CN108387519A - Microscopic system is just set in up-conversion luminescence near-infrared and the multi-functional wide field of colour imaging - Google Patents
Microscopic system is just set in up-conversion luminescence near-infrared and the multi-functional wide field of colour imaging Download PDFInfo
- Publication number
- CN108387519A CN108387519A CN201810412760.1A CN201810412760A CN108387519A CN 108387519 A CN108387519 A CN 108387519A CN 201810412760 A CN201810412760 A CN 201810412760A CN 108387519 A CN108387519 A CN 108387519A
- Authority
- CN
- China
- Prior art keywords
- infrared
- imaging
- upright
- filter
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 49
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 27
- 238000004020 luminiscence type Methods 0.000 title abstract description 11
- 230000035945 sensitivity Effects 0.000 claims abstract description 5
- 230000005284 excitation Effects 0.000 claims description 30
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 5
- 229910052753 mercury Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims 1
- 239000000523 sample Substances 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 abstract description 3
- 239000004606 Fillers/Extenders Substances 0.000 abstract 1
- 238000009434 installation Methods 0.000 abstract 1
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 18
- 238000000799 fluorescence microscopy Methods 0.000 description 11
- 239000007850 fluorescent dye Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000003333 near-infrared imaging Methods 0.000 description 4
- 230000008045 co-localization Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002073 fluorescence micrograph Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 238000004971 IR microspectroscopy Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0076—Optical details of the image generation arrangements using fluorescence or luminescence
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
- G02B21/08—Condensers
- G02B21/086—Condensers for transillumination only
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明属于荧光成像技术领域,具体的说是涉及一种上转换发光近红外和彩色成像多功能宽场正置显微系统。The invention belongs to the technical field of fluorescence imaging, and in particular relates to an up-conversion luminescent near-infrared and color imaging multifunctional wide-field upright microscope system.
背景技术Background technique
光学显微镜是一种利用光学透镜产生影像放大效应的显微镜,正置显微镜是光学显微镜的一种,在透射光观察下,光源由机身下面经过聚光镜到达样品,再穿过位于样品上方的物镜,然后借由反射镜和透镜到达观察者的眼睛或其他成像仪器,正置显微镜的优点是结构简单,易于改造。荧光显微成像技术是指使用荧光来产生一个图像的技术。样品被照射特定波长或波段的光,其被荧光团吸收,导致它们发出更长波长的光,例如和被吸收的光不同的颜色。通过使用光谱发射滤片,该照明光被从弱得多的发射荧光中分离出来。近年来,在生物学研究中,荧光标签被广泛地使用来标定生物分子,使荧光显微镜变得更加重要,荧光显微镜是以水银灯或氙气灯为光源,搭配具激发滤片、发散滤片组的光学仪器。荧光显微成像系统被广泛用于细胞生物学的研究中,是细胞水平研究必备的工具之一。Optical microscope is a kind of microscope that uses optical lens to produce image magnification effect. Upright microscope is a kind of optical microscope. Under the observation of transmitted light, the light source reaches the sample from the bottom of the fuselage through the condenser lens, and then passes through the objective lens above the sample. Then it reaches the observer's eyes or other imaging instruments through mirrors and lenses. The advantage of upright microscopes is that they are simple in structure and easy to modify. Fluorescence microscopy refers to techniques that use fluorescence to produce an image. The sample is illuminated with light of a specific wavelength, or band, which is absorbed by the fluorophores, causing them to emit light of a longer wavelength, eg, a different color than the absorbed light. By using a spectral emission filter, this illumination light is separated from the much weaker emitted fluorescence. In recent years, in biological research, fluorescent labels have been widely used to calibrate biomolecules, making fluorescence microscopy more important. Optical Instruments. Fluorescence microscopy imaging system is widely used in cell biology research and is one of the necessary tools for cell level research.
近红外荧光成像属于光学成像的一种,近红外光源的波长范围是700~900 nm,为人们最早发现的非可见光区域,在可见光区400~700 nm的成像存在着许多问题,比如会受到生物组织中内源性物质,如有氧、无氧血红蛋白、黑色素、水和胆红素等的吸收、散射等对光学成像的影响。然后在近红外区域,组织的吸收、散射和自发荧光背景都很低,近红外光源能在生物组织内达到最大穿透深度,并能进行深层组织成像,因而称此波段范围为“近红外组织透明窗口”。上转换荧光成像基于上转换荧光探针,有别于其他的荧光探针,在长波长的外界光源激发下可以发射短波长的荧光,这种独特的发光性质使得上转换荧光探针在进行荧光成像时,可以大大避免生物组织的自发荧光干扰,而且上转换荧光探针的光稳定性也很高,不容易发生荧光淬灭等问题,适用于生物体的长期荧光成像观测。Near-infrared fluorescence imaging is a kind of optical imaging. The wavelength range of near-infrared light source is 700-900 nm, which is the first non-visible light region discovered by people. There are many problems in the imaging of 400-700 nm in the visible light region, such as being affected by biological The effects of absorption and scattering of endogenous substances in tissues, such as aerobic and anoxygenated hemoglobin, melanin, water and bilirubin, etc., on optical imaging. Then in the near-infrared region, the absorption, scattering and autofluorescence background of the tissue are very low, and the near-infrared light source can reach the maximum penetration depth in the biological tissue, and can perform deep tissue imaging, so this band range is called "near-infrared tissue". Transparent window". Up-conversion fluorescence imaging is based on up-conversion fluorescent probes, which are different from other fluorescent probes. They can emit short-wavelength fluorescence under the excitation of long-wavelength external light sources. This unique luminescent property makes up-conversion fluorescent probes perform fluorescence During imaging, the autofluorescence interference of biological tissues can be largely avoided, and the photostability of the upconversion fluorescent probe is also high, which is not prone to fluorescence quenching and other problems, and is suitable for long-term fluorescence imaging observation of organisms.
荧光显微系统其造价相对低廉、成像速度快、灵敏度高,近红外光和上转换发光均具有成像深度好、噪音低的优点,基于上述优点,发展能够实现近红外光和上转换发光的显微成像显微系统十分必要,同时由于与HE染色等病理检测共定位的需要,简单切换即实现原位的彩色成像、近红外发光和上转换发光成像对细胞水平的研究具有十分重要的意义。Fluorescence microscopy system has relatively low cost, fast imaging speed, and high sensitivity. Both near-infrared light and up-conversion luminescence have the advantages of good imaging depth and low noise. The micro-imaging microscope system is very necessary. At the same time, due to the need for co-localization with pathological detection such as HE staining, simple switching to realize in-situ color imaging, near-infrared luminescence and up-conversion luminescence imaging is of great significance for cell-level research.
发明内容Contents of the invention
本发明为了克服现有技术存在的不足,提供一种上转换发光近红外和彩色成像多功能宽场正置显微系统。In order to overcome the deficiencies in the prior art, the present invention provides an up-conversion luminescent near-infrared and color imaging multifunctional wide-field upright microscope system.
本发明是通过以下技术方案实现的:一种上转换发光近红外和彩色成像多功能宽场正置显微系统,该多功能宽场正置显微系统主要由正置荧光显微镜镜体、激光器、准直扩束镜、白光光源、第一可调式反射镜、二向色镜、激发滤光片转盘、近红外通透物镜、发射滤光片转盘、第二可调式反射镜、高灵敏度检测器和彩色相机组成;在正置荧光显微镜镜体内由下至上依次集成设置有近红外通透物镜、激发滤光片转盘、二向色镜、发射滤光片转盘、第二可调式反射镜和高灵敏度检测器,在正置荧光显微镜镜体内位于第二可调式反射镜的侧面设置有彩色相机,在正置荧光显微镜镜体的外部位于安装二向色镜位置的侧面依次安装有第一可调试反射镜、准直扩束镜和激光器,白光光源设置于第一可调式反射镜的上方。The present invention is achieved through the following technical solutions: an up-conversion luminescent near-infrared and color imaging multi-functional wide-field upright microscope system, the multi-functional wide-field upright microscope system is mainly composed of an upright fluorescence microscope body, a laser , collimating beam expander, white light source, first adjustable mirror, dichroic mirror, excitation filter turret, near-infrared transparent objective lens, emission filter turret, second adjustable mirror, high-sensitivity detection It is composed of a filter and a color camera; in the upright fluorescent microscope body, a near-infrared transparent objective lens, an excitation filter wheel, a dichroic mirror, an emission filter wheel, a second adjustable mirror and A high-sensitivity detector, a color camera is installed on the side of the second adjustable mirror in the body of the upright fluorescence microscope, and a first adjustable mirror is installed on the side of the body of the upright fluorescence microscope on the side where the dichroic mirror is installed. The reflector, the collimating beam expander and the laser are adjusted, and the white light source is arranged above the first adjustable reflector.
激发滤光片转盘含有激发滤光片,发射滤光片转盘含有发射光滤光片,激发滤光片和发射光滤光片采用短通滤光片、带通滤光片或长通滤光片。Excitation Filter Carousel contains Excitation Filters, Emission Filter Carousel contains Emission Filters, Excitation and Emission Filters are Short Pass, Band Pass or Long Pass piece.
激光器采用中心波长为980nm、808nm或730nm的激光器。白光光源采用汞灯或LED灯。高灵敏度检测器采用sCMOS检测器或制冷性EMCCD检测器。The laser adopts a laser with a center wavelength of 980nm, 808nm or 730nm. The white light source adopts mercury lamp or LED lamp. The high-sensitivity detector adopts sCMOS detector or refrigerated EMCCD detector.
本发明正置显微系统中各部件的功能为:The function of each part in the upright microscope system of the present invention is:
1、正置荧光显微镜镜体作为各部件连接和物理固定。1. The lens body of the upright fluorescence microscope is used as the connection and physical fixation of each component.
2、激光器作为近红外发光成像和上转换发光成像的激发光源。2. The laser is used as the excitation light source for near-infrared luminescence imaging and up-conversion luminescence imaging.
3、准直扩束镜用于激光器的准直和扩束。3. The collimating beam expander is used for the collimation and beam expansion of the laser.
4、白光光源作为激发光的发射光源。4. The white light source is used as the emission light source of the excitation light.
5、第一可调式反射镜可以对光源进行切换,切换激光光源和白光光源。5. The first adjustable reflector can switch the light source, such as laser light source and white light source.
6、二向色镜可以反射激发光到样品对其进行激发,同时可以透过发射光,使发射光可以被检测器接收。6. The dichroic mirror can reflect the excitation light to the sample to excite it, and at the same time can transmit the emission light so that the emission light can be received by the detector.
7、激发滤光片转盘含有激发滤光片,激发滤光片能够选择性的透过激光器、汞灯、LED光源发射光作为激发光。7. The excitation filter turntable contains excitation filters, which can selectively transmit light through lasers, mercury lamps, and LED light sources as excitation light.
8、近红外通透物镜专用于红外光的透镜组。8. The near-infrared transparent objective lens is a lens group specially used for infrared light.
9、发射滤光片转盘含有发射光滤光片,发射光滤光片能够选择性的透过目标发射光。9. The emission filter turret contains emission filters, which can selectively transmit light through the target.
10、第二可调式反射镜可以用于实现高灵敏度检测器和彩色相机之间的自由切换。10. The second adjustable mirror can be used to freely switch between the high-sensitivity detector and the color camera.
11、高灵敏度检测器用于收集样本激发后发射的荧光。11. A high-sensitivity detector is used to collect the fluorescence emitted by the sample after excitation.
12、彩色相机用于可见光波段的彩色成像。12. The color camera is used for color imaging in the visible light band.
正置荧光显微镜:Nikon Ni-U是一款扩展性极强的科研级正置显微镜,采用无限远光学系统,可方便地搭载其他附件。在此系统中搭载了双层荧光转盘,每层荧光转盘具备六个滤光块空位,系统还配备了双相机端口及双光源接口,以同时满足生物荧光材料及上转换发光材料的应用。在主要光学部件上,如物镜选择近红外透过率较高例如大于70%的平场荧光物镜。另外在确保不影响成像的前提下,移除光路中对红外光有阻挡作用的光学部件,从而最大限度地提高整个光学系统在近红外光的通过率。Upright Fluorescence Microscope: Nikon Ni-U is a scientific research grade upright microscope with strong expandability. It adopts an infinity optical system and can be easily equipped with other accessories. The system is equipped with double-layer fluorescence turntables, each layer of fluorescence turntable has six empty filter blocks, and the system is also equipped with dual camera ports and dual light source interfaces to meet the application of bioluminescent materials and up-conversion luminescent materials at the same time. For the main optical components, such as the objective lens, a flat-field fluorescent objective lens with a higher near-infrared transmittance, for example greater than 70%, is selected. In addition, under the premise of ensuring that the imaging is not affected, the optical components that block the infrared light in the optical path are removed, so as to maximize the pass rate of the entire optical system in the near-infrared light.
激光器采用高功率大芯径多模光纤,以达到更强的激发光强度。光纤采用多模光纤,芯径200um,外加准直扩束镜进而实现均匀的视场照明。相机除了精准的滤光片组合及高透过率的物镜外,为了得到高信噪比的荧光图像,系统还需配备高灵敏度的探测器,如EMCCD或sCMOS。The laser adopts high power and large core diameter multimode fiber to achieve stronger excitation light intensity. The optical fiber adopts multimode optical fiber with a core diameter of 200um, and a collimating beam expander is added to achieve uniform field of view illumination. In addition to the precise filter combination and high-transmittance objective lens of the camera, in order to obtain a fluorescence image with a high signal-to-noise ratio, the system also needs to be equipped with a high-sensitivity detector, such as EMCCD or sCMOS.
二向色镜与普通荧光用的二向色镜不同,本发明中采用的为短通型滤光片,即短于分光波长的光透过,而长于分光波长的光被反射。被反射的近红外光照射到样品后,样品激发出的荧光通过第一阻挡滤光片,让400nm~850nm的光透过,其余波长的光被过滤掉,避免对背景信号造成干扰。要求二向色镜及第一阻拦滤光片的OD值至少大于6,以增加信噪比。本发明中的正置显微系统采用的是美国Chroma公司的ZT1064rdc-sp二向色镜及ET850SP-2P,光谱图如图2所示,其中ZT1064rdc-sp为灰色平滑状线,ET850SP-2P为黑色锯齿状线。Dichroic mirrors are different from ordinary fluorescent dichroic mirrors. The present invention uses a short-pass filter, that is, light shorter than the split wavelength passes through, while light longer than the split wavelength is reflected. After the reflected near-infrared light irradiates the sample, the fluorescence excited by the sample passes through the first blocking filter, allowing the light of 400nm to 850nm to pass through, and the light of other wavelengths is filtered out to avoid interference to the background signal. The OD value of the dichroic mirror and the first blocking filter is required to be at least greater than 6 to increase the signal-to-noise ratio. What the upright microscope system among the present invention adopts is the ZT1064rdc-sp dichroic mirror and ET850SP-2P of U.S. Chroma Company, and spectrogram is as shown in Figure 2, and wherein ZT1064rdc-sp is gray smooth line, and ET850SP-2P is Black jagged lines.
激发和发射滤光片:为了进一步区分出不同波长的发射光,系统中增加了第二阻挡滤光片,波长分别为ET550/50M、ET630/75M及ET811/80M ,光谱图如图3、图4及图5,其中黑色线为第一阻挡滤光片。此外,由于常规的荧光显微镜光源采用的是汞灯,热量比较高,所以光路通常会有隔热片。而隔热片会将近红外及红外光阻挡,所以本系统对显微镜荧光光路中的相关光学部件也进行了移除。激发滤光片转盘和发射滤光片转盘可以任意更换滤光片,在成像过程中也可实现滤光片的自由切换。Excitation and emission filters: In order to further distinguish the emission light of different wavelengths, a second blocking filter is added to the system, the wavelengths are ET550/50M, ET630/75M and ET811/80M, and the spectral diagrams are shown in Figure 3 and Figure 4 and Figure 5, where the black line is the first blocking filter. In addition, since the conventional fluorescent microscope light source uses a mercury lamp, the heat is relatively high, so the light path usually has a heat shield. The heat shield will block near-infrared and infrared light, so this system also removes the relevant optical components in the fluorescence light path of the microscope. The excitation filter turret and emission filter turret can replace the filters arbitrarily, and the filters can also be switched freely during the imaging process.
本发明的有益效果是:本发明提供了一种上转换发光近红外成像和彩色显微成像系统,该系统能够利用近红外光、上转换发光信噪比高、噪音低的特点,通过近红外光激发,采用高灵敏度探测器检测探针的可见光或近红外光发射,同时可以通过切换实现样本的彩色成像,最终实现探针的材料、细胞或者生物组织的实时、非侵入式的高灵敏度成像。本发明中的显微系统能够发射激发光,通过对标记有正常荧光探针、近红外荧光探针、上转换发光探针的材料、细胞、组织和活体动物进行实时的高信噪比的荧光显微成像,同时可以在不移动样本和移动镜头的情况下,使用彩色相机进行共定位彩色成像。本发明通过合理搭配滤光片光谱范围,选择高透过率的显微镜物镜及高OD值滤光片,同时配备高灵敏度的探测器,在宽场照明下同样可以达到高信噪比的上转换荧光图像。The beneficial effects of the present invention are: the present invention provides an up-conversion luminescence near-infrared imaging and color microscopic imaging system, which can utilize the characteristics of near-infrared light, up-conversion luminescence, high signal-to-noise ratio, and low noise, and through near-infrared Optical excitation, using a high-sensitivity detector to detect the visible light or near-infrared light emission of the probe, and at the same time, the color imaging of the sample can be realized by switching, and finally realize the real-time, non-invasive high-sensitivity imaging of the material, cells or biological tissues of the probe . The microscopic system in the present invention can emit excitation light by performing real-time fluorescence with high signal-to-noise ratio on materials, cells, tissues, and living animals labeled with normal fluorescent probes, near-infrared fluorescent probes, and up-conversion luminescent probes. Microscopic imaging, while co-localization color imaging can be performed using a color camera without moving the sample and moving the lens. In the present invention, by rationally matching the spectral range of the filter, selecting a high-transmittance microscope objective lens and a high OD value filter, and equipped with a high-sensitivity detector, the up-conversion with a high signal-to-noise ratio can also be achieved under wide-field illumination. Fluorescence image.
本发明基于正置显微镜,通过改造系统的光学部件,增加可见光和近红外光高灵敏探测器和彩色成像系统,增加高功率激光器,并增配高效滤光片系统,构建了一套能够进行上转换成像、近红外成像和彩色成像的正置显微系统。本发明与以往的显微成像系统相比,具有高灵敏度和高信噪比,是一种能够进行可见光、近红外光和上转换发光成像的一体化显微成像设备。The present invention is based on an upright microscope, by transforming the optical components of the system, adding high-sensitivity detectors for visible light and near-infrared light and a color imaging system, adding high-power lasers, and adding a high-efficiency filter system, and constructing a set that can carry out the above Upright microscope systems for conversion imaging, near-infrared imaging, and color imaging. Compared with the previous microscopic imaging system, the present invention has high sensitivity and high signal-to-noise ratio, and is an integrated microscopic imaging device capable of imaging visible light, near-infrared light and up-conversion luminescence.
与现有技术相比,本发明中的成像系统还具有以下优点:1、首次实现了将普通荧光成像、近红外显微成像技术、上转换活体荧光显微成像技术和彩色成像技术全部集成到一台显微系统中;2、可以在成像过程中自由切换至普通荧光成像模式、近红外光成像模式、上转换发光成像模式和彩色成像模式,从而实现不同成像结果的共定位;3、近红外显微成像和上转换活体荧光显微成像具有更高的信噪比。Compared with the prior art, the imaging system in the present invention also has the following advantages: 1. For the first time, it realizes the integration of ordinary fluorescence imaging, near-infrared microscopic imaging technology, up-conversion in vivo fluorescent microscopic imaging technology and color imaging technology In one microscope system; 2. It can be freely switched to ordinary fluorescence imaging mode, near-infrared imaging mode, up-conversion luminescence imaging mode and color imaging mode during the imaging process, so as to achieve co-localization of different imaging results; 3. Near-infrared imaging mode Infrared microscopy and up-conversion intravital fluorescence microscopy have higher signal-to-noise ratios.
附图说明Description of drawings
图1是本发明正置显微系统的系统光路示意图;Fig. 1 is the system optical path schematic diagram of upright microscope system of the present invention;
图2是本发明中二向色镜和第一阻挡滤光片的光谱图;Fig. 2 is the spectrogram of dichroic mirror and the first blocking filter among the present invention;
图3是本发明的ET550/50m滤光片光谱图;Fig. 3 is ET550/50m optical filter spectrogram of the present invention;
图4是本发明的ET630/75m滤光片光谱图;Fig. 4 is ET630/75m optical filter spectrogram of the present invention;
图5是本发明的ET811/80m滤光片光谱图;Fig. 5 is ET811/80m optical filter spectrogram of the present invention;
图6是采用本发明正置显微系统得到的高信噪比上转换荧光图像;Fig. 6 is the high signal-to-noise ratio up-converted fluorescence image obtained by adopting the upright microscope system of the present invention;
图中:1-正置荧光显微镜镜体;2-激光器;3-准直扩束镜;4-白光光源;5-第一可调式反射镜;6-二向色镜;7-激发滤光片转盘;8-近红外通透物镜;9-发射滤光片转盘;10-第二可调式反射镜;11-高灵敏度检测器;12-彩色相机。In the figure: 1-upright fluorescence microscope body; 2-laser; 3-collimating beam expander; 4-white light source; 5-first adjustable mirror; 6-dichroic mirror; 7-excitation filter 8-near-infrared transparent objective lens; 9-emission filter turret; 10-second adjustable mirror; 11-high sensitivity detector; 12-color camera.
具体实施方式Detailed ways
以下结合附图和具体实施方式对本发明作详细描述。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1至图6所示,一种上转换发光近红外和彩色成像多功能宽场正置显微系统,该多功能宽场正置显微系统主要由正置荧光显微镜镜体1、激光器2、准直扩束镜3、白光光源4、第一可调式反射镜5、二向色镜6、激发滤光片转盘7、近红外通透物镜8、发射滤光片转盘9、第二可调式反射镜10、高灵敏度检测器11和彩色相机12组成;在正置荧光显微镜镜体1内由下至上依次集成设置有近红外通透物镜8、激发滤光片转盘7、二向色镜6、发射滤光片转盘9、第二可调式反射镜10和高灵敏度检测器11,在正置荧光显微镜镜体1内位于第二可调式反射镜10的侧面设置有彩色相机12,在正置荧光显微镜镜体1的外部位于安装二向色镜6位置的侧面依次安装有第一可调试反射镜、准直扩束镜3和激光器2,白光光源4设置于第一可调式反射镜5的侧端。As shown in Figures 1 to 6, an up-conversion luminescent near-infrared and color imaging multifunctional wide-field upright microscope system is mainly composed of an upright fluorescence microscope body 1, a laser 2. Collimating beam expander 3, white light source 4, first adjustable reflector 5, dichroic mirror 6, excitation filter turntable 7, near-infrared transparent objective lens 8, emission filter turntable 9, second An adjustable reflector 10, a high-sensitivity detector 11, and a color camera 12 are composed; a near-infrared transparent objective lens 8, an excitation filter turntable 7, a dichroic Mirror 6, emission filter turntable 9, second adjustable reflector 10 and high-sensitivity detector 11, in the side of the second adjustable reflector 10 in the upright fluorescent microscope mirror body 1, a color camera 12 is arranged, and The outside of the mirror body 1 of the upright fluorescence microscope is located on the side where the dichroic mirror 6 is installed, and the first adjustable reflector, the collimating beam expander 3 and the laser 2 are installed in sequence, and the white light source 4 is arranged on the first adjustable reflector 5 side ends.
激发滤光片转盘7含有激发滤光片,发射滤光片转盘9含有发射光滤光片,激发滤光片和发射光滤光片采用短通滤光片、带通滤光片或长通滤光片。激光器2采用中心波长为980nm、808nm或730nm的激光器2。白光光源4采用汞灯或LED灯。高灵敏度检测器11采用sCMOS检测器或制冷性EMCCD检测器。The excitation filter turntable 7 contains an excitation filter, and the emission filter turntable 9 contains an emission filter, and the excitation filter and the emission filter adopt a short-pass filter, a band-pass filter or a long-pass filter. filter. The laser 2 adopts a laser 2 with a center wavelength of 980nm, 808nm or 730nm. The white light source 4 adopts a mercury lamp or an LED lamp. The high-sensitivity detector 11 adopts sCMOS detector or refrigerated EMCCD detector.
本发明的系统构成包括正置荧光显微镜镜体1、彩色+单色成像双端口、白光LED+激光器2双光源接口、双层荧光滤光块转盘以及一系列实现功能的激发和发射滤光片组成。此系统基于一台正置荧光显微镜Nikon Ni-U,光源采用980nm连续激光的光纤导入,通过准直扩束后均匀地射入显微镜光路,经过二向色镜6分光后,反射通过物镜并照射到样品上,样品产生的荧光及未被吸收的激发光通过物镜回到二向色镜6分光后,使用高灵敏度相机接收光信号,数字化后由电脑软件进行处理。同时在相机第二接口安装彩色相机12,能够实现高灵敏度成像的同时进行彩色信号的获取,如图1所示。The system composition of the present invention includes upright fluorescent microscope body 1, color + monochrome imaging dual ports, white LED + laser 2 dual light source interfaces, double-layer fluorescent filter block turntable and a series of excitation and emission filters for realizing functions. . This system is based on an upright fluorescent microscope Nikon Ni-U. The light source is introduced by a 980nm continuous laser fiber. After being collimated and expanded, it is uniformly injected into the microscope optical path. After being split by 6 dichroic mirrors, it is reflected through the objective lens and irradiated. After reaching the sample, the fluorescence generated by the sample and the unabsorbed excitation light pass through the objective lens and return to the dichroic mirror for 6 beam splitting, and then use a high-sensitivity camera to receive the optical signal, which is digitized and processed by computer software. At the same time, a color camera 12 is installed on the second interface of the camera, which can realize high-sensitivity imaging and acquire color signals at the same time, as shown in FIG. 1 .
最后应当说明的是,以上内容仅用以说明本发明的技术方案,而非对本发明保护范围的限制,本领域的普通技术人员对本发明的技术方案进行的简单修改或者等同替换,均不脱离本发明技术方案的实质和范围。Finally, it should be noted that the above content is only used to illustrate the technical solution of the present invention, rather than to limit the scope of protection of the present invention. Simple modifications or equivalent replacements to the technical solution of the present invention by those skilled in the art will not depart from the present invention. The essence and scope of the technical solution of the invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810412760.1A CN108387519A (en) | 2018-05-03 | 2018-05-03 | Microscopic system is just set in up-conversion luminescence near-infrared and the multi-functional wide field of colour imaging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810412760.1A CN108387519A (en) | 2018-05-03 | 2018-05-03 | Microscopic system is just set in up-conversion luminescence near-infrared and the multi-functional wide field of colour imaging |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108387519A true CN108387519A (en) | 2018-08-10 |
Family
ID=63066215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810412760.1A Pending CN108387519A (en) | 2018-05-03 | 2018-05-03 | Microscopic system is just set in up-conversion luminescence near-infrared and the multi-functional wide field of colour imaging |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108387519A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109288489A (en) * | 2018-10-17 | 2019-02-01 | 中国科学院苏州生物医学工程技术研究所 | an imaging endoscope |
CN109288490A (en) * | 2018-10-17 | 2019-02-01 | 中国科学院苏州生物医学工程技术研究所 | an imaging endoscope |
CN109884781A (en) * | 2019-03-26 | 2019-06-14 | 深圳市爱科学教育科技有限公司 | Integrate the microscope of biology, entity, fluorescence and metallographic function |
CN109998494A (en) * | 2019-05-10 | 2019-07-12 | 苏州工业职业技术学院 | A kind of multispectral optical imaging system of small animal living body whole body high-resolution |
CN110031411A (en) * | 2019-04-17 | 2019-07-19 | 南京邮电大学 | A kind of spectrum imaging system |
CN110057724A (en) * | 2019-05-10 | 2019-07-26 | 中国科学院苏州生物医学工程技术研究所 | Small fluorescent is inverted micro imaging system |
CN110646385A (en) * | 2019-10-10 | 2020-01-03 | 安徽师范大学 | Single particle imaging device and imaging method based on upconversion luminescence total internal reflection |
CN111141713A (en) * | 2020-01-14 | 2020-05-12 | 中国科学院苏州生物医学工程技术研究所 | Multiple-mark biological detection system based on hyperspectral fluorescence microscopic imaging |
CN111693495A (en) * | 2019-03-15 | 2020-09-22 | 复旦大学 | Near-infrared double-channel fluorescence living body microscopic imaging method |
CN112505082A (en) * | 2020-12-18 | 2021-03-16 | 福州大学 | X-ray near-infrared two-region luminous biological imaging device |
CN112826452A (en) * | 2021-04-02 | 2021-05-25 | 中国科学技术大学 | A dual-laser excitation system for parathyroid identification |
CN112904176A (en) * | 2021-01-14 | 2021-06-04 | 强一半导体(苏州)有限公司 | Multi-parameter detection optical-electrical-computer calculation control integrated method for multi-section MEMS probe |
CN112904177A (en) * | 2021-01-14 | 2021-06-04 | 强一半导体(苏州)有限公司 | Multi-parameter detection optical-electrical-computer-control integrated device for multi-section MEMS (micro-electromechanical systems) probe |
CN113504236A (en) * | 2021-08-13 | 2021-10-15 | 北京大学 | Bicolor dual-light-path bright-dark field in-situ orthogonal microscopic imaging system |
CN115165826A (en) * | 2022-06-28 | 2022-10-11 | 上海数联生物科技有限公司 | Near-infrared multichannel synchronous microscopic imaging system |
CN116818665A (en) * | 2023-06-20 | 2023-09-29 | 波粒(北京)光电科技有限公司 | A detection device for photovoltaic cells |
CN118347977A (en) * | 2024-04-19 | 2024-07-16 | 北京航空航天大学 | Non-contact intracellular light power detection device and detection method based on nano probe |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060078915A1 (en) * | 2004-08-23 | 2006-04-13 | U.S. Genomics, Inc. | Systems and methods for detecting and analyzing polymers |
CN1994229A (en) * | 2006-12-01 | 2007-07-11 | 清华大学 | Rotary platform type animals in-vivo multi-mode imaging detection system |
CN101216414A (en) * | 2007-12-29 | 2008-07-09 | 中国科学院西安光学精密机械研究所 | multifunctional optical micromanipulator |
CN101294902A (en) * | 2008-06-12 | 2008-10-29 | 复旦大学 | Steady-state laser-pumped upconversion luminescence microscopy |
KR20120058341A (en) * | 2010-11-29 | 2012-06-07 | 한국화학연구원 | A dual imaging device for in vivo optical imaging of upconverting nanoparticles |
CN102818768A (en) * | 2012-07-31 | 2012-12-12 | 苏州微清医疗器械有限公司 | Multifunctional biomedical microscope |
CN206740623U (en) * | 2016-04-06 | 2017-12-12 | 株式会社岛津制作所 | Infrared microscope |
CN107510430A (en) * | 2017-09-23 | 2017-12-26 | 武汉迅微光电技术有限公司 | Endoscopic optical imaging method and system a kind of while that obtain otherwise visible light color image and blood-stream image |
CN208140563U (en) * | 2018-05-03 | 2018-11-23 | 上海市质子重离子临床技术研发中心 | Microscopic system is just set in up-conversion luminescence near-infrared and the multi-functional wide field of colour imaging |
-
2018
- 2018-05-03 CN CN201810412760.1A patent/CN108387519A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060078915A1 (en) * | 2004-08-23 | 2006-04-13 | U.S. Genomics, Inc. | Systems and methods for detecting and analyzing polymers |
CN1994229A (en) * | 2006-12-01 | 2007-07-11 | 清华大学 | Rotary platform type animals in-vivo multi-mode imaging detection system |
CN101216414A (en) * | 2007-12-29 | 2008-07-09 | 中国科学院西安光学精密机械研究所 | multifunctional optical micromanipulator |
CN101294902A (en) * | 2008-06-12 | 2008-10-29 | 复旦大学 | Steady-state laser-pumped upconversion luminescence microscopy |
KR20120058341A (en) * | 2010-11-29 | 2012-06-07 | 한국화학연구원 | A dual imaging device for in vivo optical imaging of upconverting nanoparticles |
CN102818768A (en) * | 2012-07-31 | 2012-12-12 | 苏州微清医疗器械有限公司 | Multifunctional biomedical microscope |
CN206740623U (en) * | 2016-04-06 | 2017-12-12 | 株式会社岛津制作所 | Infrared microscope |
CN107510430A (en) * | 2017-09-23 | 2017-12-26 | 武汉迅微光电技术有限公司 | Endoscopic optical imaging method and system a kind of while that obtain otherwise visible light color image and blood-stream image |
CN208140563U (en) * | 2018-05-03 | 2018-11-23 | 上海市质子重离子临床技术研发中心 | Microscopic system is just set in up-conversion luminescence near-infrared and the multi-functional wide field of colour imaging |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109288489A (en) * | 2018-10-17 | 2019-02-01 | 中国科学院苏州生物医学工程技术研究所 | an imaging endoscope |
CN109288490A (en) * | 2018-10-17 | 2019-02-01 | 中国科学院苏州生物医学工程技术研究所 | an imaging endoscope |
CN111693495A (en) * | 2019-03-15 | 2020-09-22 | 复旦大学 | Near-infrared double-channel fluorescence living body microscopic imaging method |
CN109884781A (en) * | 2019-03-26 | 2019-06-14 | 深圳市爱科学教育科技有限公司 | Integrate the microscope of biology, entity, fluorescence and metallographic function |
CN110031411A (en) * | 2019-04-17 | 2019-07-19 | 南京邮电大学 | A kind of spectrum imaging system |
CN109998494A (en) * | 2019-05-10 | 2019-07-12 | 苏州工业职业技术学院 | A kind of multispectral optical imaging system of small animal living body whole body high-resolution |
CN110057724A (en) * | 2019-05-10 | 2019-07-26 | 中国科学院苏州生物医学工程技术研究所 | Small fluorescent is inverted micro imaging system |
CN110646385A (en) * | 2019-10-10 | 2020-01-03 | 安徽师范大学 | Single particle imaging device and imaging method based on upconversion luminescence total internal reflection |
CN111141713A (en) * | 2020-01-14 | 2020-05-12 | 中国科学院苏州生物医学工程技术研究所 | Multiple-mark biological detection system based on hyperspectral fluorescence microscopic imaging |
CN112505082A (en) * | 2020-12-18 | 2021-03-16 | 福州大学 | X-ray near-infrared two-region luminous biological imaging device |
CN112904177B (en) * | 2021-01-14 | 2022-05-10 | 强一半导体(苏州)有限公司 | Multi-parameter detection optical-electrical computer-control integrated device for multi-section MEMS (micro-electro-mechanical systems) probe |
CN112904176A (en) * | 2021-01-14 | 2021-06-04 | 强一半导体(苏州)有限公司 | Multi-parameter detection optical-electrical-computer calculation control integrated method for multi-section MEMS probe |
CN112904177A (en) * | 2021-01-14 | 2021-06-04 | 强一半导体(苏州)有限公司 | Multi-parameter detection optical-electrical-computer-control integrated device for multi-section MEMS (micro-electromechanical systems) probe |
WO2022151702A1 (en) * | 2021-01-14 | 2022-07-21 | 强一半导体(苏州)有限公司 | Multi-parameter detection opto-mechatronics calculation and control integration apparatus for multi-section mems probe |
CN112826452A (en) * | 2021-04-02 | 2021-05-25 | 中国科学技术大学 | A dual-laser excitation system for parathyroid identification |
CN113504236A (en) * | 2021-08-13 | 2021-10-15 | 北京大学 | Bicolor dual-light-path bright-dark field in-situ orthogonal microscopic imaging system |
CN113504236B (en) * | 2021-08-13 | 2022-04-19 | 北京大学 | Bicolor dual-light-path bright-dark field in-situ orthogonal microscopic imaging system |
CN115165826A (en) * | 2022-06-28 | 2022-10-11 | 上海数联生物科技有限公司 | Near-infrared multichannel synchronous microscopic imaging system |
CN116818665A (en) * | 2023-06-20 | 2023-09-29 | 波粒(北京)光电科技有限公司 | A detection device for photovoltaic cells |
CN118347977A (en) * | 2024-04-19 | 2024-07-16 | 北京航空航天大学 | Non-contact intracellular light power detection device and detection method based on nano probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108387519A (en) | Microscopic system is just set in up-conversion luminescence near-infrared and the multi-functional wide field of colour imaging | |
US8553337B2 (en) | Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods | |
Masters | The development of fluorescence microscopy | |
JP4823906B2 (en) | Optical fiber transmission and collection system for biological applications such as multiphoton microscopy, spectroscopy, and endoscopy | |
CN208140563U (en) | Microscopic system is just set in up-conversion luminescence near-infrared and the multi-functional wide field of colour imaging | |
WO2022082930A1 (en) | Fluorescence microscope system for visible-near-infrared real-time image fusion | |
US8306600B2 (en) | Filter set for observing fluorescence radiation in biological tissue | |
CN108414442A (en) | Confocal microscope system suitable for near-infrared 2nd area fluorescent vital imaging | |
US10595770B2 (en) | Imaging platform based on nonlinear optical microscopy for rapid scanning large areas of tissue | |
JP2004500197A (en) | Multiphoton excitation for fluorescence spectroscopy through optical fibers | |
CN102692401B (en) | Gating fluorescence service life imaging device based on light delay | |
Tauer | Advantages and risks of multiphoton microscopy in physiology | |
ES2647468T3 (en) | Subsurface autofluorescence spectroscopy equipment | |
CN103676123A (en) | Multi-mode optical high resolution microscope | |
CN105424668A (en) | Fluorescent screening system | |
Kennedy et al. | A fluorescence lifetime imaging scanning confocal endomicroscope | |
CN108375560A (en) | A kind of laser co-focusing-two-photon-goes up changing multi state fluoroscopic imaging systems and its application | |
KR20200126879A (en) | Tissue optical clearing method for 3D high-resolution visualization of intact tooth, visualization method and system | |
Schulz et al. | Fundamentals of optical imaging | |
Bhawalkar et al. | Three‐dimensional laser scanning two‐photon fluorescence confocal microscopy of polymer materials using a new, efficient upconverting fluorophore | |
JP2002202459A (en) | Dark visual field vertical illumination microscope | |
CN117705773A (en) | Modularized multi-mode microscopic optical analysis system | |
Palikaras et al. | Multiphoton Fluorescence Light Microscopy | |
CN216823420U (en) | Visible-near infrared I/II area imaging device | |
Becker et al. | Fluorescence lifetime imaging with near-infrared dyes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Sun Jun Inventor after: Lu Jiade Inventor after: Kong Lin Inventor after: Li Yuhao Inventor after: Cheng Jingyi Inventor after: Chen Wen Inventor after: Qin Xiaojia Inventor after: Liu Jie Inventor before: Sun Jun Inventor before: Lu Jiade Inventor before: Kong Lin Inventor before: Li Yuhao Inventor before: Cheng Jingyi Inventor before: Chen Wen Inventor before: Qin Xiaojia Inventor before: Liu Jie |
|
CB03 | Change of inventor or designer information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180810 |
|
RJ01 | Rejection of invention patent application after publication |