CN108410875B - A kind of method for improving the yield of 1,2,4-butanetriol in recombinant Escherichia coli - Google Patents
A kind of method for improving the yield of 1,2,4-butanetriol in recombinant Escherichia coli Download PDFInfo
- Publication number
- CN108410875B CN108410875B CN201810219618.5A CN201810219618A CN108410875B CN 108410875 B CN108410875 B CN 108410875B CN 201810219618 A CN201810219618 A CN 201810219618A CN 108410875 B CN108410875 B CN 108410875B
- Authority
- CN
- China
- Prior art keywords
- delta
- coli
- butanetriol
- petac
- escherichia coli
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 241000588724 Escherichia coli Species 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 13
- 108020005544 Antisense RNA Proteins 0.000 claims abstract description 40
- 239000003184 complementary RNA Substances 0.000 claims abstract description 37
- 101100105449 Escherichia coli (strain K12) yagE gene Proteins 0.000 claims abstract description 30
- 101100282733 Escherichia coli (strain K12) ghrA gene Proteins 0.000 claims abstract description 28
- 101100106373 Escherichia coli (strain K12) yjhH gene Proteins 0.000 claims abstract description 28
- 239000013604 expression vector Substances 0.000 claims abstract description 21
- 101100014624 Escherichia coli (strain K12) ghrB gene Proteins 0.000 claims abstract description 18
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 claims abstract description 16
- 230000014509 gene expression Effects 0.000 claims abstract description 16
- 239000012634 fragment Substances 0.000 claims abstract description 13
- 239000013612 plasmid Substances 0.000 claims abstract description 11
- 108700040099 Xylose isomerases Proteins 0.000 claims abstract description 10
- 238000003259 recombinant expression Methods 0.000 claims abstract description 10
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 claims abstract description 8
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 101150052264 xylA gene Proteins 0.000 claims description 15
- 101150011516 xlnD gene Proteins 0.000 claims description 9
- 239000013615 primer Substances 0.000 claims description 7
- 238000010276 construction Methods 0.000 claims description 6
- 238000000855 fermentation Methods 0.000 claims description 6
- 230000004151 fermentation Effects 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 5
- 239000002773 nucleotide Substances 0.000 claims description 5
- 125000003729 nucleotide group Chemical group 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000003776 cleavage reaction Methods 0.000 claims description 3
- 230000007017 scission Effects 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 claims description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims description 2
- 108090000769 Isomerases Proteins 0.000 claims 1
- 238000011218 seed culture Methods 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 abstract description 4
- 230000002503 metabolic effect Effects 0.000 abstract description 3
- 230000037361 pathway Effects 0.000 abstract description 3
- 239000007795 chemical reaction product Substances 0.000 abstract description 2
- 238000010353 genetic engineering Methods 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 6
- GTTSNKDQDACYLV-UHFFFAOYSA-N Trihydroxybutane Chemical compound CCCC(O)(O)O GTTSNKDQDACYLV-UHFFFAOYSA-N 0.000 description 5
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- QXKAIJAYHKCRRA-UHFFFAOYSA-N D-lyxonic acid Natural products OCC(O)C(O)C(O)C(O)=O QXKAIJAYHKCRRA-UHFFFAOYSA-N 0.000 description 3
- QXKAIJAYHKCRRA-FLRLBIABSA-N D-xylonic acid Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)C(O)=O QXKAIJAYHKCRRA-FLRLBIABSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 101100053733 Bacillus subtilis (strain 168) yyaE gene Proteins 0.000 description 1
- 108010071778 Benzoylformate decarboxylase Proteins 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- SERBHKJMVBATSJ-UHFFFAOYSA-N Enterobactin Natural products OC1=CC=CC(C(=O)NC2C(OCC(C(=O)OCC(C(=O)OC2)NC(=O)C=2C(=C(O)C=CC=2)O)NC(=O)C=2C(=C(O)C=CC=2)O)=O)=C1O SERBHKJMVBATSJ-UHFFFAOYSA-N 0.000 description 1
- 108010061075 Enterobactin Proteins 0.000 description 1
- 101100106370 Escherichia coli (strain K12) yjhE gene Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102000004867 Hydro-Lyases Human genes 0.000 description 1
- 108090001042 Hydro-Lyases Proteins 0.000 description 1
- 241000205156 Pyrococcus furiosus Species 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 238000011530 RNeasy Mini Kit Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- SERBHKJMVBATSJ-BZSNNMDCSA-N enterobactin Chemical compound OC1=CC=CC(C(=O)N[C@@H]2C(OC[C@@H](C(=O)OC[C@@H](C(=O)OC2)NC(=O)C=2C(=C(O)C=CC=2)O)NC(=O)C=2C(=C(O)C=CC=2)O)=O)=C1O SERBHKJMVBATSJ-BZSNNMDCSA-N 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 238000012269 metabolic engineering Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009967 tasteless effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
- C12N9/92—Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y503/00—Intramolecular oxidoreductases (5.3)
- C12Y503/01—Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
- C12Y503/01005—Xylose isomerase (5.3.1.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention discloses a method for improving the yield of 1,2, 4-butanetriol in recombinant escherichia coli, belonging to the field of genetic engineering. The invention relates to a method for improving the yield of 1,2, 4-butanetriol by using recombinant escherichia coli E.coli W3110 delta yagE E delta yjhH delta yiaE delta ycdW (pEtac-mdLC-tac-xdh) (ATCC 27325) as an initial strain, and by constructing a recombinant expression vector containing an antisense RNA fragment of xylose isomerase XylA, inhibiting the expression level of xylose isomerase in a xylose branching pathway and enhancing the carbon flow to a metabolic end product. Finally, the plasmid pEtac-mdLC-tac-xdh-lac-asRNA3 improves the yield of the recombinant Escherichia coli 1,2, 4-butanetriol by 44 percent.
Description
Technical Field
The invention relates to a method for improving the yield of 1,2, 4-butanetriol in recombinant escherichia coli, in particular to a method for improving the yield of 1,2, 4-butanetriol in recombinant escherichia coli by inhibiting the expression level of xylose isomerase in a branch metabolic pathway through antisense RNA, belonging to the field of genetic engineering.
Background
1,2, 4-Butanetriol (BT) is a four-carbon polyhydric alcohol, is colorless, odorless and tasteless, has the property similar to that of glycerol, and is mainly applied to the fields of military industry, medicines, cosmetics, chemical engineering and the like. At present, 1,2, 4-butanetriol is mainly produced by a chemical method, but the chemical method has the defects of harsh reaction conditions, expensive catalyst, easy environmental pollution, more byproducts, difficult separation and purification and the like, so in recent years, the focus of research is gradually shifted to a biological synthesis method.
To date, 1,2, 4-butanetriol has not been found in organisms, and the biological synthesis of butanetriol is a synthetic pathway constructed by introducing foreign proteins. The synthesis routes which have been successfully constructed and much studied in escherichia coli are as follows: starting from xylose, xylonic acid is generated under the action of xylose dehydrogenase, and the xylonic acid generates 1,2, 4-butanetriol under the action of xylonic acid dehydratase, benzoylformate decarboxylase and alcohol dehydrogenase. In addition, competitive branched metabolic pathways are knocked out to enhance carbon flow to the metabolic end product butanetriol, but knocking out cell growth related genes such as xylose isomerase gene xylA can improve the unit cell yield, and can also seriously affect cell growth to prevent butanetriol accumulation. Thus, balancing the carbon flow for cell growth and product synthesis contributes to further increasing the yield of 1,2, 4-butanetriol.
Antisense RNA (asRNA) refers to RNA molecules complementary to mRNA, and also includes RNA molecules complementary to other RNAs. Since ribosomes are unable to translate double-stranded RNA, antisense RNA specifically binds complementary to mRNA, i.e., inhibits translation of the mRNA. Control of mRNA translation by antisense RNA is a means of regulation of prokaryotic gene expression, originally found in e.coli enterobactin-producing Col E1 plasmid, and many experiments have demonstrated that antisense RNA is also present in eukaryotes. In recent years, by artificially synthesizing a gene of antisense RNA and introducing it into cells to transcribe it into antisense RNA, the expression of a specific gene can be conditionally inhibited and the function of the gene can be partially blocked.
Disclosure of Invention
The invention aims to partially inhibit the expression level of xylose isomerase by an antisense RNA technology, optimize the distribution of xylose flow for thallus growth and BT synthesis and further improve the BT yield. The invention designs 4 antisense RNAs with different target gene binding sites and different lengths according to the antisense RNA design principle, and the four antisense RNAs have different degrees of inhibition on the transcription level of a target gene, wherein the introduction of the asRNA3 and the asRNA4 obviously improves the yield of the 1,2, 4-butanetriol of the recombinant escherichia coli.
The present invention first provides antisense RNA for increasing the production of 1,2, 4-butanetriol in recombinant E.coli: asRNA1, asRNA2, asRNA3, asRNA 4.
The nucleotide sequence encoding the antisense RNA is as follows:
asRNA1:
CGGCATTACCTGATTATGGAGTTCAATATGCAAGCCTATTTTGACCAGCTCGATCGCGTTCGTTATGAAGGCTCAAAATCCTCAAACCCGTTAGCATTCCGTCACTACAATCCCGACGAACTGGTGTTGGGTA
asRNA2:
CGGCATTACCTGATTATGGAGTTCAATATGCAAGCCTATTTTGACCAGCTCGATCGCGTTCGTTATGAAGGCTCAAAATCCTCAAACCCGTTAGCATTCCGTCACTACAATCCCGACGAACTGGTGTTGGGTAAGCGTATGGAAGAGCACTTGCGTTTTGCCGCCTGCTACTGGCACACCTTCTGCTGGAACGGGGCGGATATGTTTGGTGTGGGGGCGTTTAATCGTCCGTGGCAGCAGCCTGGTGAGGCACTGGCGTTGGCGAAGCGTAAAGCAGATGTCGCATTTGAGT
asRNA3:
ATGCAAGCCTATTTTGACCAGCTCGATCGCGTTCGTTATGAAGGCTCAAAATCCTCAAACCCGTTAGCATTCCGTCACTACAATCCCGACGAACTGGTGTTGGGTAAGCGTATGGAAGAGCACTTGCGTTTTGCCGCCTGCTACTGGCACACCTTCTGCTGGAACGGGGCGGATATGTTTGGTGTGGGGGCGTTTAATCGTCCGTGGCAGCAGCCTGGTGAGGCACTGGCGTTGGCGAAGCGTAAAGCAGATGTCGCATTTGAGT
asRNA4:
TTTTCCACAAGTTACATGTGCCATTTTATTGCTTCCACGATGTGGATGTTTCCCCTGAGGGCGCGTCGTTAAAAGAGTACATCAATAATTTTGCGCAAATGGTTGATGTCCTGGCAGGCAAGCAAGAAGAGAGCGGCGTGAAGCTGCTGTGGGGAACGGCCAACTGCTTTACAAACCCTCGCTACGGCGCGGGTGCGGCGACGAACCCAGATCCTGAAGTCTTCAGCTGGGCGGCAACGCAAGTTGTTACAGCGATGGAAGCAA
the invention also provides a recombinant expression vector carrying the antisense RNA and improving the yield of 1,2, 4-butanetriol in recombinant escherichia coli, which takes pEtac-mdLC-tac-xdh as a starting plasmid to construct an expression vector containing the antisense RNA: pEtac-mdLC-tac-xdh-lac-asRNA1, pEtac-mdLC-tac-xdh-lac-asRNA2, pEtac-mdLC-tac-xdh-lac-asRNA3 or pEtac-mdLC-tac-xdh-lac-asRNA 4.
The invention also provides recombinant escherichia coli with improved 1,2, 4-butanetriol yield, which is obtained by transferring the constructed recombinant expression vectors into escherichia coli E.coli W3110 delta yagE delta yjhH delta yiaE delta ycdW serving as a starting bacterium respectively.
The construction method of the recombinant escherichia coli with the improved 1,2, 4-butanetriol yield comprises the following steps:
step 2, connecting the cloned fragment with the hairpin structure by utilizing enzyme digestion and connecting molecule operation technologies, and reversely inserting the antisense RNA fragment carrying the hairpin structure into a lac promoter of an expression vector pEtac-mdLC-tac-xdh to obtain a series of antisense RNA recombinant expression vectors;
and 3, introducing the recombinant expression vector into an E.coli W3110 delta yagE delta yjhH delta yiaE delta ycdW competent cell to obtain the 1,2, 4-butanetriol-producing recombinant escherichia coli capable of inhibiting the expression of xylose isomerase.
The invention has the beneficial effects that:
(1) the transcription levels of xylose isomerase gene xylA of the four recombinant escherichia coli carrying antisense RNA expression vectors constructed by the invention are respectively inhibited by 72%, 57%, 32% and 23%.
(2) The yields of the recombinant Escherichia coli E.coli W3110 delta yagE delta yjhH delta yaE delta ycdW (pEtac-mdLC-tac-xdh-lac-asRNA3) and E.coli W3110 delta yagE delta yjhH delta yaE delta ycdW (pEtac-mdLC-tac-xdh-lac-asRNA4) butanetriol carrying the antisense RNA expression vector constructed by the invention are respectively improved by 44% and 20% and reach 5.71g/L and 4.75 g/L.
Drawings
FIG. 1 is a schematic diagram of the metabolic synthesis of butanetriol.
FIG. 2 antisense RNA fragment binding region.
FIG. 3 flow chart of antisense RNA expression vector construction.
FIG. 4 antisense expression recombinant strain xylose isomerase gene xylA transcript level analysis. Coli MXW 004: w3110. delta. yagE. delta. yjhH. delta. yiaE. delta. ycdW (pEtac-mdLC-tac-xdh); coli as1MXW 004: w3110 Δ yagE Δ yjhH Δ yiaE Δ ycdW (pEtac-mdLC-tac-xdh-lac-asRNA 1); coli as2MXW 004: coli W3110 Δ yagE Δ yjhH Δ yiaE Δ ycdW (pEtac-mdLC-tac-xdh-lac-asRNA 2); coli as3MXW 004: coli W3110 Δ yagE Δ yjhH Δ yiaE Δ ycdW (pEtac-mdLC-tac-xdh-lac-asRNA 3); coli as4MXW 004: coli W3110 Δ yagE Δ yjhH Δ yiaE Δ ycdW (pEtac-mdLC-tac-xdh-lac-asRNA4)
FIG. 5 analysis of fermentation performance of antisense expression recombinant strain. Coli MXW 004: w3110. delta. yagE. delta. yjhH. delta. yiaE. delta. ycdW (pEtac-mdLC-tac-xdh); coli MXW 005: w3110 Δ yagE Δ yjhH Δ yiaE Δ ycdW Δ xylA (pEtac-mdLC-tac-xdh); coli as1MXW 004: w3110 Δ yagE Δ yjhH Δ yiaE Δ ycdW (pEtac-mdLC-tac-xdh-lac-asRNA 1); coli as2MXW 004: coli W3110 Δ yagE Δ yjhH Δ yiaE Δ ycdW (pEtac-mdLC-tac-xdh-lac-asRNA 2); coli as3MXW 004: coli W3110 Δ yagE Δ yjhH Δ yiaE Δ ycdW (pEtac-mdLC-tac-xdh-lac-asRNA 3); coli as4MXW 004: coli W3110 Δ yagE Δ yjhH Δ yiaE Δ ycdW (pEtac-mdLC-tac-xdh-lac-asRNA4)
Detailed Description
The starting strain E.coli W3110 delta yagE delta yjhH delta yaE delta ycdW takes E.coli W3100 as a host, yagE, yjhH, yiaE and ycdW genes are knocked out, and a specific construction method is disclosed in the following documents: the knock-out of a byproduct pathway in the synthesis of the recombinant escherichia coli D-1,2, 4-butanetriol and the enhanced expression of key enzymes [ D ]. Jiangnan university, 2017 ].
The plasmid pEtac-mdLC-tac-Xdh uses tac promoter to regulate the expression of Xdh and MdlC, and the specific construction method is shown in the literature: metabolic engineering of Escherichia coli to synthesize D-1,2, 4-butanetriol [ J ]. Microbiol bulletin, 2014,41(10) pEtac-mdLC-tac-xylB.
The xylA-encoding Gene is shown as NCBI-Gene ID: 948141.
EXAMPLE 1 construction of recombinant E.coli carrying antisense RNA expression vector
(1) Step 1, cloning a corresponding xylA gene segment by using E.coli W3110 genome as a template and an antisense RNA primer pair as1-F/as1-R, as2-F/as2-R, as3-F/as3-R, as4-F/as 4-R.
The primer sequence is as follows:
as1-F:CCCAAGCTTTACCCAACACCAGTTCGTCG
as1-R:CGCGGATCCCGGCATTACCTGATTATGGAG
as2-F:CCCAAGCTTACTCAAATGCGACATCTGCTT
as2-R:CGCGGATCCCGGCATTACCTGATTATGGAG
as3-F:CCCAAGCTTACTCAAATGCGACATCTGCT
as3-R:CGCGGATCCATGCAAGCCTATTTTGACCAGC
as4-F:CCCAAGCTTTTGCTTCCATCGCTGTAACAAC
as4-R:CGCGGATCCTTTTCCACAAGTTACATGTGCC
(2) and 2, connecting the cloned fragment with the hairpin structure by utilizing enzyme digestion and connecting molecule operation technologies, and reversely inserting the antisense RNA fragment carrying the hairpin structure into a lac promoter of an expression vector pEtac-mdLC-tac-xdh to obtain a series of antisense RNA recombinant expression vectors.
The pMD19-T-asRNA was constructed by inserting the desired xylA fragment, which was amplified by PCR using the corresponding primers, in the reverse direction into the plasmid pMD19-T (mut) BamHI-HindIII cleavage site, wherein pMD19-T (mut) was constructed by inserting a hairpin structure (Nakashima N, Tamura T. conditional gene cloning of multiple genes with antisense RNAs and generation of a tissue strain of Escherichia coli [ J ] and SpeI, Sac II, BamH I and HindIII into the commercial plasmid pMD19-T (simple). Then, a fragment of the asRNA carrying the hairpin structure was obtained by double digestion with Spe I and SacII and ligated to pEtac (mut) SpeI-SacII site to construct pEtac-asRNA, wherein pEtac (mut) was constructed by introducing speI and SacII cleavage sites into the plasmid pEtac (Shenmu, Wangxiang, Tangxuening, etc.. the secretory expression of the hyperthermophilic alpha-amylase gene of the archaebacterium Pyrococcus furiosus in Escherichia coli [ J ]. China, 2003,22(1): 12-14.). Finally, plasmids pEtac-asRNA and pEtac-mdLC-tac-xdh were double-digested with restriction enzymes BlpI and XbaI and ligated to form expression vector pEtac-mdLC-tac-xdh-lac-asRNA.
Plasmids pEtac-mdLC-tac-xdh-lac-asRNA1, pEtac-mdLC-tac-xdh-lac-asRNA2, pEtac-mdLC-tac-xdh-lac-asRNA3 and pEtac-mdLC-tac-xdh-lac-asRNA4, which were constructed stepwise according to the above-described procedure, contained different xylA gene fragments. Wherein the asRNA1 carries xylA gene-27-105 bp sequence, the asRNA2 carries xylA gene-27-265 bp sequence, the asRNA3 carries xylA gene 1-265bp sequence, the asRNA4 carries xylA gene 266-530bp sequence, and the asRNA gene is regulated and expressed by a promoter lac.
(3) And 3, introducing the strain into E.coli W3110 delta yagE delta yjhH delta yiaE delta ycdW competent cells by an electrical transformation method to obtain the 1,2, 4-butanetriol producing recombinant escherichia coli capable of inhibiting the expression of xylose isomerase.
Coli W3110. DELTA. yagE. DELTA. yjhH. DELTA. yaE. DELTA. ycdW cells were cultured to OD600When the concentration is equal to 0.4-0.6, taking out from the shaking table, carrying out ice bath for 30min, and then centrifuging. With 0.1mol/L CaCl2The corresponding antisense RNA expression vector constructed in the transformation step (2) is washed, heat-shocked at 42 ℃ and spread on a Kan resistant plate after being cultured for 1h, and the correct transformant is picked up after the growth of the vector, thereby obtaining recombinant large intestine stems E.coli W3110 delta yagE delta yjhH delta yayiaE delta ycdW (pEtac-mdC-tac-xdh-lac-asRNA 1), E.coli W3110 delta yagE delta yjhH delta yjayiaE delta ycdW (pEtac-mdC-tac-xdh-lac-asRNA 2), E.coli W3110 delta yagE delta yjhH delta yiaE delta ycdW (pEtac-mdC-tac-xdh-lac-asRNA 3) E.coli W3110 delta yagE delta yhH delta yjayyyyyyyyyiaE delta-asRNA 389-5-ctadlRNA.
EXAMPLE 2 Synthesis of D-1,2, 4-butanetriol Using recombinant antisense expression Strain
Single colonies of the different recombinant bacteria constructed in example 1 were picked from the plates, cultured overnight, and inoculated in 50mL of a fermentation medium (1.5-fold concentration of LB medium, 30g/L xylose, 10g/L CaCO) at an inoculum size of 1% as a seed solution3) In (1), culturing to OD600When the concentration is 0.6, adding IPTG with the final concentration of 0.5mmol/L, culturing at 37 ℃ and 200rpm, and taking a logarithmic phase growth bacterial liquid to measure the relative transcription level of mRNA; and (5) taking 48h of fermentation liquor to measure the yield of BT.
(1) Extraction of cellular RNA and quantitative PCR procedure: 10mL of logarithmic phase cell culture was collected by centrifugation. Total RNA of the cells was extracted with a total RNA extraction Kit from Tiangen Biochemical technology Ltd, and the resulting purified RNA was treated with DNase I, and further purified to remove genomic DNA which may be present by the RNeasy Mini Kit from Takara. Then, cDNA was synthesized by reverse transcription of script II Q RT supermix (Vazyme Nanjing, China) using the extracted RNA as a template. The transcription inhibition level of xylA is obtained by measuring the mRNA level of the strain by real-time quantitative PCR by using cDNA as a template and qxylA-F (ATGCAGATGGTGGTTGAGCA) qxylA-R (GTCGCGGCATCGTAATCATTA) as a primer. Each real-time quantitative PCR assay was performed by One Step SYBR Prime Script RT-PCR Kit II from Takara using a Roche Light Cycler480 real-time fluorescent quantitative PCR instrument from Germany. In addition, quantitative PCR values were calibrated by analyzing the expression level of intracellular 16S rRNA using X16S-F (CAGAAGAAGCACCGGCTAAC)/X16S-R (GGGATTTCACATCCGACTTG) as primers. The results showed that the E.coli W3110. delta. yagE. delta. yjhH. delta. yaE. delta. ycdW (pEtac-mdlC-tac-xdh-lac-asRNA1), E.coli W3110. delta. yagE. delta. yjhH. delta. yaE. delta. ycdW (pEtac-mdlC-tac-xdh-lac-asRNA2), E.coli W3110. delta. yagE. delta. yjhH. delta. yyaE. delta. ycdW (pEtac-mdlC-tac-xdh-lac-asRNA3) E.coli W0. delta. yagE. delta. yjhE. delta. ycdW (pEtac-mdlC-tac-xdh-lac-asRNA4) strains were reduced compared to the control strain E.coli W3110. delta. yagE. delta. yjhH. delta. yjyyaE. delta. yycdW (pEtac-tad-tac-6778%, 57-lac-asRNA 4), respectively, the level was reduced by 72%, and by pEtac-mdlC-mC-14%.
(2) And (3) detecting the yield of BT: firstly, cells are removed by centrifuging the fermentation liquor at 12000rpm, and the supernatant is filtered by a 0.22 mu m mixed cellulose ester microporous membrane to be used for HPLC detection. Detection conditions are as follows: agilent 1260, RID detector, Bio-Rad AminexHPX-87column (300 mm. times.7.8 mm), column temperature 60 deg.C, mobile phase 5mmol/L H2SO4The flow rate was 0.6 mL/min. The result shows that the yield of the recombinant Escherichia coli 1,2, 4-butanetriol containing the plasmid pEtac-mdLC-tac-xdh-lac-asRNA3 is optimally 5.71g/L and is improved by 44 percent.
Although the present invention has been described with reference to the preferred embodiments, it should be understood that various changes and modifications can be made therein by those skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.
SEQUENCE LISTING
<110> university of south of the Yangtze river
<120> a method for increasing the yield of 1,2, 4-butanetriol in recombinant Escherichia coli
<160> 16
<170> PatentIn version 3.3
<210> 1
<211> 133
<212> DNA
<213> Artificial sequence
<400> 1
cggcattacc tgattatgga gttcaatatg caagcctatt ttgaccagct cgatcgcgtt 60
cgttatgaag gctcaaaatc ctcaaacccg ttagcattcc gtcactacaa tcccgacgaa 120
ctggtgttgg gta 133
<210> 2
<211> 292
<212> DNA
<213> Artificial sequence
<400> 2
cggcattacc tgattatgga gttcaatatg caagcctatt ttgaccagct cgatcgcgtt 60
cgttatgaag gctcaaaatc ctcaaacccg ttagcattcc gtcactacaa tcccgacgaa 120
ctggtgttgg gtaagcgtat ggaagagcac ttgcgttttg ccgcctgcta ctggcacacc 180
ttctgctgga acggggcgga tatgtttggt gtgggggcgt ttaatcgtcc gtggcagcag 240
cctggtgagg cactggcgtt ggcgaagcgt aaagcagatg tcgcatttga gt 292
<210> 3
<211> 265
<212> DNA
<213> Artificial sequence
<400> 3
atgcaagcct attttgacca gctcgatcgc gttcgttatg aaggctcaaa atcctcaaac 60
ccgttagcat tccgtcacta caatcccgac gaactggtgt tgggtaagcg tatggaagag 120
cacttgcgtt ttgccgcctg ctactggcac accttctgct ggaacggggc ggatatgttt 180
ggtgtggggg cgtttaatcg tccgtggcag cagcctggtg aggcactggc gttggcgaag 240
cgtaaagcag atgtcgcatt tgagt 265
<210> 4
<211> 264
<212> DNA
<213> Artificial sequence
<400> 4
ttttccacaa gttacatgtg ccattttatt gcttccacga tgtggatgtt tcccctgagg 60
gcgcgtcgtt aaaagagtac atcaataatt ttgcgcaaat ggttgatgtc ctggcaggca 120
agcaagaaga gagcggcgtg aagctgctgt ggggaacggc caactgcttt acaaaccctc 180
gctacggcgc gggtgcggcg acgaacccag atcctgaagt cttcagctgg gcggcaacgc 240
aagttgttac agcgatggaa gcaa 264
<210> 5
<211> 29
<212> DNA
<213> Artificial sequence
<400> 5
cccaagcttt acccaacacc agttcgtcg 29
<210> 6
<211> 30
<212> DNA
<213> Artificial sequence
<400> 6
cgcggatccc ggcattacct gattatggag 30
<210> 7
<211> 30
<212> DNA
<213> Artificial sequence
<400> 7
cccaagctta ctcaaatgcg acatctgctt 30
<210> 8
<211> 30
<212> DNA
<213> Artificial sequence
<400> 8
cgcggatccc ggcattacct gattatggag 30
<210> 9
<211> 29
<212> DNA
<213> Artificial sequence
<400> 9
cccaagctta ctcaaatgcg acatctgct 29
<210> 10
<211> 31
<212> DNA
<213> Artificial sequence
<400> 10
cgcggatcca tgcaagccta ttttgaccag c 31
<210> 11
<211> 31
<212> DNA
<213> Artificial sequence
<400> 11
cccaagcttt tgcttccatc gctgtaacaa c 31
<210> 12
<211> 31
<212> DNA
<213> Artificial sequence
<400> 12
cgcggatcct tttccacaag ttacatgtgc c 31
<210> 13
<211> 20
<212> DNA
<213> Artificial sequence
<400> 13
<210> 14
<211> 20
<212> DNA
<213> Artificial sequence
<400> 14
gtcgcggcat cgtaatcata 20
<210> 15
<211> 20
<212> DNA
<213> Artificial sequence
<400> 15
<210> 16
<211> 20
<212> DNA
<213> Artificial sequence
<400> 16
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810219618.5A CN108410875B (en) | 2018-03-16 | 2018-03-16 | A kind of method for improving the yield of 1,2,4-butanetriol in recombinant Escherichia coli |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810219618.5A CN108410875B (en) | 2018-03-16 | 2018-03-16 | A kind of method for improving the yield of 1,2,4-butanetriol in recombinant Escherichia coli |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108410875A CN108410875A (en) | 2018-08-17 |
CN108410875B true CN108410875B (en) | 2021-03-26 |
Family
ID=63131906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810219618.5A Active CN108410875B (en) | 2018-03-16 | 2018-03-16 | A kind of method for improving the yield of 1,2,4-butanetriol in recombinant Escherichia coli |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108410875B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115094016B (en) * | 2022-06-30 | 2024-02-23 | 山东大学 | Recombinant escherichia coli knocked out glucose-6-phosphate isomerase gene and application thereof in production of 1,2,4-butanetriol |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004044129A2 (en) * | 2002-11-06 | 2004-05-27 | Diversa Corporation | Xylose isomerases, nucleic acids encoding them and methods for making and using them |
-
2018
- 2018-03-16 CN CN201810219618.5A patent/CN108410875B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004044129A2 (en) * | 2002-11-06 | 2004-05-27 | Diversa Corporation | Xylose isomerases, nucleic acids encoding them and methods for making and using them |
Non-Patent Citations (3)
Title |
---|
Development of design rules for reliable antisense RNA behavior in E. coli;Allison Hoynes-O’ Connor等;《ACS Synthetic Biology》;20160719;第5卷(第12期);第1441-1454页 * |
重组大肠杆菌D-1,2,4-丁三醇合成中副产物途径的敲除及关键酶的强化表达;何姝颖;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20170316(第4期);第B018-16页 * |
重组大肠杆菌利用D-木糖合成D-1,2,4-丁三醇;马鹏飞等;《化工学报》;20150731;第66卷(第7期);第2620-2627页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108410875A (en) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240368638A1 (en) | Biological Production of Multi-Carbon Compounds from Methane | |
CN111712570B (en) | A kind of engineering strain producing psicose and its derivatives and its construction method and application | |
CN114107152B (en) | Construction method and application of high-yield 3-fucosyllactose microorganism | |
CN104059872A (en) | High-yield N-acetylglucosamine metabolic engineering bacterium, as well construction method and applications thereof | |
CN106086102B (en) | Engineering bacterium for producing trans-4-hydroxy-L-proline and construction method and application thereof | |
CN108823179A (en) | A kind of transaminase from actinomyces, mutant, recombinant bacterium and application | |
CN107287143A (en) | The Recombinant organism and its construction method of high yield butanol and application | |
CN114350581A (en) | A cytosine-producing Escherichia coli strain and its construction method and application | |
BRPI0806448A2 (en) | recombinant yeast, method for preparing butyryl-coa and method for preparing butanol | |
CN115960812A (en) | Construction method and application of a recombinant Escherichia coli with high L-fucose production | |
CN110382685A (en) | For improving the biology and method of the expression plum surprise yeast xylose transport albumen of xylose absorption | |
CN108410875B (en) | A kind of method for improving the yield of 1,2,4-butanetriol in recombinant Escherichia coli | |
CN108841734B (en) | Method for improving unsaturated fatty acid production capability of mortierella alpina | |
CN116064345A (en) | High-efficiency production of fucosyllactose without genetically engineered bacteria and its application | |
CN114107354A (en) | Method for constructing genetic engineering strain for stably-inherited efficient biosynthesis of beta-arbutin and application of genetic engineering strain | |
CN113684163A (en) | Genetically engineered bacterium for improving yield of lactoyl-N-tetrasaccharide and production method thereof | |
CN104762313A (en) | Rhamnolipid yield increasing genetic engineering method and special strain | |
CN105567716A (en) | Applications of 1,2,4-butanetriol related protein in preparation of 1,2,4-butanetriol through biological method | |
CN112375725B (en) | Metabolic engineering strain for producing vitamin B6 and construction method and application thereof | |
CN112410353A (en) | A kind of fkbS gene, genetically engineered bacteria containing same, preparation method and use thereof | |
CN113122563B (en) | Method for constructing R-3-aminobutyric acid producing bacteria | |
CN118256526A (en) | Nucleic acid molecules, recombinant expression vectors, recombinant microorganisms and their use in preparing ectoine | |
CN113528495A (en) | A kind of Bacillus subtilis stably expressing chitobiose deacetylase and its construction method and application | |
CN104830851A (en) | Recombinant bacterium of formate dehydrogenase and application of recombinant bacterium | |
CN117187206B (en) | Fucosyltransferase from intestinal microorganisms and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |