CN108382615A - A kind of satellite high-precision payload multiple degrees of freedom microgravity debugging device - Google Patents
A kind of satellite high-precision payload multiple degrees of freedom microgravity debugging device Download PDFInfo
- Publication number
- CN108382615A CN108382615A CN201810348038.6A CN201810348038A CN108382615A CN 108382615 A CN108382615 A CN 108382615A CN 201810348038 A CN201810348038 A CN 201810348038A CN 108382615 A CN108382615 A CN 108382615A
- Authority
- CN
- China
- Prior art keywords
- payload
- precision
- satellite high
- satellite
- sling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005486 microgravity Effects 0.000 title claims abstract description 32
- 230000005484 gravity Effects 0.000 claims abstract description 23
- 238000009434 installation Methods 0.000 claims abstract description 22
- 239000000725 suspension Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 claims description 8
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G7/00—Simulating cosmonautic conditions, e.g. for conditioning crews
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本申请涉及一种卫星高精度有效载荷多自由度微重力装调装置,其包括主体支架2,水平横向导轨3,水平纵向导轨4,滑车5,伺服电机6,吊索组件7,和卫星高精度有效荷载10;其中,所述吊索组件7包括第一吊绳71;串联在所述第一吊绳71上的第一长度调节器72,重力传感器73,和球铰74;一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的第二吊绳76及其上的第二长度调节器75。
This application relates to a satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device, which includes a main body bracket 2, a horizontal horizontal guide rail 3, a horizontal longitudinal guide rail 4, a trolley 5, a servo motor 6, a sling assembly 7, and a satellite height Precision payload 10; wherein, the sling assembly 7 includes a first sling 71; a first length regulator 72 connected in series on the first sling 71, a gravity sensor 73, and a ball joint 74; one end is connected to the The first suspension rope 71, the other end is connected to the second suspension rope 76 of the satellite high-precision payload 10 and the second length adjuster 75 thereon.
Description
技术领域technical field
本发明属于卫星装调技术领域,涉及一种微重力装调装置,具体涉及一种卫星高精度有效载荷多自由度微重力装调装置。The invention belongs to the technical field of satellite installation and adjustment, and relates to a microgravity installation and adjustment device, in particular to a satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device.
背景技术Background technique
对于精度要求不高的卫星有效载荷,装调时往往不考虑有效载荷重量对装调精度的影响,而实际上,有效载荷自身的重量会引起星体结构的变形导致载荷在地面测量的装调精度与在轨失重环境下的装调精度有较大偏差。对于精度要求较高的卫星高精度有效载荷,特别是两个或者多个相互间有相对位置关系的卫星高精度有效载荷,重力环境下装调后难以保证其在轨时相对于卫星本体或者相互间的位置关系满足精度要求。For satellite payloads that do not require high precision, the influence of payload weight on the adjustment accuracy is often not considered during installation and adjustment. In fact, the weight of the payload itself will cause deformation of the star structure and lead to the adjustment accuracy of the load measured on the ground. There is a large deviation from the adjustment accuracy of the on-orbit weightless environment. For satellite high-precision payloads with high precision requirements, especially two or more satellite high-precision payloads that have a relative positional relationship with each other, it is difficult to ensure that they are relative to the satellite body or each other when they are in orbit after installation and adjustment in a gravity environment. The positional relationship among them satisfies the accuracy requirement.
现有的卫星高精度有效载荷微重力装调装置是通过对有效载荷进行悬挂卸载,有效载荷通常只有一到两个可调平动自由度和转动自由度,需要移动卫星本体到有效载荷正下方,调整卫星本体相对于有效载荷安装面距离和平行度的方式进行装调,操作过程较为复杂。The existing satellite high-precision payload microgravity installation and adjustment device is to suspend and unload the payload. The payload usually has only one or two adjustable translational degrees of freedom and rotational degrees of freedom. It is necessary to move the satellite body directly below the payload , adjust the distance and parallelism of the satellite body relative to the payload installation surface, and the operation process is more complicated.
因此,本领域急需一种能够简单装调卫星高精度有效载荷的微重力装调装置及其装调方法。Therefore, there is an urgent need in the art for a microgravity adjustment device and an adjustment method thereof that can simply adjust satellite high-precision payloads.
发明内容Contents of the invention
本申请之目的在于提供一种卫星高精度有效载荷多自由度微重力装调装置。The purpose of this application is to provide a multi-degree-of-freedom microgravity adjustment device for satellite high-precision payloads.
本申请之目的还在于提供一种利用本申请的卫星高精度有效载荷多自由度微重力装调装置进行装调的方法。The purpose of the present application is also to provide a method for mounting and adjusting using the multi-degree-of-freedom microgravity mounting and adjusting device for satellite high-precision payloads of the present application.
为了实现上述目的,本申请提供下述技术方案。In order to achieve the above purpose, the present application provides the following technical solutions.
在第一方面中,本申请提供一种卫星高精度有效载荷多自由度微重力装调装置,其包括主体支架2,水平横向导轨3,水平纵向导轨4,滑车5,伺服电机6,吊索组件7,和卫星高精度有效荷载10;In the first aspect, the application provides a satellite high-precision payload multi-degree-of-freedom microgravity adjustment device, which includes a main body bracket 2, a horizontal horizontal guide rail 3, a horizontal longitudinal guide rail 4, a pulley 5, a servo motor 6, and a sling Component 7, and Satellite High Precision Payload 10;
其中,所述水平横向导轨3固定于主体支架2上;Wherein, the horizontal transverse guide rail 3 is fixed on the main frame 2;
其中,所述水平纵向导轨4安装于水平横向导轨3上,并可沿水平横向导轨3横向移动;Wherein, the horizontal longitudinal guide rail 4 is installed on the horizontal transverse guide rail 3, and can move laterally along the horizontal transverse guide rail 3;
其中,所述滑车5安装于水平纵向导轨4上,并可沿水平纵向导轨4纵向移动;Wherein, the pulley 5 is installed on the horizontal longitudinal guide rail 4, and can move longitudinally along the horizontal longitudinal guide rail 4;
其中,所述伺服电机6固定于滑车5上;以及Wherein, the servo motor 6 is fixed on the tackle 5; and
其中,所述吊索组件7包括第一吊绳71;串联在所述第一吊绳71上的第一长度调节器72,重力传感器73,和球铰74;一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的第二吊绳76及其上的第二长度调节器75。Wherein, the sling assembly 7 includes a first sling 71; a first length adjuster 72 connected in series on the first sling 71, a gravity sensor 73, and a ball hinge 74; one end is connected to the first sling 71, the other end is connected to the second suspension rope 76 of the satellite high-precision payload 10 and the second length adjuster 75 on it.
在第一方面的一种实施方式中,所述卫星高精度有效载荷多自由度微重力装调装置还包括安装于所述主题支架2底部,用于调节主体支架2的水平度的高度调节脚撑1。In an embodiment of the first aspect, the satellite high-precision payload multi-degree-of-freedom microgravity adjustment device also includes height adjustment feet installed on the bottom of the subject support 2 for adjusting the levelness of the main support 2 Support 1.
在第一方面的另一种实施方式中,所述卫星高精度有效载荷多自由度微重力装调装置还包括用于固定滑车5的锁定机构8。In another embodiment of the first aspect, the satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device further includes a locking mechanism 8 for fixing the tackle 5 .
在第一方面的另一种实施方式中,所述卫星高精度有效载荷多自由度微重力装调装置还包括用于固定水平纵向导轨4的锁定机构9。In another embodiment of the first aspect, the satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device further includes a locking mechanism 9 for fixing the horizontal longitudinal guide rail 4 .
在第一方面的另一种实施方式中,所述卫星高精度有效载荷多自由度微重力装调装置的所述吊索组件7还包括一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的第三吊绳78及其上的第三长度调节器77。In another embodiment of the first aspect, the sling assembly 7 of the satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device also includes one end connected to the first sling 71, and the other end connected to the The third suspension rope 78 of the satellite high-precision payload 10 and the third length adjuster 77 thereon.
在第一方面的另一种实施方式中,所述卫星高精度有效载荷多自由度微重力装调装置的所述吊索组件7还包括一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的第四吊绳710及其上的第四长度调节器79。In another embodiment of the first aspect, the sling assembly 7 of the satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device also includes one end connected to the first sling 71, and the other end connected to the The fourth suspension rope 710 of the satellite high-precision payload 10 and the fourth length adjuster 79 thereon.
在第一方面的另一种实施方式中,所述卫星高精度有效载荷多自由度微重力装调装置的所述吊索组件7还包括一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的第五吊绳712及其上的第五长度调节器711。In another embodiment of the first aspect, the sling assembly 7 of the satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device also includes one end connected to the first sling 71, and the other end connected to the The fifth suspension rope 712 of the satellite high-precision payload 10 and the fifth length adjuster 711 thereon.
在第二方面中,本申请提供一种利用本申请的卫星高精度有效载荷多自由度微重力装调装置进行装调的方法,所述方法包括下述步骤:In the second aspect, the present application provides a method of using the satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device of the present application for installation and adjustment, and the method includes the following steps:
a)将卫星本体移动到主体支架2的内部;a) Move the satellite body to the inside of the main frame 2;
b)将卫星高精度有效载荷10移动到所述卫星本体安装面的正上方;b) moving the satellite high-precision payload 10 directly above the mounting surface of the satellite body;
c)通过伺服电机6调整卫星高精度有效载荷10的高度使其接近卫星本体安装面;c) adjust the height of the satellite high-precision payload 10 through the servo motor 6 to make it close to the mounting surface of the satellite body;
d)通过第二长度调节器75调整卫星高精度有效载荷10相对于卫星本体安装面的平行度;d) adjusting the parallelism of the satellite high-precision payload 10 with respect to the mounting surface of the satellite body through the second length regulator 75;
e)通过第一长度调节器72精调有效载荷10竖直方向的高度,同时观察重力传感器73的拉力;和e) finely adjust the height of the payload 10 in the vertical direction by the first length adjuster 72, while observing the pulling force of the gravity sensor 73; and
f)当卫星高精度有效载荷10的重力值减去重力传感器73的拉力值小于或等于2kg,且大于0时,安装所述卫星高精度有效载荷10。f) When the gravity value of the satellite high-precision payload 10 minus the tension value of the gravity sensor 73 is less than or equal to 2kg and greater than 0, install the satellite high-precision payload 10 .
在第二方面的一种实施方式中,步骤d)还包括通过第三长度调节器77、第四长度调节器79、第五长度调节器711来精调有效载荷10竖直方向的高度。In an implementation manner of the second aspect, step d) further includes finely adjusting the vertical height of the payload 10 through the third length adjuster 77 , the fourth length adjuster 79 , and the fifth length adjuster 711 .
与现有技术相比,本申请的有益效果在于能够更为简便地进行高精度卫星装调。Compared with the prior art, the beneficial effect of the present application is that it is easier to carry out high-precision satellite assembly and adjustment.
附图说明Description of drawings
图1为本申请的卫星高精度有效载荷多自由度微重力装调装置的一个实施例的示意图。Fig. 1 is a schematic diagram of an embodiment of the satellite high-precision payload multi-degree-of-freedom microgravity adjustment device of the present application.
图2为本申请的吊索组件7的一个实施例的示意图。FIG. 2 is a schematic diagram of an embodiment of the sling assembly 7 of the present application.
具体实施方式Detailed ways
下面将结合附图以及本申请的实施例,对本申请的技术方案进行清楚和完整的描述。The technical solutions of the present application will be clearly and completely described below in conjunction with the accompanying drawings and the embodiments of the present application.
如附图1所示,为本申请一种卫星高精度有效载荷多自由度微重力装调装置的一个实施例,由高度调节脚撑1、主体支架2、水平横向导轨3、水平纵向导轨4、滑车5、伺服电机6、吊索组件7、锁定机构8、锁定机构9和卫星高精度有效载荷10组成。所述高度调节脚撑1安装于所述主体支架2底部,用于调节主体支架2的水平度;所述水平横向导轨3固定于主体支架2上;所述水平纵向导轨4安装于水平横向导轨3上,并可沿水平横向导轨3横向移动,移动到位后可通过所述锁定机构9锁定;所述滑车5安装于水平纵向导轨4上,并可沿水平纵向导轨4纵向移动,移动到位后通过锁定机构8锁定;伺服电机6固定于滑车5上。As shown in Figure 1, it is an embodiment of a satellite high-precision payload multi-degree-of-freedom microgravity adjustment device of the present application. , pulley 5, servo motor 6, sling assembly 7, locking mechanism 8, locking mechanism 9 and satellite high-precision payload 10. The height adjustment foot support 1 is installed on the bottom of the main body support 2 for adjusting the levelness of the main body support 2; the horizontal transverse guide rail 3 is fixed on the main body support 2; the horizontal longitudinal guide rail 4 is installed on the horizontal transverse guide rail 3, and can move horizontally along the horizontal horizontal guide rail 3, and can be locked by the locking mechanism 9 after moving in place; Locked by the locking mechanism 8; the servo motor 6 is fixed on the trolley 5.
如附图2所示,为本申请一种卫星高精度有效载荷多自由度微重力装调装置的吊索组件7的一个实施例的具体示意图,其包括第一吊绳71;串联在所述第一吊绳71上的第一长度调节器72,重力传感器73,和球铰74;一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的第二吊绳76及其上的第二长度调节器75;一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的第三吊绳78及其上的第三长度调节器77;一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的第四吊绳710及其上的第四长度调节器79;一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的第五吊绳712及其上的第五长度调节器711。其通过第一长度调节器72精调第一吊绳71的长度,通过第二长度调节器75精调第二吊绳76的长度,通过第三长度调节器77精调第三吊绳78的长度,通过第四长度调节器79精调第四吊绳710的长度,通过第五长度调节器711精调第五吊绳712的长度。As shown in accompanying drawing 2, it is a specific schematic diagram of an embodiment of a sling assembly 7 of a satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device of the present application, which includes a first sling 71; The first length adjuster 72 on the first suspension rope 71, the gravity sensor 73, and the ball hinge 74; one end is connected to the first suspension rope 71, and the other end is connected to the second suspension rope 76 of the satellite high-precision payload 10 and the second length adjuster 75 on it; one end is connected to the first suspension rope 71, and the other end is connected to the third suspension rope 78 of the satellite high-precision payload 10 and the third length adjuster 77 on it; one end Connect the first sling 71, the other end is connected to the fourth sling 710 of the satellite high-precision payload 10 and the fourth length adjuster 79 on it; one end is connected to the first sling 71, and the other end is connected to The fifth suspension rope 712 of the satellite high-precision payload 10 and the fifth length adjuster 711 thereon. It fine-tunes the length of the first hanging rope 71 through the first length adjuster 72, fine-tunes the length of the second hanging rope 76 through the second length adjuster 75, and fine-tunes the length of the third hanging rope 78 through the third length adjuster 77. The length of the fourth suspension rope 710 is finely adjusted by the fourth length adjuster 79 , and the length of the fifth suspension rope 712 is finely adjusted by the fifth length adjuster 711 .
所述吊索组件7的一端与伺服电机6的旋转轮连接,通过伺服电机6旋转轮的转动,粗调吊索组件7竖直方向的长度;吊索组件7通过第一长度调节器71精调吊索组件竖直方向的长度;吊索组件7的另一端与卫星高精度有效载荷10连接,通过球铰74可调节卫星高精度有效载荷10竖直方向的转动自由度;通过第二长度调节器75、第三长度调节器77、第四长度调节器79、第五长度调节器711可调节卫星高精度有效载荷10水平横向和水平纵向的转动自由度。One end of the sling assembly 7 is connected with the rotating wheel of the servo motor 6, and the vertical length of the sling assembly 7 is roughly adjusted by the rotation of the 6 rotating wheels of the servo motor; the sling assembly 7 is finely adjusted by the first length adjuster 71 Adjust the length of the vertical direction of the sling assembly; the other end of the sling assembly 7 is connected with the satellite high-precision payload 10, and the rotation degree of freedom of the satellite high-precision payload 10 in the vertical direction can be adjusted through the ball joint 74; through the second length The adjuster 75 , the third length adjuster 77 , the fourth length adjuster 79 and the fifth length adjuster 711 can adjust the horizontal and vertical rotational degrees of freedom of the satellite high-precision payload 10 .
在本申请一种卫星高精度有效载荷多自由度微重力装调装置的另一个实施例中,串联在所述第一吊绳71上的第一长度调节器72,重力传感器73,和球铰74以另一种顺序排列,例如自上而下依次为重力传感器73,第一长度调节器72,和球铰74;或者依次为第一长度调节器72,球铰74,和重力传感器73;或者依次为球铰74,第一长度调节器72,和重力传感器73;或者依次为重力传感器73,球铰74,和第一长度调节器72;或者依次为球铰74,重力传感器73,和第一长度调节器72。In another embodiment of the satellite high-precision payload multi-degree-of-freedom microgravity installation and adjustment device of the present application, the first length adjuster 72 connected in series on the first suspension rope 71, the gravity sensor 73, and the ball joint 74 is arranged in another order, for example, the gravity sensor 73, the first length adjuster 72, and the ball joint 74 from top to bottom; or the first length adjuster 72, the ball joint 74, and the gravity sensor 73; Or be followed by ball hinge 74, first length adjuster 72, and gravity sensor 73; Or be followed by gravity sensor 73, ball hinge 74, and first length adjuster 72; Or be sequentially ball hinge 74, gravity sensor 73, and A first length adjuster 72 .
在本申请一种卫星高精度有效载荷多自由度微重力装调装置的另一个实施例中,一端连接所述第一吊绳71,另一端连接所述卫星高精度有效载荷10的吊绳可以有一个、两个、三个、四个或更多个;相应地,所述吊绳上均有一长度调节器。In another embodiment of a satellite high-precision payload multi-degree-of-freedom microgravity adjustment device of the present application, one end is connected to the first sling 71, and the other end is connected to the sling of the satellite high-precision payload 10. There are one, two, three, four or more; correspondingly, there is a length adjuster on the sling.
在本申请的一个装调实施例中,首先将卫星本体移动到主体支架2的内部,然后通过水平纵向导轨4和滑车5将卫星高精度有效载荷10移动到卫星本体安装面正上方,通过伺服电机6调整卫星高精度有效载荷10的高度使其接近卫星本体安装面,通过第二长度调节器75、第三长度调节器77、第四长度调节器79、第五长度调节器711调整卫星高精度有效载荷10相对于卫星本体安装面的平行度,通过第一长度调节器72精调有效载荷10竖直方向的高度,调整过程中观察重力传感器73的拉力,当重力传感器73的拉力微小于卫星高精度有效载荷10的重力时,安装卫星高精度有效载荷10,实现卫星高精度有效载荷10的微重力装调。此处,“重力传感器73的拉力微小于卫星高精度有效载荷10”的描述中的“微小于”应当理解为差值在2kg以内,优选在1kg以内。In an assembly and adjustment embodiment of the present application, the satellite body is first moved to the inside of the main body support 2, and then the satellite high-precision payload 10 is moved directly above the satellite body installation surface through the horizontal longitudinal guide rail 4 and the trolley 5, and the The motor 6 adjusts the height of the satellite high-precision payload 10 to make it close to the mounting surface of the satellite body, and adjusts the height of the satellite through the second length regulator 75, the third length regulator 77, the fourth length regulator 79, and the fifth length regulator 711. Accurate the parallelism of the payload 10 relative to the mounting surface of the satellite body, finely adjust the height of the payload 10 in the vertical direction through the first length adjuster 72, observe the pulling force of the gravity sensor 73 during the adjustment process, when the pulling force of the gravity sensor 73 is less than When the gravity of the satellite high-precision payload 10 is high, the satellite high-precision payload 10 is installed to realize the microgravity adjustment of the satellite high-precision payload 10 . Here, "smaller than" in the description of "the pulling force of the gravity sensor 73 is slightly smaller than the satellite high-precision payload 10" should be understood as the difference is within 2kg, preferably within 1kg.
本发明实现了卫星高精度有效载荷多自由度微重力环境下的装配调节,确保卫星高精度有效载荷安装调节精度与在轨微重力环境一致,具有装调方便、操作简单、易于实现、成本低的特点。The invention realizes the assembly and adjustment of satellite high-precision payloads in a multi-degree-of-freedom microgravity environment, ensures that the installation and adjustment accuracy of satellite high-precision payloads is consistent with the on-orbit microgravity environment, and has the advantages of convenient assembly and adjustment, simple operation, easy implementation, and low cost specialty.
上述对实施例的描述是为了便于本技术领域的普通技术人员能理解和应用本申请。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必付出创造性的劳动。因此,本申请不限于这里的实施例,本领域技术人员根据本申请披露的内容,在不脱离本申请范围和精神的情况下做出的改进和修改都本申请的范围之内。The above description of the embodiments is for those of ordinary skill in the art to understand and apply the present application. It will be apparent to those skilled in the art that various modifications to these embodiments can be easily made, and the general principles described here can be applied to other embodiments without creative efforts. Therefore, the present application is not limited to the embodiments here, and improvements and modifications made by those skilled in the art based on the contents disclosed in the present application without departing from the scope and spirit of the present application are within the scope of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810348038.6A CN108382615A (en) | 2018-04-18 | 2018-04-18 | A kind of satellite high-precision payload multiple degrees of freedom microgravity debugging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810348038.6A CN108382615A (en) | 2018-04-18 | 2018-04-18 | A kind of satellite high-precision payload multiple degrees of freedom microgravity debugging device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108382615A true CN108382615A (en) | 2018-08-10 |
Family
ID=63065135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810348038.6A Pending CN108382615A (en) | 2018-04-18 | 2018-04-18 | A kind of satellite high-precision payload multiple degrees of freedom microgravity debugging device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108382615A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110027732A (en) * | 2019-03-29 | 2019-07-19 | 北京卫星制造厂有限公司 | A kind of gravity unloading device in spacecraft lightweight components assembly and debugging process |
CN112255868A (en) * | 2020-10-30 | 2021-01-22 | 长光卫星技术有限公司 | Gravity unloading device for large off-axis three-mirror space camera |
CN113607391A (en) * | 2021-07-05 | 2021-11-05 | 陕西智星空间科技有限公司 | Testing device for simulating cubic star weightless ejection |
CN113812232A (en) * | 2021-10-18 | 2021-12-21 | 南京晓庄学院 | Self-adaptive support platform convenient for smart orchard operation and operation method thereof |
CN114194424A (en) * | 2021-12-10 | 2022-03-18 | 清华大学 | Gravity unloading device for satellite gripper and using method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788186A (en) * | 1997-02-10 | 1998-08-04 | Sail D. White Ent. Inc. | Helicopter load suspending apparatus |
CN103085992A (en) * | 2012-11-23 | 2013-05-08 | 北京理工大学 | Spatial microgravity simulation experiment system |
CN104787363A (en) * | 2015-05-06 | 2015-07-22 | 中国科学院沈阳自动化研究所 | Ground microgravity dynamic loading simulation mechanism for satellite |
CN106081173A (en) * | 2016-07-19 | 2016-11-09 | 哈尔滨工业大学 | Three-dimensional actively suspension spacecraft microgravity analog |
CN107855745A (en) * | 2017-10-24 | 2018-03-30 | 北京航空航天大学 | A kind of suspension type aero-engine principal unit centered assembling mechanical system |
CN208134653U (en) * | 2018-04-18 | 2018-11-23 | 上海微小卫星工程中心 | A kind of satellite high-precision payload multiple degrees of freedom microgravity debugging device |
-
2018
- 2018-04-18 CN CN201810348038.6A patent/CN108382615A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788186A (en) * | 1997-02-10 | 1998-08-04 | Sail D. White Ent. Inc. | Helicopter load suspending apparatus |
CN103085992A (en) * | 2012-11-23 | 2013-05-08 | 北京理工大学 | Spatial microgravity simulation experiment system |
CN104787363A (en) * | 2015-05-06 | 2015-07-22 | 中国科学院沈阳自动化研究所 | Ground microgravity dynamic loading simulation mechanism for satellite |
CN106081173A (en) * | 2016-07-19 | 2016-11-09 | 哈尔滨工业大学 | Three-dimensional actively suspension spacecraft microgravity analog |
CN107855745A (en) * | 2017-10-24 | 2018-03-30 | 北京航空航天大学 | A kind of suspension type aero-engine principal unit centered assembling mechanical system |
CN208134653U (en) * | 2018-04-18 | 2018-11-23 | 上海微小卫星工程中心 | A kind of satellite high-precision payload multiple degrees of freedom microgravity debugging device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110027732A (en) * | 2019-03-29 | 2019-07-19 | 北京卫星制造厂有限公司 | A kind of gravity unloading device in spacecraft lightweight components assembly and debugging process |
CN112255868A (en) * | 2020-10-30 | 2021-01-22 | 长光卫星技术有限公司 | Gravity unloading device for large off-axis three-mirror space camera |
CN113607391A (en) * | 2021-07-05 | 2021-11-05 | 陕西智星空间科技有限公司 | Testing device for simulating cubic star weightless ejection |
CN113812232A (en) * | 2021-10-18 | 2021-12-21 | 南京晓庄学院 | Self-adaptive support platform convenient for smart orchard operation and operation method thereof |
CN113812232B (en) * | 2021-10-18 | 2023-02-21 | 南京晓庄学院 | A kind of self-adaptive support platform and its operation method that facilitate the operation of smart orchard |
CN114194424A (en) * | 2021-12-10 | 2022-03-18 | 清华大学 | Gravity unloading device for satellite gripper and using method thereof |
CN114194424B (en) * | 2021-12-10 | 2023-10-31 | 清华大学 | Satellite gripper gravity unloading device and application method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108382615A (en) | A kind of satellite high-precision payload multiple degrees of freedom microgravity debugging device | |
CN208134653U (en) | A kind of satellite high-precision payload multiple degrees of freedom microgravity debugging device | |
CN107933980B (en) | Active and passive combined suspension zero gravity simulation system and simulation method | |
CN108801573B (en) | Spacecraft high-resolution camera optical axis jitter micro-vibration source ground simulation device | |
CN103818567B (en) | Design method of unconstrained suspension system with center of mass automatic alignment function | |
CN106586032B (en) | Spacecraft closes the method for adjustment of cabin status devices installation accuracy | |
CN104318828A (en) | Zero-gravity experiment system for spatial multi-dimensional unfolding mechanism | |
BR102012031814B1 (en) | APPARATUS AND METHOD FOR MAKING A STRUCTURE | |
CN110177754A (en) | Obtain improved ground waggon | |
CN103359300A (en) | Satellite in-orbit free boundary condition simulation device | |
CN104457794B (en) | A kind of control-moment gyro ground experiment gravity unloading mechanism | |
CN102862688A (en) | Sling-type low-gravity simulation tension control buffer mechanism and adjustment method | |
CN104029824B (en) | Large thruster arranges the posture adjustment assembly method bottom spacecraft | |
CN206556834U (en) | A kind of spatial pipeline system vibration test fixture | |
CN201107166Y (en) | Helicopter paddle calibration apparatus | |
CN105042295A (en) | Anti-skid tripod for optical mapping instrument | |
CN105710625A (en) | Six-degree-of-freedom posture alignment assembling device for heavy-weight equipment in narrow and small space | |
CN103447791B (en) | Based on code-disc mounting device and the attaching method of mechanical registeration | |
US4995272A (en) | Torsional suspension system for testing space structures | |
CN110577150B (en) | Suspension assembly system suitable for assembly of large-scale equipment in cabin in spacecraft | |
CN219098514U (en) | Rectangular air pipe lifting device | |
CN104568372B (en) | Wind tunnel experiment scale model supporting rack | |
CN106275525A (en) | A kind of sun wing plate air supporting supports ground simulation hanging expanding unit | |
CN103600624B (en) | Can the Mecanum wheel pedestal of passive adjustment | |
CN111232241A (en) | Manual turning device and system for measuring thrust line of unmanned aerial vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180810 |