CN108362830A - The SCM Based infusion atmospheric monitoring system of one kind and method - Google Patents
The SCM Based infusion atmospheric monitoring system of one kind and method Download PDFInfo
- Publication number
- CN108362830A CN108362830A CN201810036629.XA CN201810036629A CN108362830A CN 108362830 A CN108362830 A CN 108362830A CN 201810036629 A CN201810036629 A CN 201810036629A CN 108362830 A CN108362830 A CN 108362830A
- Authority
- CN
- China
- Prior art keywords
- module
- positioning
- signal
- distance
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000012544 monitoring process Methods 0.000 title claims abstract description 27
- 238000001802 infusion Methods 0.000 title abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 15
- 238000011156 evaluation Methods 0.000 claims abstract description 13
- 238000004458 analytical method Methods 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 230000003321 amplification Effects 0.000 claims abstract description 8
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 8
- 238000003384 imaging method Methods 0.000 claims description 39
- 238000012937 correction Methods 0.000 claims description 35
- 238000005070 sampling Methods 0.000 claims description 31
- 239000011159 matrix material Substances 0.000 claims description 18
- 238000013507 mapping Methods 0.000 claims description 12
- 230000003595 spectral effect Effects 0.000 claims description 8
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 230000003044 adaptive effect Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 2
- 230000005856 abnormality Effects 0.000 claims 1
- 238000012790 confirmation Methods 0.000 claims 1
- 230000009123 feedback regulation Effects 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 238000001228 spectrum Methods 0.000 claims 1
- 238000010835 comparative analysis Methods 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000968 medical method and process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0062—General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
- G01N33/0063—General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/505—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour produced by lighting fixtures other than screens, monitors, displays or CRTs
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Combustion & Propulsion (AREA)
- Image Processing (AREA)
Abstract
本发明属于医疗辅助设备领域,公开了一种基于单片机的输液空气监测系统及方法,包括空气检测模块、信号放大模块、A/D转换模块、反馈模块、识别模块、单片机模块、滤波电路模块、状态评估模块、显示模块、输入模块、空气监测分析模块、报警模块。本发明通过对输液患者的输液器进行空气监测,避免气泡或者大量空气进入输液管道,排除安全隐患,特别是加压输液时,保证患者安全;同时可实时分析并显示病人的个人信息、治疗信息、治疗过程对比分析、模拟康复日期等;有利于提升医院的信息化管理,增强了患者输液过程的安全性,提高了医护人员的工作效率。
The invention belongs to the field of medical auxiliary equipment, and discloses a single-chip microcomputer-based transfusion air monitoring system and method, including an air detection module, a signal amplification module, an A/D conversion module, a feedback module, an identification module, a single-chip microcomputer module, a filter circuit module, State evaluation module, display module, input module, air monitoring and analysis module, alarm module. The present invention monitors the air in the infusion set of the infusion patient to prevent air bubbles or a large amount of air from entering the infusion pipeline, eliminate potential safety hazards, and ensure the safety of the patient especially during pressurized infusion; at the same time, it can analyze and display the patient's personal information and treatment information in real time , comparative analysis of the treatment process, simulated recovery date, etc.; it is conducive to improving the information management of the hospital, enhancing the safety of the patient's infusion process, and improving the work efficiency of medical staff.
Description
技术领域technical field
本发明属于医疗辅助设备领域,尤其涉及一种基于单片机的输液空气监测系统及方法。The invention belongs to the field of medical auxiliary equipment, in particular to a single-chip microcomputer-based transfusion air monitoring system and method.
背景技术Background technique
目前,医疗设备的发展越来越快,对于医疗辅助设备的要求也越来越高,输液作为常规医疗手段在患者治疗过程中起到举足轻重的作用,然而现有输液器缺少空气监测装置,当空气进入输液器中,会随着药液进入血管使血管发生栓塞,致使心跳停止,造成极其严重的后果,现有输液器存在巨大的安全隐患。At present, the development of medical equipment is getting faster and faster, and the requirements for medical auxiliary equipment are also getting higher and higher. As a conventional medical method, infusion plays a pivotal role in the treatment of patients. When the air enters the infusion set, it will embolize the blood vessel along with the liquid medicine entering the blood vessel, causing the heartbeat to stop, causing extremely serious consequences. The existing infusion set has huge potential safety hazards.
综上所述,现有技术存在的问题是:现有输液器缺少空气监测装置,无法满足是使用者的需要。To sum up, the problem in the prior art is that the existing infusion set lacks an air monitoring device, which cannot meet the needs of users.
发明内容Contents of the invention
针对现有技术存在的问题,本发明提供了一种基于单片机的输液空气监测系统及方法。Aiming at the problems existing in the prior art, the present invention provides a single-chip microcomputer-based transfusion air monitoring system and method.
本发明是这样实现的,一种基于单片机的输液空气监测系统及方法包括:The present invention is achieved in that a kind of transfusion air monitoring system and method based on single-chip microcomputer comprises:
用于检测空气成分的空气检测模块;Air detection module for detecting air composition;
与空气检测模块相连接,用于对监测的空气成分信号的放大信号的信号放大模块;Connected with the air detection module, a signal amplification module for amplifying the monitored air component signal;
与信号放大模块相连接,用于将模拟信号转换为数字信号的A/D转换模块;Connected with the signal amplification module, it is used to convert the analog signal into an A/D conversion module of a digital signal;
与A/D转换模块相连接,用于对信号进行反馈控制的反馈模块;A feedback module connected with the A/D conversion module for feedback control of the signal;
与反馈模块相连接,用于信号识别的识别模块;An identification module connected with the feedback module for signal identification;
与识别模块相连接,用于对信号的处理与存储的单片机模块;A single-chip microcomputer module connected with the identification module for signal processing and storage;
与单片机模块相连接,用于对信号过滤的滤波电路模块和信息状态评估的状态评估模块;Connected with the single-chip microcomputer module, a filter circuit module for signal filtering and a state evaluation module for information state evaluation;
所述单片机模块的无线定位方法具体包括以下步骤:The wireless positioning method of the single-chip microcomputer module specifically includes the following steps:
待定位节点O通信范围内的锚节点坐标为Ai(xi,yi),其中i=0,1,…,n(n≥4);The coordinates of the anchor node within the communication range of the node O to be located are A i ( xi , y i ), where i=0,1,...,n(n≥4);
步骤一:待定位节点对接收信号r(t)进行采样得到采样信号r(n),其中,n=0,1,…,N-1,N表示OFDM符号包含的子载波个数,同时记录所接收到的信号的发送节点为Ai(xi,yi);Step 1: The node to be positioned samples the received signal r(t) to obtain the sampled signal r(n), where n=0,1,...,N-1, N represents the number of subcarriers contained in the OFDM symbol, and records at the same time The sending node of the received signal is A i ( xi , y i );
步骤二:根据采样信号r(n),计算互相关值E:Step 2: Calculate the cross-correlation value E according to the sampling signal r(n):
步骤三:根据对数距离路径损耗模型,如下公式计算待定位节点与锚节点Ai之间的距离:Step 3: According to the logarithmic distance path loss model, the following formula is used to calculate the distance between the node to be located and the anchor node A i :
Pr(di)=Pr(d0)-10·γlg(di)+Xσ;Pr(d i )=Pr(d 0 )-10·γlg(d i )+X σ ;
其中,Pr(d′i)表示距离发送端距离为di′时获取的互相关值,Pr(d0)表示距离发送端d0=1米处获取的互相关值,γ表示路径损耗因子,lg(·)表示底为10的对数运算,Xσ服从均值为0、标准差为σ的高斯分布;Among them, Pr(d′ i ) represents the cross-correlation value obtained when the distance from the sender is d i ′, Pr(d 0 ) represents the cross-correlation value obtained at a distance of d 0 = 1 meter from the sender, and γ represents the path loss factor , lg( ) means the logarithmic operation with base 10, and X σ follows a Gaussian distribution with mean 0 and standard deviation σ;
利用上式计算出各个锚节点与待定位节点O之间的距离分别为d′i,对应的锚节点的坐标分别为Ai(xi,yi),其中i=0,1,2,…,n;Use the above formula to calculate the distance between each anchor node and the node O to be positioned as d′ i , and the coordinates of the corresponding anchor nodes are A i (xi , y i ), where i=0,1,2, ...,n;
步骤四:根据自适应距离修正算法,估计出待定位节点的坐标O(x,y);Step 4: Estimate the coordinates O(x,y) of the node to be positioned according to the adaptive distance correction algorithm;
步骤二的具体方法包括:The specific methods of step two include:
第一步,构建由连续m个OFDM符号中相同采样位置上长度为l连续采样序列所组成的相关窗,则与该相关窗对应的对数似然函数Λ(τ)表示为:The first step is to construct a correlation window consisting of a continuous sampling sequence of length l at the same sampling position in consecutive m OFDM symbols, then the logarithmic likelihood function Λ(τ) corresponding to the correlation window is expressed as:
其中,自变量τ表示相关窗起始点,m表示连续的OFDM符号的数目;Among them, the independent variable τ represents the starting point of the correlation window, and m represents the number of consecutive OFDM symbols;
第二步,将相关窗滑动N+L个采样点长度,获取对数似然函数Λ(τ)的最大值,该值所对应的采样时刻即为OFDM符号的起始位置 The second step is to slide the correlation window for N+L sampling point lengths to obtain the maximum value of the logarithmic likelihood function Λ(τ), and the sampling time corresponding to this value is the starting position of the OFDM symbol
其中,表示函数取得最大值时自变量τ的取值,Λ(τ)表示对数似然函数,m表示连续的OFDM符号的数目,l表示相同采样位置上连续采样序列的长度,r(n)表示采样信号,N表示OFDM符号包含的子载波个数,L表示OFDM符号中循环前缀部分采样点的数目,|·|是求模运算符;in, Indicates the value of the independent variable τ when the function reaches the maximum value, Λ(τ) represents the logarithmic likelihood function, m represents the number of continuous OFDM symbols, l represents the length of the continuous sampling sequence at the same sampling position, r(n) represents Sampling signal, N represents the number of subcarriers contained in the OFDM symbol, L represents the number of sampling points in the cyclic prefix part of the OFDM symbol, |·| is a modulo operator;
第三步,根据OFDM符号的起始位置计算互相关值E:The third step, according to the starting position of the OFDM symbol Calculate the cross-correlation value E:
步骤四具体包括:Step four specifically includes:
第一步,选定差分修正点,确定定位交点坐标和复数定位交点,计算定位交点间距离;The first step is to select the differential correction point, determine the coordinates of the positioning intersection point and the complex number of positioning intersection points, and calculate the distance between the positioning intersection points;
从d′i(i=0,1,2,…,n)中选择距离值最小的锚节点A0为差分修正点,再从剩余的距离值中取出3个最小的距离值,假设这3个为距离值分别d′1、d′2和d′3,对应的锚节点坐标分别为A1(x1,y1)、A2(x2,y2)和A3(x3,y3),分别以锚节点Ai(xi,yi)为圆心,d′i为半径作三个定位圆i,其中i=1,2,3,三个定位圆的相交情况共有6种,两个圆之间存在两个交点,这两个交点为两个相等的实数交点,或两个不相等的实数交点,或两个复数交点;从两个定位圆的两个交点中,选择与第三定位圆圆心坐标的距离较小的那个交点作为定位交点,以参与待定位节点的定位;由3个定位圆确定三个定位交点及复数定位交点的个数m′,由定位圆2和定位圆3确定的定位交点坐标为A′(x1,y1)、由定位圆1和定位圆3确定的定位交点的坐标为B′(x2,y2),由定位圆1和定位圆2确定的定位交点的坐标为C′(x3,y3),定位交点A′与B′、B′与C′、A′与C′的距离分别为d12、d23、d13:Select the anchor node A 0 with the smallest distance value from d′ i (i=0,1,2,…,n) as the difference correction point, and then take the 3 smallest distance values from the remaining distance values, assuming these 3 The distance values are d′ 1 , d′ 2 and d′ 3 respectively, and the corresponding anchor node coordinates are A 1 (x 1 ,y 1 ), A 2 (x 2 ,y 2 ) and A 3 (x 3 , y 3 ), taking the anchor node A i (xi , y i ) as the center and d′ i as the radius to make three positioning circles i, where i=1, 2, 3, there are 6 intersections of the three positioning circles Type, there are two intersection points between two circles, these two intersection points are two equal real number intersection points, or two unequal real number intersection points, or two complex number intersection points; from the two intersection points of two positioning circles, Select the intersection point with the smaller distance from the center coordinates of the third positioning circle as the positioning intersection point to participate in the positioning of the node to be positioned; determine the number m' of three positioning intersection points and complex positioning intersection points by 3 positioning circles, The coordinates of the positioning intersection determined by 2 and positioning circle 3 are A'(x 1 ,y 1 ), the coordinates of the positioning intersection determined by positioning circle 1 and positioning circle 3 are B'(x 2 ,y 2 ), and the coordinates of the positioning intersection determined by positioning circle 1 and 3 are B'(x 2 ,y 2 ). The coordinates of the positioning intersection determined with the positioning circle 2 are C′(x 3 , y 3 ), and the distances between the positioning intersections A’ and B’, B’ and C’, A’ and C’ are d 12 , d 23 , d 13 :
第二步,设置阈值T,个体差异系数修正系数ω,参数λ(λ>0);The second step is to set the threshold T, the individual difference coefficient correction coefficient ω, and the parameter λ (λ>0);
第三步,根据三个定位交点之间的距离d12、d23和d13的大小,判断是否需要对d′1、d′2、d′3进行修正,若d12<T、d23<T、d13<T,则无需对d′1、d′2、d′3进行修正,执行第五步,否则,需要对d′1、d′2、d′3进行修正,执行第四步;The third step is to judge whether d′ 1 , d′ 2 , and d ′ 3 need to be corrected according to the distances d 12 , d 23 , and d 13 between the three positioning intersection points. If d 12 <T, d 23 <T, d 13 <T, then there is no need to correct d′ 1 , d′ 2 , d′ 3 , go to the fifth step, otherwise, it is necessary to make corrections to d′ 1 , d′ 2 , d′ 3 four steps;
第四步,调节三个测量距离的方向修正因子λ1、λ2和λ3,根据如下自适应距离修正公式修正d′1、d′2、d′3,得到修正距离为d1、d2、d3:The fourth step is to adjust the direction correction factors λ 1 , λ 2 and λ 3 of the three measurement distances, and correct d′ 1 , d′ 2 , and d′ 3 according to the following adaptive distance correction formula, and obtain the corrected distances as d 1 , d 2 , d 3 :
其中,di表示待定位节点与锚节点Ai之间的修正距离,d0i表示差分修正点A0与锚节点Ai之间的实际距离,d′0i表示差分修正点A0与锚节点Ai之间的测量距离,ω表示个体差异系数修正系数,λi表示方向修正因子,exp(·)表示指数函数;Among them, d i represents the correction distance between the node to be located and the anchor node A i , d 0i represents the actual distance between the difference correction point A 0 and the anchor node A i , d′ 0i represents the difference between the correction point A 0 and the anchor node The measurement distance between A i , ω represents the individual difference coefficient correction coefficient, λ i represents the direction correction factor, and exp(·) represents the exponential function;
根据修正后的距离d1、d2、d3,重新求解修正后的三个定位交点间的距离d12、d23、d13,返回第三步;According to the corrected distances d 1 , d 2 , d 3 , recalculate the corrected distances d 12 , d 23 , and d 13 between the three positioning intersection points, and return to the third step;
第五步,根据如下公式,计算出待定位节点的定位坐标O(x0,y0):The fifth step is to calculate the positioning coordinate O(x 0 ,y 0 ) of the node to be positioned according to the following formula:
其中,α1、α2、α3分别表示x′1、x′2、x′3的权重,β1、β2、β3分别表示y′1、y′2、y′3的权重;Among them, α 1 , α 2 , and α 3 represent the weights of x′ 1 , x′ 2 , and x′ 3 respectively, and β 1 , β 2 , and β 3 represent the weights of y′ 1 , y′ 2 , and y′ 3 respectively;
与状态评估模块相连接,用于显示信息的显示模块;A display module connected with the status evaluation module for displaying information;
所述显示模块色彩信息标定方法具体包括以下步骤:The method for calibrating the color information of the display module specifically includes the following steps:
步骤一、选择标定色卡与标定光源,标定色卡不少于24个色样,根据标定色卡N个色样的光谱反射比ρi(λ)和标定光源的光谱强度分布结合CIE1931标准色度系统的色匹配函数通过下面两个公式计算出标定色卡N个色样在CIE1931标准色度系统下的CIEXYZ三刺激值(Xi,Yi,Zi);Step 1. Select the calibration color card and the calibration light source. The calibration color card has no less than 24 color samples. According to the spectral reflectance ρ i (λ) of the calibration color card N color samples and the spectral intensity distribution of the calibration light source Color matching function combined with CIE1931 standard chromaticity system Calculate the CIEXYZ tristimulus value (X i , Y i , Z i ) of the N color samples of the calibration color card under the CIE1931 standard chromaticity system through the following two formulas;
通过下式计算出标定光源在CIE1931标准色度系统下的CIEXYZ三刺激值(XW,YW,ZW);Calculate the CIEXYZ tristimulus value (X W , Y W , Z W ) of the calibration light source under the CIE1931 standard chromaticity system by the following formula;
其中,Δλ是计算时所采用的光谱采样间隔,取5nm,i为标定色卡N个色样的序号,i=1,2,3,…,N;Among them, Δλ is the spectral sampling interval used in the calculation, taking 5nm, i is the serial number of the N color samples of the calibration color card, i=1,2,3,...,N;
步骤二、将步骤一所获的(Xi,Yi,Zi)和(XW,YW,ZW)代入下面两个公式,计算出每个色样在均匀色彩空间CIELAB的坐标 Step 2. Substitute (X i , Y i , Zi ) and (X W , Y W , Z W ) obtained in step 1 into the following two formulas to calculate the coordinates of each color sample in the uniform color space CIELAB
步骤三、分别采用参照成像系统和待标定成像系统,对标定光源下的N个色样进行成像,记录获取数字图像的色彩信息,读取每个色样在两个成像系统中对应的数字驱动值(RSi,GSi,BSi)和(RTi,GTi,BTi);Step 3: Use the reference imaging system and the imaging system to be calibrated respectively to image the N color samples under the calibration light source, record and obtain the color information of the digital image, and read the corresponding digital driver of each color sample in the two imaging systems Values (R Si , G Si , B Si ) and (R Ti , G Ti , B Ti );
步骤四、对于待标定成像系统,根据步骤二所获的N个色样CIELAB坐标和步骤三所获的N个色样数字驱动值(RTi,GTi,BTi),采用最小二乘法拟合出下式中由(RTi,GTi,BTi)预测至的映射矩阵MT,MT为3×11矩阵;Step 4. For the imaging system to be calibrated, according to the CIELAB coordinates of the N color samples obtained in step 2 and the N color sample digital driving values (R Ti , G Ti , B Ti ) obtained in step 3, and use the least square method to fit the following formula from (R Ti , G Ti , B Ti ) to The mapping matrix M T , M T is a 3×11 matrix;
步骤五、对于参照成像系统,根据步骤二所获的N个色样CIELAB坐标和步骤三所获的N个色样数字驱动值(RSi,GSi,BSi),采用最小二乘法拟合出由预测至(RSi,GSi,BSi)的映射矩阵HSI,HSI为3×10矩阵;Step 5. For the reference imaging system, according to the CIELAB coordinates of the N color samples obtained in step 2 and the digital driving values (R Si , G Si , B Si ) of the N color samples obtained in step 3, using the least squares method to fit Predict the mapping matrix H SI to (R Si , G Si , B Si ), H SI is a 3×10 matrix;
步骤六、对于待标定成像系统在任意成像环境下任一场景获取的数字图像,采用步骤四所获的映射矩阵MT,通过下式,由每像素的数字驱动值(RTj',GTj',BTj')预测出对应的CIELAB空间坐标其中j=1,2,3,…,N',N'是待标定成像系统获取数字图像的总像素数目;Step 6. For the digital image acquired by the imaging system to be calibrated in any scene under any imaging environment, using the mapping matrix M T obtained in step 4, the digital driving value of each pixel (R Tj ', G Tj ', B Tj ') to predict the corresponding CIELAB space coordinates Where j=1,2,3,...,N', N' is the total number of pixels of the digital image acquired by the imaging system to be calibrated;
步骤七、对于步骤六所获待标定成像系统每像素的CIELAB空间坐标采用步骤五所获的映射矩阵HSI,通过下式,预测出每像素对应的标定后数字驱动值(RSj',GSj',BSj'),即完成了两个成像系统间的色彩信息标定,使待标定成像系统在任意成像环境下某场景获取的数字图像具有与参照成像系统一致的数字驱动值;Step 7. For the CIELAB space coordinates of each pixel of the imaging system to be calibrated obtained in step 6 Using the mapping matrix H SI obtained in step 5, the calibrated digital driving value (R Sj ', G Sj ', B Sj ') corresponding to each pixel is predicted by the following formula, that is, the color matching between the two imaging systems is completed. Information calibration, so that the digital image acquired by the imaging system to be calibrated in a certain scene in any imaging environment has the same digital driving value as the reference imaging system;
与显示模块相连接,用于对信息输入的输入模块;An input module connected with the display module for inputting information;
与滤波电路模块相连接,用于检测分析控制成分的空气监测分析模块;Connected with the filter circuit module, it is used to detect and analyze the air monitoring and analysis module of the control component;
与空气监测分析模块相连接,用于对异常信号报警的报警模块。The alarm module is connected with the air monitoring analysis module and is used for alarming abnormal signals.
本发明的优点及积极效果为:本发明通过空气检测模块检测到空气的类型,经过信号变换后,由空气监测分析模块进行分析,发生异常情况时可通过报警模块进行报警提示,避免气泡或者大量空气进入输液管道,排除安全隐患,特别是加压输液时,保证患者安全;同时设有状态评估模块,可实时分析并显示病人的个人信息、治疗信息、治疗过程对比分析、模拟康复日期等;有利于提升医院的信息化管理,增强了患者输液过程的安全性,提高了医护人员的工作效率。The advantages and positive effects of the present invention are: the present invention detects the type of air through the air detection module, and after signal conversion, it is analyzed by the air monitoring and analysis module. When an abnormal situation occurs, the alarm module can be used to give an alarm prompt to avoid air bubbles or a large number of Air enters the infusion pipeline to eliminate potential safety hazards, especially during pressurized infusion to ensure patient safety; at the same time, a status evaluation module is equipped to analyze and display the patient's personal information, treatment information, comparative analysis of treatment process, simulated recovery date, etc. in real time; It is conducive to improving the information management of the hospital, enhancing the safety of the patient's infusion process, and improving the work efficiency of medical staff.
附图说明Description of drawings
图1是本发明实施例提供的基于单片机的输液空气监测系统及方法结构示意图;Fig. 1 is the infusion air monitoring system and the method structure schematic diagram based on the single-chip microcomputer that the embodiment of the present invention provides;
图中:1、空气检测模块;2、信号放大模块;3、A/D转换模块;4、反馈模块;5、识别模块;6、单片机模块;7、滤波电路模块;8、状态评估模块;9、显示模块;10、输入模块;11、空气监测分析模块;12、报警模块。In the figure: 1. Air detection module; 2. Signal amplification module; 3. A/D conversion module; 4. Feedback module; 5. Identification module; 6. Single-chip microcomputer module; 7. Filter circuit module; 8. Status evaluation module; 9. Display module; 10. Input module; 11. Air monitoring and analysis module; 12. Alarm module.
具体实施方式Detailed ways
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下。In order to further understand the content, features and effects of the present invention, the following examples are given, and detailed descriptions are given below with reference to the accompanying drawings.
下面结合附图对本发明的结构作详细的描述。The structure of the present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示,基于单片机的输液空气监测系统及方法包括用于检测空气成分的空气检测模块1;As shown in Figure 1, the transfusion air monitoring system and method based on the single-chip microcomputer include an air detection module 1 for detecting air components;
与空气检测模块1相连接,用于对监测的空气成分信号的放大信号的信号放大模块2;Connected with the air detection module 1, a signal amplification module 2 for amplifying the monitored air component signal;
与信号放大模块2相连接,用于将模拟信号转换为数字信号的A/D转换模块3;Connected with the signal amplification module 2, it is used to convert the analog signal into an A/D conversion module 3 of a digital signal;
与A/D转换模块3相连接,用于对信号进行反馈控制的反馈模块4;Connected with the A/D conversion module 3, a feedback module 4 for feedback control of the signal;
与反馈模块4相连接,用于信号识别的识别模块5;Connected with the feedback module 4, an identification module 5 for signal identification;
与识别模块5相连接,用于对信号的处理与存储的单片机模块6;Be connected with identification module 5, be used for processing and the single-chip microcomputer module 6 of storage of signal;
与单片机模块(MCS-51)6相连接,用于对信号过滤的滤波电路模块7和信息状态评估的状态评估模块8;Be connected with single-chip microcomputer module (MCS-51) 6, be used for the state evaluation module 8 of the filter circuit module 7 of signal filtering and information state evaluation;
与状态评估模块8相连接,用于显示信息的显示模块9;Connected with the state assessment module 8, a display module 9 for displaying information;
与显示模块9相连接,用于对信息输入的输入模块10;Connected with the display module 9, an input module 10 for inputting information;
与滤波电路模块7相连接,用于检测分析控制成分的空气监测分析模块11;Connected with the filter circuit module 7, an air monitoring and analysis module 11 for detecting and analyzing the control components;
与空气监测分析模块11相连接,用于对异常信号报警的报警模块12。It is connected with the air monitoring analysis module 11 and is used for an alarm module 12 for alarming abnormal signals.
进一步,所述报警模块12包括LED信号灯以及蜂鸣报警器。Further, the alarm module 12 includes an LED signal light and a buzzer alarm.
进一步,所述空气检测模块1包括用于探测气体类型的CO2传感器、用于探测氮气的N2传感器、用于检测温度的温度传感器。Further, the air detection module 1 includes a CO2 sensor for detecting gas types, an N2 sensor for detecting nitrogen, and a temperature sensor for detecting temperature.
所述单片机模块的无线定位方法具体包括以下步骤:The wireless positioning method of the single-chip microcomputer module specifically includes the following steps:
待定位节点O通信范围内的锚节点坐标为Ai(xi,yi),其中i=0,1,…,n(n≥4);The coordinates of the anchor node within the communication range of the node O to be located are A i ( xi , y i ), where i=0,1,...,n(n≥4);
步骤一:待定位节点对接收信号r(t)进行采样得到采样信号r(n),其中,n=0,1,…,N-1,N表示OFDM符号包含的子载波个数,同时记录所接收到的信号的发送节点为Ai(xi,yi);Step 1: The node to be positioned samples the received signal r(t) to obtain the sampled signal r(n), where n=0,1,...,N-1, N represents the number of subcarriers contained in the OFDM symbol, and records at the same time The sending node of the received signal is A i ( xi , y i );
步骤二:根据采样信号r(n),计算互相关值E:Step 2: Calculate the cross-correlation value E according to the sampling signal r(n):
步骤三:根据对数距离路径损耗模型,如下公式计算待定位节点与锚节点Ai之间的距离:Step 3: According to the logarithmic distance path loss model, the following formula is used to calculate the distance between the node to be located and the anchor node A i :
Pr(di)=Pr(d0)-10·γlg(di)+Xσ;Pr(d i )=Pr(d 0 )-10·γlg(d i )+X σ ;
其中,Pr(d′i)表示距离发送端距离为d′i时获取的互相关值,Pr(d0)表示距离发送端d0=1米处获取的互相关值,γ表示路径损耗因子,lg(·)表示底为10的对数运算,Xσ服从均值为0、标准差为σ的高斯分布;Among them, Pr(d′ i ) represents the cross-correlation value obtained when the distance from the sender is d′ i , Pr(d 0 ) represents the cross-correlation value obtained at a distance of d 0 = 1 meter from the sender, and γ represents the path loss factor , lg( ) means the logarithmic operation with base 10, and X σ follows a Gaussian distribution with mean 0 and standard deviation σ;
利用上式计算出各个锚节点与待定位节点O之间的距离分别为d′i,对应的锚节点的坐标分别为Ai(xi,yi),其中i=0,1,2,…,n;Use the above formula to calculate the distance between each anchor node and the node O to be positioned as d′ i , and the coordinates of the corresponding anchor nodes are A i (xi , y i ), where i=0,1,2, ...,n;
步骤四:根据自适应距离修正算法,估计出待定位节点的坐标O(x,y);Step 4: Estimate the coordinates O(x,y) of the node to be positioned according to the adaptive distance correction algorithm;
步骤二的具体方法包括:The specific methods of step two include:
第一步,构建由连续m个OFDM符号中相同采样位置上长度为l连续采样序列所组成的相关窗,则与该相关窗对应的对数似然函数Λ(τ)表示为:The first step is to construct a correlation window consisting of a continuous sampling sequence of length l at the same sampling position in consecutive m OFDM symbols, then the logarithmic likelihood function Λ(τ) corresponding to the correlation window is expressed as:
其中,自变量τ表示相关窗起始点,m表示连续的OFDM符号的数目;Among them, the independent variable τ represents the starting point of the correlation window, and m represents the number of consecutive OFDM symbols;
第二步,将相关窗滑动N+L个采样点长度,获取对数似然函数Λ(τ)的最大值,该值所对应的采样时刻即为OFDM符号的起始位置 The second step is to slide the correlation window for N+L sampling point lengths to obtain the maximum value of the logarithmic likelihood function Λ(τ), and the sampling time corresponding to this value is the starting position of the OFDM symbol
其中,表示函数取得最大值时自变量τ的取值,Λ(τ)表示对数似然函数,m表示连续的OFDM符号的数目,l表示相同采样位置上连续采样序列的长度,r(n)表示采样信号,N表示OFDM符号包含的子载波个数,L表示OFDM符号中循环前缀部分采样点的数目,|·|是求模运算符;in, Indicates the value of the independent variable τ when the function reaches the maximum value, Λ(τ) represents the logarithmic likelihood function, m represents the number of continuous OFDM symbols, l represents the length of the continuous sampling sequence at the same sampling position, r(n) represents Sampling signal, N represents the number of subcarriers contained in the OFDM symbol, L represents the number of sampling points in the cyclic prefix part of the OFDM symbol, |·| is a modulo operator;
第三步,根据OFDM符号的起始位置计算互相关值E:The third step, according to the starting position of the OFDM symbol Calculate the cross-correlation value E:
步骤四具体包括:Step four specifically includes:
第一步,选定差分修正点,确定定位交点坐标和复数定位交点,计算定位交点间距离;The first step is to select the differential correction point, determine the coordinates of the positioning intersection point and the complex number of positioning intersection points, and calculate the distance between the positioning intersection points;
从d′i(i=0,1,2,…,n)中选择距离值最小的锚节点A0为差分修正点,再从剩余的距离值中取出3个最小的距离值,假设这3个为距离值分别d′1、d′2和d′2,对应的锚节点坐标分别为A1(x1,y1)、A2(x2,y2)和A3(x3,y3),分别以锚节点Ai(xi,yi)为圆心,d′i为半径作三个定位圆i,其中i=1,2,3,三个定位圆的相交情况共有6种,两个圆之间存在两个交点,这两个交点为两个相等的实数交点,或两个不相等的实数交点,或两个复数交点;从两个定位圆的两个交点中,选择与第三定位圆圆心坐标的距离较小的那个交点作为定位交点,以参与待定位节点的定位;由3个定位圆确定三个定位交点及复数定位交点的个数m′,由定位圆2和定位圆3确定的定位交点坐标为A′(x1,y1)、由定位圆1和定位圆3确定的定位交点的坐标为B′(x2,y2),由定位圆1和定位圆2确定的定位交点的坐标为C′(x3,y3),定位交点A′与B′、B′与C′、A′与C′的距离分别为d12、d23、d13:Select the anchor node A 0 with the smallest distance value from d′ i (i=0,1,2,…,n) as the difference correction point, and then take the 3 smallest distance values from the remaining distance values, assuming these 3 The distance values are d′ 1 , d′ 2 and d′ 2 respectively, and the corresponding anchor node coordinates are A 1 (x 1 ,y 1 ), A 2 (x 2 ,y 2 ) and A 3 (x 3 , y 3 ), taking the anchor node A i (xi , y i ) as the center and d′ i as the radius to make three positioning circles i, where i=1, 2, 3, there are 6 intersections of the three positioning circles Type, there are two intersection points between two circles, these two intersection points are two equal real number intersection points, or two unequal real number intersection points, or two complex number intersection points; from the two intersection points of two positioning circles, Select the intersection point with the smaller distance from the center coordinates of the third positioning circle as the positioning intersection point to participate in the positioning of the node to be positioned; determine the number m' of three positioning intersection points and complex positioning intersection points by 3 positioning circles, The coordinates of the positioning intersection determined by 2 and positioning circle 3 are A'(x 1 ,y 1 ), the coordinates of the positioning intersection determined by positioning circle 1 and positioning circle 3 are B'(x 2 ,y 2 ), and the coordinates of the positioning intersection determined by positioning circle 1 and 3 are B'(x 2 ,y 2 ). The coordinates of the positioning intersection determined with the positioning circle 2 are C′(x 3 , y 3 ), and the distances between the positioning intersections A’ and B’, B’ and C’, A’ and C’ are d 12 , d 23 , d 13 :
第二步,设置阈值T,个体差异系数修正系数ω,参数λ(λ>0);The second step is to set the threshold T, the individual difference coefficient correction coefficient ω, and the parameter λ (λ>0);
第三步,根据三个定位交点之间的距离d12、d23和d13的大小,判断是否需要对d′1、d′2、d′3进行修正,若d12<T、d23<T、d13<T,则无需对d′1、d′2、d′3进行修正,执行第五步,否则,需要对d′1、d′2、d′3进行修正,执行第四步;The third step is to judge whether d′ 1 , d′ 2 , and d ′ 3 need to be corrected according to the distances d 12 , d 23 , and d 13 between the three positioning intersection points. If d 12 <T, d 23 <T, d 13 <T, then there is no need to correct d′ 1 , d′ 2 , d′ 3 , go to the fifth step, otherwise, it is necessary to make corrections to d′ 1 , d′ 2 , d′ 3 four steps;
第四步,调节三个测量距离的方向修正因子λ1、λ2和λ3,根据如下自适应距离修正公式修正d′1、d′2、d′3,得到修正距离为d1、d2、d3:The fourth step is to adjust the direction correction factors λ 1 , λ 2 and λ 3 of the three measurement distances, and correct d′ 1 , d′ 2 , and d′ 3 according to the following adaptive distance correction formula, and obtain the corrected distances as d 1 , d 2 , d 3 :
其中,di表示待定位节点与锚节点Ai之间的修正距离,d0i表示差分修正点A0与锚节点Ai之间的实际距离,d′0i表示差分修正点A0与锚节点Ai之间的测量距离,ω表示个体差异系数修正系数,λi表示方向修正因子,exp(·)表示指数函数;Among them, d i represents the correction distance between the node to be located and the anchor node A i , d 0i represents the actual distance between the difference correction point A 0 and the anchor node A i , d′ 0i represents the difference between the correction point A 0 and the anchor node The measurement distance between A i , ω represents the individual difference coefficient correction coefficient, λ i represents the direction correction factor, and exp(·) represents the exponential function;
根据修正后的距离d1、d2、d3,重新求解修正后的三个定位交点间的距离d12、d23、d13,返回第三步;According to the corrected distances d 1 , d 2 , d 3 , recalculate the corrected distances d 12 , d 23 , and d 13 between the three positioning intersection points, and return to the third step;
第五步,根据如下公式,计算出待定位节点的定位坐标O(x0,y0):The fifth step is to calculate the positioning coordinate O(x 0 ,y 0 ) of the node to be positioned according to the following formula:
其中,α1、α2、α3分别表示x′1、x′2、x′3的权重,β1、β2、β3分别表示y′1、y′2、y′3的权重。Wherein, α 1 , α 2 , and α 3 represent the weights of x′ 1 , x′ 2 , and x′ 3 respectively, and β 1 , β 2 , and β 3 represent the weights of y′ 1 , y′ 2 , and y′ 3 respectively.
所述显示模块色彩信息标定方法具体包括以下步骤:The method for calibrating the color information of the display module specifically includes the following steps:
步骤一、选择标定色卡与标定光源,标定色卡不少于24个色样,根据标定色卡N个色样的光谱反射比ρi(λ)和标定光源的光谱强度分布结合CIE1931标准色度系统的色匹配函数通过下面两个公式计算出标定色卡N个色样在CIE1931标准色度系统下的CIEXYZ三刺激值(Xi,Yi,Zi);Step 1. Select the calibration color card and the calibration light source. The calibration color card has no less than 24 color samples. According to the spectral reflectance ρ i (λ) of the calibration color card N color samples and the spectral intensity distribution of the calibration light source Color matching function combined with CIE1931 standard chromaticity system Calculate the CIEXYZ tristimulus value (X i , Y i , Z i ) of the N color samples of the calibration color card under the CIE1931 standard chromaticity system through the following two formulas;
通过下式计算出标定光源在CIE1931标准色度系统下的CIEXYZ三刺激值(XW,YW,ZW);Calculate the CIEXYZ tristimulus value (X W , Y W , Z W ) of the calibration light source under the CIE1931 standard chromaticity system by the following formula;
其中,Δλ是计算时所采用的光谱采样间隔,取5nm,i为标定色卡N个色样的序号,i=1,2,3,…,N;Among them, Δλ is the spectral sampling interval used in the calculation, taking 5nm, i is the serial number of the N color samples of the calibration color card, i=1,2,3,...,N;
步骤二、将步骤一所获的(Xi,Yi,Zi)和(XW,YW,ZW)代入下面两个公式,计算出每个色样在均匀色彩空间CIELAB的坐标 Step 2. Substitute (X i , Y i , Zi ) and (X W , Y W , Z W ) obtained in step 1 into the following two formulas to calculate the coordinates of each color sample in the uniform color space CIELAB
步骤三、分别采用参照成像系统和待标定成像系统,对标定光源下的N个色样进行成像,记录获取数字图像的色彩信息,读取每个色样在两个成像系统中对应的数字驱动值(RSi,GSi,BSi)和(RTi,GTi,BTi);Step 3: Use the reference imaging system and the imaging system to be calibrated respectively to image the N color samples under the calibration light source, record and obtain the color information of the digital image, and read the corresponding digital driver of each color sample in the two imaging systems Values (R Si , G Si , B Si ) and (R Ti , G Ti , B Ti );
步骤四、对于待标定成像系统,根据步骤二所获的N个色样CIELAB坐标和步骤三所获的N个色样数字驱动值(RTi,GTi,BTi),采用最小二乘法拟合出下式中由(RTi,GTi,BTi)预测至的映射矩阵MT,MT为3×11矩阵;Step 4. For the imaging system to be calibrated, according to the CIELAB coordinates of the N color samples obtained in step 2 and the N color sample digital driving values (R Ti , G Ti , B Ti ) obtained in step 3, and use the least square method to fit the following formula from (R Ti , G Ti , B Ti ) to The mapping matrix M T , M T is a 3×11 matrix;
步骤五、对于参照成像系统,根据步骤二所获的N个色样CIELAB坐标和步骤三所获的N个色样数字驱动值(RSi,GSi,BSi),采用最小二乘法拟合出由预测至(RSi,GSi,BSi)的映射矩阵HSI,HSI为3×10矩阵;Step 5. For the reference imaging system, according to the CIELAB coordinates of the N color samples obtained in step 2 and the digital driving values (R Si , G Si , B Si ) of the N color samples obtained in step 3, using the least squares method to fit Predict the mapping matrix H SI to (R Si , G Si , B Si ), H SI is a 3×10 matrix;
步骤六、对于待标定成像系统在任意成像环境下任一场景获取的数字图像,采用步骤四所获的映射矩阵MT,通过下式,由每像素的数字驱动值(RTj',GTj',BTj')预测出对应的CIELAB空间坐标其中j=1,2,3,…,N',N'是待标定成像系统获取数字图像的总像素数目;Step 6. For the digital image acquired by the imaging system to be calibrated in any scene under any imaging environment, using the mapping matrix M T obtained in step 4, the digital driving value of each pixel (R Tj ', G Tj ', B Tj ') to predict the corresponding CIELAB space coordinates Where j=1,2,3,...,N', N' is the total number of pixels of the digital image acquired by the imaging system to be calibrated;
步骤七、对于步骤六所获待标定成像系统每像素的CIELAB空间坐标采用步骤五所获的映射矩阵HSI,通过下式,预测出每像素对应的标定后数字驱动值(RSj',GSj',BSj'),即完成了两个成像系统间的色彩信息标定,使待标定成像系统在任意成像环境下某场景获取的数字图像具有与参照成像系统一致的数字驱动值;Step 7. For the CIELAB space coordinates of each pixel of the imaging system to be calibrated obtained in step 6 Using the mapping matrix H SI obtained in step 5, the calibrated digital driving value (R Sj ', G Sj ', B Sj ') corresponding to each pixel is predicted by the following formula, that is, the color matching between the two imaging systems is completed. Information calibration, so that the digital image acquired by the imaging system to be calibrated in a certain scene in any imaging environment has the same digital driving value as the reference imaging system;
通过空气检测模块1进行空气的检测,将检测到的空气数据通过信号放大器2进行信号的放大,经过放大的信号通过A/D信号转换器3将模拟信号转换成数字信号,通过反馈控制模块4进行信号的反馈调节,通过识别模块5进行放大信号的识别,将识别的信号传入到单片机模块6进行数据处理及存储,通过滤波电路模块6过滤掉杂波,只允许空气信号波形通过,通过空气监测分析模块7进行检测识别,进行识别确认并分析,异常时,空气监测分析模块7检测到空气电信号后触发报警模块12中的LED信号指示灯以及蜂鸣报警器进行报警,通知医护人员进行处理;使用过程中,可通过输入模块10对病人信息状态进行信息录入,由单片机模块6进行存储,通过状态评估模块8进行各项指标、信息的评估,通过显示屏9进行实时显示。The detection of air is carried out by the air detection module 1, and the detected air data is amplified by the signal amplifier 2, and the amplified signal is converted into a digital signal by the A/D signal converter 3, and passed by the feedback control module 4 Carry out signal feedback adjustment, identify the amplified signal through the identification module 5, pass the identified signal to the single-chip microcomputer module 6 for data processing and storage, filter out the clutter through the filter circuit module 6, and only allow the air signal waveform to pass through. The air monitoring and analysis module 7 detects and identifies, identifies, confirms and analyzes. When abnormal, the air monitoring and analysis module 7 detects the air electrical signal and triggers the LED signal indicator light and the buzzer alarm in the alarm module 12 to alarm and notify the medical staff During use, the patient information status can be entered through the input module 10, stored by the single-chip microcomputer module 6, evaluated by the status evaluation module 8 for various indicators and information, and displayed in real time by the display screen 9.
以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Any simple modifications made to the above embodiments according to the technical essence of the present invention, equivalent changes and modifications, all belong to this invention. within the scope of the technical solution of the invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810036629.XA CN108362830A (en) | 2018-01-15 | 2018-01-15 | The SCM Based infusion atmospheric monitoring system of one kind and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810036629.XA CN108362830A (en) | 2018-01-15 | 2018-01-15 | The SCM Based infusion atmospheric monitoring system of one kind and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108362830A true CN108362830A (en) | 2018-08-03 |
Family
ID=63006258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810036629.XA Pending CN108362830A (en) | 2018-01-15 | 2018-01-15 | The SCM Based infusion atmospheric monitoring system of one kind and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108362830A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109044561A (en) * | 2018-08-21 | 2018-12-21 | 青岛大学 | Novel experimental animal anaesthetizes inhalator and its application method with Multi-functional atomization |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4981467A (en) * | 1990-02-27 | 1991-01-01 | Baxter International Inc. | Apparatus and method for the detection of air in fluid delivery systems |
US20050192529A1 (en) * | 1997-09-19 | 2005-09-01 | Butterfield Robert D. | Apparatus and method for air-in-line detection |
CN2877714Y (en) * | 2006-04-27 | 2007-03-14 | 重庆山外山科技有限公司 | Air-inspecting device for blood purification |
CN100998899A (en) * | 2007-01-11 | 2007-07-18 | 中国人民解放军海军医学研究所 | Portable fluid infusion, blood transfusion controller |
CN201033190Y (en) * | 2007-01-17 | 2008-03-12 | 华南理工大学 | Medical infusion tube bubble infrared detection device |
CN202590072U (en) * | 2011-12-21 | 2012-12-12 | 河南科技大学第一附属医院 | Transfusion air monitoring device |
CN104147662A (en) * | 2014-08-29 | 2014-11-19 | 冯建国 | Intelligent control device for transfusion |
CN104147661A (en) * | 2014-08-27 | 2014-11-19 | 中国人民解放军第四军医大学 | Infusion control system and method based on physiological information feedback |
CN104469941A (en) * | 2014-12-23 | 2015-03-25 | 西安电子科技大学 | Indoor wireless location method based on WLAN OFDM signal cyclic prefix |
CN104721922A (en) * | 2015-03-05 | 2015-06-24 | 河南机电高等专科学校 | Infusion monitoring control system |
CN104933706A (en) * | 2015-05-29 | 2015-09-23 | 西安电子科技大学 | Imaging system color information calibration method |
CN104984441A (en) * | 2015-06-30 | 2015-10-21 | 田秀娥 | Automatic control type heat preserving and nursing control system for operating room transfusion |
CN105833391A (en) * | 2016-03-21 | 2016-08-10 | 宁波大红鹰学院 | Pneumatic drip liquid level dynamic detection alarm |
CN205749448U (en) * | 2016-05-30 | 2016-11-30 | 张潇予 | A kind of multifunctional gas detector |
CN107050556A (en) * | 2017-03-31 | 2017-08-18 | 孝感嘉瑞应用科技开发有限公司 | The transfusion Control management system controlled based on mobile terminal |
-
2018
- 2018-01-15 CN CN201810036629.XA patent/CN108362830A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4981467A (en) * | 1990-02-27 | 1991-01-01 | Baxter International Inc. | Apparatus and method for the detection of air in fluid delivery systems |
US20050192529A1 (en) * | 1997-09-19 | 2005-09-01 | Butterfield Robert D. | Apparatus and method for air-in-line detection |
CN2877714Y (en) * | 2006-04-27 | 2007-03-14 | 重庆山外山科技有限公司 | Air-inspecting device for blood purification |
CN100998899A (en) * | 2007-01-11 | 2007-07-18 | 中国人民解放军海军医学研究所 | Portable fluid infusion, blood transfusion controller |
CN201033190Y (en) * | 2007-01-17 | 2008-03-12 | 华南理工大学 | Medical infusion tube bubble infrared detection device |
CN202590072U (en) * | 2011-12-21 | 2012-12-12 | 河南科技大学第一附属医院 | Transfusion air monitoring device |
CN104147661A (en) * | 2014-08-27 | 2014-11-19 | 中国人民解放军第四军医大学 | Infusion control system and method based on physiological information feedback |
CN104147662A (en) * | 2014-08-29 | 2014-11-19 | 冯建国 | Intelligent control device for transfusion |
CN104469941A (en) * | 2014-12-23 | 2015-03-25 | 西安电子科技大学 | Indoor wireless location method based on WLAN OFDM signal cyclic prefix |
CN104721922A (en) * | 2015-03-05 | 2015-06-24 | 河南机电高等专科学校 | Infusion monitoring control system |
CN104933706A (en) * | 2015-05-29 | 2015-09-23 | 西安电子科技大学 | Imaging system color information calibration method |
CN104984441A (en) * | 2015-06-30 | 2015-10-21 | 田秀娥 | Automatic control type heat preserving and nursing control system for operating room transfusion |
CN105833391A (en) * | 2016-03-21 | 2016-08-10 | 宁波大红鹰学院 | Pneumatic drip liquid level dynamic detection alarm |
CN205749448U (en) * | 2016-05-30 | 2016-11-30 | 张潇予 | A kind of multifunctional gas detector |
CN107050556A (en) * | 2017-03-31 | 2017-08-18 | 孝感嘉瑞应用科技开发有限公司 | The transfusion Control management system controlled based on mobile terminal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109044561A (en) * | 2018-08-21 | 2018-12-21 | 青岛大学 | Novel experimental animal anaesthetizes inhalator and its application method with Multi-functional atomization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6408479B2 (en) | Patient monitoring system and patient monitoring method | |
CN102959401B (en) | Calibration method for the prospective calibration of a measuring device | |
EP1658578B1 (en) | A system and method for detecting signal artifacts | |
JP5693325B2 (en) | Medical examination result output system and medical examination result output program | |
US20090088606A1 (en) | Systems and methods for patient specific adaptable telemonitoring alerts | |
CN103518130A (en) | Living organism gas detection device and living organism gas detection method | |
CN104921736A (en) | Continuous blood glucose monitoring device comprising parameter estimation function filtering module | |
JP2019509153A5 (en) | ||
CN111854964A (en) | Method and device for measuring body temperature, temperature measuring tool and storage medium | |
CN116936104B (en) | Health detector data analysis system and method based on artificial intelligence | |
WO2019153578A1 (en) | Electrocardiosignal-based non-invasive blood glucose detection method and system | |
JP5544365B2 (en) | Improvements in multi-parameter monitoring or improvements related to multi-parameter monitoring | |
US20130296671A1 (en) | Method for Using a Pulse Oximetry Signal to Monitor Blood Pressure | |
CN118016302B (en) | Health risk assessment method and system for multi-source data input | |
EP3760108A1 (en) | Vital sign monitors for inpatient medicine wards | |
CN108362830A (en) | The SCM Based infusion atmospheric monitoring system of one kind and method | |
CN111261264A (en) | Intelligent physique testing device and method and storage medium | |
JP2783277B2 (en) | Patient monitoring device and patient monitoring system | |
US20150051463A1 (en) | Oximetry Signal, Pulse-Pressure Correlator | |
US11457823B2 (en) | Wearable blood pressure detecting device and detecting method thereof | |
JP2009207837A (en) | Biological signal measuring device | |
CN105528857B (en) | A kind of intelligent remote sign data harvester | |
CN118503663A (en) | A false alarm identification system and method for intensive care unit | |
CN108750142B (en) | Unmanned aerial vehicle weight measurement method and system | |
TW201524463A (en) | Mental stress testing device, method for testing mental stress and mental stress testing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180803 |