CN108359823A - 一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法 - Google Patents
一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法 Download PDFInfo
- Publication number
- CN108359823A CN108359823A CN201810314755.7A CN201810314755A CN108359823A CN 108359823 A CN108359823 A CN 108359823A CN 201810314755 A CN201810314755 A CN 201810314755A CN 108359823 A CN108359823 A CN 108359823A
- Authority
- CN
- China
- Prior art keywords
- powder
- ball
- hours
- temperature
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明属于粉末冶金领域,具体涉及一种原位生成MgO弥散强化超细晶Al‑Mg合金的制备方法。本发明的技术方案如下:包括如下步骤:称量Al粉和Mg粉,其中,溶质Mg原子所占合金的原子比例为0‑8at.%;球磨,首先用行星球磨机在低运行速度下充分混合粉末6小时,转速为180‑220转/分钟;然后再在高运行速度下对混合粉末球磨36小时,转速为480‑520转/分,高能球磨期间无间歇;钝化处理,压制成粉末坯;加热到500℃,随后在500℃下保温2分钟,待保温结束后,立即将加热的粉末坯移入预热的挤压模具内并将粉末坯热挤压成为直径6mm的热挤压棒;热处理。本发明制备的合金具有低密度、高强度、高弹性模量、超细显微结构和清洁颗粒界面的优点。
Description
技术领域
本发明属于粉末冶金领域,具体涉及一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法。
背景技术
Al-Mg合金因其低密度、优异的耐蚀性、焊接性能及良好的综合力学性能而广泛应用于航空航天、海洋船舶和汽车工业。然而,由于该合金的强度主要来自于Mg元素的固溶强化,所以,合金的强度与溶解在Al基体中的溶质Mg原子的浓度密切相关。可是,传统铸锭冶金法制备的Al-Mg轻合金中的Mg元素含量在5~6wt.%(质量百分比)左右,该固溶量仅能提供有限的强度增加;另外,Mg元素的添加也降低了Al的弹性模量。因此,为扩大Al-Mg轻合金的应用范围及满足一些极端服役环境,需提高其强度和模量。
细化晶粒和添加/引入第二相细小颗粒是强化材料和提高其模量的经典方法。基于这样的认识和理解,将Al-Mg轻合金的晶粒尺寸细化到超细晶(100纳米<平均晶粒尺寸<1微米)范围并且向其中引入纳米级别的第二相陶瓷颗粒势必会显著提高材料的强度和弹性模量。已知细化金属铸锭材料显微组织的方法主要包括:静态再结晶(室温或冷变形+热处理)、动态再结晶(温或热变形)和剧烈塑性变形(等通道挤压和高压扭转)等。利用上述方法制备超细晶材料,一般要求材料具有高的塑性变形能力。然而,对铸锭Al-Mg合金而言,合金的塑性变形能力受其固溶Mg原子含量限制,当溶质Mg原子含量超过5.5wt.%后,其塑性变形能力急剧下降,导致无法对其进行必要的变形加工以获得超细结构。若再向高镁含量铸锭Al-Mg合金中添加第二相颗粒,合金的变形能力会变得更糟,更无法对其进行塑性变形加工。因此,高强度高弹性模量第二相颗粒弥散强化超细晶Al-Mg合金很难利用传统方法来制备。
传统第二相颗粒强化Al-Mg复合材料的开发涉及半固态搅拌铸造、搅拌铸造、超声辅助铸造和无压浸渗等。常用的第二相颗粒包括:SiC、Al2O3和B4C颗粒等。其具有如下不足:
1)Al-Mg合金基体的显微结构粗大。
2)第二相颗粒尺寸较大且体积较小。
3)第二相颗粒易团聚和形成颗粒团簇。
4)合金基体和颗粒界面易发生反应生成脆性相。
5)材料强度和弹性模量仍偏低。
机械合金化技术利用超强的机械能可实现金属延性粉末的剧烈塑性变形和反复的粉末断裂、冷焊,经一定时间机械合金化后,金属粉末的显微结构可细化至纳米尺寸。机械合金化不仅可实现金属粉末的纳米化,还能高效、均匀地弥散第二相纳米颗粒到纳米结构金属粉末中。结合传统的粉末冶金固结手段(如烧结、热压、热锻造和热挤压等),机械合金化金属粉末可用来制备超细结构金属样品和零部件。
发明内容
本发明提供一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法,结合机械合金化技术和原位反应原理,制备了原位MgO弥散强化超细晶Al-Mg合金,该合金具有低密度、高强度、高弹性模量、超细显微结构和清洁颗粒界面的优点。
本发明的技术方案如下:
一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法,包括如下步骤:
a.用精密天平称量Al粉和Mg粉,其中,溶质Mg原子所占合金的原子比例为0-8at.%;选用1wt.%硬脂酸作为过程控制剂,以防止和避免粉末过度冷焊;
b.将称量好的Al粉和Mg粉放入装有不锈钢磨球的球磨罐内,所述不锈钢磨球为5个直径20mm和10个直径16mm的钢球;其中,Al粉和Mg粉的总质量与所述不锈钢磨球的总质量的比值为5:1;
c.在充满氩气的手套箱内,对装有不锈钢磨球和粉末的球磨罐进行密封操作;
d.首先用行星球磨机在低运行速度下充分混合粉末6小时,转速为180-220转/分钟;然后再在高运行速度下对混合粉末球磨36小时,转速为480-520转/分,高能球磨期间无间歇;
e.高能球磨结束后,在标准手套箱内对球磨后的粉末进行钝化处理,随后利用液压机在大气环境下把钝化后的粉末压制成粉末坯;粉末坯为直径28-30mm和高25-35mm的圆柱;
f.利用配有感应加热系统和手套箱的液压机,在充满氩气的手套箱内将粉末坯快速感应加热到500℃,随后在500℃下保温2分钟,待保温结束后,立即将加热的粉末坯移入预热的挤压模具内并将粉末坯热挤压成为直径6mm的热挤压棒;
g.将热挤压棒置于350-550℃进行1-10小时的热处理;采用的热处理参数为:升温速率10℃/分钟,升到设定的热处理温度后,在该温度下保温5小时,待保温时间结束后,立即放入水中进行淬火。
本发明是利用含氧亚稳态Al-Mg合金粉末和镁元素的高活性,在热激活条件下,Mg与O原位反应生成MgO纳米颗粒。从事材料科学研究和材料设计开发人员很容易在本发明思想的基础上稍加拓展,便可得到和本发明材料无本质区别的材料体系。所以,本发明的保护点将涵盖:1、利用含镁Al合金粉末和内氧化/外氧化法制备MgO弥散强化Al合金材料和Al基复合材料。2、利用快速凝固含氧多元Al合金粉末(含镁)制备MgO弥散强化Al合金材料和Al基复合材料。3、利用不同氧源(金属氧化物、过程控制剂或氧气分子)与含镁Al合金粉末或相同元素成分的元素粉末进行机械合金化来制备MgO弥散强化Al合金材料和Al基复合材料。
本发明的有益效果为:
1、氧源丰富多样,比如过程控制剂、吸附在粉末颗粒表面的氧分子或可被Mg还原的金属氧化物等。
2、原位生成MgO的工艺条件、参数易实现且设备简单,适合规模化的生产要求。
3、合金具备低密度、高强度、高弹性模量和高显微组织稳定性等特点。
4、可用来制备含高MgO体积分数的超细晶Al-Mg基复合材料。
5、为制备高性能超细晶Al-Mg基复合材料提供参考。
附图说明
图1为Al-Mg合金样品的显微硬度随Mg含量和热处理温度的变化关系图,热处理时间均为5小时;
图2为500℃热处理5小时的超细晶Al-2.5at.%Mg合金的扫描透射电子显微镜照片和相应的Mg、O元素图谱;其中:(a)、(b)为扫描透射电子显微镜照片,(c)为Mg元素图谱,(d)为O元素图谱。
具体实施方式
一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法,包括如下步骤:
a.用精密天平称量Al粉和Mg粉,其中,溶质Mg原子所占合金的原子比例分别为0at.%、2.5at.%、5at.%、7.5at.%;选用1wt.%硬脂酸作为过程控制剂,以防止和避免粉末过度冷焊;
b.将称量好的Al粉和Mg粉分别放入装有不锈钢磨球的球磨罐内,所述不锈钢磨球为5个直径20mm和10个直径16mm的钢球;其中,Al粉和Mg粉的总质量与所述不锈钢磨球的总质量的比值为5:1;
c.在充满氩气的手套箱内,对装有不锈钢磨球和粉末的球磨罐进行密封操作;
d.首先用行星球磨机在低运行速度下充分混合粉末6小时,转速为200转/分钟;然后再在高运行速度下对混合粉末球磨36小时,转速为500转/分,高能球磨期间无间歇;
e.高能球磨结束后,在标准手套箱内对球磨后的粉末进行钝化处理,随后利用液压机在大气环境下把钝化后的粉末压制成粉末坯;粉末坯为直径30mm和高25mm的圆柱;
f.利用配有感应加热系统和手套箱的液压机,在充满氩气的手套箱内将粉末坯快速感应加热到500℃,随后在500℃下保温2分钟,待保温结束后,立即将加热的粉末坯移入预热的挤压模具内并将粉末坯热挤压成为直径6mm的热挤压棒;
g.分别从不同成分的热挤压棒上切下热挤压样品,并把部分热挤压样品置于350-550℃进行5小时的热处理;采用的热处理参数为:升温速率10℃/分钟,升到设定的热处理温度后,在该温度下保温5小时,待保温时间结束后,立即放入水中进行淬火获得淬火样品:
h.利用环氧树脂和硬化剂把每种成分的热挤压样品和淬火样品镶成直径30mm和高为15mm的圆柱镶样;待圆柱镶样硬化后,对其进行机械打磨和抛光处理;机械打磨过程中,首先依次使用#300、#600、#1200、#2000和#5000SiC砂纸进行打磨,随后用5μm的金刚石悬浊液作进一步处理,最后使用50nm的SiO2悬浊液作最后精抛光处理,精抛光时磨抛机的转动速度为150转/分钟;
i.测量h步骤中圆柱镶样的显微硬度,每个圆柱镶样至少测量10个数据点,下压力为25g,加载时间为15秒,测量的硬度值随退火温度和圆柱镶样成分的变化关系如图1所示;
j.运用扫描透射电子显微镜表征500℃热处理5小时的超细晶Al-2.5at.%Mg合金样品,获得的电镜照片如图2中(a)、(b)所示;图2中(c)和(d)证实了纳米MgO颗粒的存在。
本发明材料的制备方法涉及机械合金化、粉末压坯热挤压和热处理,属于粉末冶金领域。所以,利用快速凝固得到的含氧Al-Mg合金粉可实现同样结果。此外,由于Mg极其活泼,可以还原活性在它之后的金属氧化物原位生成纳米MgO颗粒或与外加金属氧化物反应生成复杂氧化物。这些都是原位生成含镁纳米颗粒,本质上和本发明无异。另外,本发明选择了较为简单的二元Al-Mg合金作为基体,作为科研人员和工程技术人员,很容易想到添加额外元素到二元Al-Mg合金中形成多元Al合金基体。上述情况均可在本发明想法的基础上进行简单拓展就可实现。
Claims (1)
1.一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法,其特征在于,包括如下步骤:
a.用精密天平称量Al粉和Mg粉,其中,溶质Mg原子所占合金的原子比例为0-8at.%;选用1wt.%硬脂酸作为过程控制剂,以防止和避免粉末过度冷焊;
b.将称量好的Al粉和Mg粉放入装有不锈钢磨球的球磨罐内,所述不锈钢磨球为5个直径20mm和10个直径16mm的钢球;其中,Al粉和Mg粉的总质量与所述不锈钢磨球的总质量的比值为5:1;
c.在充满氩气的手套箱内,对装有不锈钢磨球和粉末的球磨罐进行密封操作;
d.首先用行星球磨机在低运行速度下充分混合粉末6小时,转速为180-220转/分钟;然后再在高运行速度下对混合粉末球磨36小时,转速为480-520转/分,高能球磨期间无间歇;
e.高能球磨结束后,在标准手套箱内对球磨后的粉末进行钝化处理,随后利用液压机在大气环境下把钝化后的粉末压制成粉末坯;粉末坯为直径28-30mm和高25-35mm的圆柱;
f.利用配有感应加热系统和手套箱的液压机,在充满氩气的手套箱内将粉末坯快速感应加热到500℃,随后在500℃下保温2分钟,待保温结束后,立即将加热的粉末坯移入预热的挤压模具内并将粉末坯热挤压成为直径6mm的热挤压棒;
g.将热挤压棒置于350-550℃进行1-10小时的热处理;采用的热处理参数为:升温速率10℃/分钟,升到设定的热处理温度后,在该温度下保温5小时,待保温时间结束后,立即放入水中进行淬火。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810314755.7A CN108359823B (zh) | 2018-04-10 | 2018-04-10 | 一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810314755.7A CN108359823B (zh) | 2018-04-10 | 2018-04-10 | 一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108359823A true CN108359823A (zh) | 2018-08-03 |
CN108359823B CN108359823B (zh) | 2019-09-27 |
Family
ID=63007852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810314755.7A Expired - Fee Related CN108359823B (zh) | 2018-04-10 | 2018-04-10 | 一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108359823B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110541083A (zh) * | 2019-09-06 | 2019-12-06 | 天津大学 | 原位合成纳米MgO增强铝合金基复合材料的制备方法 |
CN118957339A (zh) * | 2024-08-05 | 2024-11-15 | 天津大学 | 一种具有多级异质结构的铝基复合材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5154020A (ja) * | 1974-11-07 | 1976-05-12 | Denki Kagaku Kogyo Kk | Yosendatsuryuzai |
EP0353297A4 (en) * | 1988-01-27 | 1990-10-10 | The Dow Chemical Company | A self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same |
CN101386546A (zh) * | 2008-10-14 | 2009-03-18 | 华南理工大学 | 精铸用自反应氧化铝基复合陶瓷型芯及其制备方法 |
CN102745727A (zh) * | 2012-06-13 | 2012-10-24 | 上海大学 | 用蛇纹石制备Mg/Al双层氢氧化物的方法 |
CN102747254A (zh) * | 2012-07-27 | 2012-10-24 | 哈尔滨工业大学 | 一种外加纳米陶瓷颗粒增强晶内型铝基复合材料及其制备方法 |
CN104630517B (zh) * | 2015-01-30 | 2016-08-17 | 华南理工大学 | 一种原位颗粒增强的铝基复合材料的制备方法 |
CN107502800A (zh) * | 2017-09-08 | 2017-12-22 | 燕山大学 | 一种纳米MgO颗粒增强的镁基复合材料的制备方法 |
-
2018
- 2018-04-10 CN CN201810314755.7A patent/CN108359823B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5154020A (ja) * | 1974-11-07 | 1976-05-12 | Denki Kagaku Kogyo Kk | Yosendatsuryuzai |
EP0353297A4 (en) * | 1988-01-27 | 1990-10-10 | The Dow Chemical Company | A self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same |
CN101386546A (zh) * | 2008-10-14 | 2009-03-18 | 华南理工大学 | 精铸用自反应氧化铝基复合陶瓷型芯及其制备方法 |
CN102745727A (zh) * | 2012-06-13 | 2012-10-24 | 上海大学 | 用蛇纹石制备Mg/Al双层氢氧化物的方法 |
CN102747254A (zh) * | 2012-07-27 | 2012-10-24 | 哈尔滨工业大学 | 一种外加纳米陶瓷颗粒增强晶内型铝基复合材料及其制备方法 |
CN104630517B (zh) * | 2015-01-30 | 2016-08-17 | 华南理工大学 | 一种原位颗粒增强的铝基复合材料的制备方法 |
CN107502800A (zh) * | 2017-09-08 | 2017-12-22 | 燕山大学 | 一种纳米MgO颗粒增强的镁基复合材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
陈玉茹: "原位强化的铝基复合材料常见增强相及其制备方法", 《工程与材料科学》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110541083A (zh) * | 2019-09-06 | 2019-12-06 | 天津大学 | 原位合成纳米MgO增强铝合金基复合材料的制备方法 |
CN118957339A (zh) * | 2024-08-05 | 2024-11-15 | 天津大学 | 一种具有多级异质结构的铝基复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108359823B (zh) | 2019-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reihani | Processing of squeeze cast Al6061–30vol% SiC composites and their characterization | |
Hosking et al. | Composites of aluminium alloys: fabrication and wear behaviour | |
US4923532A (en) | Heat treatment for aluminum-lithium based metal matrix composites | |
US3865586A (en) | Method of producing refractory compound containing metal articles by high energy milling the individual powders together and consolidating them | |
DE102008061024B4 (de) | Verfahren zum Herstellen von mit TiB verstärkten Verbundstoffbauteilen auf Basis von Titanlegierungen durch Pulvermetallurgieverfahren | |
Sap | Microstructural and mechanical properties of Cu-based Co-Mo-reinforced composites produced by the powder metallurgy method | |
Bohn et al. | Mechanical behavior of submicron-grained γ-TiAl-based alloys at elevated temperatures | |
WO1989006287A2 (en) | Aluminum based metal matrix composites | |
WO2004029313A1 (ja) | 高硬度・高強度で強靭なナノ結晶金属バルク材及びその製造方法 | |
Guan et al. | Microstructure and tensile properties of in situ polymer-derived particles reinforced steel matrix composites produced by powder metallurgy method | |
Prasanna Kumar et al. | Closed die deformation behavior of cylindrical iron–alumina metal matrix composites during cold sinter forging | |
Sharma et al. | Experimental analysis and characterization of SiC and RE oxides reinforced Al-6063 alloy based hybrid composites | |
JP3367269B2 (ja) | アルミニウム合金およびその製造方法 | |
Du et al. | The in-situ synthesis and strengthening mechanism of the multi-scale SiC particles in Al-Si-C alloys | |
Jayasathyakawin et al. | Experimental investigations on effect of silicon carbide on microstructure and mechanical properties in Mg-3 wt% Al alloy matrix using powder metallurgy | |
CN108359823A (zh) | 一种原位生成MgO弥散强化超细晶Al-Mg合金的制备方法 | |
Umeda et al. | Comparison study on mechanical properties of powder metallurgy titanium materials with nitrogen solutes and TiN dispersoids | |
Danappa et al. | Dry sliding wear behaviour of Al7075/Gr/nano TiO2 MMC using RSM | |
Bhaskar Raju et al. | Mechanical and Tribological Behaviour of Aluminium Metal Matrix Composites using Powder Metallurgy Technique—A Review. | |
CN102560204B (zh) | 硅铝双连续复合材料及其制备方法 | |
Long et al. | Comparison of two powder Processing techniques on the properties of Cu‐NbC composites | |
CN113798494A (zh) | 一种TiB2颗粒增强镁基复合材料及其制备方法 | |
Das et al. | An experimental investigation on the machinability of powder formed silicon carbide particle reinforced aluminium metal matrix composites | |
CN113174519B (zh) | 一种超细钒颗粒强化细晶镁基复合材料及其制备方法 | |
JP2004143596A (ja) | 高硬度・高強度で強靱なナノ結晶金属バルク材及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190927 |