CN108383089A - A method of restoring ardealite and titanium dioxide waste residue green vitriol Sulphuric acid simultaneously using pyrite - Google Patents
A method of restoring ardealite and titanium dioxide waste residue green vitriol Sulphuric acid simultaneously using pyrite Download PDFInfo
- Publication number
- CN108383089A CN108383089A CN201810285442.3A CN201810285442A CN108383089A CN 108383089 A CN108383089 A CN 108383089A CN 201810285442 A CN201810285442 A CN 201810285442A CN 108383089 A CN108383089 A CN 108383089A
- Authority
- CN
- China
- Prior art keywords
- phosphogypsum
- sulfuric acid
- pyrite
- waste slag
- titanium white
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/48—Sulfur dioxide; Sulfurous acid
- C01B17/50—Preparation of sulfur dioxide
- C01B17/508—Preparation of sulfur dioxide by oxidation of sulfur compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0081—Mixed oxides or hydroxides containing iron in unusual valence state [IV, V, VI]
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/076—Use of slags or fluxes as treating agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明公开了一种利用黄铁矿‑钛白废渣绿矾‑磷石膏同时制备硫酸和铁酸钙的方法,其工艺过程包括:(1)将细磨至一定粒度的黄铁矿、磷石膏和钛白废渣绿矾按一定比例均匀混和;(2)将混合料压片后或直接将混合物料在一定温度下反应一定时间,得到固体还原产物以及含SO2尾气;所得固体还原产物可作为预熔型炼钢造渣剂;(3)将步骤(2)所得的含SO2尾气进行除尘净化后送入硫酸系统制备硫酸成品。本工艺利用黄铁矿同时还原磷石膏及钛白废渣绿矾制硫酸,实现磷石膏、钛白废渣绿矾固废处理及回收利用,并获得硫酸及炼钢造渣剂铁酸钙产品。本发明磷石膏的分解率可达98wt%以上,窑气SO2浓度较可达15vol%以上,固相产物铁酸钙纯度可达90wt%以上。本发明工艺简单,无三废排出,环境和经济效益优势显著。The invention discloses a method for simultaneously preparing sulfuric acid and calcium ferrite by using pyrite-titanium white waste slag green vitriol-phosphogypsum. The process includes: (1) finely grinding pyrite and phosphogypsum to a certain particle size Mix evenly with titanium dioxide waste slag green vitriol in a certain proportion; (2) After pressing the mixture into tablets or directly reacting the mixture at a certain temperature for a certain period of time, a solid reduction product and tail gas containing SO2 are obtained; the obtained solid reduction product can be used as Pre-melted steelmaking slagging agent; (3) the SO2 - containing tail gas obtained in step (2) is dedusted and purified, and then sent to a sulfuric acid system to prepare sulfuric acid finished products. This process uses pyrite to simultaneously reduce phosphogypsum and titanium white waste slag green vitriol to produce sulfuric acid, realizes solid waste treatment and recycling of phosphogypsum and titanium white waste slag green vitriol, and obtains sulfuric acid and steelmaking slagging agent calcium ferrite products. The decomposition rate of phosphogypsum in the invention can reach more than 98wt%, the concentration of SO2 in the kiln gas can reach more than 15vol%, and the purity of the solid-phase product calcium ferrite can reach more than 90wt%. The invention has simple process, no discharge of three wastes, and remarkable advantages in environmental and economic benefits.
Description
技术领域technical field
本发明属于化工冶金技术领域,主要涉及一种利用黄铁矿、钛白废渣绿矾、磷石膏同时制备硫酸和铁酸钙的方法。The invention belongs to the technical field of chemical metallurgy, and mainly relates to a method for simultaneously preparing sulfuric acid and calcium ferrite by utilizing pyrite, titanium white waste slag vitriol and phosphogypsum.
背景技术Background technique
磷石膏是湿法磷酸生产过程中磷矿与硫酸反应生成的工业废渣,主要成分是硫酸钙,同时还含有铁、铝、磷、硅等杂质。目前磷石膏除部分用于建材生产外,主要采取露天堆存的方式处理。加大开发磷石膏大规模利用的有效途径对实现磷肥行业可持续发展及避免过度占用土地资源和保护环境都具有重大意义。Phosphogypsum is an industrial waste residue produced by the reaction of phosphate rock and sulfuric acid in the wet-process phosphoric acid production process. The main component is calcium sulfate, and it also contains iron, aluminum, phosphorus, silicon and other impurities. At present, phosphogypsum is mainly used for storage in the open air, except that it is partially used in the production of building materials. It is of great significance to increase the effective way to develop large-scale utilization of phosphogypsum to realize the sustainable development of the phosphate fertilizer industry, avoid excessive occupation of land resources and protect the environment.
磷石膏还原制硫酸可与湿法磷酸生产工艺相耦合,硫资源循环利用,是具有良好应用前景的可实现大规模消耗磷石膏的综合利用途径。公开号为CN 101041439 A的中国专利提出了一种利用废渣磷石膏制备硅灰石和硫酸的方法,其将磷石膏、炭粉、石英粉按化学计量比混合后投入反应器,升温至1200 ℃并保温2. 5h,冷却至室温得硅灰石,锻烧过程中产生的SO2进用于后续制硫酸工段。该发明中磷石膏的分解过程为焦炭还原控制步骤,存在能耗较高,窑气中SO2浓度低,生成的CO2对环境不友好等问题。公开号为CN 1884048 A的中国专利提出了一种用高硫煤还原分解磷石膏的方法,其将烘干过的磷石膏和高硫煤(硫含量≥3%)混合均匀后送入还原分解炉,控制炉温为800~1350 ℃,进行还原分解反应,产出的SO2作为制硫酸工艺的原料气,固体产物中CaO用作生产水泥的配料。该发明是实质上依然属于焦炭还原分解磷石膏,能耗依然较高。公开号为CN 101708826 A的中国专利提出了一种用硫磺还原分解磷石膏的方法,其先将预热后的磷石膏与气态硫磺于惰性氛围下低温反应1~2h;再将所得硫化钙料块研磨后与磷石膏混合均匀,在非氧化性气氛中、1000~1400 ℃下焙烧0.5~3h,所得固体渣料中CaO作为水泥熟料用于水泥生产,产生的SO2与第一工段产生的尾气合并用于硫酸生产。该工艺采用两段工序,流程不够简单,且对设备腐蚀性有一定要求。The reduction of phosphogypsum to sulfuric acid can be coupled with the wet-process phosphoric acid production process, and the recycling of sulfur resources is a comprehensive utilization method with good application prospects that can realize large-scale consumption of phosphogypsum. The Chinese patent with the publication number CN 101041439 A proposes a method for preparing wollastonite and sulfuric acid by using waste phosphogypsum. It mixes phosphogypsum, carbon powder and quartz powder according to the stoichiometric ratio and puts them into a reactor, heats up to 1200°C and Insulate for 2.5h, cool to room temperature to obtain wollastonite, and the SO2 produced during the calcination process is used in the subsequent sulfuric acid production section. The decomposition process of phosphogypsum in this invention is a coke reduction control step, which has problems such as high energy consumption, low SO2 concentration in the kiln gas, and the generated CO2 is not friendly to the environment. The Chinese patent with the publication number CN 1884048 A proposes a method for reducing and decomposing phosphogypsum with high-sulfur coal, which mixes the dried phosphogypsum and high-sulfur coal (sulfur content ≥ 3%) evenly and sends them into the reduction decomposition Furnace, the furnace temperature is controlled at 800~1350 ℃, and the reduction and decomposition reaction is carried out. The SO 2 produced is used as the raw material gas for the sulfuric acid production process, and the CaO in the solid product is used as an ingredient for the production of cement. This invention still belongs to coke reducing and decomposing phosphogypsum in essence, and the energy consumption is still relatively high. The Chinese patent with the publication number CN 101708826 A proposes a method for reducing and decomposing phosphogypsum with sulfur. Firstly, the preheated phosphogypsum and gaseous sulfur are reacted at low temperature in an inert atmosphere for 1~2 hours; then the obtained calcium sulfide material is After the block is ground, it is evenly mixed with phosphogypsum, and fired in a non-oxidizing atmosphere at 1000-1400 °C for 0.5-3 hours. The CaO in the obtained solid slag is used as cement clinker for cement production, and the SO 2 produced is the same as that produced in the first section. The tail gas is combined for sulfuric acid production. The process adopts two-stage processes, the process is not simple enough, and there are certain requirements for equipment corrosion.
黄铁矿(FeS2)是我国主要的硫资源来源,储量丰富,已探明的资源储量居世界前列,目前我国40~50%的硫酸生产以硫铁矿为原料。公开号为CN 102530889 A的中国专利提出了一种黄铁矿还原分解石膏制硫酸的方法,其将石膏与硫铁矿研磨后并按比例混合均匀,再将该混合物料加入温度800~1300 ℃的反应器中,在惰性、弱氧化或还原气氛下焙烧0.1~4h,产生的SO2尾气用于制硫酸。该发明并未对其生成的固体残渣加以利用,其主要原因是固体废渣为氧化钙和铁酸钙的混合物,将其分离利用难度较大;若堆放处理,则必然浪费土地资源,增加维护成本,且可能造成二次污染。Pyrite (FeS 2 ) is the main source of sulfur resources in China, with rich reserves, and the proven resource reserves rank among the top in the world. At present, 40-50% of sulfuric acid production in China uses pyrite as raw material. The Chinese patent with the publication number CN 102530889 A proposes a method for producing sulfuric acid by reducing and decomposing gypsum from pyrite, which grinds gypsum and pyrite and mixes them evenly in proportion, and then adds the mixed material at a temperature of 800-1300 °C In the reactor, it is roasted for 0.1~4h in an inert, weakly oxidizing or reducing atmosphere, and the resulting SO 2 tail gas is used to make sulfuric acid. This invention does not utilize the solid residue generated by it. The main reason is that the solid waste residue is a mixture of calcium oxide and calcium ferrite, and it is difficult to separate and utilize it; if it is piled up, it will inevitably waste land resources and increase maintenance costs. , and may cause secondary pollution.
钛白废渣绿矾是硫酸法钛白生产副产的废渣,每生产1 t钛白粉产出3~4 t硫酸亚铁。目前钛白废渣绿矾有效利用途径不多,仍以堆放为主,造成硫、铁资源的巨大浪费和环境污染。公开号为CN 103539207 A的中国专利提出了二硫化亚铁还原分解硫酸铁制备氧化铁红的方法,该方法将铁的硫酸盐与二硫化亚铁按一定摩尔比混合,于550~800 ℃下焙烧0.5~3h,得到二氧化硫和氧化铁红。该发明方法所得氧化铁红产品纯度达到80wt% 以上,适合大规模利用钛白废渣绿矾。Titanium dioxide waste slag Green vitriol is the by-product waste residue of sulfuric acid process titanium dioxide production, and every 1 t of titanium dioxide produced produces 3-4 t of ferrous sulfate. At present, there are not many effective utilization methods of titanium dioxide waste slag green vitriol, and stacking is still the main method, resulting in a huge waste of sulfur and iron resources and environmental pollution. The Chinese patent with the publication number CN 103539207 A proposes a method for preparing iron oxide red by reducing and decomposing ferric sulfate by ferrous disulfide. In this method, iron sulfate and ferrous disulfide are mixed in a certain molar ratio, and heated at 550-800 ° C. Roast for 0.5-3 hours to obtain sulfur dioxide and iron oxide red. The iron oxide red product obtained by the inventive method has a purity of more than 80 wt%, and is suitable for large-scale utilization of titanium white waste slag greenite.
本发明利用黄铁矿同时还原磷石膏和钛白废渣绿矾制备硫酸和铁酸钙,在800~1150 ℃温度下,将黄铁矿-磷石膏-钛白废渣绿矾中的S充分转化为SO2,窑气SO2浓度高;通过合理配比使磷石膏反应生成的CaO与钛白废渣绿矾反应生成的Fe2O3结合生成较纯的铁酸钙,铁酸钙可直接用作预熔型炼钢造渣剂。本工艺耦合了黄铁矿还原分解磷石膏和黄铁矿还原分解绿矾两个工艺,可高效回收利用磷石膏和钛白废渣绿矾中的硫、铁、钙资源,无三废排出,是一种磷石膏、钛白废渣绿矾固废综合利用的新方法,环境和经济效益显著。The present invention uses pyrite to simultaneously reduce phosphogypsum and titanium white waste slag greenite to prepare sulfuric acid and calcium ferrite. SO 2 , the concentration of SO 2 in the kiln gas is high; CaO generated by the reaction of phosphogypsum is combined with Fe 2 O 3 generated by the reaction of green vitriol from titanium white waste slag through a reasonable ratio to form relatively pure calcium ferrite, which can be directly used as Pre-melted steelmaking slagging agent. This process couples the two processes of reducing and decomposing phosphogypsum with pyrite and reducing and decomposing green vitriol with pyrite, which can efficiently recycle and utilize the sulfur, iron and calcium resources in phosphogypsum and titanium white waste slag green vitriol without discharging the three wastes. A new method for the comprehensive utilization of phosphogypsum and titanium dioxide waste slag green vitriol solid waste has remarkable environmental and economic benefits.
发明内容Contents of the invention
本发明利用黄铁矿同时还原磷石膏和钛白废渣绿矾制硫酸和铁酸钙,其工艺过程包括以下步骤:(1) 将细磨至一定粒度的黄铁矿、钛白废渣绿矾、磷石膏按一定比例均匀混和;(2) 混合料投入压片机进行压片;(3) 将成片的混合物料在一定温度下焙烧一定时间,得到固体还原产物以及含SO2尾气;(4) 将步骤(3)所得的固体还原产物冷却后可作为预熔型炼钢造渣剂;(5) 将步骤(3)所得的含SO2尾气进行除尘净化后送入硫酸系统制备硫酸成品。上述方法中,焙烧过程主要发生的反应如下:The present invention utilizes pyrite to simultaneously reduce phosphogypsum and titanium white waste slag greenite to produce sulfuric acid and calcium ferrite. The process includes the following steps: (1) finely grinding pyrite, titanium white waste slag greenite, Phosphogypsum is uniformly mixed according to a certain proportion; (2) the mixture is put into a tablet press for tableting; (3) the tableted mixture is roasted at a certain temperature for a certain period of time to obtain a solid reduction product and tail gas containing SO2; (4) The solid reduction product obtained in step (3) can be used as a pre-melt steelmaking slagging agent after cooling; (5) the SO2-containing tail gas obtained in step (3) is dedusted and purified, and then sent to a sulfuric acid system to prepare sulfuric acid finished products. In above-mentioned method, the reaction that roasting process mainly takes place is as follows:
2 FeS2 + 11CaSO4 = Ca2Fe2O5 + 9CaO + 15SO2;2 FeS 2 + 11CaSO 4 = Ca 2 Fe 2 O 5 + 9CaO + 15SO 2 ;
FeS2 + 11FeSO4 = 6Fe2O3 + 13SO2;FeS 2 + 11FeSO 4 = 6Fe 2 O 3 + 13SO 2 ;
2CaO + Fe2O3 = Ca2Fe2O5;2CaO + Fe2O3 = Ca2Fe2O5 ;
总反应为:The overall response is:
FeS2 + 3FeSO4+ 4CaSO4 = 2Ca2Fe2O5 + 9SO2。FeS 2 + 3FeSO 4 + 4CaSO 4 = 2Ca 2 Fe 2 O 5 + 9SO 2 .
本发明与现有技术相比具有以下优点:(1)相比于传统的焦炭还原磷石膏,本工艺还原温度降低约200~300 ℃,能耗低;(2)本工艺利用黄铁矿还原磷石膏和绿矾,硫的回收率高,SO2尾气浓度稳定且高(大于15vol%),可以直接用于硫酸工艺原料气;(3)采用钛白废渣绿矾将磷石膏分解生成的CaO转化为铁酸钙,固体产物成分简单,可直接用作预熔型炼钢造渣剂。(4)本发明工艺简单,可实现固体废物中硫、铁、钙资源的高效回收利用,无三废排出,环境和经济效益显著。Compared with the prior art, the present invention has the following advantages: (1) Compared with the traditional coke reduction of phosphogypsum, the reduction temperature of this process is reduced by about 200-300 °C, and the energy consumption is low; (2) This process uses pyrite to reduce Phosphogypsum and green vitriol have a high recovery rate of sulfur, and the concentration of SO 2 tail gas is stable and high (greater than 15vol%), which can be directly used as raw material gas for sulfuric acid process; (3) CaO generated by decomposing phosphogypsum with titanium white waste green vitriol Converted to calcium ferrite, the solid product has simple components and can be directly used as a pre-melted steelmaking slagging agent. (4) The process of the present invention is simple, and the efficient recycling of sulfur, iron, and calcium resources in solid waste can be realized without discharge of the three wastes, and the environmental and economic benefits are remarkable.
具体实施方式Detailed ways
下面结合实施例对本发明作详细说明,但是本发明的保护范围不仅限于下面的实施例。以下实例中采用的钛白废渣绿矾、黄铁矿及磷石膏组成见下表:The present invention will be described in detail below in conjunction with the examples, but the protection scope of the present invention is not limited to the following examples. The composition of the titanium dioxide waste slag vitriol, pyrite and phosphogypsum used in the following examples is shown in the table below:
表1.钛白废渣组成
表2.黄铁矿组成
表3.磷石膏化学组成
具体实施案例如下。The specific implementation cases are as follows.
实施例一Embodiment one
(1) 将细磨至500 μm以下的黄铁矿、钛白废渣绿矾、磷石膏混和均匀,黄铁矿中的有效成分二硫化亚铁、钛白废渣绿矾中的有效成分硫酸亚铁、磷石膏中的有效成分硫酸钙摩尔比为1:3:4;(1) Mix finely ground pyrite below 500 μm, titanium white waste slag vitriol, and phosphogypsum, the active ingredient ferrous disulfide in pyrite, and the active ingredient ferrous sulfate in titanium white slag green vitriol The molar ratio of calcium sulfate, the active ingredient in phosphogypsum, is 1:3:4;
(2) 混合料压制成片并投入回转窑中;(2) The mixture is pressed into tablets and put into the rotary kiln;
(3) 将球料在1000 ℃,在氮气保护气氛下焙烧120 min,得到SO2尾气以及固体还原产物;(3) Roast the pellets at 1000 °C for 120 min under a nitrogen protective atmosphere to obtain SO 2 tail gas and solid reduction products;
(4) 将步骤(3)所得的的含SO2尾气进行除尘净化后送入硫酸系统制备硫酸成品,固体还原产物即为铁酸钙,纯度为74 wt%;(4) send into sulfuric acid system to prepare sulfuric acid finished product after dedusting and purifying the tail gas containing SO2 of step (3) gained, and solid reduction product is calcium ferrite, and purity is 74 wt%;
(5) 实施例一中用烟气分析仪监测尾气的SO2浓度,其体积百分含量≥15%,计算得到磷石膏的分解率为93%,硫铁矿的分解率为98%,钛白废渣绿矾的分解率为96%。(5) In embodiment one, monitor the SO2 concentration of tail gas with a flue gas analyzer, its volume percentage ≥ 15%, the calculated decomposition rate of phosphogypsum is 93%, the decomposition rate of pyrite is 98%, titanium The decomposition rate of white waste slag green vitriol is 96%.
实施例二Embodiment two
(1) 将细磨至250 μm以下的黄铁矿、钛白废渣绿矾、磷石膏混和均匀,黄铁矿中的有效成分二硫化亚铁、钛白废渣绿矾中的有效成分硫酸亚铁、磷石膏中的有效成分硫酸钙摩尔比为1:2:3;(1) Mix finely ground pyrite below 250 μm, titanium white waste slag greenite, and phosphogypsum, the active ingredient ferrous disulfide in pyrite, and the active ingredient in titanium white waste slag greenite ferrous sulfate The molar ratio of calcium sulfate, the active ingredient in phosphogypsum, is 1:2:3;
(2) 混合料压制成片并投入回转窑中;(2) The mixture is pressed into tablets and put into the rotary kiln;
(3) 将球料在1150 ℃,在氮气保护气氛下焙烧180 min,得到SO2尾气以及固体还原产物;(3) Roast the pellets at 1150 °C for 180 min under a nitrogen protective atmosphere to obtain SO 2 tail gas and solid reduction products;
(4) 将步骤(3)所得的的含SO2尾气进行除尘净化后送入硫酸系统制备硫酸成品,固体还原产物即为铁酸钙,纯度为87 wt%;(4) send into sulfuric acid system to prepare sulfuric acid finished product after dedusting and purifying the tail gas containing SO2 of step (3) gained, and solid reduction product is calcium ferrite, and purity is 87 wt%;
(5) 实施例二中用烟气分析仪监测尾气的SO2浓度,其体积百分含量≥15%,计算得到磷石膏的分解率为95%,硫铁矿的分解率为99%,钛白废渣绿矾的分解率为98%。(5) In embodiment two, monitor the SO2 concentration of tail gas with flue gas analyzer, its volume percent content≥15%, calculate the decomposition rate of phosphogypsum to be 95%, the decomposition rate of pyrite to be 99%, titanium The decomposition rate of white waste slag green vitriol is 98%.
实施例三Embodiment Three
将细磨至250 μm以下的黄铁矿、钛白废渣绿矾、磷石膏混和均匀,黄铁矿中的有效成分二硫化亚铁、钛白废渣绿矾中的有效成分硫酸亚铁、磷石膏中的有效成分硫酸钙摩尔比为1:3:4;Mix finely ground pyrite below 250 μm, titanium white waste slag green vitriol, and phosphogypsum. The active ingredient calcium sulfate molar ratio is 1:3:4;
(2) 混合料压制成片并投入回转窑中;(2) The mixture is pressed into tablets and put into the rotary kiln;
(3) 将球料在1200 ℃,在氮气保护气氛下焙烧120 min,得到SO2尾气以及固体还原产物;(3) Roast the pellets at 1200 °C for 120 min under a nitrogen protective atmosphere to obtain SO 2 tail gas and solid reduction products;
(4) 将步骤(3)所得的的含SO2尾气进行除尘净化后送入硫酸系统制备硫酸成品,固体还原产物即为铁酸钙,纯度为79 wt%;(4) send into sulfuric acid system to prepare sulfuric acid finished product after dedusting and purifying the tail gas containing SO2 of step (3) gained, and solid reduction product is calcium ferrite, and purity is 79 wt%;
(5) 实施例三中用烟气分析仪监测尾气的SO2浓度,其体积百分含量≥15%,计算得到磷石膏的分解率为90%,硫铁矿的分解率为98%,钛白废渣绿矾的分解率为98%。(5) In embodiment three, monitor the SO2 concentration of tail gas with flue gas analyzer, its volume percentage ≥ 15%, calculate the decomposition rate of phosphogypsum to be 90%, the decomposition rate of pyrite to be 98%, titanium The decomposition rate of white waste slag green vitriol is 98%.
实施例四Embodiment four
(1)将细磨至150 μm以下的黄铁矿、钛白废渣绿矾、磷石膏混和均匀,黄铁矿中的有效成分二硫化亚铁、钛白废渣绿矾中的有效成分硫酸亚铁、磷石膏中的有效成分硫酸钙摩尔比为1:2:3;(1) Mix finely ground pyrite below 150 μm, titanium white waste slag vitriol, and phosphogypsum, the active ingredient ferrous disulfide in pyrite, the active ingredient ferrous sulfate in titanium white slag green vitriol The molar ratio of calcium sulfate, the active ingredient in phosphogypsum, is 1:2:3;
(2) 混合料压制成片并投入回转窑中;(2) The mixture is pressed into tablets and put into the rotary kiln;
(3) 将球料在800 ℃,在氮气保护气氛下焙烧120 min,得到SO2尾气以及固体还原产物;(3) Roast the pellets at 800 °C for 120 min under a nitrogen protective atmosphere to obtain SO 2 tail gas and solid reduction products;
(4) 将步骤(3)所得的的含SO2尾气进行除尘净化后送入硫酸系统制备硫酸成品,固体还原产物即为铁酸钙,纯度为50 wt%;(4) send into sulfuric acid system to prepare sulfuric acid finished product after dedusting and purifying the tail gas containing SO2 of step (3) gained, and solid reduction product is calcium ferrite, and purity is 50 wt%;
(5) 实施例四中用烟气分析仪监测尾气的SO2浓度,其体积百分含量≥10%,计算得到磷石膏的分解率为90%,硫铁矿的分解率为98%,钛白废渣绿矾的分解率为90%。(5) in embodiment four, monitor the SO2 concentration of tail gas with flue gas analyzer, its volume percent content≥10%, calculate the decomposition rate of phosphogypsum to be 90%, the decomposition rate of pyrite to be 98%, titanium The decomposition rate of white waste slag green vitriol is 90%.
实施例五Embodiment five
(1)将细磨至250 μm以下的黄铁矿、钛白废渣绿矾、磷石膏混和均匀,黄铁矿中的有效成分二硫化亚铁、钛白废渣绿矾中的有效成分硫酸亚铁、磷石膏中的有效成分硫酸钙摩尔比为1:2:3;(1) Mix finely ground pyrite below 250 μm, titanium white waste slag greenite, and phosphogypsum, the active ingredient ferrous disulfide in pyrite, the active ingredient in titanium white waste slag greenite ferrous sulfate The molar ratio of calcium sulfate, the active ingredient in phosphogypsum, is 1:2:3;
(2) 混合料压制成片并投入回转窑中;(2) The mixture is pressed into tablets and put into the rotary kiln;
(3) 将球料在1200 ℃,在氮气保护气氛下焙烧90 min,得到SO2尾气以及固体还原产物;(3) Roast the pellets at 1200 °C for 90 min under a nitrogen protective atmosphere to obtain SO 2 tail gas and solid reduction products;
(4) 将步骤(3)所得的的含SO2尾气进行除尘净化后送入硫酸系统制备硫酸成品,固体还原产物即为铁酸钙,纯度为81 wt%;(4) send into sulfuric acid system to prepare sulfuric acid finished product after dedusting and purifying the tail gas containing SO2 of step (3) gained, and solid reduction product is calcium ferrite, and purity is 81 wt%;
(5) 实施例五中用烟气分析仪监测尾气的SO2浓度,其体积百分含量≥15%,计算得到磷石膏的分解率为95%,硫铁矿的分解率为99%,钛白废渣绿矾的分解率为97%。(5) In embodiment five, monitor the SO2 concentration of tail gas with flue gas analyzer, its volume percent content≥15%, calculate the decomposition rate of phosphogypsum to be 95%, the decomposition rate of pyrite to be 99%, titanium The decomposition rate of white waste slag green vitriol is 97%.
实施例六Embodiment six
(1)将细磨至500 μm以下的黄铁矿、钛白废渣绿矾、磷石膏混和均匀,黄铁矿中的有效成分二硫化亚铁、钛白废渣绿矾中的有效成分硫酸亚铁、磷石膏中的有效成分硫酸钙摩尔比为1:2:3;(1) Mix finely ground pyrite below 500 μm, titanium white waste slag vitriol, and phosphogypsum, the active ingredient ferrous disulfide in pyrite, and the active ingredient ferrous sulfate in titanium white slag green vitriol The molar ratio of calcium sulfate, the active ingredient in phosphogypsum, is 1:2:3;
(2) 混合料压制成片并投入回转窑中;(2) The mixture is pressed into tablets and put into the rotary kiln;
(3) 将球料在900 ℃,在氮气保护气氛下焙烧180 min,得到SO2尾气以及固体还原产物;(3) Roast the pellets at 900 °C for 180 min under a nitrogen protective atmosphere to obtain SO 2 tail gas and solid reduction products;
(4) 将步骤(3)所得的的含SO2尾气进行除尘净化后送入硫酸系统制备硫酸成品,固体还原产物即为铁酸钙,纯度为,纯度为63 wt%;(4) send into sulfuric acid system to prepare sulfuric acid finished product after dedusting and purifying the tail gas containing SO2 of step (3) gained, and solid reduction product is calcium ferrite, and purity is, and purity is 63 wt%;
(5) 实施例六中用烟气分析仪监测尾气的SO2浓度,其体积百分含量≥15%,计算得到磷石膏的分解率为90%,硫铁矿的分解率为98%,钛白废渣绿矾的分解率为96%。(5) In embodiment six, use a flue gas analyzer to monitor the SO concentration of the tail gas, and its volume percentage is ≥ 15%, and the calculated decomposition rate of phosphogypsum is 90%, and the decomposition rate of pyrite is 98%. The decomposition rate of white waste slag green vitriol is 96%.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810285442.3A CN108383089A (en) | 2018-04-03 | 2018-04-03 | A method of restoring ardealite and titanium dioxide waste residue green vitriol Sulphuric acid simultaneously using pyrite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810285442.3A CN108383089A (en) | 2018-04-03 | 2018-04-03 | A method of restoring ardealite and titanium dioxide waste residue green vitriol Sulphuric acid simultaneously using pyrite |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108383089A true CN108383089A (en) | 2018-08-10 |
Family
ID=63073117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810285442.3A Pending CN108383089A (en) | 2018-04-03 | 2018-04-03 | A method of restoring ardealite and titanium dioxide waste residue green vitriol Sulphuric acid simultaneously using pyrite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108383089A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109593953A (en) * | 2018-12-20 | 2019-04-09 | 张家港宏昌钢板有限公司 | Method for synergistic resource utilization of semidry desulfurization ash and titanium dioxide byproduct copperas |
CN109626339A (en) * | 2018-12-18 | 2019-04-16 | 广州华润热电有限公司 | A kind of method that gypsum prepares sulfuric acid |
CN110372041A (en) * | 2019-06-27 | 2019-10-25 | 西南科技大学 | A kind of method that titanium gypsum tailing prepares calcium ferrite |
CN110562933A (en) * | 2019-09-18 | 2019-12-13 | 西南科技大学 | Method for quickly separating calcium and sulfur of industrial byproduct gypsum |
CN111118280A (en) * | 2020-02-27 | 2020-05-08 | 北京矿冶科技集团有限公司 | Method for producing sulfur-containing gas, calcium carbonate and iron ore concentrate by using phosphogypsum and pyrite |
CN111454007A (en) * | 2020-03-04 | 2020-07-28 | 西南科技大学 | Method for preparing hydraulic cementing material from industrial byproduct calcium sulfide slag |
CN115340074A (en) * | 2022-08-16 | 2022-11-15 | 四川大学 | Method and system for preparing phosphoric acid by using titanium white waste acid |
CN117700128A (en) * | 2023-12-12 | 2024-03-15 | 华新水泥股份有限公司 | Method for composite reduction desulfurization of phosphogypsum and preparation of low-carbon clinker |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU569532A1 (en) * | 1975-04-11 | 1977-08-25 | Предприятие П/Я В-8830 | Method of preparing sulphurous anhydride |
CN102556981A (en) * | 2010-12-24 | 2012-07-11 | 漯河市兴茂钛业有限公司 | Comprehensive utilization method for solid wastes and waste acid in production process of titanium dioxide |
CN103864150A (en) * | 2014-04-04 | 2014-06-18 | 四川大学 | The preparation method of calcium ferrite |
-
2018
- 2018-04-03 CN CN201810285442.3A patent/CN108383089A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU569532A1 (en) * | 1975-04-11 | 1977-08-25 | Предприятие П/Я В-8830 | Method of preparing sulphurous anhydride |
CN102556981A (en) * | 2010-12-24 | 2012-07-11 | 漯河市兴茂钛业有限公司 | Comprehensive utilization method for solid wastes and waste acid in production process of titanium dioxide |
CN103864150A (en) * | 2014-04-04 | 2014-06-18 | 四川大学 | The preparation method of calcium ferrite |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109626339A (en) * | 2018-12-18 | 2019-04-16 | 广州华润热电有限公司 | A kind of method that gypsum prepares sulfuric acid |
CN109593953A (en) * | 2018-12-20 | 2019-04-09 | 张家港宏昌钢板有限公司 | Method for synergistic resource utilization of semidry desulfurization ash and titanium dioxide byproduct copperas |
CN109593953B (en) * | 2018-12-20 | 2021-02-12 | 张家港宏昌钢板有限公司 | Method for synergistic resource utilization of semidry desulfurization ash and titanium dioxide byproduct copperas |
CN110372041A (en) * | 2019-06-27 | 2019-10-25 | 西南科技大学 | A kind of method that titanium gypsum tailing prepares calcium ferrite |
CN110372041B (en) * | 2019-06-27 | 2021-11-05 | 西南科技大学 | A kind of method for preparing calcium ferrite from titanium gypsum tailings |
CN110562933A (en) * | 2019-09-18 | 2019-12-13 | 西南科技大学 | Method for quickly separating calcium and sulfur of industrial byproduct gypsum |
CN110562933B (en) * | 2019-09-18 | 2022-01-28 | 西南科技大学 | Method for quickly separating calcium and sulfur of industrial byproduct gypsum |
CN111118280A (en) * | 2020-02-27 | 2020-05-08 | 北京矿冶科技集团有限公司 | Method for producing sulfur-containing gas, calcium carbonate and iron ore concentrate by using phosphogypsum and pyrite |
CN111454007A (en) * | 2020-03-04 | 2020-07-28 | 西南科技大学 | Method for preparing hydraulic cementing material from industrial byproduct calcium sulfide slag |
CN115340074A (en) * | 2022-08-16 | 2022-11-15 | 四川大学 | Method and system for preparing phosphoric acid by using titanium white waste acid |
CN117700128A (en) * | 2023-12-12 | 2024-03-15 | 华新水泥股份有限公司 | Method for composite reduction desulfurization of phosphogypsum and preparation of low-carbon clinker |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108383089A (en) | A method of restoring ardealite and titanium dioxide waste residue green vitriol Sulphuric acid simultaneously using pyrite | |
CN102502524B (en) | Method for producing sulfur dioxide from calcium sulfate and sulfur | |
CN111285390B (en) | Method for comprehensively utilizing industrial gypsum calcium-sulfur resources | |
CN101186281B (en) | A method for reducing the decomposition temperature of phosphogypsum in the process of making sulfuric acid from phosphogypsum | |
CN102604712B (en) | Steel slag composite desulfurizer for desulfurizing pulverized coal during combustion and desulfurization method using same | |
CN109928414A (en) | A method of it is synchronized using aluminium ash sintering imurity-removal and prepares the steel desulfurization agent of calcium aluminate system | |
CN110404936B (en) | A kind of comprehensive treatment method of semi-dry desulfurization ash | |
CN103864150A (en) | The preparation method of calcium ferrite | |
CN101003422A (en) | New method for producing sulfuric acid and cement by using phosphogypsum | |
CN103408052B (en) | A kind of decomposition method of phosphogypsum | |
CN101708826A (en) | Method for reducing and decomposing phosphogypsum by sulfur | |
CN102530889A (en) | Method for preparing sulfuric acid by reducing and decomposing gypsum with pyrite | |
CN103818884B (en) | The spouted fluidized decomposition technique of a kind of gypsum | |
CN102515115A (en) | Method for preparing sulfuric acid and cement by using desulfurized gypsum | |
CN100460317C (en) | A method for producing calcium sulfide with phosphogypsum | |
CN113307519A (en) | Method for preparing cement and co-producing sulfuric acid by reducing gypsum through sulfur plasma flow | |
CN101708825B (en) | Method for preparing calcium sulfide by reducing and decomposting gypsum through sulfur | |
CN101239706B (en) | Method for producing calcium sulfide from calcium sulfate | |
CN104724678B (en) | A method for fluidized catalytic decomposition of gypsum | |
US4040853A (en) | Process for the preparation of raw mix for the production of cement and sulphuric acid | |
CN111233020B (en) | A system and method for preparing calcium oxide and sulfur by utilizing industrial by-product gypsum | |
CN103539091A (en) | Method for preparing phosphoric acid by catalytic reduction of low-medium-grade phosphorite | |
CN107098607A (en) | A kind of production technology of active lime | |
CN103539185B (en) | A kind of gypsum that utilizes decomposes the method preparing quickened lime | |
CN107522170A (en) | A kind of calcium sulfate restoring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180810 |
|
WD01 | Invention patent application deemed withdrawn after publication |