CN108365181A - A kind of nickelic layered cathode material method of modifying - Google Patents
A kind of nickelic layered cathode material method of modifying Download PDFInfo
- Publication number
- CN108365181A CN108365181A CN201711178891.XA CN201711178891A CN108365181A CN 108365181 A CN108365181 A CN 108365181A CN 201711178891 A CN201711178891 A CN 201711178891A CN 108365181 A CN108365181 A CN 108365181A
- Authority
- CN
- China
- Prior art keywords
- lini
- transition metal
- refers
- metal oxide
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000010406 cathode material Substances 0.000 title claims description 8
- 239000000463 material Substances 0.000 claims abstract description 53
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 49
- 229910000314 transition metal oxide Inorganic materials 0.000 claims abstract description 44
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 15
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 239000011247 coating layer Substances 0.000 claims abstract description 10
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 239000007772 electrode material Substances 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 239000011149 active material Substances 0.000 claims abstract description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 20
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 claims description 16
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 claims description 10
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910013716 LiNi Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910011628 LiNi0.7Co0.15Mn0.15O2 Inorganic materials 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 238000000498 ball milling Methods 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 150000007524 organic acids Chemical class 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910010124 Li2MnP2O7 Inorganic materials 0.000 claims 2
- 229910007786 Li2WO4 Inorganic materials 0.000 claims 2
- 239000005416 organic matter Substances 0.000 claims 2
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910011131 Li2B4O7 Inorganic materials 0.000 claims 1
- 229910002983 Li2MnO3 Inorganic materials 0.000 claims 1
- 229910010171 Li2MoO4 Inorganic materials 0.000 claims 1
- 229910007562 Li2SiO3 Inorganic materials 0.000 claims 1
- 229910007626 Li2SnO3 Inorganic materials 0.000 claims 1
- 229910007848 Li2TiO3 Inorganic materials 0.000 claims 1
- 229910007822 Li2ZrO3 Inorganic materials 0.000 claims 1
- 229910012599 Li3NbO4 Inorganic materials 0.000 claims 1
- 229910001367 Li3V2(PO4)3 Inorganic materials 0.000 claims 1
- 229910010699 Li5FeO4 Inorganic materials 0.000 claims 1
- 229910010092 LiAlO2 Inorganic materials 0.000 claims 1
- 229910011279 LiCoPO4 Inorganic materials 0.000 claims 1
- 229910010584 LiFeO2 Inorganic materials 0.000 claims 1
- 229910013637 LiNbO2 Inorganic materials 0.000 claims 1
- 229910003327 LiNbO3 Inorganic materials 0.000 claims 1
- 229910013100 LiNix Inorganic materials 0.000 claims 1
- 229910012463 LiTaO3 Inorganic materials 0.000 claims 1
- 229910012985 LiVO3 Inorganic materials 0.000 claims 1
- 229910013428 LiZnPO4 Inorganic materials 0.000 claims 1
- 229910002651 NO3 Inorganic materials 0.000 claims 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 238000005253 cladding Methods 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 238000011068 loading method Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 238000012986 modification Methods 0.000 claims 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 claims 1
- 239000002243 precursor Substances 0.000 abstract description 11
- 239000007774 positive electrode material Substances 0.000 abstract description 6
- 238000002156 mixing Methods 0.000 abstract description 5
- 239000010405 anode material Substances 0.000 abstract description 2
- 239000011241 protective layer Substances 0.000 abstract description 2
- 238000003756 stirring Methods 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000003570 air Substances 0.000 description 11
- 229910015568 LiNi0.8Co0.15Mn0.05O2 Inorganic materials 0.000 description 9
- 229910052723 transition metal Inorganic materials 0.000 description 9
- 150000003624 transition metals Chemical class 0.000 description 9
- 239000011572 manganese Substances 0.000 description 6
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- AZFUOHYXCLYSQJ-UHFFFAOYSA-N [V+5].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O Chemical compound [V+5].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O AZFUOHYXCLYSQJ-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- -1 Al 2 O 3 Chemical class 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910017119 AlPO Inorganic materials 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 2
- 229920008712 Copo Polymers 0.000 description 2
- 229910010093 LiAlO Inorganic materials 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910001463 metal phosphate Inorganic materials 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种高镍层状正极材料改性方法,包括如下步骤:(1)将高镍层状过渡金属氧化物材料与含有M‑O和M‑P的前驱体均匀混合;(2)通过化学反应,将在LiNixX1‑xO2(x>0.5)表面形成的M‑O和M‑P前驱体包覆层转化,在活性材料表面形成一层纳米尺度、均匀分布的M‑O和M‑P包覆层;(3)对步骤(2)得到的包覆层进行热处理,得到电极材料表面含有M‑O和/或L‑M‑O、以及M‑P和/或L‑M‑P的锂电池阳极材料。所述方法制备的正极材料不仅可以大大降低表面锂残留的含量,还能在材料表现形成惰性保护层和锂导电层,从而改善材料的倍率性能和循环稳定性,提高安全性能。
A method for modifying a high-nickel layered positive electrode material, comprising the steps of: (1) uniformly mixing a high-nickel layered transition metal oxide material with a precursor containing M-O and M-P; (2) by chemical reaction , convert the M-O and M-P precursor coating layer formed on the surface of LiNixX1-xO2 (x>0.5), and form a layer of nano-scale, uniformly distributed M-O and M-P coating on the surface of the active material layer; (3) the coating layer obtained in step (2) is heat-treated to obtain a lithium battery containing M-O and/or L-M-O and M-P and/or L-M-P on the surface of the electrode material anode material. The positive electrode material prepared by the method can not only greatly reduce the residual lithium content on the surface, but also form an inert protective layer and a lithium conductive layer on the surface of the material, thereby improving the rate performance and cycle stability of the material, and improving the safety performance.
Description
技术领域technical field
本发明涉及一种锂离子电池电极材料,具体涉及一种高镍层状正极材料及其制备方法。The invention relates to a lithium-ion battery electrode material, in particular to a high-nickel layered positive electrode material and a preparation method thereof.
背景技术:Background technique:
随着工业的发展和汽车数量的快速增加,温室气体的排放日益严重,导致全球变暖,成为亟待解决的全球性问题。化石燃料的消耗是造成这一问题的重要原因之一,因此,开发和利用可再生能源日益迫切。然而,以太阳能、风能为代表的可再生能源是间歇性的。因此,需要选择一种高效的能量存储体系。基于重量、存储容量,大小和持久性等因素,锂离子电池成为最主要的能量存储设备之一。With the development of industry and the rapid increase in the number of automobiles, the emission of greenhouse gases is becoming more and more serious, leading to global warming and becoming a global problem that needs to be solved urgently. The consumption of fossil fuels is one of the important reasons causing this problem, therefore, it is increasingly urgent to develop and utilize renewable energy. However, renewable energy represented by solar energy and wind energy is intermittent. Therefore, it is necessary to choose an efficient energy storage system. Based on factors such as weight, storage capacity, size, and durability, lithium-ion batteries have emerged as one of the most dominant energy storage devices.
锂离子电池主要由正极、负极、电解液和隔膜等几部分组成。目前,主要的正极材料包括层状LiCoO2、层状LiNi1-x-yCoxMnyO2,层状LiNi0.8Co0.15Al0.05O2、尖晶石Li2MnO4和橄榄石LiFePO4等。其中,层状结构LiNi1-x-yCoxMnyO2(1-x-y>0.5)和LiNi0.8Co0.15Al0.05O2高镍三元材料具有大于180mA·hg-1的放电比容量和接近3.8V的操作电压,可能达到800Wh·kg-1的能量密度,因此,有望成为下一代锂离子电池正极材料之一。Lithium-ion batteries are mainly composed of positive electrode, negative electrode, electrolyte and separator. At present, the main cathode materials include layered LiCoO 2 , layered LiNi 1-xy Co x Mny O 2 , layered LiNi 0.8 Co 0.15 Al 0.05 O 2 , spinel Li 2 MnO 4 and olivine LiFePO 4 and so on. Among them, the layered structure LiNi 1-xy Co x Mn y O 2 (1-xy>0.5) and LiNi 0.8 Co 0.15 Al 0.05 O 2 high-nickel ternary materials have a discharge specific capacity greater than 180mA·hg -1 and close to 3.8 The operating voltage of V may reach an energy density of 800 Wh kg -1 , so it is expected to become one of the cathode materials for next-generation lithium-ion batteries.
尽管存在明显的优势,高镍三元正极材料仍然存在很多的问题,阻碍了其实际应用。表面锂残留是几个严重问题之一。表面锂残留的主要组成是LiOH、Li2CO3等杂质。在操作过程中,锂杂质能够与电解液反应,生成CO2、N2等气体,造成电池涨气,引起电池性能的恶化。此外,在电池制备的混浆过程中,当pH较高时,能够引起浆料的凝胶。因此,在制备电池前,必须有效去除表面锂残留。目前,去除锂残留的方法是冲洗,然后再二次烧结。这种工艺可部分去除锂残留,但是在空气中二次烧结时,会引起容量保持率的下降。此外,这种处理方法并不能有效保护活性材料表面。Despite the obvious advantages, high-nickel ternary cathode materials still have many problems that hinder their practical application. Surface lithium residue is one of several serious problems. The main components of lithium residues on the surface are impurities such as LiOH and Li 2 CO 3 . During operation, lithium impurities can react with the electrolyte to generate gases such as CO 2 and N 2 , causing gas inflation in the battery and deterioration of battery performance. In addition, during the mixing process of battery preparation, when the pH is high, the gel of the slurry can be caused. Therefore, it is necessary to effectively remove the lithium residue on the surface before fabricating the battery. Currently, the method for removing lithium residues is flushing followed by secondary sintering. This process can partially remove lithium residues, but it will cause a decline in capacity retention when secondary sintering in air. In addition, this treatment method cannot effectively protect the surface of the active material.
高镍过渡金属氧化物正极材料的另外一个重要的问题是,在循环过程中的表面结构的恶化。这种结构恶化由阳离子混排引起,从材料表面开始,并逐步向内层蔓延。在高操作电压和高温下,更加明显。此外,伴随着结构恶化,O2从晶格中释放出来,在高温或者高电压操作时,释氧更加剧烈。当O2与有机电解液接触并遇到明火时,极易发生燃烧和爆炸。因此,抑制阳离子混排,减少释氧,对提高材料的循环性能和安全性能,十分重要。Another important issue for high-nickel transition metal oxide cathode materials is the deterioration of the surface structure during cycling. This structural deterioration is caused by cation mixing, starting from the surface of the material and gradually spreading to the inner layer. It is more pronounced at high operating voltage and high temperature. In addition, with the deterioration of the structure, O2 is released from the lattice, and the oxygen release is more intense when operating at high temperature or high voltage. When O2 comes into contact with organic electrolyte and encounters an open flame, it is very easy to burn and explode. Therefore, it is very important to suppress cation mixing and reduce oxygen release to improve the cycle performance and safety performance of materials.
表面包覆是改善材料性能的一种有效方法,目前的包覆材料主要是金属氧化物(如Al2O3、MgO、ZnO、SiO2等),金属氟化物(AlF3、MgF2等)和金属磷酸盐(AlPO4、FePO4等),这些包覆材料大部分属于惰性包覆,其本质是在活性材料表面形成一种惰性层,将材料表面与有机电解液隔绝,起到物理保护层和HF清除剂的作用。这种表面改性方法能够提高材料的结构稳定性,因而改善循环稳定性和安全性,但是可能会造成倍率性能的下降;另外一种包覆方法是锂导电包覆,是在活性材料表面形成一种锂导电层,主要有LiAlO2、Li2MnO3、Li2SiO3、Li3PO4等,不仅可以提高材料的结构稳定性,同时能够改善材料的倍率性能。但这种方法,在包覆过程中,往往需要另外的锂源与包覆前驱体再次发生反应,并不能有效降低表面锂杂质的含量。Surface coating is an effective method to improve material properties. The current coating materials are mainly metal oxides (such as Al 2 O 3 , MgO, ZnO, SiO 2, etc.), metal fluorides (AlF 3 , MgF 2 , etc.) and metal phosphates (AlPO 4 , FePO 4 , etc.), most of these coating materials are inert coatings, and their essence is to form an inert layer on the surface of the active material to isolate the surface of the material from the organic electrolyte for physical protection. layer and the role of HF scavengers. This surface modification method can improve the structural stability of the material, thereby improving cycle stability and safety, but may cause a decrease in the rate performance; another coating method is lithium conductive coating, which is formed on the surface of the active material. A lithium conductive layer mainly includes LiAlO 2 , Li 2 MnO 3 , Li 2 SiO 3 , Li 3 PO 4 , etc., which can not only improve the structural stability of the material, but also improve the rate performance of the material. However, this method often requires another lithium source to react with the coating precursor again during the coating process, which cannot effectively reduce the content of lithium impurities on the surface.
发明内容:Invention content:
本发明提供了一种针对高镍层状正极材料的表面改性方法,通过这种方法,不仅可以大大降低表面锂残留的含量,还能在材料表现形成惰性保护层和锂导电层,从而改善材料的倍率性能和循环稳定性,提高安全性能。The invention provides a surface modification method for high-nickel layered positive electrode materials. Through this method, not only can the content of residual lithium on the surface be greatly reduced, but also an inert protective layer and a lithium conductive layer can be formed on the material performance, thereby improving The rate performance and cycle stability of the material improve the safety performance.
本发明提供一种改性高镍层状正极材料,包括高镍层状过渡金属氧化物体相层以及由M-O和/或L-M-O、以及M-P和/或L-M-P组成的复合包覆层,所述高镍层状过渡金属氧化物可用LiNixX1-xO2表示,其中0.5<x<1,X是Co,Mn,Al等元素中的一种或几种;所述M-O化合物是指含M元素的氧化物;所述M-P是指含有M元素的磷酸盐;所述L-M-O化合物是指M元素的锂氧化物;所述L-M-P是指M元素的锂磷酸盐。The invention provides a modified high-nickel layered positive electrode material, comprising a high-nickel layered transition metal oxide bulk layer and a composite coating layer composed of MO and/or LMO, and MP and/or LMP, the high-nickel Layered transition metal oxides can be represented by LiNi x X 1-x O 2 , where 0.5<x<1, X is one or more of elements such as Co, Mn, Al; the MO compound refers to the element containing M The oxide; the MP refers to the phosphate containing the M element; the LMO compound refers to the lithium oxide of the M element; the LMP refers to the lithium phosphate of the M element.
所述M元素选自Mg、Ca、Y、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Ru、Co、Rh、Ni、Cu、Zn、B、Al、Ga、Si、Ge、Sn元素中的一种或者几种,优选是V、Mn、Fe、Co、Zr、B中的一种或多种。The M element is selected from Mg, Ca, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Ru, Co, Rh, Ni, Cu, Zn, B, Al, Ga, One or more of Si, Ge, Sn elements, preferably one or more of V, Mn, Fe, Co, Zr, B.
所述高镍层状过渡金属氧化物正极材料优选是LiNi0.6Co0.2Mn0.2O2、LiNi0.7Co0.15Mn0.15O2、LiNi0.8Co0.1Mn0.1O2、LiNi0.8Co0.15Al0.05O2、LiNi0.9Co0.05Mn0.05O2。The high-nickel layered transition metal oxide cathode material is preferably LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.7 Co 0.15 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.9 Co 0.05 Mn 0.05 O 2 .
所述M-O化合物是Al2O3、Co3O4、TiO2、TiO、Ti2O3、ZrO2、SnO2、SnO、MnO2、B2O3、SiO2、V2O5、V2O3、VO2、VO、Nb2O5、NbO、NbO2、Ta2O5、MoO3、RuO2、Fe3O4、Cr2O3、Ga2O3、GeO2、Rh2O3、P2O5、WO3中的一种或多种,优选是V2O5、V2O3、VO2、Fe3O4、Co3O4、ZrO2、B2O3中的一种或多种。The MO compound is Al 2 O 3 , Co 3 O 4 , TiO 2 , TiO, Ti 2 O 3 , ZrO 2 , SnO 2 , SnO, MnO 2 , B 2 O 3 , SiO 2 , V 2 O 5 , V 2 O 3 , VO 2 , VO, Nb 2 O 5 , NbO, NbO 2 , Ta 2 O 5 , MoO 3 , RuO 2 , Fe 3 O 4 , Cr 2 O 3 , Ga 2 O 3 , GeO 2 , Rh 2 One or more of O 3 , P 2 O 5 , WO 3 , preferably V 2 O 5 , V 2 O 3 , VO 2 , Fe 3 O 4 , Co 3 O 4 , ZrO 2 , B 2 O 3 one or more of.
所述M-P是AlPO4、CoPO4、Co3(PO4)2、Mn3(PO4)2、FePO4、Fe3(PO4)2、Mg3(PO4)2、Zn3(PO4)2、VPO4、Ni3(PO4)2Cu3(PO4)2、Ca3(PO4)2、YPO4、BPO4、W(PO4)2、TiPO4中的一种或多种,优选是CoPO4、Co3(PO4)2、FePO4、Fe3(PO4)2、VPO4、W(PO4)2中的一种或多种。The MP is AlPO 4 , CoPO 4 , Co 3 (PO 4 ) 2 , Mn 3 (PO 4 ) 2 , FePO 4 , Fe 3 (PO 4 ) 2 , Mg 3 (PO 4 ) 2 , Zn 3 (PO 4 ) 2 , VPO 4 , Ni 3 (PO 4 ) 2 Cu 3 (PO 4 ) 2 , Ca 3 (PO 4 ) 2 , YPO 4 , BPO 4 , W(PO 4 ) 2 , TiPO 4 species, preferably one or more of CoPO 4 , Co 3 (PO 4 ) 2 , FePO 4 , Fe 3 (PO 4 ) 2 , VPO 4 , W(PO 4 ) 2 .
本发明还提供一种高镍层状正极材料改性方法,包括如下步骤:The present invention also provides a method for modifying a high-nickel layered positive electrode material, comprising the following steps:
(1)将高镍层状过渡金属氧化物材料与含有M-O和M-P的前驱体均匀混合;(1) uniformly mix the high-nickel layered transition metal oxide material with the precursor containing M-O and M-P;
(2)通过化学反应,将在LiNixX1-xO2(x>0.5)表面形成的M-O和M-P前驱体包覆层转化,在活性材料表面形成一层纳米尺度、均匀分布的M-O和M-P包覆层;(2) Transform the coating layer of MO and MP precursors formed on the surface of LiNi x X 1-x O 2 (x>0.5) through chemical reaction, and form a layer of nanoscale, uniformly distributed MO and MP on the surface of the active material. MP coating;
(3)对步骤(2)得到的包覆层进行热处理,得到电极材料表面含有M-O和/或L-M-O、以及M-P和/或L-M-P的锂电池阳极材料。(3) heat-treating the coating layer obtained in step (2) to obtain a lithium battery anode material containing M-O and/or L-M-O and M-P and/or L-M-P on the surface of the electrode material.
步骤(1)中所述前驱体包覆层是采用涂覆或者浸渍的方法获得。The precursor coating layer in step (1) is obtained by coating or impregnation.
步骤(2)中所述化学反应指将步骤(1)得到的负载M-O和M-P前驱体包覆层的高镍层状过渡金属氧化物材料,放入磷酸或可溶性磷酸盐的溶液中,使得M-P前驱物发生沉淀反应,得到M-P包覆层;然后在高温下分解,得到M-O包覆层,所述分解反应温度是400-600℃。The chemical reaction described in step (2) refers to putting the high-nickel layered transition metal oxide material loaded with M-O and M-P precursor coating layers obtained in step (1) into a solution of phosphoric acid or soluble phosphate, so that M-P The precursor undergoes a precipitation reaction to obtain an M-P coating layer; and then decomposes at a high temperature to obtain an M-O coating layer, and the decomposition reaction temperature is 400-600°C.
步骤(3)中所述热处理气氛是在氧气、空气或者惰性气体气氛下进行;所述热处理温度是指500-750℃,所述热处理时间是4-8h;所述惰性气体如氮气、氩气。The heat treatment atmosphere in step (3) is carried out under oxygen, air or inert gas atmosphere; the heat treatment temperature refers to 500-750°C, and the heat treatment time is 4-8h; the inert gas is such as nitrogen, argon .
所述M-O的前驱体是指可生成M-O化合物的,含有M元素的化合物,具体包括含有M的盐和含M的有机物中的一种或者多种,优选含M的硝酸盐、碳酸盐、有机酸盐。The precursor of M-O refers to a compound containing M elements that can generate M-O compounds, specifically including one or more of M-containing salts and M-containing organic substances, preferably M-containing nitrates, carbonates, Organic acid salts.
所述M-P的前驱体是指可生成M-P化合物的,含有M元素的前驱体,具体包括含有M的盐、含M的酸、和含M的有机物中的一种或者多种,优选含M的有机酸。The M-P precursor refers to a precursor containing M elements that can generate M-P compounds, specifically including one or more of M-containing salts, M-containing acids, and M-containing organic substances, preferably M-containing organic acids.
所述L-M-O是指含有M元素的锂氧化物中的一种或多种,优选LiAlO2、Li2TiO3、Li2ZrO3、Li2SiO3、Li2MnO3、Li2MnP2O7、Li3BO3、Li3B7O12、Li2B4O7、LiNbO2、LiNbO3、Li3NbO4、LiTaO3、Li2MoO4、Li2WO4、LiVO3、Li2SnO3、LiFeO2、Li5FeO4、Li2WO4等。The LMO refers to one or more of lithium oxides containing M elements, preferably LiAlO 2 , Li 2 TiO 3 , Li 2 ZrO 3 , Li 2 SiO 3 , Li 2 MnO 3 , Li 2 MnP 2 O 7 , Li 3 BO 3 , Li 3 B 7 O 12 , Li 2 B 4 O 7 , LiNbO 2 , LiNbO 3 , Li 3 NbO 4 , LiTaO 3 , Li 2 MoO 4 , Li 2 WO 4 , LiVO 3 , Li 2 SnO 3. LiFeO 2 , Li 5 FeO 4 , Li 2 WO 4 , etc.
所述Li-M-P是指含有M元素的锂磷酸盐中的一种或者多种,优选LiCoPO4、Li2MnP2O7、Li2Fe3(P2O7)2、LiZnPO4、Li3V2(PO4)3、Li2Ti2(PO4)3等。The Li-MP refers to one or more of lithium phosphates containing M elements, preferably LiCoPO 4 , Li 2 MnP 2 O 7 , Li 2 Fe 3 (P 2 O 7 ) 2 , LiZnPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 Ti 2 (PO 4 ) 3 , etc.
步骤(2)所述的混合方式是指研磨、球磨、搅拌加热、旋转蒸发方式中的一种或者多种。The mixing method described in step (2) refers to one or more of grinding, ball milling, stirring and heating, and rotary evaporation.
本发明的优点:Advantages of the present invention:
本发明通过电极材料表面改性,大大降低了电极材料表面锂杂质残留,提高材料的结构稳定性,因而改善循环稳定性和安全性,同时避免了电极倍率性能的下降。The present invention greatly reduces the residue of lithium impurities on the surface of the electrode material by modifying the surface of the electrode material, improves the structural stability of the material, thereby improving cycle stability and safety, while avoiding the decline in the rate performance of the electrode.
附图说明Description of drawings
图1:本发明所述技术方案的技术路线图;Fig. 1: the technical roadmap of the technical solution of the present invention;
图2:Zr表面改性的LiNi0.8Co0.1Mn0.1O2电极材料扫描电镜图像;Figure 2: SEM images of Zr surface-modified LiNi 0.8 Co 0.1 Mn 0.1 O 2 electrode materials;
图3:Zr表面改性的LiNi0.8Co0.1Mn0.1O2电极材料扫描电镜图像;Figure 3: SEM images of Zr surface-modified LiNi 0.8 Co 0.1 Mn 0.1 O 2 electrode materials;
图4:表面改性LiNi0.6Co0.2Mn0.2O2的电学性能;Figure 4: Electrical properties of surface-modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ;
图5:表面改性LiNi0.6Co0.2Mn0.2O2的倍率性能;Figure 5: Rate performance of surface-modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ;
具体实施例specific embodiment
实施例1:Example 1:
取20g高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2,将1g硝酸钒溶解于100ml水中,加热至95℃并不断搅拌,超声波分散30min;加入磷酸溶液,继续用超声波搅拌至水分完全挥发;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2转移到马弗炉中,在空气气氛,450℃下热处理2h,升温到600℃处理5h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2。Take 20g of high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 , dissolve 1g of vanadium nitrate in 100ml of water, heat to 95°C and keep stirring, ultrasonically disperse for 30min; add phosphoric acid solution, continue ultrasonically stirring until The moisture is completely volatilized; the obtained transition metal-loaded high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 is transferred to a muffle furnace, heat-treated at 450 ° C for 2 h in an air atmosphere, and then heated to 600 ° C for 5 h , to obtain a surface-modified high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
实施例2:Example 2:
取15g高镍层状过渡金属氧化物材料LiNi0.8Co0.15Al0.05O2,将0.5g硝酸锆和0.2g硝酸锰溶解于100ml水中,加热至90℃并不断搅拌,超声波分散20min;加入磷酸溶液,继续用超声波搅拌至水分完全挥发;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Al0.05O2转移到马弗炉中,在空气气氛,400℃下热处理1h,升温到650℃处理3h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Al0.05O2。Take 15g of high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Al 0.05 O 2 , dissolve 0.5g of zirconium nitrate and 0.2g of manganese nitrate in 100ml of water, heat to 90°C and keep stirring, ultrasonically disperse for 20min; add phosphoric acid solution , continue to use ultrasonic stirring until the water is completely volatilized; the obtained transition metal-loaded high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Al 0.05 O 2 is transferred to a muffle furnace and heat-treated at 400 ° C for 1 h in an air atmosphere. The temperature was raised to 650° C. for 3 hours to obtain a surface-modified high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Al 0.05 O 2 .
实施例3:Example 3:
取25g高镍层状过渡金属氧化物材料LiNi0.6Co0.2Mn0.2O2,将1g硼酸和0.2g硝酸钒溶解于100ml水中,加热至80℃并不断搅拌,超声波分散40min;加入磷酸氢铵溶液,继续用超声波搅拌至水分完全挥发;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.6Co0.2Mn0.2O2转移到马弗炉中,在氧气气氛,450℃下热处理2h,升温到700℃处理3h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.6Co0.2Mn0.2O2。Take 25g of high-nickel layered transition metal oxide material LiNi 0.6 Co 0.2 Mn 0.2 O 2 , dissolve 1g of boric acid and 0.2g of vanadium nitrate in 100ml of water, heat to 80°C and keep stirring, ultrasonically disperse for 40min; add ammonium hydrogen phosphate solution , and continue to use ultrasonic stirring until the water is completely volatilized; the obtained transition metal-loaded high-nickel layered transition metal oxide material LiNi 0.6 Co 0.2 Mn 0.2 O 2 is transferred to a muffle furnace and heat-treated at 450 ° C for 2 h in an oxygen atmosphere. The temperature was raised to 700° C. for 3 hours to obtain a surface-modified high-nickel layered transition metal oxide material LiNi 0.6 Co 0.2 Mn 0.2 O 2 .
实施例4:Example 4:
取15g高镍层状过渡金属氧化物材料LiNi0.8Co0.15Mn0.05O2,将0.5g硝酸锆溶解于100ml水中,加热至90℃并不断搅拌,超声波分散30min;加入磷酸溶液,继续用超声波搅拌至水分完全挥发;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Mn0.05O2转移到马弗炉中,在空气气氛,400℃下热处理2h,升温到700℃处理5h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Mn0.05O2。Take 15g of high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Mn 0.05 O 2 , dissolve 0.5g of zirconium nitrate in 100ml of water, heat to 90°C and keep stirring, ultrasonically disperse for 30min; add phosphoric acid solution, continue ultrasonically stirring until the moisture is completely volatilized; the obtained transition metal-loaded high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Mn 0.05 O 2 is transferred to a muffle furnace, heat-treated at 400 ° C for 2 h in an air atmosphere, and then heated to 700 ° C After 5 hours, a surface-modified high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Mn 0.05 O 2 was obtained.
实施例5:Example 5:
取30g高镍层状过渡金属氧化物材料LiNi0.8Co0.15Mn0.05O2,将1g硝酸锆和0.5g硼酸溶解于100ml水中,加热至95℃并不断搅拌,超声波分散30min;加入磷酸溶液,继续用超声波搅拌至水分完全挥发;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Mn0.05O2转移到马弗炉中,在空气气氛,400℃下热处理2h,升温到650℃处理4h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Mn0.05O2。Take 30g of high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Mn 0.05 O 2 , dissolve 1g of zirconium nitrate and 0.5g of boric acid in 100ml of water, heat to 95°C and keep stirring, ultrasonically disperse for 30min; add phosphoric acid solution, continue Stir with ultrasonic waves until the water is completely volatilized; the obtained transition metal-loaded high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Mn 0.05 O 2 is transferred to a muffle furnace, heat-treated at 400 °C for 2 h in an air atmosphere, and heated to After treatment at 650°C for 4 hours, a surface-modified high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Mn 0.05 O 2 was obtained.
实施例6:Embodiment 6:
取30g高镍层状过渡金属氧化物材料LiNi0.8Co0.15Mn0.05O2,将0.8g硝酸铁溶解于100ml水中,加热至95℃并不断搅拌,超声波分散30min;加入磷酸溶液,继续用超声波搅拌至水分完全挥发;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Mn0.05O2转移到马弗炉中,在空气气氛,440℃下热处理2h,升温到600℃处理4h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Mn0.05O2。Take 30g high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Mn 0.05 O 2 , dissolve 0.8g ferric nitrate in 100ml water, heat to 95°C and keep stirring, ultrasonically disperse for 30min; add phosphoric acid solution, continue ultrasonically stirring until the moisture is completely volatilized; the obtained transition metal-loaded high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Mn 0.05 O 2 is transferred to a muffle furnace, heat-treated at 440°C for 2 hours in an air atmosphere, and then heated to 600°C for treatment After 4 hours, a surface-modified high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Mn 0.05 O 2 was obtained.
实施例7:Embodiment 7:
取30g高镍层状过渡金属氧化物材料LiNi0.8Co0.15Al0.05O2,将1.2g硝酸钴溶解于100ml水中,加热至95℃并不断搅拌,超声波分散30min;加入磷酸溶液,继续用超声波搅拌至水分完全挥发;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Al0.05O2转移到马弗炉中,在空气气氛,450℃下热处理2h,升温到700℃处理5h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.8Co0.15Al0.05O2。Take 30g of high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Al 0.05 O 2 , dissolve 1.2g of cobalt nitrate in 100ml of water, heat to 95°C and keep stirring, ultrasonically disperse for 30min; add phosphoric acid solution, continue to stir with ultrasonic until the moisture is completely volatilized; the obtained transition metal-loaded high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Al 0.05 O 2 is transferred to a muffle furnace, heat-treated at 450°C for 2 hours in an air atmosphere, and then heated to 700°C for treatment After 5 hours, a surface-modified high-nickel layered transition metal oxide material LiNi 0.8 Co 0.15 Al 0.05 O 2 was obtained.
实施例8:Embodiment 8:
取40g高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2,将1.2g硝酸钴和0.5g硼酸溶解于100ml水中,加热至95℃并不断搅拌,超声波分散30min;加入磷酸溶液,继续用超声波搅拌至水分完全挥发;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2转移到马弗炉中,在空气气氛,450℃下热处理2h,升温到700℃处理5h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2。Take 40g of high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 , dissolve 1.2g of cobalt nitrate and 0.5g of boric acid in 100ml of water, heat to 95°C and keep stirring, ultrasonically disperse for 30min; add phosphoric acid solution, Continue to use ultrasonic stirring until the water is completely volatilized; the obtained transition metal-loaded high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 is transferred to a muffle furnace, heat-treated at 450 ° C for 2 h in an air atmosphere, and the temperature is raised to Treat at 700° C. for 5 hours to obtain a surface-modified high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
对比例1Comparative example 1
其他过程都与实施例1相同,但只在高镍层状过渡金属氧化物材料负载M金属氧化物。具体制备过程如下:Other processes are the same as in Example 1, but only the M metal oxide is loaded on the high-nickel layered transition metal oxide material. Concrete preparation process is as follows:
取20g高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2,将1g硝酸钒溶解于100ml水中,加热至95℃并不断搅拌,超声波分散30min;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2转移到马弗炉中,在空气气氛,450℃下热处理2h,升温到600℃处理5h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2。Take 20g of high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 , dissolve 1g of vanadium nitrate in 100ml of water, heat to 95°C with constant stirring, and ultrasonically disperse for 30min; the obtained high-nickel layer loaded with transition metal The transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 was transferred to a muffle furnace, heat-treated at 450 ° C for 2 h in an air atmosphere, and then heated to 600 ° C for 5 h to obtain a surface-modified high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
对比例2Comparative example 2
其他过程都与实施例1相同,但只在高镍层状过渡金属氧化物材料负载M金属磷酸盐。具体制备过程如下:Other processes are the same as in Example 1, but only M metal phosphate is loaded on the high-nickel layered transition metal oxide material. Concrete preparation process is as follows:
取20g高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2,将1g硝酸钒和5g磷酸溶解于100ml水中,加热至95℃并不断搅拌,超声波分散30min;得到的负载过渡金属的高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2转移到马弗炉中,在空气气氛,450℃下热处理2h,升温到600℃处理5h,得到表面改性的高镍层状过渡金属氧化物材料LiNi0.8Co0.1Mn0.1O2。Take 20g of high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 , dissolve 1g of vanadium nitrate and 5g of phosphoric acid in 100ml of water, heat to 95°C with constant stirring, and ultrasonically disperse for 30min; The high-nickel layered transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 was transferred to a muffle furnace, heat-treated at 450 °C for 2 h in an air atmosphere, and then heated to 600 °C for 5 h to obtain a surface-modified high-nickel layered Transition metal oxide material LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
对本发明所述技术方案得到的实施例1-8和按照现有技术制备的对比例1-2进行放电容量和放电循环保持率的性能测试,结果如下表所示:The embodiment 1-8 obtained by the technical solution of the present invention and the comparative example 1-2 prepared according to the prior art carry out the performance test of discharge capacity and discharge cycle retention rate, and the results are shown in the following table:
从上表的实验数据可以看到,采用本发明的方法制备的电极材料具有比较好的放电性能,同时耐老化放电性能也明显获得了改进,取得了显著的进步。It can be seen from the experimental data in the above table that the electrode material prepared by the method of the present invention has relatively good discharge performance, and at the same time, the aging resistance discharge performance has also been significantly improved, and significant progress has been made.
以上通过具体实施例说明了根据本发明的锂电池电极。本领域普通技术人员容易理解,实施本发明的一些细节描述并不局限于上述说明。文中虽然仅提供了针对锂电池电极的实施例,但是,本领域技术人员,在得到本发明的教导后,会很容易想到本发明的精神同样可以应用于其他二次电池,因此,本发明的保护范围并不局限于锂电池电极,而应以权利要求书的限定为准。The lithium battery electrode according to the present invention has been described above through specific examples. Those of ordinary skill in the art can easily understand that some detailed descriptions for implementing the present invention are not limited to the above descriptions. Although the text only provides the embodiment aimed at lithium battery electrodes, those skilled in the art, after obtaining the teaching of the present invention, can easily imagine that the spirit of the present invention can be applied to other secondary batteries as well. Therefore, the present invention The scope of protection is not limited to lithium battery electrodes, but should be defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711178891.XA CN108365181B (en) | 2017-11-23 | 2017-11-23 | Modification method of high-nickel layered positive electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711178891.XA CN108365181B (en) | 2017-11-23 | 2017-11-23 | Modification method of high-nickel layered positive electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108365181A true CN108365181A (en) | 2018-08-03 |
CN108365181B CN108365181B (en) | 2021-09-21 |
Family
ID=63009990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711178891.XA Active CN108365181B (en) | 2017-11-23 | 2017-11-23 | Modification method of high-nickel layered positive electrode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108365181B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110010877A (en) * | 2019-04-15 | 2019-07-12 | 常熟理工学院 | Surface-coated high-nickel ternary material and preparation method and application thereof |
CN110085858A (en) * | 2019-05-20 | 2019-08-02 | 山东省科学院能源研究所 | A kind of nickelic tertiary cathode material of niobium-phosphor codoping and its preparation method and application |
CN110931733A (en) * | 2019-11-13 | 2020-03-27 | 北京理工大学 | Surface manganese doping and Li-Mn-PO4Coated high-nickel positive electrode material and preparation method and application thereof |
WO2021088643A1 (en) * | 2019-11-06 | 2021-05-14 | 湖南杉杉能源科技股份有限公司 | Lithium ion battery positive electrode composite material and preparation method therefor |
CN114551839A (en) * | 2022-02-25 | 2022-05-27 | 中南大学 | A kind of single crystal type cobalt-free high nickel cathode material pre-lithiation and preparation method thereof |
CN114649531A (en) * | 2020-12-18 | 2022-06-21 | 中国石油化工股份有限公司 | Modified electrode and preparation method and application thereof |
CN116253370A (en) * | 2023-05-04 | 2023-06-13 | 华鼎国联四川动力电池有限公司 | Ternary positive electrode material coated with lithium ferrite and preparation method thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1399364A (en) * | 2001-06-14 | 2003-02-26 | 三星Sdi株式会社 | Active material for battery and its prepn process |
CN1627550A (en) * | 2003-12-11 | 2005-06-15 | 比亚迪股份有限公司 | Anode material of lithium ion cell and preparation method |
CN102569775A (en) * | 2011-12-23 | 2012-07-11 | 东莞新能源科技有限公司 | Lithium-ion secondary battery and positive electrode active material thereof |
CN102637877A (en) * | 2012-05-07 | 2012-08-15 | 昆明理工大学 | Lithium ion battery anode material and manufacturing method thereof |
CN103247797A (en) * | 2013-05-20 | 2013-08-14 | 深圳市贝特瑞新能源材料股份有限公司 | Positive pole material for lithium ion battery and preparation method of positive pole material |
CN103311530A (en) * | 2012-03-13 | 2013-09-18 | 三星康宁精密素材株式会社 | Positive active material, method of preparing the same, and lithium secondary battery using the same |
CN103490060A (en) * | 2013-10-11 | 2014-01-01 | 宁德新能源科技有限公司 | Lithium nickel cobalt manganese positive electrode material and preparation method thereof |
CN104393281A (en) * | 2014-12-03 | 2015-03-04 | 刘娜 | Preparation method of manganese, nickel and lithium cathode material |
CN104538612A (en) * | 2014-12-20 | 2015-04-22 | 刘娜 | Method for preparing nickel-aluminum-lithium cathode material |
CN105070896A (en) * | 2015-07-03 | 2015-11-18 | 湖南杉杉新能源有限公司 | High-nickel multi-element positive electrode material for lithium secondary battery, and preparation method thereof |
CN106356507A (en) * | 2015-07-13 | 2017-01-25 | 三星电子株式会社 | Composite cathode active material for lithium battery, cathode for lithium battery including the same, and lithium battery including the cathode |
CN106654196A (en) * | 2016-11-22 | 2017-05-10 | 深圳市沃特玛电池有限公司 | Preparation method for ternary positive electrode material of lithium battery |
-
2017
- 2017-11-23 CN CN201711178891.XA patent/CN108365181B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1399364A (en) * | 2001-06-14 | 2003-02-26 | 三星Sdi株式会社 | Active material for battery and its prepn process |
CN1627550A (en) * | 2003-12-11 | 2005-06-15 | 比亚迪股份有限公司 | Anode material of lithium ion cell and preparation method |
CN102569775A (en) * | 2011-12-23 | 2012-07-11 | 东莞新能源科技有限公司 | Lithium-ion secondary battery and positive electrode active material thereof |
CN103311530A (en) * | 2012-03-13 | 2013-09-18 | 三星康宁精密素材株式会社 | Positive active material, method of preparing the same, and lithium secondary battery using the same |
CN102637877A (en) * | 2012-05-07 | 2012-08-15 | 昆明理工大学 | Lithium ion battery anode material and manufacturing method thereof |
CN103247797A (en) * | 2013-05-20 | 2013-08-14 | 深圳市贝特瑞新能源材料股份有限公司 | Positive pole material for lithium ion battery and preparation method of positive pole material |
CN103490060A (en) * | 2013-10-11 | 2014-01-01 | 宁德新能源科技有限公司 | Lithium nickel cobalt manganese positive electrode material and preparation method thereof |
CN104393281A (en) * | 2014-12-03 | 2015-03-04 | 刘娜 | Preparation method of manganese, nickel and lithium cathode material |
CN104538612A (en) * | 2014-12-20 | 2015-04-22 | 刘娜 | Method for preparing nickel-aluminum-lithium cathode material |
CN105070896A (en) * | 2015-07-03 | 2015-11-18 | 湖南杉杉新能源有限公司 | High-nickel multi-element positive electrode material for lithium secondary battery, and preparation method thereof |
CN106356507A (en) * | 2015-07-13 | 2017-01-25 | 三星电子株式会社 | Composite cathode active material for lithium battery, cathode for lithium battery including the same, and lithium battery including the cathode |
CN106654196A (en) * | 2016-11-22 | 2017-05-10 | 深圳市沃特玛电池有限公司 | Preparation method for ternary positive electrode material of lithium battery |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110010877A (en) * | 2019-04-15 | 2019-07-12 | 常熟理工学院 | Surface-coated high-nickel ternary material and preparation method and application thereof |
CN110085858A (en) * | 2019-05-20 | 2019-08-02 | 山东省科学院能源研究所 | A kind of nickelic tertiary cathode material of niobium-phosphor codoping and its preparation method and application |
WO2021088643A1 (en) * | 2019-11-06 | 2021-05-14 | 湖南杉杉能源科技股份有限公司 | Lithium ion battery positive electrode composite material and preparation method therefor |
CN110931733A (en) * | 2019-11-13 | 2020-03-27 | 北京理工大学 | Surface manganese doping and Li-Mn-PO4Coated high-nickel positive electrode material and preparation method and application thereof |
CN114649531A (en) * | 2020-12-18 | 2022-06-21 | 中国石油化工股份有限公司 | Modified electrode and preparation method and application thereof |
CN114649531B (en) * | 2020-12-18 | 2024-08-30 | 中国石油化工股份有限公司 | Modified electrode and preparation method and application thereof |
CN114551839A (en) * | 2022-02-25 | 2022-05-27 | 中南大学 | A kind of single crystal type cobalt-free high nickel cathode material pre-lithiation and preparation method thereof |
CN116253370A (en) * | 2023-05-04 | 2023-06-13 | 华鼎国联四川动力电池有限公司 | Ternary positive electrode material coated with lithium ferrite and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108365181B (en) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108365181A (en) | A kind of nickelic layered cathode material method of modifying | |
CN109904424B (en) | Method for one-step surface coating and gradient doping integrated double-modification of LNMO (Low noise Metal oxide) positive electrode material | |
CN105261740B (en) | A kind of anode material of lithium battery, preparation method and the lithium ion battery containing the material | |
JP4231411B2 (en) | Electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same | |
JP5681427B2 (en) | Lithium-transition metal oxide powder and production method thereof, positive electrode active material for lithium ion battery, and lithium ion secondary battery | |
JP5164131B2 (en) | Active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
CN109888226B (en) | A kind of battery cathode coating structure material with pinning effect and preparation method thereof | |
CN102306779B (en) | Lithium ion battery positive electrode material lithium-enriched doped lithium molybdate and preparation method thereof | |
CN102569789B (en) | Anode composite material, preparation method thereof and lithium ion battery | |
WO2010004973A1 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for production of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
TWI600201B (en) | Cathode composite material of lithium ion battery | |
TW201205941A (en) | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery | |
CN102257660A (en) | Process for making fluorinated lithium vanadium polyanion powders for batteries | |
JP7143855B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, evaluation method for lithium metal composite oxide powder | |
JP7610014B2 (en) | Method for regenerating positive electrode active material and positive electrode active material regenerated therefrom | |
CN111422925A (en) | High nickel ternary cathode material and preparation method thereof, lithium ion battery and electric vehicle | |
JP5447577B2 (en) | Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery | |
WO2020185958A1 (en) | Ambient-pressure regeneration of degraded lithium-ion battery cathodes | |
CN114388772B (en) | Molybdenum, vanadium, titanium and niobium composite oxide negative electrode material and preparation method thereof, and lithium ion battery | |
CN117015898A (en) | Method for regenerating positive electrode active material and regenerated positive electrode active material prepared by the method | |
CN104953096A (en) | Surface-modified high-voltage lithium cobalt oxide positive material and preparation method thereof | |
JP2009238687A (en) | Fluoride electrode active material | |
CN108321364A (en) | Modified high-nickel material and preparation method thereof | |
CN115417396B (en) | Repairing method of lithium iron phosphate positive electrode material, positive electrode material and application | |
CN108448069B (en) | A kind of high nickel lithium ion battery positive electrode material modification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211110 Address after: 255086 No. 9789, Nanling Road, high tech Zone, Zibo City, Shandong Province Patentee after: Shandong AIA kesimao New Material Co., Ltd Address before: 250014 No. 19 Keyuan Road, Wendong street, Lixia District, Jinan City, Shandong Province Patentee before: Energy Research Institute of Shandong Academy of Sciences |