[go: up one dir, main page]

CN108368750B - 使用嵌入式co2循环发电的系统和方法 - Google Patents

使用嵌入式co2循环发电的系统和方法 Download PDF

Info

Publication number
CN108368750B
CN108368750B CN201680062274.0A CN201680062274A CN108368750B CN 108368750 B CN108368750 B CN 108368750B CN 201680062274 A CN201680062274 A CN 201680062274A CN 108368750 B CN108368750 B CN 108368750B
Authority
CN
China
Prior art keywords
stream
power generation
heat
generation cycle
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201680062274.0A
Other languages
English (en)
Other versions
CN108368750A (zh
Inventor
R.J.阿拉姆
B.A.福里斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
8 Rivers Capital LLC
Original Assignee
8 Rivers Capital LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 8 Rivers Capital LLC filed Critical 8 Rivers Capital LLC
Publication of CN108368750A publication Critical patent/CN108368750A/zh
Application granted granted Critical
Publication of CN108368750B publication Critical patent/CN108368750B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/007Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid combination of cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • F02C1/06Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy using reheated exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/08Semi-closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/61Removal of CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/06Adiabatic compressor, i.e. without interstage cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本公开涉及用于发电的系统和方法。特别是,利用CO2作为工作流体的发电循环可与第二循环组合,其中来自发电循环的压缩CO2物流可被加热和膨胀以产生额外的功率并为发电循环提供额外的加热。

Description

使用嵌入式CO2循环发电的系统和方法
发明领域
本公开提供了其中利用CO2循环流体的发电循环能够在其效率方面得到改进的发电系统和方法。特别是,来自发电循环的压缩CO2物流可用独立热源加热并膨胀以产生额外的功率并为发电循环提供额外的加热。
背景技术
目前使用天然气燃料所用的最常见的发电循环是与余热回收蒸汽发生器(HRSG)组合的燃气涡轮机(GT)。这样的系统可称为天然气联合循环(natural gas firedcombined cycle,NGCC),其中先进的蒸汽Rankine 循环发电系统(HRSG+蒸汽涡轮机)利用了热涡轮机废热来形成蒸汽以用于进一步发电。NGCC单元通常被理解为主要利用天然气燃料发电的有效方法。当使用NGCC单元时,得自燃烧的CO2、水蒸气和氮氧化物(NOx)全部被排放到大气中。
在发电中利用CO2(特别是以超临界形式)作为工作流体已显示为非常有效的发电方法。参见,例如,授予Allam等的美国专利8,596,075,其公开内容通过引用并入本文,该专利描述了在回热式(recuperated)氧燃料Brayton循环发电系统中使用直接加热的CO2工作流体实际上将具有任何物流对大气的零排放。先前已提出CO2可在封闭循环中用作工作流体,其中使用间接热源和一个或多个热交换器,以中间加热将 CO2反复压缩和膨胀以用于发电。参见,例如,授予Held的美国专利 8,783,034。
多种手段已被用于提高这种发电方法中的效率。例如,已优化了回热式热交换器,诸如经由热气体压缩或通过外部热源。CO2循环的优化经常集中于使涡轮机功率输出最大化。尽管做出了这样的努力,在该领域中仍需要这样的发电系统和方法:其具有提高的功率和功率输出,同时限制或基本避免了将任何物流(例如,CO2、NOx以及其它燃烧相关产物)排放到大气。
发明内容
本公开涉及发电系统和方法,其中可使利用CO2作为工作物流的发电循环的效率最大化,同时提高发电能力而无需显著改变发电循环中所利用的设备。效率的改进可通过在可能通过内部热交换回收的加热之外向工作流体物流供应额外的加热来实现,所述额外的加热通过独立于发电循环的外部热源来供应。特别是,可使用独立热源加热至少一部分来自发电循环的高压再循环CO2物流,如此加热的物流可以多种方式再加入发电循环中以实现再循环CO2工作物流的额外加热。有利地,如此加热的再循环CO2物流可被膨胀用于额外的发电和用于调节如此加热的再循环CO2物流以便在避免需要额外设备的压力下再加入主发电循环。
在一些实施方式中,本公开因此提供了一种发电方法,包括:第一发电循环,其中将再循环CO2物流经历反复的压缩、加热、燃烧、发电膨胀和冷却;和第二发电循环,其中来自第一发电循环的压缩CO2用独立于第一发电循环的热源加热,膨胀用于发电,并与第一发电循环中的再循环CO2物流重新合并。特别是,在燃烧上游的第一发电循环中进行的加热可包括接收被提供给第二发电循环中的压缩再循环 CO2的热。例如,第一发电循环中的加热可包括将再循环CO2物流与冷却涡轮机排出物流逆行穿过回热式热交换器,并且可将在第二发电循环中加热的压缩CO2物流穿过回热式热交换器(或者其特定节段或单元)以便为第一发电循环中的再循环CO2物流提供额外的加热。作为另一个非限制性例子,第一发电循环可包括次热交换器,并且可将在第二发电循环中加热的压缩CO2物流与第一发电循环中的再循环CO2物流的一部分逆行穿过次热交换器,该部分随后在穿过回热式热交换器之前、之时或之后与其余再循环CO2物流重新合并。
第二发电循环中的热源可包括如下的任何设备或设备组合:其构造为对足以将如本文所述的压缩CO2物流加热至使该压缩CO2物流达到理想的热质量和热数量的物流提供加热。作为非限制性例子,第二发电循环中的热源可以是燃烧热源、太阳能热源、核热源、地热源和工业废热源中的一种或多种。热源可包括热交换器、热泵、发电设备和适合于形成、提供或传递必需热的元素(例如,管路等)的任何进一步组合。
在另一示例性实施方式中,根据本公开的发电方法可包括实施包括以下的第一循环:将包括再循环CO2的工作物流通过第一涡轮机膨胀以产生第一数量的功率;在回热式热交换器中从工作物流中提取热;压缩工作物流;在回热式热交换器中使用所提取的热再加热工作物流;并且在燃烧器中将压缩工作物流过热。所述方法还可包括实施如下的嵌入式循环(nested cycle):其中将来自第一循环的压缩工作物流用独立于燃烧器和回热式热交换器的热源加热,并通过第二涡轮机使其膨胀以产生第二数量的功率。特别是,来自嵌入式循环的膨胀工作物流可用于在压缩之后和过热之前向第一循环中的工作物流添加热。
在其它实施方式中,本公开可提供改进发电循环效率的方法。作为非限制性例子,这样的方法可包括运行发电循环以使压缩的再循环 CO2穿过燃烧器,其中碳质燃料用氧化剂燃烧以产生包括再循环CO2的排出物流;使排出物流通过涡轮机膨胀以发电并形成包括再循环 CO2的涡轮机排出物流;将涡轮机排出物流在回热式热交换器中冷却;将冷却的涡轮机排出物流穿过分离器以分离再循环CO2;压缩再循环 CO2;和通过将压缩再循环CO2与涡轮机排出物流逆行通过回热式热交换器而将其加热。这样的方法还可包括在高于可得自涡轮机排出物流的加热水平上对压缩再循环CO2添加进一步的加热,所述进一步加热通过以下方式提供:提取压缩再循环CO2的一部分,用独立于发电循环的热源加热所提取的压缩再循环CO2部分,和将来自所提取和加热的压缩再循环CO2的热传递到发电循环中其余部分的压缩再循环 CO2。更具体而言,这样的方法可包括将所提取和加热的压缩再循环 CO2穿过回热式热交换器以将热传递到其中的压缩再循环CO2。或者可选地,或另外地,这样的方法可包括将所提取和加热的压缩再循环 CO2穿过次热交换器以加热再循环CO2侧流,后者随后与回热式热交换器中的其余部分的压缩再循环CO2重新合并。在一些实施方式中,这样的方法可包括将所提取和加热的压缩再循环CO2通过第二涡轮机膨胀以发电。
在一个或多个实施方式中,发电方法可包括:运行第一发电循环,其中将CO2工作物流经历反复的发电膨胀、冷却、压缩、加热和燃烧;和运行第二发电循环,其中将来自第一发电循环的压缩CO2工作物流的至少一部分用独立于第一发电循环的热源加热,膨胀以发电,和与第一发电循环中的CO2工作物流重新合并。特别是,这样的发电方法的特征可在于可应用以下中的一种或多种:所述发电膨胀包括将CO2工作物流通过第一涡轮机膨胀以产生第一数量的功率;所述冷却包括在回热式热交换器中从CO2工作物流提取热;所述压缩包括用至少一个压缩机压缩CO2工作物流;所述加热包括在回热式热交换器中使用所提取的热来加热CO2工作物流;所述燃烧包括在燃烧器中将压缩CO2工作物流过热。
除以上之外,发电方法还可定义为可应用以下中的一种或多种:第一发电循环中的所述加热包括接收提供给第二发电循环中的CO2工作物流的热;第二发电循环中的热源是以下中的一种或多种:燃烧热源、太阳能热源、核热源、地热源和工业废热源;来自第二发电循环的膨胀工作物流用于在压缩之后和燃烧之前将热添加到第一发电循环中的CO2工作物流。
仍然另外地,发电可定义为,与第一发电循环中的CO2工作物流重新合并的来自第二发电循环的CO2工作物流为以下中的一种或多种:在第一发电循环中在所述冷却之后和所述压缩之前的输入;在所述压缩之后和所述加热之前的输入;在第一发电循环中的所述加热之中的输入。
在其它实施方式中,本公开还可提供发电系统。在特定实施方式中,发电系统可包括:压缩机,其构造为将CO2物流压缩至至少约100 巴巴(10MPa)的压力;燃烧器,其位于压缩机下游;第一涡轮机,其位于燃烧器下游和压缩机上游;第一热交换器,其设置为接收来自压缩机的物流和接收来自涡轮机的单独物流,并且构造为在这两个物流之间传递热;第二涡轮机,其位于压缩机下游;和第二热交换器,其设置为接收来自压缩机的物流和接收来自热源的单独物流。
在一些实施方式中,外部热源(诸如,燃气涡轮机)可与使用CO2作为工作流体的发电系统整合。在一些实施方式中,来自外部热源的物流(例如,燃气涡轮机的排出物流)可用加热的高压再循环CO2物流冷却。任选地,来自外部热源的物流可经由碳质燃料的燃烧而进一步加热。在一些实施方式中,通过外部热源加热的高压再循环CO2物流可在发电涡轮机中膨胀。涡轮机的排放(discharge)可构造为对应于独立发电循环(诸如,实施例中所描述的Allam循环)中的CO2再循环压缩机的的入口、中间或出口压力,而涡轮机入口温度可对应于独立发电循环中CO2泵的排放压力。在一些实施方式中,通过外部热源加热的高压再循环CO2物流可被加热至约400℃至约1500℃的温度,优选约700℃至约1300℃的温度。提供该温度范围的加热可特别有利于实现本文中所述的改进。
在其它实施方式中,处于升高温度的辅助涡轮机排放物流可用于在室温至500℃温度范围内提供加热CO2所需的附加热,这是因为与 500℃以上的比热相比约200巴(20MPa)至约400巴(40MPa)压力范围内的CO2具有高得多的比热。这种较低温度范围内的热添加可从提供到高压再循环CO2物流的加热来描绘(delineate),正如本文所另外描述的。尽管在较低温度范围内的热添加可用于改进燃烧循环的效率,但较低温度范围内的热添加不必与更大温度范围内的加热添加相组合。如果需要,使用来自低温空气分离装置(其提供了系统所需的氧气)的绝热主空气压缩机的热,在低于250℃温度范围内对高压再循环CO2物流进行额外加热可以是有利的。
本申请所公开的系统和方法在一些实施方式中的优点在于,提供了组合系统的能力以使得共享一件或多件设备。这种组合可提供多种益处,包括提供了提高的能量生产和提供了与提高的Kw(kW)容量相关的资本支出降低。另外,组合不必受限于某些重叠的运行温度范围。而是,在任何温度范围运行的系统可有利地与利用CO2作为工作物流的发电循环(如本文一般描述的)组合并实现所需的改进。
附图说明
因此在前述一般方面描述了公开内容,现在参考附图,其不必成比例绘制,其中:
图1是根据本公开的示例性发电系统和方法的流程图;和
图2是根据本公开的示例性实施方式的组合了燃气涡轮机和CO2循环的发电系统和方法的流程图。
具体实施方式
现在在下文中将参考其示例性实施方式更完整地描述本发明的主题。描述这些示例性实施方式以便使本公开彻底和完整,并且将主题范围完全传达给本领域技术人员。实际上,本主题可以许多不同形式实现,并且不应解释为受限于本文所述实施方式;而是,提供这些实施方式以使得满足适用法律要求。当在说明书和所附权利要求中使用时,单数形式“一/一个/一种(a/an)”包括复数指示物,除非在上下文中明确另外表明。
本公开提供了如下的系统和方法,其中利用CO2作为工作物流的第一发电循环可与其中同一CO2工作物流的至少一部分可经历额外处理以得到额外的电和/或热生产的第二或嵌入式发电循环相组合。在这样的系统和方法中可实现高效率。特别是,第一发电循环中的回热式热交换可得到改进,同时可实现额外的发电。第二发电循环中的额外处理可包括用独立于第一发电循环中所利用的任何加热的热源进行加热。第二发电循环与第一发电循环的组合的优点至少部分在于使循环交叉从而使一件或多件机械(machinery)可用于两个循环的能力。例如,在第一发电循环中利用的压缩机也可用作第二发电循环中的压缩机。本公开因此可表征为至少一个直接加热的CO2流与至少一个间接加热的CO2流的组合,该组合利用共享的涡轮机械以提供至少以下益处:提高的功率输出,同时实现回热式热交换器的优化。在一些实施方式中,间接加热的CO2流可包括来自间接加热流的CO2的至少一部分。因此,单个再循环CO2物流可经历压缩以形成如本文所定义的高压物流,拆分成间接加热物流和直接加热物流,并且在分别的加热步骤之后重新合并。或者可选地,单个再循环CO2物流可经历压缩以形成高压物流,高压再循环CO2物流的一部分可间接加热以形成间接加热的 CO2物流,并且间接加热的CO2物流可与其余的再循环CO2物流合并以形成总的再循环CO2物流,后者经历直接加热。
在一些实施方式中,来自第一发电循环的高压物流(例如,高压再循环CO2物流)可通过第二发电循环中的独立热源加热。加热物流随后被供应到用于发电的膨胀器中。膨胀物流随后可以多种方式插入回第一发电循环中,所述方式可有利地在可通过从冷却的涡轮机排出物流回收得到的加热之外对第一发电循环赋予加热。第二发电循环中的膨胀器的排放压力可适于使膨胀物流以适合插入点的压力插入到第一发电循环中。以该方式提供给第一发电循环的加热可以多种方式添加。例如,来自第二发电循环的膨胀物流可直接(部分或全部)用作回热式热交换器中的加热物流,其中高压再循环CO2在进入第一发电循环中的燃烧器之前被再加热。或者可选地,可间接使用来自第二发电循环的膨胀物流——例如,作为其它热交换器中的加热物流,由此单独物流被加热以用作回热式热交换器中的加热物流。
可用作根据本公开的第一发电循环的发电循环可包括其中在工作物流中使用CO2(特别是超临界CO2,或者sCO2)的任何系统和方法。作为非限制性例子,授予Allam等的美国专利8,596,075(其通过引用并入本文)描述了其中将再循环CO2物流直接加热并用于发电中的系统和方法。具体地,将再循环CO2物流在高温高压下提供,将其提供到燃烧器(其中将碳质燃料在氧气中燃烧),通过涡轮机膨胀以发电,在热交换器中冷却,纯化以去除水和任何其它杂质,加压,使用从涡轮机排出物获取的热再加热,并再次通入燃烧器以重复循环。这样的系统和方法的优点在于所有的燃料和燃烧衍生杂质、过量CO2和水作为液体或固体(例如,灰分)去除,并且实际上产生任何物流的大气零排放。该系统和方法通过例如在已对再循环CO2物流重新加压之后和在燃烧之前使用低温度水平(即,低于500℃)热输入而实现了高效率。
可用作第一发电循环的发电循环可包括比上述更多的步骤或更少的步骤,并且通常可包括其中将高压再循环CO2物流膨胀以发电并再次重新循环以进一步发电的任何循环。如本文所用的,高压再循环CO2物流可具有至少100巴(10MPa)、至少200巴(20MPa)或至少300巴(30 MPa)的压力。在一些实施方式中,高压再循环CO2物流可具有约100 巴(10MPa)至约500巴(50MPa)、约150巴至约450巴(45MPa)或约200 巴(20MPa)至约400巴(40MPa)的压力。因此当在本文中提及高压再循环CO2物流时可为处于前述范围内的压力下的CO2物流。这样的压力也适用于提及本文所述的其它高压物流时,诸如,包括CO2的高压工作物流。
在一些实施方式中,根据本公开的发电方法可包括组合第一发电循环与第二发电循环。特别是,第一发电循环可为如下循环:其中将再循环CO2物流经历反复的压缩、加热、燃烧、发电膨胀和冷却。第二发电循环可为如下的循环:其中来自第一发电循环的压缩再循环 CO2用独立于第一发电循环的热源加热,膨胀以发电,并与第一发电循环中的再循环CO2物流重新合并。
作为非限制性例子,在图1中说明了发电系统100及其使用方法。其中,第一发电循环110包括燃烧器115,在这里碳质燃料进料112和氧化剂进料114在再循环CO2物流143存在下燃烧,以形成高压高温的燃烧产物物流117,后者在涡轮机120中膨胀以便用发电机145发电。处于高温的来自涡轮机120的排出物流122在回热式热交换器125中冷却以产生低压低温的CO2物流127,将后者穿过分离器130,冷凝产物132(例如,水)和基本纯的再循环CO2物流133由其离开。将基本纯的再循环CO2物流133在压缩机135中压缩以形成高压再循环CO2物流137,将后者拆分为第一部分再循环CO2物流138和第二部分再循环CO2物流151。将第一部分再循环CO2物流138通入回热式热交换器125,在这里将其用冷却的涡轮机排出物流122加热。
第二发电循环150包括热源160,其可以是,例如,产生高温高压排出物流162的燃气涡轮机。将加热的排出物流162穿过热交换器155,其中将其用从第一发电循环110提取的加热的第二部分再循环CO2物流151冷却。尽管热源160被图示为单个元件,应理解可使用多个热源。例如,可使用并联的两个或更多个燃气涡轮机或者可使用不同类型热源的组合(例如,燃气涡轮机与废热源的组合)。离开热交换器155 的冷却物流157可如图示般放出。在其它实施方式中,冷却物流可经历一种或多种处理,和/或冷却物流157可被再循环至热源160以再次加热。
热源160可为适于提供具有足够高温度的物流的任何来源。特别是,热源可表征为独立于第一发电循环。独立热源可为在发电循环外部的热源,因此不以其它方式参与发电循环。例如,在图1中,图解了单个燃烧器115。第二燃烧器的添加将被理解为另一个热源但不被视为外部热源或独立于发电循环的热源,这是因为第二燃烧器将直接加热再循环CO2物流,并且通过燃烧产生的热将直接影响发电循环其它元件的操作参数。如在图1中可见,热源160独立于第一发电循环110,这是因为再循环CO2物流从未被热源160直接加热。而是,热源160 提供了通过穿过热交换器155的反向流而间接添加到再循环CO2物流的加热。作为非限制性例子,为再循环CO2物流提供间接加热的独立热源可为以下中的一种或多种:燃烧热源(例如,燃气涡轮机)、太阳能热源、核热源、地热源或工业废热源。在其它实施方式中,可使用基本不加热但与发热元件组合的来源来供应能量。例如,可将旋转元件 (例如,风力涡轮机)与热泵结合。
转向图1,在于热交换器155中加热之后,将加热的第二部分再循环CO2物流141通过涡轮机165膨胀以用发电机170发电。可以多种方式使用涡轮机排出物流142来为第一部分再循环CO2物流138提供额外加热。如图1中所说明的,使涡轮机排出物流142穿过回热式热交换器125以进一步加热第一部分再循环CO2物流138。尽管显示涡轮机排出物流142进入回热式热交换器的热端,应理解可根据涡轮机排出物流142的实际温度而以合适的加热水平将涡轮机排出物流142 输入回热式热交换器125。另外,在一些实施方式中,涡轮机排出物流 142不能被返回到热交换器125。而是,可将物流142输入到再循环 CO2物流133和低温CO2物流127中的一个或两个中。尽管图解了单个回热式热交换器125,可使用在不同温度范围运行的多个回热式热交换器,并且可将物流142输入到所述多个回热式热交换器中的任何一个或多个中。
在其它实施方式中,可在涡轮机排出物流142进入回热式热交换器142之前将其与第一部分再循环CO2物流138合并。在这样的实施方式中,例如,可对第二部分再循环CO2物流151和/或加热的第二部分再循环CO2物流141提供进一步压缩。
在仍然其它的实施方式中,涡轮机排出物流142可穿过独立的热交换器(在图1中未示出)。可在第一部分再循环CO2物流138进入回热式热交换器之前使其穿过独立的热交换器。在穿过回热式热交换器时获取的处于合适加热范围的来自第一部分再循环CO2物流138的侧流可被提取并穿过独立的热交换器,加热的侧流随后可与处于合适加热范围的第一部分再循环CO2物流重新合并。可将离开回热式热交换器 125的加热的再循环CO2物流143的全部或一部分穿过独立热交换器以进一步加热。在这些示例性实施方式中,在第二发电循环150中提供的热在仅得自涡轮机排出物流122的加热水平之外为第一部分再循环CO2物流138添加了进一步的加热。加热的再循环CO2物流143随后被输入到燃烧器115。
来自第二发电循环150的涡轮机排出物流142通过穿过回热式热交换器125而被冷却,并作为再循环CO2物流144离开其冷端,后者如所图示的那样与离开分离器130的基本纯的再循环CO2物流133重新合并。有利地,第二发电循环150中的涡轮机165可以理想的膨胀比运行,以使得涡轮机排出物流142的压力足够接近第一发电循环中重新合并再循环CO2物流的点处的所需压力。在一些实施方式中,离开回热式热交换器125的再循环CO2物流144可处于有利于进一步冷却的温度。这样的冷却可在分离器130中发生,例如,当再循环CO2物流144与物流127在低压下合并时。或者可选地,再循环CO2物流 144可穿过额外的冷却器(在图1中未示出)。
如上所例示的第二发电循环所提供的额外加热特别可用于减少或消除存在于回热式热交换器热端处的温差,该温差是进入回热式热交换器的涡轮机排出物与离开回热式热交换器的再循环CO2物流的不同比热容所致。本文的系统和方法适于通过提供必要数量和质量的热作为进一步加热而实现这样的益处。根据进入第二发电系统中的涡轮机的再循环CO2物流的已知流速、压力和温度,可选择膨胀比以使得离开第二发电系统中的涡轮机的再循环CO2物流提供最少量的第一发电循环中的回热式热交换器所需的热量和温度。
如上所述的系统和方法产生了嵌入在第一发电循环内的热力学闭合回路。允许嵌入式循环中的气体混合物与再循环CO2的直接燃烧流互相作用,这是因为两个循环能共享泵送设备,以及冷凝设备(如果需要的话)。例如,尽管在图1中显示物流144与物流133合并,物流144 还可以在进入分离器130之前和/或在进入冷凝器(在图1中未示出)之前与物流127合并。
第一发电循环和第二发电循环中的每个都能够独立实施以用于发电。然而,其组合提供了特别的益处。在第一发电循环中,诸如,如图1中所示,一个优点是能够从涡轮机排出物回收显著量的热以用于在压缩之后和在通入燃烧器之前重新加热再循环CO2物流。然而,效率可受限于添加足够热以使离开回热式热交换器热端的再循环CO2物流的温度升高到足够接近进入回热式热交换器热端的涡轮机排出物的温度的能力。对输入额外加热的需求在授予Allam等的美国专利 8,596,075中得到确认,并且确认了多个可能的低品位热(例如,以低于约500℃的温度)的来源。本公开还针对这种系统和方法做出以下改进:外部热源(即,完全独立于第一发热循环的热)可用于提供实现所需换热器效率所需要的额外加热,同时提供显著的发电增加而无需显著改变第一发电循环中所用的主要设备。在特定实施方式中,本公开具体提供了现有发电站/发电设备与利用再循环CO2物流作为工作物流的发电循环的整合。
在一些实施方式中,本发明的系统和方法可适合于改进发电循环的效率。为此,可如本文针对第一发电循环另外描述的来运行发电循环。效率得到改进的发电循环通常可包括其中将包括CO2的工作流体至少通过压缩、加热、膨胀和冷却的阶段反复循环的任何发电循环。在多个实施方式中,效率可被改进的发电循环可包括以下步骤的组合:
●将碳质燃料与氧化剂在再循环CO2物流存在下燃烧以提供温度为至少约500℃或至少约700℃(例如,约500℃至约2000℃或约600℃至约1500℃)和压力为至少约100巴(10MPa)或至少约200巴(20MPa) (例如,约100巴(10MPa)至约500巴(50MPa)或约150巴(15MPa)至约 400巴(40MPa))的燃烧产物物流;
●将高压再循环CO2物流(例如,在如上所述的压力下)通过涡轮机膨胀用于发电;
●将高温再循环CO2物流(例如,在如上所述的压力下)、尤其是涡轮机排放物流在回热式热交换器中冷却;
●将一种或多种燃烧产物(例如,水)在冷凝器中冷凝,所述燃烧产物具体存在于已经过膨胀和冷却的燃烧产物物流中;
●将水和/或其它物质与CO2分离以形成再循环CO2物流;
●将再循环CO2物流压缩至高压(例如,如上所述的),任选地在带有中间冷却的多个阶段中进行,从而提高物流密度;和
●将压缩再循环CO2物流在回热式热交换器中加热,特别是用冷却的涡轮机排出物流加热。
如上所述,改进的发电循环效率特别地可通过以下方式实现:以高于可得自涡轮机排出物流的加热水平(例如,在热交换器中的回热式加热)对压缩再循环CO2添加进一步的加热。本公开通过利用来自发电循环的再循环CO2物流的一部分来实现这样的进一步加热。有利地,可向至少利用与发电循环中所用者相同的压缩装置的发电循环添加嵌入式循环。特别地,可通过以下方式提供进一步的加热:提取压缩再循环CO2的一部分,用独立于发电循环的热源加热所提取的压缩再循环CO2部分,并且将来自所提取和加热的压缩再循环CO2的热传递到发电循环中其余部分的压缩再循环CO2。因此嵌入式循环可实质上类似于针对图1所描述的第二发电循环。
在其它实施方式中,本公开还涉及发电系统。特别是,这样的系统可包括如本文所述的构造为将CO2物流压缩至高压的一个或多个泵或压缩机。所述系统可包括构造为将压缩CO2物流分为至少第一部分CO2物流和第二部分CO2物流的一个或多个阀或分割器。所述系统可包括构造为用高温涡轮机排放物流加热第一部分CO2物流的第一热交换器(或包括多个节段的热交换单元)和构造为用来自外部(或独立)热源的加热物流加热第二部分CO2物流的第二热交换器。所述系统可包括构造为膨胀第一部分CO2物流以发电的第一涡轮机和构造为膨胀第二部分CO2物流以发电的第二涡轮机。所述系统可包括构造为将热从加热的第二部分CO2物流传递到第一部分CO2物流的一个或多个传递元件。所述系统可包括构造为在第一部分CO2物流存在下在氧化剂中燃烧碳质燃料的燃烧器。
本公开的系统可表征为与作为主发电系统和次发电系统的结构相关,这两个系统具有独立热源和至少一个共享的压缩元件(以及任选地至少一个共享的冷凝元件)。例如,根据本发明的系统可包括主发电系统,其包括如本文所述的构造为将CO2物流压缩至高压的压缩机,位于压缩机下游的燃烧器,位于燃烧器下游和压缩机上游的第一涡轮机,以及设置为接收来自压缩机的物流和接收来自涡轮机的单独物流的第一热交换器。任选地,分离器可设置于第一热交换器下游和压缩机上游。另外任选地,压缩机可设置在压缩机上游和第一热交换器下游。根据本发明的系统还可包括次发电系统,其包括来自主发电系统的压缩机,位于压缩机下游的第二涡轮机,以及设置为接收来自压缩机的物流和接收来自外部(或独立)热源的单独物流的第二热交换器。所述系统还可包括位于压缩机下游以及第一热交换器和第二热交换器中每个的上游的一个或多个阀或分割器。
实施例
通过以下实施例进一步说明本公开的实施方式,所述实施例被阐述以说明本文所公开的主题,并且不解释为限制性的。以下描述了利用嵌入式CO2循环的发电系统和方法的实施方式,如图2中所述。
根据燃气涡轮机与利用循环CO2工作物流的发电循环(诸如,在授予Allam等的美国专利8,596,075中所述的,所述发电循环在本文中被称为Allam循环)的组合来建模发电循环。工业燃气涡轮机是有效的低资金成本可靠系统,具有悠久的技术开发历史和大规模全球制造能力。 Allam循环以相同的资金成本提供了与NGCC系统几乎相同的效率,其优点在于在通常介于约100巴(10MPa)和约200巴(20MPa)之间的管道压力下从天然气中捕获作为基本上纯产品的全部CO2产量。在示例性实施方式中,通过以下方式将燃气涡轮机与Allam循环整合:消除 NGCC设备的整个蒸汽发电系统,利用热燃气涡轮机排出物来为使用来自Allam的CO2工作流体的额外发电提供热,并且为Allam循环提供所需低温热输入以实现最大效率。这种结合允许整合系统保持高效,同时还提供了每Kw(kW)装机容量的更低资金成本。在一些实施方式中,本公开的组合伴有基本上不明显的整合系统总体效率降低。然而,在其它实施方式中,总体效率基本不会降低。在仍然其它的实施方式中,本公开的组合可允许整合系统的总体效率提高。在本公开的多个实施方式中,资金花费的降低也可以是有利结果。
简言之,在示例性实施方式中,将来自燃气涡轮机的热排出物穿过类似于HRSG的热回收单元,其加热作为额外流从Allam循环CO2再循环压缩单元获取的高压(例如,300巴(30MPa)至500巴(50MPa)) CO2物流。将加热的CO2穿过发电涡轮机,后者的排放压力对应于Allam循环CO2泵的入口压力或者CO2循环压缩机的入口压力或中间压力。来自辅助涡轮机的排放流的温度在约200℃至约500℃范围内,其随后用于为Allam循环中的高压再循环CO2物流提供低温度水平的加热,以及燃气涡轮机排出物热交换器中所需的额外加热。任选地,可通过绝热运行低温氧气装置主空气压缩机而向总高压CO2物流输入额外低品位热。这释放了辅助膨胀器排放流的一部分以预热输入到燃气涡轮机和Allam循环燃烧器的总的天然气。任选地,可利用燃气涡轮机排出物中的剩余氧含量以额外的燃料气燃烧来升高燃气涡轮机排出物的温度。这提高了辅助发电涡轮机的入口温度和功率输出,这是因为高压CO2物流将在燃气涡轮机排出物加热器中被加热到更高温度。任选地,Allam循环高压涡轮机所需的温度在约300℃至约500℃范围内的冷却流可使用辅助涡轮机排出物流而不是主Allam循环涡轮机排出物流来加热。辅助燃气涡轮机入口温度可在约500℃至约900℃范围内。在这些温度下将不需要特别的内部或膜冷却或涡轮机叶片涂层。
整合系统的示例性实施方式在图2中显示,所图示的示例性模型是基于具有下表1中所示的单独性能特性的GE7FB燃气涡轮机与 Allam循环发电装置的整合(其中所有计算均基于使用纯甲烷(CH4)作为燃料气。
表1
Figure BDA0001638876660000141
Figure BDA0001638876660000151
参考图2,以ISO条件运行的GE 7FB燃气涡轮机1具有进入燃气涡轮机的压缩机的空气输入物流64和进入燃气涡轮机的燃烧器2的天然气物流3。该燃气涡轮机由相连的发电机5产生183.15MW的功率输出6。处于624℃的燃气涡轮机排出物4可在燃烧器26中通过燃烧额外的天然气物流27来加热,产生加热物流28,后者穿过热交换器 58以预热处于305巴和50℃的高压CO2再循环物流38,产生加热的输出物流29和冷却的排放物流34,后者可被排出。总体系统的效率并未因燃烧7FB燃气涡轮机排出物中的额外燃料以提高辅助高压涡轮机 7的入口温度而改变。高压CO2再循环物流38作为额外流从Allam循环CO2泵55(其与电动机56相连)的排放物获取。将涡轮机7与发电机 8相连,产生出口功率流9。在特定情况下,涡轮机7的输出压力为30 巴(3MPa),且入口压力为300巴(30MPa)。在燃烧器26中输入到7FB排出物的热是65.7MW。这导致7FB排出物流4由624℃被加热到 750℃。输出物流66处于457℃,且30巴(3MPa)的排放压力允许该物流在冷却后在Allam循环的两段式再循环CO2压缩机18中被重新压缩,后者的入口压力为29巴(2.9MPa)。涡轮机7的最有利的输出压力对应于再循环CO2压缩机18的入口、中间和输出压力,其根据冷却水 /周围冷却条件而从29巴(2.9MPa)入口到67巴(6.7MPa)至80巴(8MPa) 范围内的出口。
将涡轮机输出物流66整合到系统中从而以最佳方式预热高压CO2物流。物流66分为3部分。物流65进入热交换器68,在这里其用于将天然气物流(3a至3,14a至14,和27a至27)预热到425℃的输出温度并作为物流67离开。物流25进入热交换器60,在这里其用于加热从CO2泵55排放物流35获取的300巴(30MPa)50℃CO2物流36以产生用于Allam循环涡轮机17的400℃冷却物流62,以及424℃的外部加热再循环CO2物流59,后者在中间点进入主热交换器61。物流 30在中间点进入7FB排出物冷却器58并在较低温度部分提供了额外的加热,作为物流32离开。辅助燃气涡轮机排出物流66的这三项单独的热交换任务补偿了300巴(30MPa)CO2物流在较低温度下的比热的大幅度升高,并且涵盖了总加热高压CO2流所需的责任。
低温空气分离装置82产生了30巴(3MPa)压力和99.5mol%纯度的产物氧物流49。将空气进给物流83在与增压空气压缩机70相连的轴向压缩机69(二者均由电动机71驱动)中绝热压缩。全部进给空气物流在69中被压缩到5.7巴(0.57MPa)。使用226℃的空气输出78在热交换器73中将入口300巴(30MPa)CO2物流74从50℃加热至220℃,产生输出物流75。其分为两个物流76和77,它们分别被引入到热交换器60和58中的中间点,从而为加热高压CO2物流38和36提供最低温度水平的进一步热输入。处于65巴(6.5MPa)压力的主空气进给物流80和增压空气物流81在冷却到接近环境温度后进入ASU 82。
Allam循环系统包括具有相连燃烧器13的涡轮机17,其与发电机 16相连,产生输出15。天然气燃料物流11在由电动机10驱动的两段式中间冷却压缩机12中被压缩到320巴(32MPa)。天然气在68中预热。涡轮机直接与主CO2再循环压缩机18相连,后者具有两段和中间冷却器19。管线21的入口压力为29巴(2.9MPa),且管线22中的排放压力为67巴(6.7MPa)。排放流22在热交换器40中被冷却到接近环境温度,给出密度为约0.8kg/升的CO2泵入口流39。泵排放物(在主CO2再循环流37之外)提供了用于7FB燃气涡轮机的整合的额外物流36、38和 74。从天然气物流14的燃烧产生的净CO2以305巴(30.5MPa)的压力作为物流84排放出来以递送到管路。Allam循环单元61的主回热式热交换器将725℃的涡轮机排出物流24冷却至60℃,物流41,其具有来自添加到其上的7FB燃气涡轮机整合系统的物流33(物流33为来自热交换器60的物流31与来自热交换器58的物流32和来自热交换器68 的物流67的组合)。合并的物流42在冷却器43中被冷却到接近环境温度以产生物流44,后者进入分离器45,在这里冷凝的液体水被分离,作为物流46离去。29巴(2.9MPa)的出口CO2气体物流47分为主再循环CO2压缩机入口物流21和物流48,后者与纯氧物流49混合以产生具有25mol%O2含量的氧化剂物流50。该物流在由电动机52驱动的多级压缩机54(具有中间冷却器54a)中被压缩到305巴(30.5MPa)。排放物流51与再循环CO2物流37共同在热交换器61中用涡轮机排出物流24加热到715℃,形成进入燃烧器13的物流20和进入燃烧器排出物流以将涡轮机17入口温度调节到约1150℃的物流23。
所例示的整合提供了加入特定模式的燃气涡轮机,其导致燃气涡轮机排出物中可用热的有效利用。可使用更大和更小的燃气涡轮机。基于例示模型的性能值见表2。
表2
Figure BDA0001638876660000171
所例示的系统可用于压缩环境空气作为其工作流体的现有开放循环涡轮机单元的整合。其同样适用于使用氧-燃料燃烧器并使用冷却涡轮机排出物作为燃气涡轮机压缩机进料随后去除所产生的CO2、水添加和过量氧的封闭循环燃气涡轮机。对于该类型的燃气涡轮机,实际上可以从系统完全去除CO2。对于常规的开放循环燃气涡轮机,仅能去除得自Allam循环的CO2以进行封存。
本主题所属领域的技术人员将从上述说明书和相关附图中呈现的教导中意识到本发明的许多修改和其它实施方式具有前述说明和相关附图所呈现的教导的益处。因此,应理解本公开不限于在此描述的具体实施方式,并且修改和其它实施方式意图包含在所附权利要求的范围内。尽管这里使用了特定的术语,但其以一般和描述性的意义使用,并非是为限制的目的。

Claims (11)

1.一种发电方法,包括:
运行第一发电循环,其中使CO2工作物流经历反复的膨胀发电、冷却、压缩、加热和穿过燃烧器;和
运行第二发电循环,其中将来自第一发电循环的压缩CO2工作物流的至少一部分用独立于第一发电循环的热源加热,膨胀用于发电,并与第一发电循环中的CO2工作物流重新合并,
其中第一发电循环中的所述加热包括接收在第二发电循环中提供到CO2工作物流的热。
2.如权利要求1所述的发电方法,其中,在第一发电循环的运行中:
所述膨胀发电包括将CO2工作物流通过第一涡轮机膨胀以产生第一数量的功率;
所述冷却包括在回热式热交换器中从CO2工作物流中提取热;
所述压缩包括用至少一个压缩机压缩CO2工作物流;
所述加热包括使用在回热式热交换器中提取的热加热CO2工作物流;和
所述穿过燃烧器包括在燃烧器中将压缩CO2工作物流过热。
3.如权利要求1或权利要求2所述的发电方法,其中第二发电循环中的热源是以下中的一种或多种:燃烧热源、太阳能热源、核热源、地热源和工业废热源。
4.如权利要求1或权利要求2所述的发电方法,其中来自第二发电循环的膨胀工作物流用于在压缩之后和穿过燃烧器之前将热添加到第一发电循环中的CO2工作物流。
5.如权利要求1或权利要求2所述的发电方法,其中与第一发电循环中的CO2工作物流重新合并的来自第二发电循环的CO2工作物流是以下中的一个或多个:
在第一发电循环中的所述冷却之后和所述压缩之前的输入;
在所述压缩之后和所述加热之前的输入;
在第一发电循环中的所述加热过程中的输入。
6.改进发电循环效率的方法,所述方法包括:
运行发电循环以使压缩的再循环CO2穿过燃烧器,其中将碳质燃料用氧化剂燃烧以产生包括再循环CO2的排出物流;将排出物流通过涡轮机膨胀以发电并形成包括再循环CO2的涡轮机排出物流;将涡轮机排出物流在回热式热交换器中冷却;将经冷却的涡轮机排出物流穿过分离器以分离再循环CO2;压缩再循环CO2;和通过将压缩再循环CO2与涡轮机排出物流逆行通过回热式热交换器而将其加热;和
在高于可得自涡轮机排出物流的加热水平上对压缩再循环CO2添加进一步的加热,所述进一步的加热通过以下方式提供:提取压缩再循环CO2的一部分,用独立于发电循环的热源加热所提取部分的压缩再循环CO2,并将来自所提取和加热的压缩再循环CO2的热传递到发电循环中的其余部分的压缩再循环CO2
7.如权利要求6所述的方法,包括将所提取和加热的压缩再循环CO2穿过回热式热交换器以便将热传递到其中的压缩再循环CO2
8.如权利要求6所述的方法,包括将所提取和加热的压缩再循环CO2穿过次热交换器以加热再循环CO2侧流,后者随后在回热式热交换器中与其余部分的压缩再循环CO2合并。
9.如权利要求6所述的方法,包括将所提取和加热的压缩再循环CO2通过第二涡轮机膨胀以发电。
10.一种发电系统,包括:
压缩机,其构造为将CO2物流压缩到至少100巴(10MPa)的压力;
燃烧器,其位于压缩机下游;
第一涡轮机,其位于燃烧器下游和压缩机上游;
第一热交换器,其设置为接收来自压缩机的物流的一部分和接收来自第一涡轮机的单独物流,并且构造为在物流之间传递热;
第二热交换器,其设置为接收来自压缩机的物流的一部分和接收来自热源的单独物流并形成加热物流;
第二涡轮机,其位于压缩机下游,并且被设置成接收来自所述第二热交换器的加热物流。
11.如权利要求10所述的发电系统,其中用于第二热交换器所接收的单独物流的热源是以下中的一种或多种:燃烧热源、太阳能热源、核热源、地热源和工业废热源。
CN201680062274.0A 2015-09-01 2016-08-31 使用嵌入式co2循环发电的系统和方法 Expired - Fee Related CN108368750B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562212749P 2015-09-01 2015-09-01
US62/212,749 2015-09-01
PCT/US2016/049667 WO2017040635A1 (en) 2015-09-01 2016-08-31 Systems and methods for power production using nested co2 cycles

Publications (2)

Publication Number Publication Date
CN108368750A CN108368750A (zh) 2018-08-03
CN108368750B true CN108368750B (zh) 2020-08-18

Family

ID=56920934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680062274.0A Expired - Fee Related CN108368750B (zh) 2015-09-01 2016-08-31 使用嵌入式co2循环发电的系统和方法

Country Status (14)

Country Link
US (2) US10422252B2 (zh)
EP (1) EP3344856B1 (zh)
JP (1) JP6746689B2 (zh)
KR (1) KR20180044377A (zh)
CN (1) CN108368750B (zh)
AU (1) AU2016315932B2 (zh)
BR (1) BR112018003913A2 (zh)
CA (1) CA2996904C (zh)
EA (1) EA036299B1 (zh)
ES (1) ES2794776T3 (zh)
MX (1) MX2018002550A (zh)
MY (1) MY193222A (zh)
PL (1) PL3344856T3 (zh)
WO (1) WO2017040635A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102397390B1 (ko) 2016-11-09 2022-05-16 8 리버스 캐피탈, 엘엘씨 통합 수소 생산을 구비하는 동력 생산을 위한 시스템들 및 방법들
CN106595363B (zh) * 2016-12-09 2018-10-23 南京工业大学 高温钙循环热化学储能方法及系统
WO2018195182A2 (en) * 2017-04-18 2018-10-25 Moore Jared Thermal hydrogen
GB2598248B (en) 2017-05-05 2022-08-31 Ceox Tech Ltd Mechanical/electrical power generation system
WO2019016766A1 (en) * 2017-07-20 2019-01-24 8 Rivers Capital, Llc SYSTEM AND METHOD FOR GENERATING ENERGY WITH SOLID FUEL COMBUSTION AND CARBON CAPTURE
US11125159B2 (en) 2017-08-28 2021-09-21 8 Rivers Capital, Llc Low-grade heat optimization of recuperative supercritical CO2 power cycles
JP7297775B2 (ja) 2017-11-09 2023-06-26 8 リバーズ キャピタル,エルエルシー 水素および二酸化炭素の生成および分離のためのシステムおよび方法
CN112055775B (zh) * 2018-03-02 2023-04-28 八河流资产有限责任公司 利用二氧化碳工作流体的用于功率产生的系统和方法
KR102004700B1 (ko) * 2018-04-23 2019-07-29 고등기술연구원연구조합 순산소 연소형 초임계 이산화탄소 발전 시스템
IT201800005073A1 (it) * 2018-05-04 2019-11-04 Apparato, processo e ciclo termodinamico per la produzione di potenza con recupero di calore
CN109113823A (zh) * 2018-09-18 2019-01-01 西安天弘动力科技有限公司 一种s-co2能源动力转换系统
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
EP3990169A1 (en) 2019-06-26 2022-05-04 8 Rivers Capital, LLC Carbon dioxide capture, products incorporating or produced using captured carbon dioxide, and economic benefits associated with such products
EP4025778A4 (en) * 2019-09-05 2022-11-09 Mulligan, Karl Peter SYSTEMS AND METHODS FOR A PISTON ENGINE INCLUDING A RECIRCULATION SYSTEM USING SUPERCRITICAL CARBON DIOXIDE
WO2021230917A2 (en) 2019-12-30 2021-11-18 Exxonmobil Chemical Patents Inc. Hydrocarbon pyrolysis with less exhaust emission
WO2021138093A2 (en) 2019-12-30 2021-07-08 Exxonmobil Chemical Patents Inc. Pyrolysis product compression using co2 loop
US11629647B2 (en) 2020-03-27 2023-04-18 Raytheon Technologies Corporation Supercritical CO2 cycle and integrated auxiliary power for gas turbine engines
US11821699B2 (en) 2020-06-29 2023-11-21 Lummus Technology Llc Heat exchanger hanger system
IL299501A (en) 2020-06-29 2023-02-01 Lummus Technology Inc Heat exchanger system
US11719141B2 (en) 2020-06-29 2023-08-08 Lummus Technology Llc Recuperative heat exchanger system
US12253024B2 (en) 2020-06-29 2025-03-18 Lummus Technology Llc Recuperative heat exchanger system
CN112178977B (zh) * 2020-09-30 2021-10-15 山东大学 一种冷热电三联供系统及方法
US20230366350A1 (en) * 2020-10-06 2023-11-16 King Abdullah University Of Science And Technology Waste heat recovery system
CA3174275A1 (en) * 2021-05-12 2023-08-03 Darrell Ford Systems and methods for generating gas and power
CN113669121B (zh) * 2021-08-26 2022-06-14 江南大学 一种电厂凝汽系统及工艺方法
CN113686032B (zh) * 2021-08-31 2022-06-03 南京工业大学 一种氢氧化钙热化学储能反应器及其储能方法
WO2023089570A1 (en) 2021-11-18 2023-05-25 8 Rivers Capital, Llc Apparatus for hydrogen production
US12040513B2 (en) 2022-11-18 2024-07-16 Carbon Ventures, Llc Enhancing efficiencies of oxy-combustion power cycles
WO2024121760A1 (en) * 2022-12-06 2024-06-13 8 Rivers Capital, Llc Power production cycle with alternating heat sources
US12251658B2 (en) 2022-12-21 2025-03-18 Aleksandr Kravets System, apparatus, and method for capture of multi-pollutants from industrial gases and/or exhausts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802366A (zh) * 2007-09-28 2010-08-11 财团法人电力中央研究所 涡轮设备和发电设备
CN103443403A (zh) * 2011-03-22 2013-12-11 埃克森美孚上游研究公司 用于在低排放联合涡轮机系统中捕获二氧化碳的系统和方法
CN104822992A (zh) * 2012-10-17 2015-08-05 图耶尔有限公司 热力发动机

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499721A (en) * 1979-07-23 1985-02-19 International Power Technology, Inc. Control system for Cheng dual-fluid cycle engine system
US4498289A (en) 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
JPH076399B2 (ja) * 1991-06-28 1995-01-30 株式会社テクニカルアソシエート 密閉サイクル式熱機関
US5345756A (en) 1993-10-20 1994-09-13 Texaco Inc. Partial oxidation process with production of power
DE4407619C1 (de) * 1994-03-08 1995-06-08 Entec Recycling Und Industriea Verfahren zur schadstoffarmen Umwandlung fossiler Brennstoffe in technische Arbeit
JP2880925B2 (ja) * 1995-02-20 1999-04-12 株式会社東芝 水素燃焼ガスタービンプラント
US6170264B1 (en) 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
US5724805A (en) 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
EP0831205B1 (en) 1996-09-20 2004-05-12 Kabushiki Kaisha Toshiba Power generation system capable of separating and recovering carbon dioxide
DE59811106D1 (de) 1998-02-25 2004-05-06 Alstom Technology Ltd Baden Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage mit einem CO2-Prozess
EP0953748B1 (de) * 1998-04-28 2004-01-28 ALSTOM (Switzerland) Ltd Kraftwerksanlage mit einem CO2-Prozess
US20030031670A1 (en) 1999-11-08 2003-02-13 Jack R. Wands Diagnosis and treatment of malignant neoplasms
US6196000B1 (en) 2000-01-14 2001-03-06 Thermo Energy Power Systems, Llc Power system with enhanced thermodynamic efficiency and pollution control
WO2001090548A1 (en) 2000-05-12 2001-11-29 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
DE10064270A1 (de) 2000-12-22 2002-07-11 Alstom Switzerland Ltd Verfahren zum Betrieb einer Gasturbinenanlage sowie eine diesbezügliche Gasturbinenanlage
DE50207526D1 (de) 2001-10-01 2006-08-24 Alstom Technology Ltd Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken
US6871502B2 (en) 2002-02-15 2005-03-29 America Air Liquide, Inc. Optimized power generation system comprising an oxygen-fired combustor integrated with an air separation unit
EP1576266B1 (en) 2002-11-15 2014-09-03 Clean Energy Systems, Inc. Low pollution power generation system with ion transfer membrane air separation
US6820428B2 (en) * 2003-01-30 2004-11-23 Wylie Inventions Company, Inc. Supercritical combined cycle for generating electric power
US7021063B2 (en) 2003-03-10 2006-04-04 Clean Energy Systems, Inc. Reheat heat exchanger power generation systems
NO321817B1 (no) * 2003-11-06 2006-07-10 Sargas As Renseanlegg for varmekraftverk
US20090117024A1 (en) * 2005-03-14 2009-05-07 Geoffrey Gerald Weedon Process for the Production of Hydrogen with Co-Production and Capture of Carbon Dioxide
US7726114B2 (en) * 2005-12-07 2010-06-01 General Electric Company Integrated combustor-heat exchanger and systems for power generation using the same
US7942008B2 (en) * 2006-10-09 2011-05-17 General Electric Company Method and system for reducing power plant emissions
US7685820B2 (en) * 2006-12-08 2010-03-30 United Technologies Corporation Supercritical CO2 turbine for use in solar power plants
EP2119891B1 (en) * 2008-05-15 2023-09-13 Mitsubishi Heavy Industries, Ltd. Control of working fluid flow of a two-shaft gas turbine
DE102008026267A1 (de) * 2008-06-02 2009-12-03 Uhde Gmbh Modifizierter Gas- und Dampfturbinenprozess mit integrierter Kohledruckvergasung
DE102008063055A1 (de) * 2008-12-23 2010-08-05 Uhde Gmbh Verfahren zur Nutzung des aus einem Vergaser stammenden Synthesegases
US20100175385A1 (en) * 2009-01-12 2010-07-15 Plant Adam D Method for Increasing Turndown Capability in an Electric Power Generation System
US9068743B2 (en) 2009-02-26 2015-06-30 8 Rivers Capital, LLC & Palmer Labs, LLC Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US8986002B2 (en) 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US8596075B2 (en) * 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
CA2753822C (en) 2009-02-26 2014-02-18 Palmer Labs, Llc Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device
US10018115B2 (en) * 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US20100326084A1 (en) * 2009-03-04 2010-12-30 Anderson Roger E Methods of oxy-combustion power generation using low heating value fuel
WO2010121255A1 (en) * 2009-04-17 2010-10-21 Echogen Power Systems System and method for managing thermal issues in gas turbine engines
SG178160A1 (en) * 2009-09-01 2012-03-29 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US8327641B2 (en) 2009-12-01 2012-12-11 General Electric Company System for generation of power using solar energy
US20110138766A1 (en) * 2009-12-15 2011-06-16 General Electric Company System and method of improving emission performance of a gas turbine
KR101775608B1 (ko) * 2010-01-21 2017-09-19 파워다인, 인코포레이티드 탄소질 물질로부터의 스팀의 발생 방법
EP2395205A1 (en) * 2010-06-10 2011-12-14 Alstom Technology Ltd Power Plant with CO2 Capture and Compression
BR112012031153A2 (pt) * 2010-07-02 2016-11-08 Exxonmobil Upstream Res Co sistemas e métodos de geração de energia de triplo-ciclo de baixa emissão
US9410481B2 (en) * 2010-09-21 2016-08-09 8 Rivers Capital, Llc System and method for high efficiency power generation using a nitrogen gas working fluid
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
GB2484080A (en) 2010-09-28 2012-04-04 Univ Cranfield Power generation using a pressurised carbon dioxide flow
CA2812634A1 (en) * 2010-10-05 2012-04-12 Alstom Technology Ltd Combined cycle power plant with co2 capture and method to operate it
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
JP5788024B2 (ja) * 2011-01-24 2015-09-30 アルストム テクノロジー リミテッドALSTOM Technology Ltd 煙道ガス再循環を行うガスタービンユニット用の混合エレメント
US9546814B2 (en) 2011-03-16 2017-01-17 8 Rivers Capital, Llc Cryogenic air separation method and system
TW201303143A (zh) 2011-03-22 2013-01-16 Exxonmobil Upstream Res Co 低排放渦輪機系統中用於攫取二氧化碳及產生動力的系統與方法
US9869272B1 (en) * 2011-04-20 2018-01-16 Martin A. Stuart Performance of a transcritical or supercritical CO2 Rankin cycle engine
EP2551477A1 (de) * 2011-07-29 2013-01-30 Siemens Aktiengesellschaft Verfahren und fossilbefeuerte Kraftwerksanlage zur Rückgewinnung eines Kondensats
ES2574263T3 (es) * 2011-11-02 2016-06-16 8 Rivers Capital, Llc Sistema de generación de energía y procedimiento correspondiente
US20130118145A1 (en) 2011-11-11 2013-05-16 8 River Capital, LLC Hybrid fossil fuel and solar heated supercritical carbon dioxide power generating system and method
US20130145773A1 (en) * 2011-12-13 2013-06-13 General Electric Company Method and system for separating co2 from n2 and o2 in a turbine engine system
US20130160456A1 (en) * 2011-12-22 2013-06-27 General Electric Company System and method for controlling oxygen emissions from a gas turbine
US20130199150A1 (en) * 2012-02-03 2013-08-08 General Electric Company Steam injection assembly for a combined cycle system
MX358190B (es) * 2012-02-11 2018-08-08 Palmer Labs Llc Reaccion de oxidacion parcial con enfriamiento de ciclo cerrado.
MX358183B (es) * 2012-04-02 2018-08-08 Powerphase Llc Sistema, metodo y aparato para inyeccion de aire comprimido para motores de turbina de combustion interna.
US20130269334A1 (en) * 2012-04-17 2013-10-17 Chandrashekhar Sonwane Power plant with closed brayton cycle
TWI630021B (zh) * 2012-06-14 2018-07-21 艾克頌美孚研究工程公司 用於co捕捉/利用和n製造之變壓吸附與發電廠的整合
WO2014036258A1 (en) * 2012-08-30 2014-03-06 Enhanced Energy Group LLC Cycle turbine engine power system
AU2013332312B2 (en) * 2012-10-16 2016-05-05 Exxonmobil Upstream Research Company Increasing combustibility of low BTU natural gas
US9145795B2 (en) * 2013-05-30 2015-09-29 General Electric Company System and method of waste heat recovery
EP2853718B1 (en) * 2013-09-27 2020-06-24 Ansaldo Energia IP UK Limited Method of exhaust gas treatment for a gas turbine system and exhaust gas treatment assembly
EP2863033B1 (en) * 2013-10-21 2019-12-04 Ansaldo Energia IP UK Limited Gas turbine with flexible air cooling system and method for operating a gas turbine
JP6067535B2 (ja) * 2013-10-24 2017-01-25 株式会社東芝 蒸気タービンプラントの起動方法
US20150113940A1 (en) * 2013-10-25 2015-04-30 Mada Energie Ltd Systems, methods, and devices for liquid air energy storage in conjunction with power generating cycles
KR101485020B1 (ko) * 2013-12-12 2015-01-29 연세대학교 산학협력단 초임계유체 냉각 가스터빈 장치
WO2015130898A1 (en) * 2014-02-26 2015-09-03 Peregrine Turbine Technologies, Llc Power generation system and method with partially recuperated flow path
JP6359308B2 (ja) * 2014-03-25 2018-07-18 三菱日立パワーシステムズ株式会社 配管の破損検出方法及び装置
TWI691644B (zh) * 2014-07-08 2020-04-21 美商八河資本有限公司 具改良效率之功率生產方法及系統
US9951689B2 (en) * 2014-07-17 2018-04-24 Saudi Arabian Oil Company Integrated calcium looping combined cycle for sour gas applications
KR20170054411A (ko) * 2014-08-22 2017-05-17 페레그린 터빈 테크놀로지스, 엘엘씨 동력 발생 시스템 및 동력 발생 방법
AU2015315557B2 (en) * 2014-09-09 2020-01-02 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
JP6439948B2 (ja) * 2014-12-25 2018-12-19 三菱重工コンプレッサ株式会社 コンバインドサイクルプラント
KR101619135B1 (ko) * 2015-05-08 2016-05-11 한국에너지기술연구원 이젝터 냉동 사이클을 이용한 발전 시스템
EP3106645B1 (en) * 2015-06-15 2018-08-15 Rolls-Royce Corporation Gas turbine engine driven by sco2 cycle with advanced heat rejection
EP3121409B1 (en) * 2015-07-20 2020-03-18 Rolls-Royce Corporation Sectioned gas turbine engine driven by sco2 cycle
EP3153690A1 (en) * 2015-10-08 2017-04-12 Rolls-Royce Corporation All co2 aircraft
WO2017087166A1 (en) * 2015-11-17 2017-05-26 Exxonmobil Research And Engineering Company Dual integrated psa for simultaneous power plant emission control and enhanced hydrocarbon recovery
ES2925773T3 (es) * 2016-04-21 2022-10-19 8 Rivers Capital Llc Sistema y método para la oxidación de gases de hidrocarburos
MX2019002409A (es) * 2016-08-30 2019-07-04 8 Rivers Capital Llc Metodo de separacion de aire criogenico para producir oxigeno a presiones altas.
KR102451300B1 (ko) * 2016-09-13 2022-10-07 8 리버스 캐피탈, 엘엘씨 부분 산화를 이용한 동력 생산을 위한 시스템 및 방법
US20180133647A1 (en) * 2016-11-15 2018-05-17 8 Rivers Capital, Llc Treatment of impurities in process streams
US20180171870A1 (en) * 2017-02-17 2018-06-21 Farhad Salek Electrocatalytic system for reducing pullution and fuel consumption
WO2019016766A1 (en) * 2017-07-20 2019-01-24 8 Rivers Capital, Llc SYSTEM AND METHOD FOR GENERATING ENERGY WITH SOLID FUEL COMBUSTION AND CARBON CAPTURE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802366A (zh) * 2007-09-28 2010-08-11 财团法人电力中央研究所 涡轮设备和发电设备
CN103443403A (zh) * 2011-03-22 2013-12-11 埃克森美孚上游研究公司 用于在低排放联合涡轮机系统中捕获二氧化碳的系统和方法
CN104822992A (zh) * 2012-10-17 2015-08-05 图耶尔有限公司 热力发动机

Also Published As

Publication number Publication date
AU2016315932A1 (en) 2018-04-12
JP2018529047A (ja) 2018-10-04
EP3344856B1 (en) 2020-05-06
WO2017040635A1 (en) 2017-03-09
US10422252B2 (en) 2019-09-24
ES2794776T3 (es) 2020-11-19
US20170058712A1 (en) 2017-03-02
CA2996904C (en) 2021-11-02
US11174759B2 (en) 2021-11-16
CN108368750A (zh) 2018-08-03
MX2018002550A (es) 2018-08-15
US20190376419A1 (en) 2019-12-12
PL3344856T3 (pl) 2020-11-02
EA036299B1 (ru) 2020-10-23
JP6746689B2 (ja) 2020-08-26
CA2996904A1 (en) 2017-03-09
BR112018003913A2 (pt) 2018-09-25
EA201890631A1 (ru) 2018-09-28
EP3344856A1 (en) 2018-07-11
KR20180044377A (ko) 2018-05-02
MY193222A (en) 2022-09-26
AU2016315932B2 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
CN108368750B (zh) 使用嵌入式co2循环发电的系统和方法
CN109296460B (zh) 用于加热再循环气流的方法及发电方法
KR102669709B1 (ko) 회수식 초임계 co2 동력 사이클들의 저등급의 열 최적화
JP7592893B2 (ja) 燃料から機械エネルギーへの高効率変換のためのプラント
Allam et al. Systems and methods for power production using nested CO2 cycles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200818

Termination date: 20210831