum of the pixel values of the next image column until the sum of the pixel values is not 0. At this time, the pixel point whose pixel value is not 0 is the rightmost point, and its x-axis coordinate is the x_right at this time. Record x_right ; The method of calculating y_top and y_bottom is the same as the above calculation method, so the description will not be repeated.
最终,根据计算所得的四个变量(x_left,x_right,y_top和y_bottom),裁剪侧影轮廓图像获得人体区域图像,如图3所示。Finally, according to the four calculated variables (x_left, x_right, y_top and y_bottom), the silhouette contour image is cropped to obtain the human body area image, as shown in Figure 3.
2.2、根据步骤2.1所分割得到的人体区域图像提取身高h,头部顶点x轴坐标x1;2.2, according to the human body region image obtained by step 2.1, extract the height h, the head vertex x-axis coordinate x 1 ;
身高h为该人体区域图像的尺寸高度,即,步骤2.1中的y_bottom与y_top的差值。The height h is the size and height of the image of the human body area, that is, the difference between y_bottom and y_top in step 2.1.
x1的计算方式为:初始化x1=0,遍历人体区域图像第一行的每一个像素点,若像素点值为0,x值加1,继续检查下一个像素点,直至像素点不为0时终止,记录此时的x1值。The calculation method of x 1 is: initialize x 1 =0, traverse each pixel in the first line of the human body area image, if the pixel value is 0, add 1 to the x value, continue to check the next pixel, until the pixel is not Terminate at 0, record the x 1 value at this time.
2.3、将步骤2.1所获得的人体区域图像按照从上到下的方向截取其的4/5h到h高度的足部区域图像(即,按照从下到上的方向截取其0到1/5h高度的足部区域图像),从而减小大衣等服饰对步宽提取的干扰。如图4所示,从截取的足部区域图像中获取实际步幅宽度w及两足中心点x轴坐标x2。2.3. Take the image of the human body area obtained in step 2.1 according to the direction from top to bottom to intercept the image of the foot area from 4/5h to the height of h (that is, intercept the height from 0 to 1/5h in the direction from bottom to top) image of the foot area), thereby reducing the interference of clothing such as coats on the step width extraction. As shown in FIG. 4 , the actual stride width w and the x-axis coordinate x 2 of the center point of the two feet are obtained from the intercepted image of the foot area.
w与x2的计算方法为:定义x1_left,x1_right两个变量,分别表示足部区域的最左点x轴坐标、最右点x轴坐标。分别按照从左到右和从右到左两个方向,依次计算每条图像列的像素值之和。The calculation method of w and x 2 is: define two variables x 1 _left and x 1 _right, which respectively represent the x-axis coordinate of the leftmost point and the x-axis coordinate of the rightmost point in the foot area. Calculate the sum of the pixel values of each image column in turn according to the left-to-right and right-to-left directions.
本实施例中计算x1_left的方法为:初始化x1_left,按照从左到右方向依次计算每条图像列像素值之和,当像素值之和为0时,x1_left值加1,继续计算下一条图像列像素值之和,直至像素值之和不为0停止,此时该列像素值不为0的像素点为足部区域的最左点,其x轴坐标记录在x1_left中;x1_right的计算按该方法以从右到左的方向获得(同步骤2.1中x_right的计算方法)。The method for calculating x 1 _left in this embodiment is: initialize x 1 _left, calculate the sum of pixel values of each image column in turn from left to right, when the sum of pixel values is 0, add 1 to the value of x 1 _left, Continue to calculate the sum of the pixel values of the next image column until the sum of the pixel values is not 0. At this time, the pixel point whose pixel value is not 0 is the leftmost point of the foot area, and its x-axis coordinate is recorded in x 1 _left; the calculation of x 1 _right is obtained in the direction from right to left by this method (same as the calculation method of x_right in step 2.1).
w按计算公式w=|x1_right-x1_left|计算,x2按公式计算。w is calculated according to the calculation formula w=|x 1 _right-x 1 _left|, and x 2 is calculated according to the formula calculate.
2.4、根据步骤2.3和步骤2.4计算所得的参数(即h、x1、w和x2)计算参数α和β:2.4. Calculate the parameters α and β according to the parameters calculated in steps 2.3 and 2.4 (ie h, x 1 , w and x 2 ):
由自定义公式计算步宽与身高比参数α,自定义公式计算头部水平前倾距离与身高比参数β(即身体前倾参数);by custom formula Calculate the step width to height ratio parameter α, custom formula Calculate the horizontal forward tilt distance of the head to the height ratio parameter β (that is, the body forward tilt parameter);
2.5、将每一帧侧影轮廓图像提取的参数α添加在参数序列A中,参数β添加在参数序列B中,直至侧影轮廓图像序列中所有侧影轮廓图像处理完毕,获得最终的参数序列A和B。2.5. Add the parameter α extracted from each frame of silhouette image to the parameter sequence A, and the parameter β to the parameter sequence B, until all silhouette images in the silhouette image sequence are processed, and obtain the final parameter sequence A and B .
本实施例中利用相机分别录制正常步态和异常步态(慌张步态)的视频,并按照上述步骤进行处理,获得对应的参数序列A和B。如图5所示,左图为正常步态的参数序列A对应的曲线图,右图为异常步态参数序列A对应的曲线图,其横坐标为帧数,纵坐标为参数α;由图5可以看出正常人的步态运动呈周期性,随着向前行走,左右脚切换,步态参数α波动在0.15到0.50之间,波峰与波谷幅值基本稳定;慌张步态的参数α值波动在0.15到0.25之间,波峰幅值相对较低,反映了患者步伐较小,行走困难的特点。In this embodiment, a camera is used to record videos of a normal gait and an abnormal gait (panic gait) respectively, and processing is performed according to the above steps to obtain corresponding parameter sequences A and B. As shown in Figure 5, the left picture is the graph corresponding to the parameter sequence A of the normal gait, and the right graph is the graph corresponding to the abnormal gait parameter sequence A, the abscissa is the frame number, and the ordinate is the parameter α; 5 It can be seen that the gait movement of normal people is periodic. As the walking forward and the left and right feet switch, the gait parameter α fluctuates between 0.15 and 0.50, and the peak and trough amplitudes are basically stable; the panic gait parameter α The value fluctuates between 0.15 and 0.25, and the peak amplitude is relatively low, reflecting the characteristics of patients with small steps and difficulty in walking.
如图6所示,左图为正常步态的参数序列B对应的曲线图,右图为异常步态参数序列B对应的曲线图,横坐标为帧数,纵坐标为参数β;由图6可以看出正常步态的参数β值大致在0.0到0.1之间,波动不大;慌张步态的参数β值在0.1到0.4之间,波动较大,均值较正常步态高。由图5和图6可知,参数序列A和B能有效的区分正常步态与异常步态。As shown in Figure 6, the left picture is the graph corresponding to the parameter sequence B of normal gait, the right graph is the graph corresponding to the abnormal gait parameter sequence B, the abscissa is the frame number, and the ordinate is the parameter β; It can be seen that the parameter β value of the normal gait is roughly between 0.0 and 0.1, and the fluctuation is not large; the parameter β value of the panic gait is between 0.1 and 0.4, the fluctuation is large, and the average value is higher than that of the normal gait. It can be seen from Figure 5 and Figure 6 that the parameter sequences A and B can effectively distinguish the normal gait from the abnormal gait.
2.6、从步骤2.5所获得的参数序列A绘制的曲线中提取步态的周期G1、前半周期G2、后半周期G3、波峰幅值G4、波谷幅值G5、波峰方差G6、波谷到波峰的过渡时间G7和波峰到波谷的过渡时间G8共8个特征。2.6. Extract the gait cycle G1, the first half cycle G2, the second half cycle G3, the peak amplitude G4, the trough amplitude G5, the peak variance G6, and the transition from the trough to the peak from the curve drawn by the parameter sequence A obtained in step 2.5. The time G7 and the peak-to-valley transition time G8 have a total of 8 features.
如图5所示,其中,步态周期G1定义为第i个波峰到第i+2个波峰之间的帧数,相当于一个步态周期的时间。帧数越大说明周期越长,步行速度越慢,可能存在步态异常。步态前半周期G2定义为第i个波峰到第i+1个波峰之间的帧数。该特征在正常步行情况下,应该大致等于G3特征。当两者差异较大时,可能存在单腿异常。步态前半周期G3定义为第i+1个波峰到第i+2个波峰之间的帧数。波峰幅值G4是曲线最高点,实际反映了人的步长。当该值较小时,说明步伐较小,可能存在迈步困难。波谷幅值G5是曲线最低点,实际反映了人行走过程中双腿重叠的时刻。当该值较大时,可能存在步行困难借助了支撑物行走。波峰方差G6为步态视频时间内的所有波峰的方差,实际反映了行走过程中步幅的变化。方差越大反映患者行走异常,步幅不均匀。波谷到波峰的过渡时间G7为人从双腿重叠到双足均着地的时间,波谷到波峰的过渡时间G8为人从双足均着地到双腿重叠的时间,这两个特征实际反映了单腿的步速。As shown in FIG. 5 , the gait cycle G1 is defined as the number of frames between the i-th peak and the i+2-th peak, which is equivalent to the time of one gait cycle. The larger the number of frames, the longer the cycle, the slower the walking speed, and the possibility of abnormal gait. The first half cycle of gait G2 is defined as the number of frames between the i-th peak to the i+1-th peak. This feature should be roughly equal to the G3 feature under normal walking conditions. When the difference between the two is large, there may be a single leg abnormality. The first half cycle of gait G3 is defined as the number of frames between the i+1th peak to the i+2th peak. The peak amplitude G4 is the highest point of the curve, which actually reflects the step length of a person. When the value is small, it means that the pace is small, and there may be difficulty in stepping. The trough amplitude G5 is the lowest point of the curve, which actually reflects the moment when a person's legs overlap during walking. When the value is large, there may be difficulty in walking with the aid of a support. The peak variance G6 is the variance of all the peaks in the gait video time, which actually reflects the change of the stride during walking. The larger the variance, the more abnormal the patient's walking and the uneven stride length. The transition time G7 from the trough to the peak is the time from the overlapping of the legs to the landing of both feet, and the transition time G8 from the trough to the peak is the time from the landing of both feet to the overlapping of the legs. pace.
2.7、从步骤2.5所获得的参数序列B中提取身体前倾特征,即参数β的均值G9、方差G10、最大值G11和最小值G12共4个特征,通过这些特征可以描述人在行走过程中是否存在身体前倾或前后摇晃的现象。2.7. Extract the body forward leaning feature from the parameter sequence B obtained in step 2.5, namely the mean value G9, variance G10, maximum value G11 and minimum value G12 of the parameter β, a total of 4 features, which can be used to describe the walking process of people through these features. Whether there is a body leaning forward or rocking back and forth.
如图6所示,最大值G11是曲线最高点,最小值G12是曲线最高点。As shown in FIG. 6 , the maximum value G11 is the highest point of the curve, and the minimum value G12 is the highest point of the curve.
注:上述均值G9及方差G10的计算为现有技术,故不在本说明书中详细介绍其计算方法。Note: The calculation of the above-mentioned mean value G9 and variance G10 is the prior art, so the calculation method is not described in detail in this specification.
2.8、综合步骤2.6和2.7提取的特征构成最终的特征G如下:2.8. The features extracted in steps 2.6 and 2.7 are combined to form the final feature G as follows:
G=[G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 ]G=[G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 ]
步骤3、收集正常步态的侧面步态视频(下文中简称为正常步态视频)为训练样本;所述训练样本依次通过步骤1和步骤2提取其步态信息的特征,并将特征输入单分类支持向量机进行训练,构建异常步态检测模型。本模型建立方法具有不需要各类异常步态作为训练数据,即可有效区分正常步态及各类异常步态的优点。该步骤具体包括以下步骤:Step 3, collect the side gait videos of normal gait (hereinafter referred to as normal gait videos) as training samples; the training samples sequentially extract the features of its gait information through
3.1、收集正常步态视频和异常步态的侧面步态视频(下文中简称为异常步态视频);在所收集的正常步态视频随机选取70%构建训练样本,并将剩余30%正常步态视频与所收集的异常步态视频混合构成测试样本。3.1. Collect normal gait videos and side gait videos of abnormal gait (hereinafter referred to as abnormal gait videos); randomly select 70% of the collected normal gait videos to construct training samples, and use the remaining 30% of normal gait videos to construct training samples. The gait videos were mixed with the collected abnormal gait videos to form the test samples.
3.2、将步骤3.1构建的训练样本依次通过步骤1和步骤2提取其侧面步态视频的特征(即,正常步态信息的特征)获得特征参数训练集。3.2. The training samples constructed in step 3.1 are sequentially extracted from the features of the lateral gait video (ie, the features of normal gait information) through
3.3、将特征参数训练集输入单分类支持向量机进行训练,训练获得异常步态检测模型。3.3. The feature parameter training set is input into the single-classification support vector machine for training, and the abnormal gait detection model is obtained by training.
单分类支持向量机(One-class-SVM)是现有的一种异常检测模型,适用于正负样布不平衡、异常检测等单分类任务。常见的异常检测模型除了单分类支持向量机,还包括孤立森林、局部离群因子检测等模型。单分类支持向量机的主要思想是训练一个超球面模型包括所有正样例,当需要对一个新的数据进行判断时,若数据点落在超球面内,则属于该类,若落在球外,则不属于,是异常数据。本发明采用现有的单分类支持向量机,使用特征参数训练集对单分类支持向量机进行训练,构建超球面,该超球面将含有正常步态信息的特征包围起来,从而实现异常步态的检测。模型的优化目标是求一个中心为o,半径为R的最小球面:One-class support vector machine (One-class-SVM) is an existing anomaly detection model, which is suitable for single-classification tasks such as positive and negative sample cloth imbalance and anomaly detection. In addition to single-classification support vector machines, common anomaly detection models also include models such as isolation forest and local outlier factor detection. The main idea of single-class SVM is to train a hypersphere model including all positive examples. When a new data needs to be judged, if the data point falls within the hypersphere, it belongs to this class, and if it falls outside the sphere , it does not belong, it is abnormal data. The present invention adopts the existing single-classification support vector machine, uses the feature parameter training set to train the single-classification support vector machine, and constructs a hypersphere, the hypersphere surrounds the features containing normal gait information, so as to realize the abnormal gait. detection. The optimization goal of the model is to find a smallest spherical surface with center o and radius R:
并满足条件: and meet the conditions:
其中,u为输入数据,i=1,…,N,N为输入数据的个数,C为惩罚因子,ξ为松弛因子,F即目标函数。Among them, u is the input data, i=1,...,N, N is the number of input data, C is the penalty factor, ξ is the relaxation factor, and F is the objective function.
采用拉格朗日乘子法求解问题并对约束条件进行简化(注:拉格朗日乘子法为常用优化问题求解方法,是现有数学方法,故不在本说明书中详细介绍其计算方法),可将优化问题转换为:The Lagrange multiplier method is used to solve the problem and simplify the constraints (Note: The Lagrange multiplier method is a commonly used method for solving optimization problems and is an existing mathematical method, so its calculation method is not described in detail in this manual) , the optimization problem can be transformed into:
约束条件为:The constraints are:
其中,i=1,…,N,j=1,…,N,N为输入数据的个数,λ为拉格朗日乘子,L即拉格朗日函数。Among them, i=1,...,N, j=1,...,N, N is the number of input data, λ is the Lagrangian multiplier, and L is the Lagrangian function.
本模型的核函数采用RBF径向基函数:The kernel function of this model adopts the RBF radial basis function:
K(ui,uj)=exp(-γ|ui-uj|2),K(u i , u j )=exp(-γ|u i -u j | 2 ),
其中,γ为核参数,本模型取值为0.083,K即径向基函数。Among them, γ is the kernel parameter, the value of this model is 0.083, and K is the radial basis function.
3.4、将步骤3.1构建的测试样本(或实际待检测的侧面步态视频)依次通过步骤1和步骤2提取其步态信息的特征,并将特征输入步骤3.3所构建的异常步态检测模型,若数据特征点落在训练的超球面内,则输出+1为正常步态,否则输出-1为异常步态。从而快速检测步态是否异常。3.4. Extract the features of its gait information from the test sample (or the actual side gait video to be detected) constructed in step 3.1 through
实验、身体前倾特征对异常步态检测准确率的影响:Experiments, the effect of forward leaning features on the accuracy of abnormal gait detection:
本实验中测试样本由85份正常步态视频和35份异常步态视频组成,其中35份异常步态视频由10份跛足、10份痉挛性偏瘫步态、5份感觉性共济失调步态、10份慌张步态组成。依次提取测试样本中每个侧面步态视频的最终特征G后,将特征G输入实施例1所建立的异常步态检测模型进行检测,检测结果如表1所示:The test sample in this experiment consists of 85 normal gait videos and 35 abnormal gait videos, of which 35 abnormal gait videos consist of 10 lameness, 10 spastic hemiplegia, and 5 sensory ataxia. gait and 10 panicked gaits. After sequentially extracting the final feature G of each side gait video in the test sample, input the feature G into the abnormal gait detection model established in Example 1 for detection, and the detection results are shown in Table 1:
表1Table 1
对比例、取消实施例中步骤2.7,其余均等同于实施例;即最终的特征G仅包含特征G1-G8(取消均值G9、方差G10、最大值G11和最小值G12);采用实施例中相同的训练样本,提取其最终的特征G训练单分类支持向量机,从而构建异常步态检测模型;再依次提取测试样本中每个侧面步态视频的最终特征G后,并将特征G输入对比例所建立的异常步态检测模型进行检测,检测结果如表1所示。Comparative example, cancel step 2.7 in the embodiment, and the rest are identical to the embodiment; that is, the final feature G only includes the features G1-G8 (cancel the mean value G9, variance G10, maximum value G11 and minimum value G12); adopt the same in the embodiment The training samples are extracted, and the final feature G is extracted to train a single-class SVM to construct an abnormal gait detection model; then the final feature G of each side gait video in the test sample is extracted in turn, and the feature G is input to the comparison scale The established abnormal gait detection model is used for detection, and the detection results are shown in Table 1.
由表1可知,增加身体前倾特征(均值G9、方差G10、最大值G11和最小值G12)后模型检测结果的准确率大大提高。从正常步态数据的检测结果来看,正确检测正样本的准确率相对未增加身体前倾特征前得到了提高,减少了误判;从异常步态数据的检测结果来看,增加身体前倾特征后,正确检测为负样本的准确率达到100.0%,其中特别的,针对存在身体前倾特征的慌张步态,模型检测效果得到了显著提高。It can be seen from Table 1 that the accuracy of the model detection results is greatly improved after adding body forward leaning features (mean value G9, variance G10, maximum value G11 and minimum value G12). Judging from the detection results of normal gait data, the accuracy of correct detection of positive samples has been improved compared with that before the body forward leaning feature was added, which reduced misjudgment; from the detection results of abnormal gait data, the increase of body forward leaning After the feature, the accuracy rate of correct detection as a negative sample reaches 100.0%, in particular, the model detection effect has been significantly improved for the panic gait with the body forward leaning feature.
综上可知,本发明通过常见的普通相机或手机采集侧面步态视频,从中提取人的步幅变化特征、身体前倾特征,并使用正常步态的特征信息训练单分类支持向量机模型,可快速有效检测对应步态为正常或异常。本发明无需专用检测设备,无需在特定的场所进行步态检测,灵活度高。本发明在通过步态视频提取步态特征时考虑身体前倾特点,并能有效避免异常步态检测模型的检测能力受异常训练数据影响,提高检测准确率。本发明仅需要采用正常步态信息的特征训练单分类支持向量机模型,训练样本少,能够快速准确地检测步态正常/异常,从而协助医生进行异常步态的诊断,提高医生的工作效率。To sum up, the present invention collects side gait videos through common ordinary cameras or mobile phones, extracts human stride variation features and forward leaning features from them, and uses the feature information of normal gait to train a single-classification support vector machine model, which can be Quickly and effectively detect whether the corresponding gait is normal or abnormal. The invention does not need special detection equipment, does not need to perform gait detection in a specific place, and has high flexibility. The present invention considers the body forward leaning feature when extracting the gait feature from the gait video, and can effectively avoid the detection ability of the abnormal gait detection model from being affected by the abnormal training data, thereby improving the detection accuracy. The present invention only needs to use the features of normal gait information to train a single-classification support vector machine model, with few training samples, and can quickly and accurately detect normal/abnormal gait, thereby assisting doctors in diagnosing abnormal gaits and improving doctors' work efficiency.
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。Finally, it should also be noted that the above enumeration is only a few specific embodiments of the present invention. Obviously, the present invention is not limited to the above embodiments, and many modifications are possible. All deformations that those of ordinary skill in the art can directly derive or associate from the disclosure of the present invention shall be considered as the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810143888.2A CN108416276B (en) | 2018-02-12 | 2018-02-12 | Abnormal gait detection method based on human lateral gait video |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810143888.2A CN108416276B (en) | 2018-02-12 | 2018-02-12 | Abnormal gait detection method based on human lateral gait video |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108416276A CN108416276A (en) | 2018-08-17 |
CN108416276B true CN108416276B (en) | 2022-05-24 |
Family
ID=63128601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810143888.2A Active CN108416276B (en) | 2018-02-12 | 2018-02-12 | Abnormal gait detection method based on human lateral gait video |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108416276B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111144166A (en) * | 2018-11-02 | 2020-05-12 | 银河水滴科技(北京)有限公司 | Method, system and storage medium for establishing abnormal crowd information base |
CN110322528B (en) * | 2019-06-26 | 2021-05-14 | 浙江大学 | Vascular reconstruction method of MRI brain image based on 3T and 7T |
CN110728226A (en) * | 2019-10-09 | 2020-01-24 | 清华大学 | Gait quantification system and method based on motion recognition |
CN111062340B (en) * | 2019-12-20 | 2023-05-23 | 湖南师范大学 | Abnormal gait behavior recognition method based on virtual gesture sample synthesis |
CN112597903B (en) * | 2020-12-24 | 2021-08-13 | 珠高电气检测有限公司 | Electric power personnel safety state intelligent identification method and medium based on stride measurement |
CN113705482B (en) * | 2021-08-31 | 2024-03-22 | 江苏唯宝体育科技发展有限公司 | Body health monitoring management system and method based on artificial intelligence |
CN114533044A (en) * | 2022-02-08 | 2022-05-27 | 北京金史密斯科技股份有限公司 | Gait data acquisition system and method and running equipment |
CN116019440B (en) * | 2022-11-08 | 2025-07-18 | 清华大学 | Gait analysis method, device, system, electronic equipment and storage medium |
CN118948259B (en) * | 2024-08-02 | 2025-04-01 | 北京健康有益科技有限公司 | Gait health monitoring and analysis method and system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101571917A (en) * | 2009-06-16 | 2009-11-04 | 哈尔滨工程大学 | Front side gait cycle detecting method based on video |
CN103927524A (en) * | 2014-04-25 | 2014-07-16 | 哈尔滨工程大学 | Multi-angle gait period detection method |
CN105326627A (en) * | 2015-11-25 | 2016-02-17 | 华南理工大学 | Trunk center-of-gravity shift based rehabilitation device walking triggering control method |
CN106295691A (en) * | 2016-08-04 | 2017-01-04 | 江南大学 | The feature selection of single classification SVM and parameter synchronization optimization method |
CN106875405A (en) * | 2017-01-19 | 2017-06-20 | 浙江大学 | CT image pulmonary parenchyma template tracheae removing methods based on BFS |
CN107133604A (en) * | 2017-05-25 | 2017-09-05 | 江苏农林职业技术学院 | A kind of pig abnormal gait detection method based on ellipse fitting and predictive neutral net |
CN107563431A (en) * | 2017-08-28 | 2018-01-09 | 西南交通大学 | A kind of image abnormity detection method of combination CNN transfer learnings and SVDD |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101488185B (en) * | 2009-01-16 | 2010-10-20 | 哈尔滨工程大学 | Gait Recognition Method Based on Block Matrix |
US10330491B2 (en) * | 2011-10-10 | 2019-06-25 | Texas Instruments Incorporated | Robust step detection using low cost MEMS accelerometer in mobile applications, and processing methods, apparatus and systems |
US20170213080A1 (en) * | 2015-11-19 | 2017-07-27 | Intelli-Vision | Methods and systems for automatically and accurately detecting human bodies in videos and/or images |
CN106600631A (en) * | 2016-11-30 | 2017-04-26 | 郑州金惠计算机系统工程有限公司 | Multiple target tracking-based passenger flow statistics method |
CN106667494B (en) * | 2017-02-23 | 2019-06-28 | 佛山市量脑科技有限公司 | A kind of insole of athletic posture monitoring |
-
2018
- 2018-02-12 CN CN201810143888.2A patent/CN108416276B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101571917A (en) * | 2009-06-16 | 2009-11-04 | 哈尔滨工程大学 | Front side gait cycle detecting method based on video |
CN103927524A (en) * | 2014-04-25 | 2014-07-16 | 哈尔滨工程大学 | Multi-angle gait period detection method |
CN105326627A (en) * | 2015-11-25 | 2016-02-17 | 华南理工大学 | Trunk center-of-gravity shift based rehabilitation device walking triggering control method |
CN106295691A (en) * | 2016-08-04 | 2017-01-04 | 江南大学 | The feature selection of single classification SVM and parameter synchronization optimization method |
CN106875405A (en) * | 2017-01-19 | 2017-06-20 | 浙江大学 | CT image pulmonary parenchyma template tracheae removing methods based on BFS |
CN107133604A (en) * | 2017-05-25 | 2017-09-05 | 江苏农林职业技术学院 | A kind of pig abnormal gait detection method based on ellipse fitting and predictive neutral net |
CN107563431A (en) * | 2017-08-28 | 2018-01-09 | 西南交通大学 | A kind of image abnormity detection method of combination CNN transfer learnings and SVDD |
Non-Patent Citations (3)
Title |
---|
Gait and posture-assessment in general practice;Kent Sweeting et al;《Aust Fam Physician》;20070630;第36卷(第6期);398-401、404-405 * |
基于二次特征提取与SVM的异常步态识别;石欣等;《仪器仪表学报》;20110715;第32卷(第3期);673-677 * |
用侧影特征分析和识别人的异常步态;黄彬等;《计算机工程与应用》;20081111;第44卷(第32期);正文第158-160页、图1-2 * |
Also Published As
Publication number | Publication date |
---|---|
CN108416276A (en) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108416276B (en) | Abnormal gait detection method based on human lateral gait video | |
US11986286B2 (en) | Gait-based assessment of neurodegeneration | |
US20210315486A1 (en) | System and Method for Automatic Evaluation of Gait Using Single or Multi-Camera Recordings | |
Loureiro et al. | Using a skeleton gait energy image for pathological gait classification | |
JP7439353B2 (en) | Cognitive function evaluation method, cognitive function evaluation device, and cognitive function evaluation program | |
WO2010117576A2 (en) | Image processing and machine learning for diagnostic analysis of microcirculation | |
CN111933275A (en) | Depression evaluation system based on eye movement and facial expression | |
CN117883074A (en) | Parkinson's disease gait quantitative analysis method based on human body posture video | |
CN115909487A (en) | A child gait abnormality assessment auxiliary system based on human body posture detection | |
CN116543455A (en) | Method, equipment and medium for establishing parkinsonism gait damage assessment model and using same | |
CN112733772B (en) | Method and system for detecting real-time cognitive load and fatigue degree in warehouse picking task | |
Lee et al. | Video analysis of human gait and posture to determine neurological disorders | |
CN118749953A (en) | A method for extracting gait features and identifying abnormal gait in traditional Chinese medicine inspection | |
Bora et al. | Understanding human gait: A survey of traits for biometrics and biomedical applications | |
CN117333932A (en) | Methods, equipment, equipment and media for identifying sarcopenia based on machine vision | |
Prakash et al. | Identification of gait parameters from silhouette images | |
CN113197558B (en) | Heart rate and respiratory rate detection method and system and computer storage medium | |
CN104331705B (en) | Automatic detection method for gait cycle through fusion of spatiotemporal information | |
Khessiba et al. | Improving knee osteoarthritis classification with markerless pose estimation and STGCN model | |
CN116602660A (en) | Method, device and medium for the quantification of gait impairment in Parkinson's disease | |
CN116798639A (en) | Exercise injury severity assessment method and assessment device | |
Khokhlova et al. | Kinematic covariance based abnormal gait detection | |
Kubicek et al. | Retinal Blood Vessels Modeling based on Fuzzy Sobel Edge Detection and Morphological Segmentation. | |
CN110751064B (en) | Method and system for analyzing blink times based on image processing | |
Sethi et al. | SAGA: Stability-Aware Gait Analysis in constraint-free environments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |